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Observers are Unnecessary for Output-Feedback Control

of Lagrangian Systems

Antonio Loria

Abstract—We address and solve some long-standing yet well-
documented open problems on output feedback tracking control
of Euler-Lagrange systems with arbitrarily high relative degree
–this includes underactuated systems. Our main contribution is
to establish a theoretical foundation for the use of so-called dirty
derivatives, a common “ad-hoc” replacement of unavailable state
measurements such as generalized velocities, whence obviating
the the use of observers for the purpose of position-feedback
tracking control. Reminiscent of passivity-based control for
robot manipulators, our control law is globally Lipschitz and
the controller dynamics is linear. For relative-degree-two fully-
actuated Lagrangian systems without dissipative forces (friction)
and with bounded inertia matrix we establish uniform global
asymptotic stability in closed loop. Furthermore, we show that
our control approach applies to Lagrangian systems augmented
by a chain of integrators (relative degree m + 2 systems). The
design method, which is based on a recursive procedure in the
spirit of backstepping control, is intuitive as it exploits structural
properties such as passivity and inherent input-output stability.
As a corollary, we solve an output feedback global-tracking
control problem for flexible-joint robots but also for systems
coupled with output-feedback linearizable actuator dynamics. In
addition, we discuss remaining open problems of fairly general
interest in the realm of analysis and design of robust nonlinear
systems.

I. INTRODUCTION

We study lossless Euler-Lagrange systems, defined by

D(q)q̈ + C(q, q̇)q̇ + g(q) = u (1)

where q ∈ R
n denotes the generalized positions, q̇ denotes the

generalized velocities, D : Rn → R
n×n denotes the inertia

matrix function, which satisfies D(q) = D(q)⊤, C : Rn ×
R

n → R
n×n is the Coriolis and centrifugal forces matrix

function, g : Rn → R
n represents the vector of forces which

are derived from the potential energy function U : Rn → R

i.e., g(q) := ∂U
∂q

(q) and u ∈ R
n is the vector of control inputs.

All functions are assumed to be sufficiently smooth.

We revisit the problem of output-feedback tracking control,

which consists in designing a dynamic controller with output

u, using q as the only plant measurement and ensuring that,

given a smooth bounded trajectory t 7→ qd, the generalized

coordinates satisfy

lim
t→∞

q(t) → qd(t), lim
t→∞

q̇(t) → q̇d(t).

More precisely (and of much higher difficulty) we establish

uniform global asymptotic stability of the origin of the closed-

loop system. We put special emphasis on the qualifier ‘global’
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which implies that the property must hold for all initial states

of the closed-loop system in the Euclidean space of the

latter, that is, including the tracking errors and the dynamic

controller’s states. This property is not to be confused with in-

appropriate terminologies such as “global on the set X ⊂ R
n”

or the weaker property “global in the plant’s variables and

semi-global in the controller’s” –cf., e.g., [1].

Establishing uniform global asymptotic stability for (1)

along time-varying trajectories (tracking control) is a difficult

problem that cannot be overestimated. Actually, as it is nicely

showed in the seminal article [2], it lies at the edge of the

achievable. Roughly, from the main results in [2] it may be

concluded that the system

dq̈ + cq̇2 = u, q, u ∈ R

cannot be stabilized globally via dynamic feedback of q only.

The obstacle is that the system does not possess the unbound-

edness observability (concept introduced in this reference)

property from q that is, the solution q̇(t) may escape to infinity

even for bounded values of q(t). However, Lagrangian systems

escape to this impediment in view of the structural property

that the matrix Ḋ(q)− 2C(q, q̇) is skew-symmetric.

