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We present a smooth nonlinear time-varying controller for leader-follower tracking of non-holonomic mobile robots. Our design relies upon the standing assumption that either the rotational or the translational reference velocity is persistently exciting. Then, we extend our results to cover the problem of formation tracking for a swarm of vehicles interconnected under a spanning tree communication topology rooted at the virtual leader. In this case, we propose a simple distributed control law that establishes the convergence of the error coordinate of each agent, relatively to its neighbourhood, under the same condition of persistency of excitation. In addition, our proofs are based on Lyapunov's second method, that is, we provide a strict Lyapunov function.

INTRODUCTION

Tracking control of non-holonomic mobile robots has been long addressed by the nonlinear control community starting, at least, with the seminal paper [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] in which global stability was established using Lyapunov's first method. In dagger and Nijmeijer [1997] a backstepping approach was used to construct a controller that guarantees asymptotic stability for both, tracking and set-point stabilisation. The latter was generalised to the adaptive case in [START_REF] Fukao | Adaptive tracking control of a nonholonomic mobile robot[END_REF] -see also [START_REF] Huang | Adaptive output feedback tracking control of a nonholonomic mobile robot[END_REF]. In [START_REF] Wang | Finite-time tracking control of a nonholonomic mobile robot[END_REF] a finite-time tracking controller is designed using mainly two finite-time stabilising control laws; the stability analysis appeals to a cascades argument. In [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] a simple linear time-varying controller was proposed and uniform global asymptotic stability was established under the standing assumption is that the reference angular velocity is persistently exciting. In [START_REF] Fliess | Design of trajectory stabilizing feedback for driftless at systems[END_REF] a time scaling method was used to solve the the path following problem for a Driftless flat systems including nonholonomic mobile robots, a flatness based approach for path following control of mobile platforms was also studied in [START_REF] Woernle | Flatness-based control of a nonholonomic mobile platform[END_REF] using a Frenet-Serret coordinates.

The follow-the-virtual-leader approach of [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] is still used in the multi-robot tracking control problem, in which the goal is to conserve a certain formation while tracking a certain reference trajectory. Yet, in spite of the bulk of literature on tracking control for mobile robots the extension to the case of formation tracking control for swarms of robots is far from obvious. In [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF] the problem of reaching a certain geometric configuration using a distributed control was addressed; a necessary and sufficient graphical conditions were deduced. In den [START_REF] Van Den Broek | Formation control of unicycle mobile robots: a virtual structure approach[END_REF], [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF] and [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF] a virtual structure and a leader-follower approaches were investigated; a comparison between the tow methods can be found in den [START_REF] Van Den Broek | Formation control of unicycle mobile robots: a virtual structure approach[END_REF].

In [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF], the authors solve the formation tracking problem using a combination of the virtual structure and path-tracking approaches to generate the reference for each agent, then an output feedback control law was designed to track each agent toward its reference, using an asymptotic observer to estimate the velocities. This work was extended in [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], where the problem formation tracking with collision avoidance was considered, and under a limited sensing range. In [START_REF] Dong | Cooperative control of multiple nonholonomic mobile agents[END_REF] a backstepping based approach is proposed such a group of nonholonomic mobile agents converges and tracks a virtual leader under the assumption that the leader rotational velocity is persistently exciting.

The control approach proposed in [START_REF] Loria | Leaderfollower formation control of mobile robots on straight paths[END_REF] consists in applying, repeatedly, a follow-the-leader controller to each pair of vehicles interconnected in a spanning tree topology. In contrast to other schemes relying on persistency of excitation, the controller proposed in this reference applies to straight-path trajectories (zero-angular reference velocity); it relies on a relaxed form of persistency of excitation tailored for state-dependent regressors, called δ-persistency of excitation. However, the analysis is very complex as it is trajectory-based and no Lyapunov function is provided. Besides, the assumptions may be difficult to verify.

