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Abstract— In recent work, we laid the basis of an analysis
framework for the study of heterogeneous networks. In essence,
it is postulated that in a heterogeneous network a collective non-
trivial behaviour arises, which may be modelled as a dynamical
system itself. Then, we say that the networked systems synchro-
nize or, more precisely, achieve dynamic consensus if they adopt
this emergent behaviour. In this paper we consider the case-
study of coupled Andronov-Hopf oscillators. We establish that
the emergent dynamics, which is of the same nature as a single
oscillator, is orbitally stable. Then, we show that the trajectories
of the individual oscillators tend to a neighbourhood of the
stable orbit. For the first time in the study of synchronization,
the analysis is based on singular-perturbations theory; we show
that the emergent dynamics corresponds to a slow system while
the synchronization errors form a fast dynamics.

I. INTRODUCTION AND MOTIVATION

Synchronization of networked systems, particularly of
oscillators, plays an important role in different research
disciplines such as physics, ecology, economics, medicine
etc. If all the the nodes in the network are identical and
the interconnection gain is sufficiently high, it is expectable
that the networked systems synchronize. Furthermore, it is
intuitively clear that a synchronized behaviour of such a
network corresponds, roughly speaking, to all nodes adopting
the motion of a single isolated unit.

In the case of heterogeneous networks, however, the
paradigm of asymptotic synchronization is much more com-
plex: the existence of a synchronization manifold is not
guaranteed hence, in lieu of adopting the behaviour of one
of the nodes, some type of internal model is necessary and
sufficient for synchronization [1] and, in general, only “prac-
tical” synchronization is usually ensured for heterogeneous
networks [2]–[5]. However, in spite of numerous article
sin which stability theory is used to analyze heterogeneous
networks, –see e.g. [2], [3], [6]–[9], the question of charac-
terizing classes of heterogeneous networks that may achieve
asymptotic synchronization remains largely open.

In [5], [10] a novel framework of analysis for hetero-
geneous networks was developped upon the premise that
the collective behavior of network-interconnected systems is
dichotomic: it consists, on one hand, in a “weighted aver-
aged” motion determined by the so-called emergent dynamics
and, on the other, in the dynamics of the synchronization
errors of each individual unit in the network, relatively to
the collective behaviour.

M. Maghenem is with Univ Paris-Saclay, A. Loria and E. Panteley are
with the CNRS. L2S-CentraleSuplec, 91192 Gif-sur-Yvette, France. E-mail:
loria@lss.supelec.fr. E. Panteley is also with ITMO University,
Kronverkskiy av. 49, Saint Petersburg, 197101, Russia. This article is
supported by Government of Russian Federation (grant 074-U01).

From a dynamical systems viewpoint, the emergent dy-
namics pertains to an “average” of the units’ drifts. This
dynamics is intrinsic to the newtork as it is determined by the
network’s graph, but it is independent of the intensity of the
interconnections. Then, if all units behave (asymptotically)
as the emergent dynamics, we say that the network achieves
dynamic consensus. Thus, dynamic consensus generalizes
more usual paradigms in which all units achieve a synchro-
nization manifold or a simple equilibrium point. For instance,
in the case of a (homogeneous) network of oscillators it is
imaginable that they adopt an averaged oscillatory motion.
Yet, in the case of heterogeneous networks the collective
behaviour must typically be described via a dynamic system.

Based on the ideas in [5], [10], in this paper we analyze
the collective behaviour of a network of heterogeneous
Andronov-Hopf oscillators. Assuming that the network is pa-
rameterized by the (scalar) coupling gain, and using a linear
change of coordinates, we regard the network dynamics as a
system that evolves in two different time scales: a slow one in
which the emergent dynamics evolves and a fast one, which
corresponds to that of the synchronization error dynamics.
Remarkably, such model reformulation naturally leads us to
recast the analysis into the realm of stability of dynamical
systems via singular-perturbations theory [11]–[15]. To the
best of our knowledge, this is the first article where such
methods are applied to the analysis of synchronization in
heterogeneous networks.