Since at least the early results of Nicosia and coauthors –see

e.g., [3] as well as many posterior references by these authors,

in the last 25 years or so there have been numerous attempts

to solve the nicknamed “global-tracking-control” problem of

Lagrangian systems. A common trend in the literature is to

design observer-based controllers and to employ Lypunov’s

direct method to establish global stability. However, finding

a strict Lyapunov function –see [4], is a major challenge

wich remains open for general n > 1 degree-of-freedom

systems. At least, this is the case for lossless systems (1)

since, otherwise, a simple and effective way to obtain negative

terms of |q̇| in the bound on V̇ , is to impose the practically

reasonable, but theoretically conservative, assumption that the

system possesses natural viscous friction. See, e.g., [5] in

which the authors use the Lagrangian model

D(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u (2)

where F = F⊤ > 0.

To the best of our knowledge the only article that presents

a dynamic output-feedback controller for lossless Euler-

Lagrange systems (in generalized coordinates) together with

a strict Lyapunov function, albeit for one-degree-of-freedom

systems, is [6]. In the latter we presented a dynamic output

feedback controller which employs nonlinear corrective terms

of exponential growth and we established uniform global

asymptotic stability of the origin of the closed-loop system.
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Unfortunately, this method seems to apply only to one-degree-

of-freedom systems

d(q)q̈ + c(q)q̇2 + g(q) = u, (3)

with the property ∂d(q)/∂q = 2c(q). The extension of the

results in [6] to the case of n-degree-of-freedom systems has

eluded several authors –see e.g., [1], [7]. The controller in

the former is guaranteed (in the non-adaptive case, only) to

achieve uniform asymptotic stability for any system’s initial

conditions provided that the controller’s trajectories belong to

a forward-invariant set. Moreover, the result in [1] relies on

the assumption that the model includes viscous friction (of

known magnitude in the non-adaptive case) –see Eq. (2), and

that the forces derived from the potential energy are bounded.

The controller of [7] is given in implicit form hence it is not

implementable without velocity measurements.

In [8] the author employs an approximate-differentiation

filter to construct a dynamic position feedback controller.

Using Tychonov’s theorem for singularly-perturbed systems it

is showed that uniform asymptotic stability may be rendered

global provided that the unique pole of the filter is placed

at −∞. In other words, the result in [8] actually guarantees

semi-global asymptotic stability. As a matter of fact, the same

property may be established via Lyapunov’s direct method –

see e.g., [9]. The controllers from [8], [9] are direct extensions

of a set-point controller that was independently published in

[10] and [11].

The obvious difficulty to design observers for (1) is the

nonlinearity in the unmeasured variables q̇. Hence, a natural

alternative approach is to seek a coordinate transformation

which facilitates observer design. Such methods typically rely

on the ability to factorize the inertia matrix D(q) in closed

form, see e.g., [12] where conditions are given to diagonalize

the inertia matrix. In a similar train of thought the seminal

work of G. Besançon –see e.g., [13], is to be emphasized,

along with the more recent works [14], [15], [16], [17].

In [18], whose main ideas may be traced back to [13],

a controller is designed for one-degree-of-freedom systems,

based on the factorization of the inertia term d(q). This

results in a system affine in q̇ and a controller of linear

growth. As an aside, the controller in [18] yields a much

superior performance to that from [6] which employs terms

of exponential growth. Unfortunately, the extension of the

control method in [18] to the case of n-degree-of-freedom

systems is stymied by structural properties; a fact well studied

in [19]. Interesting exceptions for which appropriate changes

of coordinates apply to particular classes of Euler-Lagrange

systems include [20], [21] and some references therein.

More recently, in [15] was developed a set-point controller

for underactuated Hamiltonian systems, upon the ideas laid

in [16]. Based on the factorization method from the last

two references, in [22] (which is a byproduct of [17]) a

global result for tracking control of Hamiltonian systems was

presented. The controller relies on a closed-form factorization

of D(q)−1 and a clever but intricate observer design due to

[23].

As far as we know, [24] and [22], which appeared during the

initial preparation of this paper, were the first articles in which

uniform global asymptotic stability for n-degrees-of-freedom

systems is established. Actually, in [22], [17] uniform global

exponential stability (in the space of the transformed system)

is established via Lyapunov’s direct method for the case that

the inertia matrix is bounded and uniform global asymptotic

stability holds in the case that the inertia matrix is not bounded

from above. This is in contrast with the literature, including the

present paper, where boundedness of D is typically assumed.