In this paper we solve the leader-follower formation tracking control problem for a group of mobile robots using distributed control. As in [START_REF] Loria | Leaderfollower formation control of mobile robots on straight paths[END_REF], each robot communicates only with two neighbours. To one, a follower, it transmits its forward and angular velocities and, from the other, a leader, it receives the corresponding velocities. That is, the communications graph is considered to be a spanning tree, the root of which is a virtual robot moving with a reference forward and angular velocities, that are communicated only to the leader robot in the formation. We establish uniform global asymptotic stability for the error system under a simple condition of persistency of excitation on either of the reference velocities, angular or forward. Our proofs rely on Lyapunov's direct method; in the construction of our Lyapunov's functions we borrow inspiration from [START_REF] Mazenc | Strict lyapunov functions for time-varying systems[END_REF], [START_REF] Mazenc | Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems[END_REF], and [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF].

Thus, the main contribution of this paper is twofold: first, we establish uniform global asymptotic stabilisation in the context of formation-tracking control under weak assumptions; secondly, as far as we know, this is the first paper in which a strict Lyapunov function 2 is proposed in the context of control of nonholonomic systems under a persistently excited reference velocities. Indeed, our stability proof is based on Lyapunov's direct method.

The rest of the paper is organised as follows. In Section 2 we present an original statement on leader-follower tracking control; in Section 3 we present our main results on formation-tracking for swarms of vehicles and we conclude with some remarks in Section 4.

A SINGLE AGENT CASE

Consider the kinematic model of a mobile robot, that is,

ẋ = v cos θ ẏ = v sin θ θ = ω
where v denotes the forward velocity, ω corresponds to the angular velocity which are, also, the two control inputs. Given two velocity references t → v r and t → ω r the tracking control problem consists in following a fictitious reference vehicle ẋ0 = v r cos θ r (1a)

ẏ0 = v r sin θ r (1b) θr = ω r . ( 1c 
)
From a control viewpoint, the goal is to steer to zero the differences between the Cartesian coordinates of the two robots, as well as orientation angles,

2 That is positive definite with negative definite derivative.

p x = x r -x p y = y r -y p θ = θ r -θ.
Then, according to the approach in [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] we transform the error coordinates [p x , p y , p θ ] of the leader robot from the global coordinate frame to local coordinates fixed on the robot that is,

  e x e y e θ   =   cos θ sin θ 0 -sin θ cos θ 0 0 0 1     p x p y p θ   . (2) 
In the new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ėx = ωe y -v + v r (t) cos(e θ ) (3a) ėy = -ωe x + v r (t) sin(e θ ) (3b) ėθ = ω r (t) -ω. (3c) 
Therefore, the follow-the-leader tracking control problem of mobile robots amounts to a stabilisation problem, at the origin, for the system (3).

Our control approach is inspired by the cascades-based controllers originally presented in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], in which persistency of excitation is used to guarantee exponential stabilisation of the origin for the error dynamics.

In that reference the following simple linear time-varying controller was proposed:

v = v r (t) + K x e x , K x > 0 (4a) ω = ω r (t) + K θ e θ , K θ > 0. ( 4b 
)
Besides the obvious advantage that offers the simplicity of this controller, it is to be remarked that the closed-loop system has the attractive cascaded form

ėx ėy = -K x ω r (t) -ω r (t) 0 e x e y + g(t, e) (5a) ėθ = -K θ e θ (5b) 
where e = [e x e y e θ ] and we defined the interconnection term

g(t, e) := v 0 (t) cos(e θ ) -1 + K θ e θ e y v 0 (t) sin(e θ ) -K θ e θ e x . ( 6 
)
As it is showed in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], uniform global asymptotic stability of the origin of ( 5) is easily established upon the following cascades argument: first, we observe that because K θ > 0, e θ converges exponentially fast; then, it is clear that g(t, e) has linear growth in e x and e y and is uniformly bounded in t; finally, for the equations (5a) with g ≡ 0, the origin is exponentially stable provided that the reference angular velocity is persistently exciting that is, assuming that there exist µ, T > 0 such that

t+T t ω r (s) 2 ds ≥ µ, ∀ t ≥ 0. (7)
Clearly, this simple argument relies on the bulk of literature on adaptive control systems. Notice that the nomi-nal system in (5a) has, precisely, the structure of modelreference-adaptive -control systems.