The rest of the paper is organized as follows. In Section
III we describe the system’s model and we recast the
synchronization problem in terms of a stability one for
singularly-perturbed systems. In Section IV we present our
main result. Section V is devoted to some technical proofs.
Some concluding remarks are provided in Section VI.

II. PRELIMINARIES AND NOTATION

We study the stability of a class of systems on the n-
dimensional complex plane Cn, given by

ż = f(z), z ∈ Cn (1)

where f is locally Lipschitz. To that end, we first need to
introduce some notations and recall a few concepts and facts.

For a vector z ∈ Cn, let z∗ denote its transpose conjugate.
Then, let the norm operator | · | be defined as |z| =

√
z∗z

and, for a closed set ω ⊂ Cn we define the usual distance
to the set as |z|ω := infy∈ω |z − y|. We also recall the L∞
norm,

|f |∞ := lim sup
t→∞

|f(t)|.



If the system (1) admits a periodic solution (t, z◦) 7→ z∗

starting at z∗(0, z◦) = z◦, we say that it admits a closed
periodic orbit γ ⊂ C which contains all and only the
elements in the image of (t, z◦) 7→ z∗. For such systems,
we study the following stability property –cf. [16].

Definition 1 (Orbital Stability): The closed periodic orbit
γ of the system (1) is said to be orbitally stable if for each
ε > 0 there exist δ > 0 and T ≥ 0, such that

∀ |z◦|γ ≤ δ =⇒ |z(t, z◦)|γ ≤ ε, ∀ t ≥ T.

Moreover, the invariant orbit γ is said to be asymptotically
orbitally stable, if it is orbitally stable and attractive that is,
there exists r > 0 such that

lim
t→∞

|z(t, z◦)|γ = 0, ∀ |z◦|γ ≤ r. (2)

•
For periodic systems,

ẋ = A(t)x, A(t+ α) = A(t), ∀ t ≥ t0 (3)

orbital stability may be inferred using the so-called charac-
teristic multipliers [17, Section III.7]. After Floquet theory,
[18], [19], there exists an (α)−periodic matrix P (t) and a
constant matrix B, such that the fundamental matrix, solution
of (3), has the following form:

X(t) = P (t)eBt (4)

and the non-singular periodic transformation x = p(t)y
transforms the system (3) into

ẏ = By. (5)

Then, the characteristic multipliers of A(t) are defined as the
eigenvalues of the matrix eBα. Then, after [17] we have the
following.

Lemma 1 (Characterization of Orbital Stability):
Consider the autonomous system ż = f(z), which
admits a closed periodic orbit γ and let ϕ(t) be a periodic
solution belonging to γ. Then, the periodic orbit γ is
(locally) orbitally asymptotically stable if the Jacobian
matrix A(t) := ∂f

∂z (ϕ(t)) has a unique characteristic
multiplier equal to 1, µ1 = 1 and all the others are inside
the unit circle. See [Section VI.2. [17]]. �

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

The unforced Andronov-Hopf equation, which represents
a normal form of the bifurcation carrying the same name, is
given by

ż = −ν|z|2z + µz (6)

where z ∈ C denotes the state of the oscillator and ν, µ ∈ C
are constant parameters; ν := νR + jνI and µ := µR + jµI .

The analysis of (6) is well documented in the literature.
For instance, via Lyapunov-exponents-based methods, as in
[20] and [19], or using Lyapunov’s direct method, as in
[21] and [22]. Under these conditions, the behaviour of the
Andronov-Hopf oscillator on the phase plane is illustrated in
Fig. 1.

Fig. 1. Trajectories of the Andronov-Hopf oscillator on the complex plane.
If µR > 0 the origin is unstable but all trajectories tend to a stable limit-
cycle of radius r =

√
µR/νR

For the sequel, we single out some important properties
of Andronov-Hopf oscillators and, without loss of generality,
we assume that ν = 1. First, it is clear that the solutions are
globally ultimately bounded. More precisely, for any δ > 0,
there exists T > 0 such that

|z(t, z◦)| ≤
√
µR + δ ∀t ≥ T.

