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Abstract. While the negative binomial distribution is widely used to model catches of animals,
it is noteworthy that the parametric approach is ill-suited from an exploratory point of view.
Indeed, the “visual” distance between parameters of several distributions is misleading, since on
the one hand it depends on the chosen parametrization and on the other hand these parame-
ters are not commensurable (i. e. they measure quite different characteristics). Consequently,
we settle the topic of comparing abundance distributions in a well-suited framework: the Rie-
mannian manifold NB(DR) of negative binomial distributions, equipped with the Fisher-Rao
metrics. It is then possible to compute an intrinsic distance between species. We focus on
computational issues encountered in computing this distance between marine species.
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1 Introduction

The statistical analysis of counts of living organisms brings information about the collective
behavior of species (schooling, habitat preference, etc), possibly associated with their biolog-
ical characteristics (growth rate, reproductive power, survival rate, etc). This task can be
implemented in an exploratory setting (see for instance [8, 7] and the references therein), but
parametric distributions are also widely used for modeling populations abundance. Thus, the
negative binomial (NB) distribution is commonly used to model catches of animals [2, 10, 12, 9].

This distribution is especially relevant for this purpose, because [9]:



2 Rao’s distance between negative binomial distributions

1. it arises as a Gamma-Poisson mixture, whose parameters depend on the more or less
aggregative behavior of the species, and on the efficiency of the trawl for catching it

2. it arises as the limit distribution of the Kendall’s [6] birth-and-death model; in this setting,
the parameters depend on the demography of the species (reproductive power, mortality,
immigration rate)

3. in addition, it is a natural model for collections (of animals, for instance).

But it is noteworthy that the parametric approach is ill-suited from an exploratory point of view:
the “visual” distance between parameters of several NB distributions is misleading, because on
the one hand it depends on the chosen parametrization and, on the other hand, these parameters
are not commensurable in general (they are associated with completely different characteristics of
the species, in the setting of different statistical models). Considering the Riemannian manifold
NB(DR) of negative binomial distributions (NB) equipped with the Fisher-Rao metrics, we can
compute intrinsic distances between species, on the basis of their counts. Then, the “visual”
distance between species approximated through Multidimensional Scaling of the table of Rao’s
distances (for instance) is a sound dissimilarity measure between species.

2 Notations

Consider a Riemannian manifold M, and a parametric curve α : [a, b] → M; its first derivative
with respect to “time” will be denoted α̇. A geodesic curve γ connecting two points p and q
of M will be alternatively denoted p y q, and p y q ⊕ q y r will denote the broken geodesic
[1] connecting p to r with a “stopover” at q. A probability distribution Li will be identified
with its coordinates with respect to some chosen parametrization; for instance, we will write
Li ≡

(
ϕi, µi

)
.

We also consider for any x ∈ M the local norm ∥V ∥g (x) associated with the metrics g on
the tangent space TxM :

∀V ∈ TxM, ∥V ∥g (x) :=
√
V ′.g(x).V . (1)

Finally, the length of a curve α traced on M will be denoted Λ (α).

3 The Rao’s distance

In a seminal paper, Rao [11] noticed that, equipped with the Fisher information metrics denoted
g (•), a family of probabilities depending on p parameters can be considered as a p-dimensional
Riemannian manifold. The associated Riemannian (Rao’s) distance between the distributions
with parameters θ(1) and θ(2) is given by:

DR

(
θ(1), θ(2)

)
:=

∫ 1

0

√
γ̇′ (t) .g (γ (t)) .γ̇ (t)dt (2)

where γ is a segment (minimal length curve) connecting θ(1) = γ (0) to θ(2) = γ (1). As any
Riemannian distance, DR is intrinsic (i.e. it is coordinates-free).
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Riemannian geometry in a nutshell

Definition 3.1.
[1] Consider the differentiable manifold M, and the set X (M) of vector fields on M. A linear
connection (or covariant derivative) D on M is a bilinear map{

D : X (M)×X (M) → X (M)

(X,Y ) 7→ DXY

which is linear in X and a derivation on Y.