Although simple, a drawback of this is that it relies on a property of persistency of excitation for the angular velocity. Therefore, straight-path trajectories are excluded.

In [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF], [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] where complex nonlinear time varying controls are designed to allow for reference velocity trajectories that converge to zero. Furthermore, in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] the authors cover the case when also the forward velocity v 0 may converge to zero that is, tracking control towards a fixed point. In [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF] the controller is designed so as to make the robot converge to the straight-line trajectory resulting in a path that makes it go back and forth. In Loria et al.

[2016] we presented a controller which relies on a relaxed form of persistency of excitation, which solves the tracking control problem on straight paths. However, in view of the recursive design, verifying the assumptions in the latter reference may be a tedious and difficult task for large swarms of robots.

In this paper we propose the following nonlinear timevarying controller:

v = v r (t) cos(e θ ) + K x e x (8a) ω = ω r (t) + K θ e θ + v r (t)K y e y φ(e θ ) ( 8b 
)
where φ is the so-called 'sync' function defined by

φ(e θ ) := sin(e θ ) e θ (9) 
which has several useful properties: it is smooth, bounded and locally positive, actually, |φ(s)| > 0 for any |s| < π.

Our standing assumption is that either the forward or the angular reference velocities are persistently exciting.

The control design is motivated by the resulting structure of the closed-loop system, which not only includes a convenient persistently-excited skew-symmetric matrix but for which uniqueness of the equilibrium point may be ensured. The closed-loop dynamics of system (3) with the controller (8) takes the form: ė = A(t, e)e, e := [e x e y e θ ] (10)

A(t, e) :=    -K x ω(t, e) 0 -ω(t, e) 0 v r (t)φ(e θ ) 0 -v r (t)K y φ(e θ ) -K θ   
Our first result is the following. Theorem 1. Assume that v r , ω r , vr and ωr are bounded. If, moreover, there exist µ > 0 and T > 0 such that

t+T t v r (s) 2 + ω r (s) 2 ds ≥ µ ∀ t ≥ 0 (11)
then, the origin of (10) in closed loop with the controller velocities ( 8) is uniformly globally asymptotically stable, for any positive gains K x , K y and K θ .

Proof. Consider first the Lyapunov function candidate

V 1 : R ≥0 × R → R defined as V 1 (t, e) = 1 2 e 2 x + e 2 θ + 1 K y e 2 y ( 12 
)
whose time derivative along trajectories of (10) is negative semidefinite, indeed, V1 (t, e) = -K x e 2 x -K θ e 2 θ .

(13)

It follows from this and Barbȃlat's lemma that e x → 0 and e θ → 0 and all solutions are uniformly globally bounded. Actually, integrating on both sides of V1 (t, e(t)) ≤ 0 and defining

c 1 := min{1/2, 1/2K y } c 2 := max{1, 1/K y }, c 3 := c 2 /c 1 we obtain |e(t)| ≤ c 3 |e(t • )| ∀ t ≥ t • ≥ 0. ( 14 
)
That is, the origin is uniformly globally stable with linear growth.