Furthermore, if µR > 0 then (6) admits an invariant set that
is composed of two disjoint invariant subsets, that is,

W := {z ∈ C : |z| = √µR } ∪
{
z = 0

}
. (7)

Moreover the invariant orbit
{
z ∈ C : |z| = √µR

}
is almost

globally asymptotically stable and the origin {z = 0} is
antistable –see [23]. In addition, for the perturbed Andronov-
Hopf oscillator

ż = [−|z|2 + µ]z + u, (8)

the set W is attractive:
Proposition 1: [4] Consider the system (8) with initial

conditions z◦ ∈ C and let the set W be defined by (7).
Then, the system (8) has the asymptotic gain property, i.e.,
there exists a class K∞ function η such that

lim sup
t→+∞

|z(t, z◦, u) |W ≤ η
(
|u|∞

)
. �

A. Network model and problem formulation

Let us consider now a network of n forced normalized
Andronov-Hopf oscillators,

żi = −|zi|2zi + µizi + ui (9)

where i ∈ [1, . . . , n], zi ∈ C is the state of the ith oscillator,
the complex parameter µi = µRi + iµIi ∈ C defines its
amplitude and frequency, and ui is a control input. We
assume that the oscillators are interconnected via diffusive
coupling, i.e.,

ui = −γ
[
li1(zi − z1) + . . .+ lin(zi − zn)

]
(10)

where, lij are real, non-negative numbers denoting the in-
dividual interconnections weights and the scalar parameter
γ > 0 corresponds to the common coupling strength. Then,
let L denote the corresponding Laplacian matrix, and let



z ∈ Cn denote the overall network’s state, that is z =
[z1, . . . , zn]>. Replacing (10) in (9) we see that the overall
network dynamics takes the form

ż = f(z)− γLz, (11)

where the function f : Cn → Cn is given by

f(z) := [f1(z1) · · · fn(zn)]
>
, (12)

fi(zi) := −|zi|2zi + µizi. (13)

If the network’s graph is connected and undirected, then
the corresponding Laplacian matrix L = L> has exactly one
eigenvalue (say, λ1) equal to zero, while others are positive,
i.e., 0 = λ1 < λ2 ≤ . . . ≤ λn. We denote by v>1 = 1√

n
1>

the eigenvector associated to the eigenvalue λ1. Since L is
symmetric, its Jordan decomposition can be written as

L = U

[
0 0
0 Λ

]
U>, (14)

where Λ = diag {λi(L)}i=2,n > 0 and

U =
[
v1 V

]
. (15)

In turn, V ∈ R(n−1)×n is constituted of the eigenvectors cor-
responding to the nonzero eigenvalues of L, and it satisfies

v>1 V = 0, V >V = In−1.

Following [5], [10] we propose a change of coordinates
that allows to transform the network model in a way to
exhibit the emergent dynamics (collective behaviour) and
the synchronization error dynamics. Furthermore, we show
that the resulting model is in singular-perturbation form, the
emergent dynamics corresponding to the slow motion and
the synchronization error dynamics being the fast dynamics.
To the best of our knowledge, this is the first time that syn-
chronization is studied using singular-perturbations theory.

B. Coordinate transformation and model reformulation

Following [5], [10] we show that the emergent dynamics
is intrinsic to the network. To that end, we use the matrix U
which stems from the Jordan decomposition of the Laplacian
L, to define the new coordinate

z̄ := U>z (16)

which, in view of (15), we may partition as follows:

z̄ =:

[
zm
ev

]
:=

[
v>1 z
V >z

]
=

[ 1√
n
1>z

V >z

]
. (17)

Modulo a factor
√
n, the coordinate zm may be regarded

as an average of the respective oscillators’ states. Such
a coordinate is often used in the literature on networked
systems to define the synchronization errors as differences
between the individual states and the state of the “averaged”
unit –cf. [2], [3], [9], [10], [24], that is,

e = z − zmv1. (18)

The second coordinate, ev , can be seen as a projection
of the synchronization errors (18) onto the subspace that is

orthogonal to the vector v1. Indeed, note that ev = V >e
since

ev = V >z = V > (z − zmv1) = V >e.