See also [20] where exponential stability is established for a

class of Euler-Lagrange systems.

This paper contains several contributions, the most impor-

tant of which is to provide a theoretical foundation for the use

of approximate differentiation. Conceptually, the latter consists

in using a “filtered” version of unmeasured velocities. Such a

filter is implemented using positions only but by no means it

may be considered as an observer or a velocity estimator.

In a first part of the paper we revise the controller inde-

pendently proposed in [8], [9] and [25] for tracking control

of lossless Euler-Lagrange systems (1). Strictly speaking, we

establish uniform global asymptotic stability for the origin of

the closed-loop system. In contrast to [24] we provide explicit

simple and intuitive conditions on the control gains. In contrast

to [8], [9], [25] we establish a global result. With respect to

[22], and any other observer-based result for that effect, our

controller does not rely on the estimation of the unmeasured

variables. Moreover, the control law is globally Lipschitz,

the controller is linear and all equations and conditions are

expressed in Lagrangian coordinates. This makes our first main

statement, Theorem 1, self-contained and particularly concise.

In a second part of the paper, we show how the control

law may be implemented through a chain of integrators

via a recursive control design, reminiscent of backstepping

control, in which the derivatives of virtual control inputs are

replaced by approximate differentiation filters. That is, we

solve the output feedback control problem for arbitrarily-high-

relative-degree systems (with respect to generalized positions).

This includes the output feedback control problem for under-

actuated systems hence, as a corollary of our main results, we

recover a statement on output feedback control for flexible

joint manipulators: we establish uniform global asymptotic

stability without measurement of link velocities.

The rest of the paper is organized as follows. For the sake

of clarity, in Section II we recall basic stability definitions.

In Section III we present our first result, for systems with

relative degree two, such as fully-actuated Lagrangian systems.

In Section IV we present the extension of our main results

to the case of higher-relative-degree systems. In Section V

we discuss remaining related open problems and, finally, we

provide some concluding remarks in Section VI.

II. PRELIMINARIES

Notation. Recall that a continuous function α : R≥0 → R≥0

is of class K if it is strictly increasing and α(0) = 0, a

continuous function σ : R≥0 → R≥0 is of class L if it is

strictly decreasing and σ(s) → 0 as s → ∞; a continuous

function β : R≥0 ×R≥0 → R≥0 is of class KL if β(r, ·) ∈ L
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and β(·, s) ∈ K; a continuous function α : R≥0 → R≥0 is of

class K∞ if α ∈ K and α(s) → ∞ as s→ ∞. We denote by

| · |, the Euclidean norm of vectors (or any other compatible

norm) and the induced norm of matrices.

To remove all possible ambiguity it seems fitting to recall,

from [26], a few definitions of stability and some statements

that are either known or are re-stated in an original manner,

for the purposes of this paper. Consider the dynamic system

ẋ = f(t, x), x ∈ R
n, t ∈ R≥0 (4)

where f satisfies the conditions for local existence and unique-

ness of solutions and f(t, 0) ≡ 0. We denote by x(·, t◦, x◦),
or when the context is clear by x(·), the solutions of (4) with

initial times t◦ ∈ R≥0 and initial states x◦ ∈ R that is, we

have x(t◦, t◦, x◦) = x◦.

Definition 1 (Uniform global boundedness) The solutions

of (4) are said to be uniformly globally bounded if there exist

γ ∈ K∞ and c > 0 such that, for all (t◦, x◦) ∈ R≥0 × R
n,

the solution x(·, t◦, x◦) satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) + c ∀ t ≥ t◦. (5)

Theorem 1 Let V : R≥0 × R
n → R≥0 be continuously

differentiable; let α1, α2 be functions of class K∞ and let

a, c ∈ R be such that c > 0 and

α1(|x|) ≥ V (t, x) ≥ α2(|x|) + a ∀ (t, x) ∈ R≥0 × R
n

V̇ (t, x) :=
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 ∀ t ∈ R≥0, x : |x| ≥ c

Then, the solutions of (4) are uniformly globally bounded.