Next, we show that the origin is uniformly globally attractive. To that end, for any locally integrable function

f : R ≥0 → R ≥0 , such that sup t≥0 |f (t)| ≤ f , let us define Q f (t) := 1 + 2 f T - 2 T t+T t m t f (s)dsdm (15) 
Note that this function, introduced first in [START_REF] Mazenc | Strict lyapunov functions for time-varying systems[END_REF], satisfies

1 ≤ Q f (t) < Qf := 1 + 2 f T Qf (t) = - 2 T t+T t f (s)ds + 2f (s).
Furthermore, let us introduce the function V 2 : R ≥0 × R 3 → R ≥0 defined as V 2 (t, e) = γ r V 1 (t, e) -ω r (t)e x e y + α r v r (t)e θ e y φ(e θ )

+ 1 2 K y φ 2 (e θ )Q v 2 r (t) + Q ω 2 r (t) e 2 y ( 16 
)
where α r and γ r are positive constants such that V 2 is positive definite and radially unbounded. Notice, indeed, that in view of the boundedness of v r and ω r , for a suitable choice of the parameters α r and γ r , there exist c 1 > 0 and c 2 > 0 such that

c 1 |e| 2 ≤ V 2 (t, e) ≤ c 2 |e| 2 .
The time derivative of (3) along the closed-lopp trajectories of ( 10) is: 

V2 = -γ r K x e 2 x + K θ e 2 θ + ω 2 r e 2 x + v 2 r α r φ 2 (
- t+T t 1 T v 2 r (s)ds φ 2 (e θ )K y e 2 y -(α r -1)v 2 r K y e 2 y φ 2 (e θ ) - t+T t 1 T ω 2 r (s)dse 2 y -ω r + 2φ(e θ ) cos(e θ ) -φ(e θ ) e θ Q v 2 r K y K y v r φ(e θ )e 3 y ( 17 
)
where

Ψ xy = -ωr + ω r K x + K y v r ω r e x φ(e θ ) -K y φ 2 (e θ )Q v 2 r + Q ω 2 r × [ω r + K θ e θ + e y K y v r φ(e θ )] Ψ θx = ω r e x K θ -v r ω r φ(e θ ) -v r α r ω r -v 2 r α r yK y φ 2 (e θ ) -v r α r K θ φ(e θ )e θ Ψ θy = -ω r K θ e y -α r v r φ(e θ )K θ + α r vr φ(e θ ) + K y φ 2 (e θ )Q v 2 r + Q ω 2 r v r φ(e θ ) -2φ(e θ ) cos(e θ ) -φ(e θ ) e θ Q v 2 r K y K θ e y .
Now, in view of the bound ( 14), these terms are bounded along the error trajectories, that is, for any r > 0 there exists Ψr > 0 such that

|e(t • )| ≤ r =⇒ max Ψ xy ∞ , Ψ θx ∞ , Ψ θy ∞ ≤ Ψr . ( 18 
)
On the other hand, for all e such that |e| ≤ c 3 r, the derivative of

V 2 satisfies V2 (t, e) ≤ -γ r [K x e 2 x + K θ e 2 θ ] + ω 2 e 2 x + v 2 r α r φ 2 (e θ )e 2 θ + Ψr |e x e y | + |e y e θ | + |xe θ | -(α -1)v 2 r K y e 2 y φ 2 (e θ ) + M r K y v r φ(e θ )e 3 y - t+T t 1 T ω 2 r (s)ds +K y φ 2 (e θ ) t+T t 1 T v 2 r (s)ds e 2 y ( 19 
)
where we defined

M r = ω r + φ(e θ ) cos(e θ ) -φ(e θ ) e θ Q v 2 r K y ∞ .
To continue further, constructing a suitable bound on V2 , we need to stress some useful inequalities. Firstly, for any given δ > 0 let γ r := γ r1 + γ r2 , with γ r1 verifying the inequality:

-γ r1 [K x e 2 x + K θ e 2 θ ] + ω 2 e 2 x + v 2 r α r φ 2 (e θ )e 2 θ + Ψr |e x e y | + |e y e θ | + |e x e θ | ≤ δ 2 e 2 y .
(20) Furthermore, note that for any δ > 0,