According to the fundamental theorem of Riemannian geometry [1], there is a unique sym-
metric connection ∇ compatible with a fixed metrics g (the so-called Levi-Civita or Riemann
connection), giving in our case the Rao’s distance.

Definition 3.2.
[1, 5] Let γ : [0, 1] → M be a curve traced on M, and D be a connection on M. γ is a geodesic
with respect to D if its acceleration Dγ̇(t)γ̇ (t) is null ∀t ∈]0, 1[. In other words, a geodesic has
constant speed in the local norm (1):

∥γ̇∥g := ∥γ̇ (•)∥g (γ (•)) =
√
γ̇′ (•) .g (γ (•)) .γ̇ (•).

Corollary 3.1.
Let γ : [0, 1] → M be a geodesic, and [a, b] ⊆ [0, 1]. Then∫ b

a

√
γ̇′ (t) .g (γ (t)) .γ̇ (t)dt = (b− a) ∥γ̇∥g .

Geodesics on a p-dimensional Riemannian manifold with respect to ∇ are solutions of the
Euler-Lagrange equation [5, 1, 3]:

∀ 1 ≤ k ≤ p, γ̈k (t) +

p∑
i,j=1

Γ k
i,j γ̇i(t) γ̇j(t) = 0 (3)

where each coefficient of ∇ (some “Christoffel symbol” Γ k
i,j) only depends on g, and is defined

in coordinates by:

Γ k
i,j :=

p∑
m=1

gim

2

(
∂gmj

∂θk
+
∂gmk

∂θj
−
∂gjk
∂θm

)
(4)

where gim (resp. gmk) is some entry of g−1 (resp. g).

To determine the shortest curve between two points of M, one applies the following result.

Lemma 3.1.
[5, 1] Let M be an abstract surface, and p, q ∈ M. Suppose that α : [a, b] → M is a curve of
minimal length connecting p to q. Then, α is a geodesic.

Nevertheless, building the segment connecting p to q is not straightforward, since the lemma
above only shows that a segment is a geodesic. But a geodesic is not necessarily a segment...

@ COMPSTAT 2016



4 Rao’s distance between negative binomial distributions

Theorem 3.1.
[1] Let p = α (0) be the initial point of a geodesic. Then there is some 0 < t0 ≤ +∞ such that
α is a segment from p to α (t) for every t ≤ t0 and for t > t0 thereafter never again a segment
from p to any α (t) for t > t0. This number t0 is called the cut value of α and α (t0) is called the
cut point of α. There are only two possible reasons (which can occur simultaneously) for α (t0)
to be to be the cut point of α:

- there is a segment from p to α (t0) different from α
- α (t0) is the first conjugate point on α to p (i.e. t0 α̇ (0) is a critical point of the exponential

map, defined hereunder).

Remark 3.1.
No matter the cause of the phenomenon, the main point for us is that if t0 is a cut value of α,
∀ t ≤ t0, DR (p, α (t)) = t while ∀ t > t0, DR (α (t0) , α (t)) < t− t0.

Definition 3.3.
[1] Let M be a Riemann manifold and x ∈ M. The exponential map of M at x is expx :Wx →
M, defined on some neighborhood Wx of 0 in the tangent space TxM by:

expx (V ) := αB(V ) (∥V ∥)

where B (V ) is the projection of V onto the unit ball and αB(V ) is the unique geodesic in M such
that αB(V ) (0) = x and α̇B(V ) (0) = B (V ).

Remark 3.2.
If α := p y q is a segment and V0 := α̇ (0), because of uniqueness of geodesics, expp (V0) :=
αB(V0) (1) = q; reciprocally, if V1 := α̇ (1), expq (V1) := αB(V1) (1) = p (compare Figures 1 & 2).