Moreover, a rather direct computation shows that e = V ev .
In the new coordinates, the network equations (11) take

the form

˙̄z = U>
[
f(z)− γLz

]
(19)

and, using the properties of L and U , we obtain

żm = v>1 f(V ev + v1zm) (20)
ėv = V >f(V ev + v1zm)− γΛev. (21)

Remark 1: It is important to underline that due to the
properties of the Laplacian L, the zm–dynamics, (20), is
independent from the the coupling gain γ. •

Now, in the study of synchronization problems of net-
worked systems, it is commonly assumed that the coupling
parameter γ is large. Therefore, we introduce the singular
parameter 0 < ε� 1,

ε :=
1

γ

so, dividing by γ both sides of (21) the network dynamics
equations (20), (21) become

żm = F (zm, ev) (22)
εėv = εG̃(zm, ev)− Λev = G(ε, ev, zm). (23)

This system has the standard singular-perturbations form
with coordinates zm and ev corresponding to the states of the
“slow” and “fast” dynamics of the network respectively. We
stress that the model (22), (23) appears naturally, in view of
the large coupling parameter γ in the network dynamics and
the coordinate transformation (16) which reflects the intrinsic
properties of the network structure.

C. Reduced-order model of the network and its properties

The reduced-order model is obtained from (22), (23) by
setting ε = 0. Due to the particular structure of the system,
notably the fact that ε appears linearly in the right hand part
of (23), the reduced-order model has the simple form

ev = 0 (24)
żm = v>1 f(v1zm), (25)

where we used (20) to obtain the reduced dynamics for zm.
Using (12) and recalling that v1 = 1√

n
1, we obtain the

explicit form of the slow dynamics,

żm =− 1

n
|zm|2zm + azm. (26)

The parameter a ∈ C in this equation corresponds to the
average of frequencies and amplitudes of the individual
oscillators, i.e.,

a := aR + iaI :=
1√
n

n∑
1

µRj + i
1√
n

n∑
1

µIj . (27)



Clearly, the slow reduced-order system (26) corresponds to
a single “averaged” Andronov-Hopf oscillator.

Thus, the dynamic model of a network of Andronov-
Hopf oscillators may be regarded as a singularly-perturbed
system, in which the slow system (23) has a limit-cycle
{|z| =

√
naR}. The next step in our analysis is to ensure

continuity of such behavior for sufficiently small values
of the perturbation parameter ε. Based on [12], [15], we
prove that the unperturbed limit-cycle {|z| =

√
naR} can

be continued to a family of limit-cycles with periods that
are sufficiently close to the period of the unperturbed one.
Then, we use a trajectory-based approach and corresponding
tools from dynamical system theory [17], [25], [16] to
study the stability of the limit-cycle under sufficiently small
perturbations.

IV. MAIN RESULT

Our main statement is that there exists a unique periodic
orbit for the system (22)–(23) that is locally orbitally asymp-
totically stable. Then, in view of Lemma 1 this means that
all solutions starting away from this orbit tend to it, or to
the origin.

Now, in order to state our main results formally, we must
introduce a few more definitions and notations. Firstly, we
denote by γ0 a closed orbit of the system (24), (26), that we
define as

γ0 :=
{

(ev, zm) ∈ Cn−1 × C : ev = 0, |zm|2 = naR
}
.

Then, we define γα0 as a set of trajectories of (24), (26) of
period α and starting from γ0, that is,

γα0 :=
{

(ev0, zm0)(t) : R≥0 → Cn−1 × C :

ev0(t) = 0, zm0(t) =
√
naR e

[ 2π
α t+φ]j , φ ∈ R

}
where j :=

√
−1. The difference between the sets γ0 and

γα0 must be clear. The former is an invariant set (of points)
in the state space of the system (24), (26), while γα0 is the
set of (α)-periodic trajectories of the same system starting
from initial states in γ0. Notice that γαε0 and γα0

0 denote
sets of trajectories describing the same orbit γ0 at different
frequencies.

Now, due to the singular perturbation ε in the fast dynam-
ics (23), the system (22)-(23) cannot have the same limit-
cycle as the reduced-order model (24), (26). Hence, in the
sequel, we denote by γε a closed orbit of the the perturbed
system (22)-(23) and, correspondingly, γαεε denotes the set
of trajectories of the same system, describing the orbit γε
with period αε.