Although unusual in “modern” literature, the following

fundamental definition may be found, for instance, in [26].

Definition 2 (Uniform global stability) The origin of system

(4) is said to be uniformly globally stable if there exists γ ∈
K∞ such that for each (t◦, x◦) ∈ R≥0 × R

n, each solution

x(·, t◦, x◦) satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦. (6)

Note that uniform global stability is tantamount to uniform

stability plus uniform global boundedness.

Theorem 2 Let the conditions of Theorem 1 hold for a = c =
0. Then, the origin of (4) is uniformly globally stable. If the

conditions hold only in an open neighborhood of the origin

with α1, α2 ∈ K, the origin is uniformly stable.

Definition 3 (Uniform global attractivity) The origin of

system (4) is said to be uniformly globally attractive if for

each r, σ > 0 there exists T > 0 such that

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T . (7)

Definition 4 (Uniform Global Asymptotic Stability)

The origin of system (4) is said to be uniformly globally

asymptotically stable if it is

• uniformly stable;
• the solutions are uniformly globally bounded;
• the origin is uniformly globally attractive.

It is important to emphasize that only together the three

conditions in Definition 4 imply the existence of a class KL

function β such that the solutions of (4) satisfy

|x(t)| ≤ β(|x◦| , t− t◦) ∀ t ≥ t◦ ≥ 0.

The latter leads to the construction of converse uniformly

monotone Lyapunov functions and, in turn, implies robustness

with respect to external perturbations. Such bound cannot be

obtained if any of the three properties in Definition 4 fails.

In particular, uniform global asymptotic stability may not be

concluded either from uniform stability plus uniform global

attractivity alone –see [27]; whence the importance of uniform

global boundedness in nonlinear time-varying systems.

The following theorem, which corresponds to [28, Lemma

2], establishes uniform global asymptotic stability without a

strict Lyapunov function, in the spirit of integral criteria such

as Barbalăt’s lemma.

Theorem 3 Let F : R≥0 × R
n → R

n be continuous such

that F (·, 0) ≡ 0. Let {x = 0} be uniformly globally stable. If,

moreover, there exists a continuous positive definite function

Υ : Rn → R≥0 and, for each pair of positive numbers (r, υ̃),
there exists βrυ̃ > 0 such that, for all (t◦, x◦) ∈ R≥0 × Br,

all solutions x(·, t◦, x◦) satisfy
∫ t

t◦

[
Υ
(
x(τ, t◦, x◦)

)
− υ̃
]
dτ ≤ βrυ̃ (8)

for all t ≥ t◦, then the origin is uniformly globally asymptot-

ically stable.

Remark 1 Ineq. (8) guarantees uniform global attractivity.

Roughly speaking, (8) implies that the trajectories are inte-

grable, modulo Υ(·), out of any ball of radius depending on

υ̃. This implies that Υ(x(t)) converges to the interior of such

ball in finite time. Since υ̃ is arbitrary, we may conclude that

(7) holds for any σ > 0. See [28] for rigorous proof. •

III. RELATIVE-DEGREE-2 SYSTEMS

In this section we address the output feedback tracking

control problem for systems with relative degree two with

respect to the generalized positions q. This is the case of fully-

actuated mechanical systems, such as robot manipulators with

rigid joints.

We make a standing assumption that is fairly standard in

the literature of robot control but which is also satisfied by

a number of Euler-Lagrange systems, such as electrical and

electro-mechanical –see [29], as well as some marine vehicles

–see [30]. A complete characterization of the class of systems

that satisfy this hypothesis is provided in [31], [32].

Assumption 1

1) There exist positive real numbers dm and dM such that

dm ≤ |D(q)| ≤ dM , ∀q ∈ R
n; (9)

2) there exists kc > 0 such that

|C(x, y)| ≤ kc |y| ∀x, y ∈ R
n,

C(x, y)z = C(x, z)y ∀x, y, z ∈ R
n;

3) the matrix Ḋ(q)− 2C(q, q̇) is skew symmetric.
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Remark 2 The boundedness assumption on the inertia matrix

is little conservative; for instance, it holds for (but it is not lim-

ited to) robot manipulators composed of revolute joints only or

prismatic joints only. See [31] for a complete characterization.