4 The geometry of NB(DR)

The most classical parametrization of the NB distribution is given by

P (X = j; (ϕ, p)) =

(
ϕ+ j − 1

j

)
p
j
(1− p)ϕ j ≥ 0 (5)

with (ϕ, p) ∈ R+×]0, 1[; ϕ is the index parameter (denoted k by [2] and many other authors).
Nevertheless, because of its orthogonality, we chose instead the parametrization used by Chua
and Ong [4]:

P (X = j; (ϕ, µ)) =

(
ϕ+ j − 1

j

) (
µ

µ+ ϕ

)j (
1− µ

µ+ ϕ

)ϕ

, j ≥ 0 (6)

(ϕ, µ) ∈ R+ × R+; here, µ is the mean of the distribution. In these coordinates, the infor-
mation matrix is:

g(ϕ, µ) =

(
Gϕϕ 0
0 Gµµ

)
with Gµµ = ϕ

µ(µ+ϕ) , while the expression of Gϕϕ is more complicated:

Gϕϕ = −
µ+ ϕ (µ+ ϕ)

(
(ϕ/µ+ϕ)ϕ − 1

)
ψ1(ϕ)

ϕ (µ+ ϕ)
(7)
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where ψ1 is the Trigamma function (first derivative of the logarithmic derivative of Γ(•)).
One will find in [3] the closed-form expression of the Rao’s distance for a number of probability
families. These authors reported that when the index parameter of two NB distributions is the
same the Rao’s distance is given, in the parametrization (5), by:

DNB(p)

((
ϕ, p1

)
,
(
ϕ, p2

))
:= 2

√
ϕ arccos

(
1−

√
p1 p2√

(1− p1) (1− p2)

)
. (8)

Of course, if µ1 (resp. µ2 ) is the mean of L1 = NB
(
ϕ, p1

)
(resp. L2 = NB

(
ϕ, p2

)
), we

have necessarily:
DR

(
L1,L2

)
≤ DNB(p)

(
L1,L2

)
. (9)

Due to the complexity of (7), DR
(
L1,L2

)
cannot be obtained in a closed-form. It must be

computed by finding the numerical solution of the Euler-Lagrange equation (3), completed in
the parametrization (6) by the boundary conditions{

γ (0) =
(
ϕ1, µ1

)
, γ (1) =

(
ϕ2, µ2

)}
. (10)

Geodesics can be as well be computed by solving (3) under the alternative constraints{
γ (0) =

(
ϕ1, µ1

)
, γ̇ (0) = V ∈ R2

}
. (11)

This solution is associated with the exponential map at
(
ϕ1, µ1

)
.

5 Approximating DR
(
L1,L2

)
In this section, Li ≡

(
ϕi, µi

)
denotes a NB distribution parametrized in the (6) system, but our

purpose could be extended to any parametric family.
Firstly, all the Christoffel symbols (4) were calculated from the expression (7) of Gϕϕ, with

the help of Mathematica. Then, the differential equation (3) was numerically solved under the
the boundary conditions (10), for the estimated parameters of a number of marine organisms.
In most case a solution could be found in an acceptable time (four CPU minutes, at most), with
a good numerical precision (15 digits), but was each one of the geodesics found a segment? And
what about failures in computation? We indeed had to face two different problems: a theoretical
one and a computational one.

Theoretical issue

Suppose a solution γ = L1 y L2 of (3) under the boundary condition (10) has been found;
according to Corollary 3.1, a straightforward approximation of DR

(
L1,L2

)
should be ∥γ̇∥g.

But notice that ∥γ̇∥g is only an upper bound, which is attained only when there is no cut
point in γ ([0, 1]) (cf. Theorem 3.1). That is why we need some test to detect a possible cut
point on some geodesic curve (see Section 5). Suppose now a cut point

(
ϕc(1,2), µc(1,2)

)
has been

detected on γ. Then, it is natural [1] to supersede γ by the broken geodesic(
ϕ1, µ1

)
y
(
ϕc(1,2), µc(1,2)

)
⊕
(
ϕc(1,2), µc(1,2)

)
y
(
ϕ2, µ2

)
whose length is shorter than Λ (γ), provided

(
ϕc(1,2), µc(1,2)

)
y
(
ϕ2, µ2

)
is also a segment.
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6 Rao’s distance between negative binomial distributions

Computational issues

Wet met various numerical problems in computing L1 y L2:

(P1) no solution was found (due to time limit, singularities, etc)

(P2) an unsuitable solution was found: for some t ∈ [0, 1], (ϕ (t) , µ (t)) /∈ R+ × R+

(P3) the boundary condition (10) was not fulfilled with a satisfactory precision.