In addition, for the purpose of analysis, we intro-
duce the sets Tρ and Γαερ which, roughly, correspond to
ρ−neighborhoods of γ0 and γαε0 respectively. For any ρ ≥ 0,
we define the torus Tρ, which contains the orbit γ0, as

Tρ :=

{
(ev, zm) ∈ Cn−1 × C, such that:

min
|zm0|=

√
naR
|zm − zm0|+ |ev| ≤ ρ

}

and we define Γαερ as a set of all continuous (αε)−periodic
closed trajectories (evp(t), zmp(t)) inside Tρ, such that there
exists (0, zm0(t)) ∈ γαε0 , such that,

|evp(t)|+ |zmp(t)− zm0(t)| ≤ ρ, ∀ t ≥ 0.

We are now ready to present our main statement.
Theorem 1: Consider the dynamical system (22)-(23). Let

γ0 be a limit cycle for the reduced-order model (24), (26).
Then, there exists ε∗ > 0, such that, for all ε ∈ (0, ε∗], the
system (22)-(23) admits a unique non trivial (αε)−periodic
orbit contained in γαεε , which is asymptotically orbitally
stable, and ε-close to γα0

0 . Moreover, the trajectories of (22)-
(23), either converge to γαεε , or to a small neighborhood of
the origin. �

Remark 2: The previous statement implies that if ε� 1,
we can expect the trajectories of (22)-(23) to remain close
to those of (24), (26). •
The proof of Theorem 1 is constructed in three steps. Firstly,
for sufficiently small values of ε, we estabish the existence
of an (αε)−periodic solution of the system (22)-(23) and
we show that the period αε converges to the period of the
reduced-order model, as ε→ 0. We denote the corresponding
orbit by γε. We also show the exsitence of sufficiently small
constants ε∗, ρ(ε∗) > 0, and the corresponding torus Tρ such
that, for any ε ≤ ε∗, the system (22)-(23) has a unique orbit
γε ⊂ Tρ. –see Lemma 2 below. The second step relies on
Lemma 3 of Section V to prove asymptotic orbital stability
of γε. Finally, the practical attractivity result established by
Lemma 1 allows to conclude that, , for a sufficiently small
values of ε, the trajectories either converge to the torus Tρ,
hence to γαεε , or to a small neighborhood of the origin of
(22)-(23).

An interesting corollary of the main result is the following.
Corollary 1: Consider the dynamical system given by

(22), (23). There exists ε∗∗ ∈ (0, ε∗], with ε∗ as introduced
in Theorem 1, such that for all ε ∈ (0, ε∗∗], there exists a
positive constant d > 0 and a set Bd ⊂ C of zero Riemannian
volume, such that:

1) all solutions of (22)-(23) such that |zm(t0)| ≥ √naR+
d, converge to a non trivial (αε)−periodic orbit γαεε ;

2) all solutions of (22)-(23) satisfying supt≥t1 |ev(t)| ≤ d
and zm(t1) ∈ C\Bd, for some t1 ≥ t0, converge to a
non trivial (αε)−periodic orbit γαεε .

Proof: In view of Lemma 1, for all d > 0, there exists
ε∗∗ ∈ (0, ε∗] such that, for all ε ∈ (0, ε∗∗], we have

lim
t→∞

|ev(t), zm(t)|W′ ≤ d, ∀ ε ≤ ε∗∗ (28)

with W ′ := γ0 ∪ {0}. Hence, the statement in the first item
follows since the trajectories of the orbit γαεε verify (28).
This, the fact that |zm(t0)| ≥ √naR + d, and continuity
of the solutions, imply that the trajectories (ev(t), zm(t))
cannot reach any sufficiently small neighborhood of the
origin without crossing the locally attractive orbit γε.

The proof of the second item uses [Proposition 1, [26]]
which establishes the existence of a positive constant ∆ > 0
such that, for all 0 < d ≤ ∆, there exists a set Bd ⊂ C



of zero Riemannian volume, such that all trajectories of the
perturbed system (22) starting outside Bd (with ev(t) seen
as a perturbation), and verifying |ev(t)|∞ ≤ d, converge to a
sufficiently small neighborhood of the asymptotically stable
equilibria of the unperturbed system (i.e., (22) with ev = 0),
which is inside the attractive set of γαεε .