Nonetheless, the main result in [22], [17] does not rely on

uniform boundedness of D; as it is illustrated through a simple

example in [33], this is an important relaxation. •

The control problem that we solve in this paper is stated as

follows.

Definition 5 (global output-feedback tracking control)

Consider the EL system (1) under Assumption 1. Furthermore,

suppose that only position measurements are available, that

the given reference trajectory t 7→ qd is of class C2 and that

there exists kδ > 0 such that

max

{
sup
t≥0

|qd(t)| , sup
t≥0

|q̇d(t)| , sup
t≥0

|q̈d(t)|

}
≤ kδ . (11)

Under these conditions, find a dynamic output-feedback con-

troller

q̇c = f(t, qc, q) (12a)

u = u(t, qc, q) (12b)

such that the closed-loop system

D(q)q̈ + C(q, q̇)q̇ + g(q) = u(t, qc, q) (13)

q̇c = f(t, qc, q)

has a unique equilibrium at

(q̃, ˙̃q, qc − q∗c ) = (0, 0, 0),

q̃ := q − qd(t), ˙̃q := q̇ − q̇d(t)

where q∗c is a solution to (12) subject to q ≡ qd and this

equilibrium is uniformly globally asymptotically stable.

Our first theorem improves the main result in [24] which solves

the long-standing open problem defined above –cf. [22].

Theorem 4 Consider the system (1) under Assumption 1. Let

a, b, kp and kd be positive constants, let

a > 1,
kd
16

b

a
> kckδ (14)

and consider the dynamic position-feedback controller

q̇c = −a(qc + bq̃) (15a)

ϑ = qc + bq̃ (15b)

u = −kpq̃ − kdϑ+D(q)q̈d + C(q, q̇d)q̇d + g(q) (15c)

where qd is described in Definition 5. Then, the origin {z = 0}
with z := [q̃⊤ ˙̃q⊤ q⊤c ]

⊤ is uniformly globally asymptotically

stable.

Remark 3 In the statement of Theorem 4 we use scalar gains

a, b, kp and kd merely for clarity of exposition; the result

holds if the gains are diagonal positive matrices by replacing

condition (14) with

kdm

16

bm
aM

> kckδ

where (·)m and (·)M denote, respectively, the smallest and

largest elements in the diagonal of (·). •

The controller (15) is based on its “set-point controller”

counter-part, first published in [10] and subsequently used

by many other authors. Indeed, (15) is reminiscent of the

controller in [8] and it corresponds verbatim to that from [9]

–see also [25], where semi global uniform asymptotic stability

is also established under much more stringent conditions

than (14). This condition is also in great contrast with those

imposed in [22], [17] which appeared at the time of the initial

submission of this paper –see also [24], [34].

Even though the controller in Theorem 4, per se, is not orig-

inal, the extent of the statement can hardly be overestimated:

1) Theorem 4 obviates the use of observers. To circumvent

the lack of velocity measurements, the controller employs a

widely-used ad hoc alternative to differentiation. Indeed, Eqs.

(15a), (15b) correspond to the state-space representation of the

so-called dirty-derivatives filter

ϑ =
b

s+ a
˙̃q ⇔ ϑ =

bs

s+ a
q̃ (16)

whose output is commonly used in control practice to replace

the unavailable velocities ˙̃q. The system in (16) is not an

observer.

2) Globality is achieved via a dynamic controller of striking

simplicity: the controller dynamics is linear and autonomous

while its output, the control law u(t, q̃, ˙̃q, ϑ), is bounded in

t and q̃ and globally-Lipschitz uniformly in t. Moreover, the

sole tuning rule, (14), is meaningful; it imposes a very natural

constraint on the damping gain kd, scaled by the filter’s DC

gain, b/a. The factor (1/16) is not tight.