Simple configurations

When none of these issues is met, we first check that there is no cut point on γ. Then, the
canonical solution is acceptable, and we can write:

DR
(
L1,L2

)
≈ Λ (γ) = ∥γ̇∥g . (12)

If a cut point
(
ϕc(1,2), µc(1,2)

)
is detected on γ, and if

(
ϕc(1,2), µc(1,2)

)
y
(
ϕ2, µ2

)
is free of

cut point, we adopt as an upper bound for DR
(
L1,L2

)
:

Λ
((
ϕ1, µ1

)
y
(
ϕc(1,2), µc(1,2)

))
+ Λ

((
ϕc(1,2), µc(1,2)

)
y
(
ϕ2, µ2

))
.

Intricate configurations

When (P1) or (P2) is met, we consider that the best achievable solution would consist in
breaking γ = L1 y L2 by inserting a well-placed “stopover”. But since γ is undetermined, how
should

(
ϕS(1,2), µS(1,2)

)
be chosen? We propose two heuristics for approaching γ:

1. compute a “rough solution” γ̃R to the original problem, contenting ourselves with low-
precision (here: 5 digits), and substitute γ̃R for γ to search for

(
ϕS(1,2), µS(1,2)

)
2. when γ̃R cannot be obtained, merely use instead γ̃L (t) := t

(
ϕ1, µ1

)
+ (1− t)

(
ϕ2, µ2

)
.

In the second case, after fixing a convenient sampling rate 1
N , the stopover naturally corresponds

to the shortest broken geodesic:
(
ϕS(1,2), µS(1,2)

)
= γ̃L

(
kL
N

)
kL := arg min

1≤k≤N−1

(
Λ
((
ϕ1, µ1

)
y γ̃L

(
k
N

))
+ Λ

(
γ̃L
(
k
N

)
y
(
ϕ2, µ2

)))
.

(13)

In the first case two eventualities must be considered:

1. a cut point
(
ϕc(1,2), µc(1,2)

)
is detected on γ̃R ([0, 1]); then

(
ϕS(1,2), µS(1,2)

)
=
(
ϕc(1,2), µc(1,2)

)
2. if no cut point is detected, proceed like in (13):

(
ϕS(1,2), µS(1,2)

)
= γ̃R

(
kR
N

)
kR := arg min

1≤k≤N−1

(
Λ
((
ϕ1, µ1

)
y γ̃R

(
k
N

))
+ Λ

(
γ̃R
(
k
N

)
y
(
ϕ2, µ2

)))
.

(14)

COMPSTAT 2016 Proceedings
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Boundary problems
(P3) is easy to solve, since it merely corresponds to γ(0) ̸= L1 or γ(1) ̸= L2. We just have

to add to formulas (12), (13) or (14) the corrective boundary error term

BE (γ) :=
∥∥γ(0)− L1

∥∥
g

(
L1
)
+
∥∥γ(1)− L2

∥∥
g

(
L2
)

(15)

given by formula (1). Finally, we can write:

DR
(
L1,L2

)
≤ Λ (γ) +BE (γ) (16)

whatever the selected geodesic (broken, or not) may be.

Locating a (N, ϵ)- cut point on some geodesic γ

For that purpose, the unit interval is first divided into N intervals: [0, 1] =
∪N

i=1 δi , with
δi := [ i−1

N , i
N [. Suppose there exists a cut point γ (tc) on γ, such that tc ∈ δic . Consider the set

CN (γ) :=

{
γ1 := γ

(
1

N

)
, · · · , γk := γ

(
k

N

)
, · · · , γN−1 := γ

(
N − 1

N

)}
⊂ M

and, for each 1 ≤ i ≤ N the geodesic αi := γi−1 y γi obtained by solving (3) under the
constraints

{αi (0) = γi−1, αi (1) = γi} .