M r v r φ(e θ )e y e 2 y ≤ δ 2 e 2 y + M 2 r 2δ e 2 y φ 2 (e θ )v 2 r e 2 y hence, V2 (t, e) ≤ -γ r2 [K x e 2 x + K θ e 2 θ ] -(α -1 - M 2 r 2δ e 2 y )v 2 r K y e 2 y φ 2 (e θ ) + δK y + δ 2 e 2 y -min {1, K y } t+T t 1 T ω 2 r (s)ds +φ 2 (e θ ) t+T t 1 T v 2 r (s)ds e 2 y . (21) 
Now, taking

α ≥ 1 + M 2 r 2δ r 2 , we obtain, V2 (t, e) ≤ -γ r2 [K x e 2 x + K θ e 2 θ ] + δK y + δ 2 e 2 y - min {1, K y } T t+T t ω 2 r (s) + v 2 r (s) ds e 2 y + min {1, K y } T 1 -φ 2 (e θ ) t+T t v 2 r (s)ds e 2 y . (22) 
Next, we use the inequality, 1 -φ 2 (e θ ) ≤ 2e 2 θ (23) and we invoke the persistency-of-excitation condition (11) to obtain

V2 (t, e) ≤ -γ r2 [K x e 2 x + K θ e 2 θ ] -min {1, K y } µ T - δK y + δ 2 e 2 y + min {1, K y } 2 T t+T t v 2 r (s)ds e 2 y e 2 θ . (24) 
Finally, we see that by setting

δ = µ T (1 + K y ) min {1, K y } γ r2 = 2 min {1, K y } T K θ v2 r T r 2 we obtain, V2 (t, e) ≤ - γ r2 2 [K x e 2 x + K θ e 2 θ ] -min {1, K y } µ 2T e 2
y for all t ≥ 0 and all |e| ≤ c 3 r.

That is, V 2 is positive definite, radially unbounded and its derivative is negative definite on any compact of the state. Uniform global attractivity of the origin follows. In addition, since the system is also uniformly globally stable, uniform global asymptotic stability follows.

FORMATION-TRACKING CONTROL

Let us consider, now, the case when a swarm of robots must advance in formation and follow a reference trajectory. We assume that only one robot possesses the information of the reference virtual vehicle and transmits is to one neighbour. The latter transmits its own velocities to one vehicle in the communication graph and so on. That is, vis-a-vis of the interconnections, the graph forms a spanning tree in which each robots has only one parent and one child except for the reference vehicle (root) and the leaf node. The control approach is simple. It consists in using a decentralised follow-the-leader tracking controller for each vehicle, whose model is given by ẋi

= v i cos (θ i ) (25a) ẏi = v i sin (θ i ) (25b) θi = w i , i ∈ [1, n] (25c) 
The fictitious vehicle, which serves as reference to the swarm, describes the reference trajectory defined by (1); the desired linear and angular velocities v r and ω r are communicated to the leader robot only. Similarly to the case of tracking control we define the errors

p ix = x i-1 -x i -d xi-1,i p iy = y i-1 -y i -d yi-1,i p iθ = θ i-1 -θ i , i ∈ [1, n]
where d x and d y are (piecewise-)constant design parameters imposed by the topology and path planner and, by definition, we set (•) 0 := (•) r .

According to the spanning-tree communication topology, and following the setting for tracking control, the formation control problem reduces to that of stabilisation of the error dynamics between any pair of leader-follower robots.

Then, for each i ≤ n, we have

ėxi = w i e iy -v i + v i-1 cos(e θi ) (26a) ėyi = -w i e ix + v i-1 sin(e θi ) (26b) ėθi = w i-1 -w i . (26c) 
The formation-tracking control problem for n robots reduces to the stabilisation of the origin in the space of e := [e x , e y , e θ ] where we redefined e (

•) := [e (•)1 , • • • e (•)n ] .
Then, for each i ≤ n we propose the controller defined by

v i = v i-1 cos(e θi ) + K xi e xi ( 27a 
)
ω i = ω i-1 + K θ i e θi + v i-1 K y i e yi φ(e θi ) (27b) 
Theorem 2. For the multiagent error system (26) in closed loop with the controller (27), the origin is uniformly globally asymptotically stable if ω 2 r + v 2 r is persistently exciting i.e., (11) holds, and K xi , K yi and K θi are positive.