V. SKETCH OF PROOF OF THE MAIN RESULT

The proof of Theorem 1 relies on singular-perturbations
theory –mainly [27], [12], [15]. We also apply the main
result of [12] on the continuation of periodic solutions
of singularly perturbed systems. In that regard, it is worth
emphasizing that some of the best-known results in the area
[28] do not apply in the present context because the slow-
dynamics does not have an equilibrium.

The following lemma that establishes, for all sufficiently
small values of ρ > 0, the existence of sufficiently small
values of ε, such that there exists a unique periodic orbit
γε ∈ Tρ, of period αε and sufficiently close to α0, which
is solution of the perturbed system (22), (23). Moreover,
the lemma establishes that all trajectories of (22) and (23)
starting from γε belong to Γαερ . See [13], [14].

Lemma 2: Consider the dynamical system given by (22)
and (23). There exists ρ∗ > 0, such that, for all ρ ≤ ρ∗,
there exists ε2(ρ) > 0 such that, for all ε ≤ ε2(ρ), there
exists a unique sufficiently smooth periodic orbit γε ∈ Tρ
that is solution of (22)-(23), tends to γ0 as ε tends to 0, and
has period αε tending to α0 as ε tends to 0. Moreover, all
the trajectories of (22) and (23) that start from γε belong to
Γαερ . �

Proof: The first part of the proof relies on a statement
from [12] after which the (α0)−periodic orbit γ0 may be
continued to a family of (αε)−periodic orbits γε when:

1) the Jacobian matrix

∂G(ev, zm0, 0)

∂ev

does not contain a hyperbolic equilibrium point for all
(0, zm0) ∈ γ0 and

2) the linearization of (26) around any trajectory belong-
ing to γα0 has a unique characteristic multiplier equal
to 1.

The first item holds since

∂G(ev, zm0, 0)

∂ev
= −Λ.

To verify the second item we study the local orbital attrac-
tivity of γ0 under the non perturbed dynamics (24) and (25).
In view of the non-analyticity of F (ev, zm) with respect
to its arguments,the linearization of (26) around (0, zm0(t))
fails in C (i.e., one cannot find a complex matrix such that
˙̃z = A(zm0)z̃). Hence, we rewrite (26) in R2, we get:

ẋm =− 1

n

(
x2m + y2m

)
xm + aRxm − aIym

ẏm =− 1

n

(
x2m + y2m

)
ym + aRym + aIxm. (29)

Now, the linearized form of (29) around[
xm0

ym0

]
=

[
(naR)

1
2 cos(aIt+ φ)

(naR)
1
2 sin(aIt+ φ)

]
,

for some φ ∈ R, is[
˙δxm
δ̇ym

]
=

[
−2x2m0 −2xm0ym0 − aI

−2xm0ym0 + aI −2y2m0

]
︸ ︷︷ ︸

A1(zm0(t))

[
δxm
δym

]
.

We establish local orbital attractivity of γα0
0 using the

following non-singular periodic transformation:

y = P−(t)x (30)

where,

P−(t) =

[
sin(aIt+ φ) − cos(aIt+ φ)
cos(aIt+ φ) sin(aIt+ φ)

]
and P− = P>. Differentiating on both sides of (30) we
obtain

ẏ = By =

[
0 0
0 −2aR

]
y (31)

and we conclude the exponential stability for the radial
component of the error coordinates. Which implies the local
orbital attractivity of the circular orbit γε0 . This establishes
the second item above, since the characteristic multipliers of
A1(zm0(t)) are 1 and e−2aRα0 .

After [12], we conclude that there exists ρ∗ > 0 such
that, for all ρ ≤ ρ∗, there exists ε1(ρ) > 0 such that, for
all ε ≤ ε1(ρ), there exists a unique sufficiently smooth
(αε)−periodic orbit γε ∈ Tρ, solution of (22) and (23),
which tends to γ0 as ε tends to 0, and the corresponding
period αε tends to α0 as ε tends to 0.