Because of the uniqueness of segments, Corollary 3.1 and Remark 3.1, ∀ i < ic,
∥γ̇∥g
N =

Λ(αi) = ∥α̇i∥g. On the contrary, when i ≥ ic, the distance between γi−1 and γi along γ is
∥γ̇∥g
N yet, while ∥α̇i∥g should be smaller. More precisely, if the resolution 1

N is small enough (for
instance, smaller than the injectivity radius [1] of M), γi−1 y γi is a segment and we may write:{

∀ i < ic,
∥γ̇∥g
N − ∥α̇i∥g = 0

∀ i ≥ ic,
∥γ̇∥g
N − ∥α̇i∥g > 0.

Thus, after fixing ϵ (small), we can locate possible cut points, with a precision depending on
(N, ϵ).

Definition 5.1.
We will say that γic ∈ CN (γ) is a (N, ϵ)- cut point on γ if

ic = arg min
1≤i≤N−1

(∣∣∣∣∥γ̇∥gN
− ∥α̇i∥g

∣∣∣∣ > ϵ

)
.

6 The MEEZ data

The Mauritanian coast, situated on the Atlantic side of the northwestern African continent,
embeds a wide long continental shelf of about 750km and 36000km2 with an Exclusive Economic
Zone (MEEZ) of 230000 km2. This study focuses on the analysis of abundance of fish and
invertebrates data collected during annual scientific trawl surveys performed by oceanographic
vessels on the continental shelf (< 200 m depth), from 1987 to 2010. All the species (fish and
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8 Rao’s distance between negative binomial distributions

invertebrate) captured in a given station were identified, counted and then recorded on the
database. In addition, each station has been characterized by supplementary environmental
variables: bathymetry, sedimentary type of the substrate, latitude and longitude. The counts
of species collected were then fitted by NB distributions. For that purpose, it was necessary to
determine homogeneous regions (habitats) in the MEEZ; it was found that the optimal number
of habitats is four. Then the counts of each species were separately fitted in each one of these
regions, and it was observed that in each one of the habitats, only a reduced number of species
could be satisfactorily fitted by some NB distribution; other species were discarded. For further
details on the data or estimation methods, see [9, 7].

7 Results

Geodesics: a bestiary

We illustrate hereunder the diversity of cases encountered in computing DR (A,B). From now,
the approximation parameter are fixed to (N, ϵ) = (10, 0.01) . All the figures displayed will
be composed of three panels. On the left one, we superimposed the final solution to the rough
geodesic (when it could be computed). On both the other panels, we investigated the structure of
broken geodesics in the neighborhood of a stopover S, with the help of the exponential map. We
determined first γ1 = Ay S (resp. γ2 = B y S) by solving equation (3) under the constraints
(10). We afterward considered {Vi (θk) := ρ (θk) � B (γ̇i(0)) : i = 1, 2}, where the angle of the
rotation ρ is (in degrees) θk ∈ {0,±0.1,±0.2,±0.3}. Equation (3) was then solved under the
constraints (11) with V = Vi (θk), giving rise to two bundles of seven geodesics; remember that
for θ = 0, expA (V1 (0)) = S = expB (V2 (0)) (see Remark 3.2). In all these plots, the red point
will be “A” and the black one will be “B”, while the stopover is represented by the big gray
point.

On Figure 1, we represented the geodesic γ1 := A y B, with A ≡ (0.7767, 11.2078) and
B ≡ (0.7767, 87.268) in the system (6). It corresponds to a simple configuration: no (N, ϵ)- cut
point was found, and we can see on the left panel that there is practically no difference between
the segment and the sampled rough geodesic. We stress that the stopover S is in this case
quite unnecessary; it was introduced only for illustration. On the central panel, the segment
A y S has been extrapolated with the exponential map, as well as the other geodesics of the
bundle. On the right panel the segment B y S and the corresponding bundle of geodesics have
been extrapolated in the same way. We can see that there is practically no difference between
extrapolations of Ay S and B y S, the segment γ1 and the rough geodesic γ̃1,R. Notice finally
that in this (artificial) case, the distance DNB(p) (8) given by [3] can be computed. In the (5)
system, A ≡ (0.7767, 0.935191), B ≡ (0.7767, 0.991178) and we have, in compliance with (9):

1.7 ≈ DR (A,B) < DNB(p) (A,B) = 1.783.