Proof. The closed-loop dynamics is

  ėxi ėyi ėθi   =   -K xi ω i (t, e i ) 0 -ω i (t, e i ) 0 v i-1 φ(e θi ) 0 -v i-1 K yi φ(e θi ) -K θ i   A i (e i , v i-1 , ω i )   e xi e yi e θi   ( 
28) which has exactly the same structure as (10). For each i ≤ n, the Lyapunov function

V 1i := 1 2 e 2 xi + e 2 θi + 1 K yi e 2 yi ( 29 
) satisfies V1i = -K xi |e xi | 2 + K θ i |e θi | 2 (30)
hence the origin is uniformly globally stable and |e x (t)|, |e θ (t)| converge asymptotically to zero. In particular, ( 14) holds for an appropriate redefinition of c 3 .

Next, let us introduce the variables ṽi = v i -v i-1 and ωi = ω i -ω i-1 . So for each i ≥ 1, the closed-loop system takes the form:

ėxi = i y i -K xi e xi + i-1 k=1 ωk e yi + i-1 k=1 ṽk K y i φ(e θi )e 2 yi ėyi = -i e xi + v r sin(e θi ) - i-1 k=1 ωk e xi - i-1 k=1 ṽk K y i φ(e θi )e xi e yi + sin(e θi ) ėθi = -i + ω r - i-1 k=1 ṽk K y i φ(e θi )e yi + i-1 k=1 ωk where i = K θ i e θi + ω r + v r K y i φ(e θi )e yi (31) 
and

ṽi = v i-1 [cos(e θi ) -1] + K xi e xi (32a) ωi = K θ i e θi + v i-1 K y i φ(e θi )e yi (32b) 
With these notations, the error dynamics take the form ėi

= Ā(t, e i )e i + M i (t, e i ) i-1 k=1 ṽk ωk (33) 
where 

Āi (t, e i ) :=    -K xi i (t, e i ) 0 -i (t, e i ) 0 v r (t)φ(e θi ) 0 -v r (t)K yi φ(e θi ) -K θi
= K xk 0 v k-1 0 0 v k-1 K y k φ(e θk ) 0 K θ k B k (t, e)    e xk e yk cos(e θk ) -1 e θk    ξ(e k )
For each i ≤ n, the system ėi := Āi (t, e i ) is exactly of the form (10). Hence, from the proof of Theorem 1 we deduce that, for each corresponding i and any r > 0, the functions 

V 2i = γ ri V 1i + 1 2 K y i φ 2 (e θi )Q v 2 r + Q ω 2
such that, for an appropriate choice of the constants ψ ri , there exists > 0 such that the total derivative, along the trajectories of (33) for all i ≤ n, satisfies V2 (t, e) ≤ -|e| 2 (37) for all t ≥ 0, and |e| ≤ c 3 r. In addition, from uniformly globally stability, all trajectories generated by initial conditions t • ≥ 0, |e • | ≤ r satisfy |e(t)| ≤ c 3 r for all t ≥ t • . Therefore, the origin is uniformly globally attractive. Corollary 3. Under the conditions of Theorem 2 the origin of the system (26) in closed loop with ( 27) is uniformly exponentially stable at large on any compact.

CONCLUSIONS

We have presented a simple distributed control approach for the formation tracking control of swarms of velocitycontrolled mobile robots. Our controllers ensure uniform global asymptotic stability under a simple condition of persistency of excitation of either of the reference velocities, forward or angular. In particular, our controller applies to the difficult problem of following straight paths: null angular velocity and constant forward velocity. Finally, our proofs are direct as they are based on Lyapunov's second method.
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