To prove the second part of the lemma, we use Tikhonov’s
theorem –see e.g., Theorem 11.1. [27]. Consider the
(αε)−periodic trajectory (evp(t), zmp(t)) ∈ γε solution of
the perturbed system (22)-(23) describing the periodic orbit,
and the (α0)−periodic trajectory (ev0(t), zm0(t)) ∈ γα0

0

solution of the unperturbed system (24), (26), such that:

|evp(0)− ev0(0)|+ |zmp(0)− zm0(0)| ≤ O(ε). (32)

This choice is possible due to the (ε)−closeness of γε to
γ0. Then using Theorem 11.1. [27], we conclude that for all
t ∈ [0, αε]:

|evp(t)− ev0(t)|+ |zmp(t)− zm0(t)| ≤ O(ε). (33)

Then, using the (ε)−closeness of αε to α0, we conclude that
there exists (ev1(t), zm1(t)) ∈ γαε0 such that

|ev1(0)− ev0(0)|+ |zm1(0)− zm0(0)| ≤ O(ε) (34)

and, for all t ∈ [0, αε],

|ev1(t)− ev0(t)|+ |zm1(t)− zm0(t)| ≤ O(ε) (35)

The latter implies that, for all t ∈ [0, αε],

|evp(t)− ev1(t)|+ |zmp(t)− zm1(t)| ≤ O(ε). (36)



Moreover, since (ev1(t), zm1(t)) and (evp(t), zmp(t))
have the same period αε, we conclude that for all t ≥ 0:

|evp(t)− ev1(t)|+ |zmp(t)− zm1(t)| ≤ O(ε). (37)

it thus follow that there exists ε3(ρ) > 0 such that O(ε3) ≤
ρ, imply that taking ε2(ρ) = min {ε2(ρ), ε3(ρ)}, we get
(evp(t), zmp(t)) ∈ Γαερ .

The following lemma establishes that, for all sufficiently
small values of ρ > 0, there exist sufficiently small values
of ε > 0, such that one can establish local asymptotic orbital
stability of all periodic orbits inside Γαερ and solution (22)
and (23), with an estimation of the attractive set. The proof
is omitted due to space constraints.

Lemma 3: Consider the dynamical system given by (22),
(23). Let ε̄ > 0 be such that for all ε ≤ ε̄, the system admits
a periodic orbit γε and the corresponding torus Tρ. Then,
there exists ε∗∗ ≤ ε̄ and ρ∗∗ = ρ∗∗(ε∗∗) > 0 such that for
all ε ≤ ε∗∗ the corresponding oribit γε of system (22), (23)
is asymptotically orbitally stable with domain of attraction
Dε ⊂ Cn which contains Tρ∗∗ , that is, Tρ∗∗ ⊂ Dε for all
ε ≤ ε∗∗. �

Proof of theorem 1: Let ρ ≤ min {ρ∗, ρ∗∗} and ε ≤ ε∗∗,
be such that Tρ is inside the domain of attraction of each γαεε ,
solution of (22) and (23). After Lemma 3, such a choice of ρ
is possible because the domain of attraction of each γαε ⊂ Tρ
is independent of ε and ρ when ρ ≤ ρ∗∗, and ε ≤ ε∗∗. Then,
taking ε ≤ min {ε∗∗, ε2(ρ)}, after Lemma 2, there exists
a unique (α)−periodic orbit γαε ∈ Tρ that is an orbitally
exponentially stable solution of (22) and (23), such that Tρ
is contained in its domain of attraction.

Finally, taking ε∗ ≤ min {ε∗∗, ε2(ρ), ε1(ρ)}, using
Lemma 1, we conclude either Attractivity of Tρ, at this case
the trajectory will converge to γαεε , otherwise it converges
to a ρ−neighborhood of 0, which conclude the proof of the
theorem. �

VI. CONCLUSION

For a case-study, we formulated and solved a problem of
asymptotic synchronization of heterogeneous systems as a
problem of orbital stability. For the first time in the literature,
the analysis is carried out using singular-perturbations theory.
Further research is being carried out to generalize these
methods beyond the example of Andronov-Hopf oscillators,
along the lines of [10].
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