On Figure 2, we plotted geodesics connecting two species: Rhizoprionodon acutus, coded
RIAC70, and Anguilla sp, coded ANSP50. Even if RIAC70 y ANSP50 could not be deter-
mined, the rough geodesic γ̃R could be computed. A (N, ϵ)- cut point was detected in the second
position of the sampled curve, and used as a stopover S to compute the final broken segment.
But we can see of the central and the right panels that neither A y S nor B y S could be
extrapolated to obtain a geodesic connecting A to B.

COMPSTAT 2016 Proceedings
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Figure 1. A geodesic without any cut point
(
D̃R ≈ 1.70 ≈ DR

)
. Left panel: the rough geodesic

(cyan suits) is superimposed to the segment; A is the red point, B the black one and the stopover
is represented by the gray point. Right panels: plot of the two bundles of geodesics issued from
A or B. Red curve: θ = 0; dashed curves: θ ̸= 0. The header corresponds to the parameters of
the distributions.
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10 Rao’s distance between negative binomial distributions

Figure 3. A broken geodesic between two species; DR (HISP00, SCAN40) ≈ 29.62. Same
graphical conventions as in Figure 1.
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Figure 4. A broken geodesic between two species; DR (HISP00, TRTR20) ≈ 30.60. Same
graphical conventions as in Figure 1.
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Now, what about the worst cases, when linear interpolation was unavoidable? There were
4 such pairs of species in the habitat C4 (see Table 1). Notice first that all these pairs were
associated with a particular species, of parameters (317.85, 0.954874): this is Hippocampus sp,
coded HISP00, the less aggregative species in this habitat.

Let us start with {HISP00, SCAN40}, whose processing is represented on Figure 3 (SCAN40
is the code of Scorpaena angolensis). In this case, neither of the geodesics could be computed,
and we used in last resort linear interpolation in the space of parameters. The obtained curve
is rather smooth, and one could probably find a genuine segment close to this broken geodesic,
with enough computation time.

Another example: DR (HISP00, TRTR20), where TRTR20 is the code of Trachurus trecae.
This case, displayed on Figure 4, is quite different: the structure of the geodesics near the
stopover S looks like the structure of geodesics in the neighborhood of a cut point (see Figure 2).
But notice S was found by traveling across γ̃L (•), and one cannot claim it is a realistic first
guess for HISP00 y TRTR20.
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Return to the exploratory setting

Remember that the MEEZ could be split into four homogeneous regions (see Section 6), named
{C1, · · · , C4}. From the estimates of the parameters of the Nh species kept in Ch, it is possible
to tabulate the Rao’s distance between species and process the resulting table with methods
designed for non-Euclidean distances (Multidimensional Scaling, Isomap, etc), as proposed by
Rao [11] himself. Because of the computational cost of Rao’s distances, we were forced to select,
for each habitat, a sub-sample of species representing as well as possible the whole (landmark
species, say). Thus, in C4 (like in other habitats), species were first split into two categories:
very aggregative and moderately aggregative. We focused on the second category, keeping for
computation the 30-species set (amongst the 121 species correctly fitted, while 301 species were
observed) obtained by gathering isolated species and species constituting the vertices of the
convex envelope of non-isolated species (see Figure 6 of [9]).

Global statistics

It is interesting to tally the various configurations encountered in different habitats: simple
or intricate, and the presence of possible (N, ϵ)-cut points on the obtained geodesics. In the
intricate case, it is also interesting to tally the cases where linear interpolation was unavoidable.
The obtained results are gathered in Table 1. More than 70% of the configurations (88% in
C4) were simple (i.e. the canonical solution was accepted), and (N, ϵ)- cut points were quite
rare. In the intricate cases, the rough solution was generally accepted (more than 90% of the
cases). We can thus claim that the obtained upper bounds given by Formula(16) were mostly
tight approximations of true Rao’s distance.

Table 1. Global results obtained in the four habitats of the MEEZ

Habitat Number of species Simple Intricate Cut points
(well-fitted) configurations (Rough, Linear)

C1 30 356 (75,4) 1
C2 19 124 (46,1) 2
C3 26 227 (88,10) 1
C4 26 288 (33,4) 1
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