3) Purely from a dynamical-systems perspective, Theorem 4

establishes for (1), (15) the strongest property desirable for

a nonlinear time-varying system: uniform global asymptotic

stability. This solves a problem open for more than 25 years.

As a matter of fact, achieving such property for nonlinear time-

varying systems with non-globally Lipschitz nonlinearities of

the unmeasured variables is at the edge of the achievable via

dynamic output feedback –cf. [2] and Section V.

Proof of Theorem 4

The closed-loop equation is obtained by replacing u from

(15c) in (1) and adding −C(q, q̇d)q̇ + C(q, q̇)q̇d = 0 to the

right-hand side of (15c) hence,

D(q)¨̃q + [C(q, q̇) + C(q, q̇d)] ˙̃q + kpq̃ + kdϑ = 0. (17)

Then, for the purpose of analysis, we differentiate (15b) and

use (15a) to obtain

ϑ̇ = −aϑ+ b ˙̃q. (18)

The point {x = 0} where x := [q̃⊤ ˙̃q⊤ ϑ⊤]⊤ is an equilibrium

of (17), (18) and is unique. Then, a direct computation shows

that {z = 0} is a unique equilibrium of the closed-loop

equations (15a), (17). Also, {x = 0} is uniformly globally

asymptotically stable for (17), (18) if and only if so is

{z = 0} for the closed-loop equations (15a), (17). Therefore,

we proceed to analyze the stability of (17), (18) at the origin,

{x = 0}. This analysis is divided in four ordered steps in

which we establish:
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(1) uniform forward completeness –see Lemma 1 below;

(2) uniform global boundedness –see Lemma 2, farther

down;

(3) uniform stability –this is contained in the subsequent

Lemma 3 however, it follows trivially via Lyapunov’s first

method and it is also implicitly contained in the proof of

the main result in [9].

(4) uniform global attractivity –this is the main statement of

Lemma 3.

Lemma 1 Under the conditions of Theorem 4 the closed-

loop system (1), (15) is uniformly forward complete; moreover,

there exist c1, c2 > 0 such that

|x(t)| ≤ c1 |x(t◦)| ec2(t−t◦) ∀ t ≥ t◦ ≥ 0. (19)

Proof: Consider the Lyapunov function candidate V1 :
R≥0 × R

3n 7→ R≥0 defined as

V1(t, q̃, ˙̃q, ϑ) =
1

2

(
˙̃q⊤D(q̃ + qd(t)) ˙̃q + kp |q̃|

2 +
kd
b
|ϑ|2

)

(20)

which, under Assumption 1, satisfies

α1 |x|
2 ≥ V1(t, q̃, ˙̃q, ϑ) ≥ α2 |x|

2
(21)

α1 :=
1

2
max

{
dM , kp,

kd

b

}
, α2 :=

1

2
min

{
dm, kp,

kd

b

}
.

Furthermore, using Ḋ(q) = C(q, q̇) + C(q, q̇)⊤, we see that

the total derivative of V1 along the closed-loop trajectories of

(17), (18), satisfies

V̇1 = −
kda

b
|ϑ|2 + ˙̃q⊤C(q, q̇d) ˙̃q

≤ −
kda

b
|ϑ|

2
+ kckδ

∣∣ ˙̃q
∣∣2 . (22)

Therefore, V̇1 ≤ kckδ |x|
2

and, defining v1(t) :=
V1(t, q̃(t), ˙̃q(t), ϑ(t)), we obtain v̇1(t) ≤ (kckδ/α2)v1(t). The

statement follows after integrating the latter, defining

c1 :=

√
α1

α2

, c2 :=
kckδ

2α2

and invoking the comparison principle.

Lemma 2 Under the conditions of Theorem 4, the closed-

loop trajectories of the system (1), (15) are uniformly globally

bounded.

Proof: We analyze the solutions to (17), (18) with initial

conditions t◦ ≥ 0 and x(t◦) = x◦ ∈ Br where r > 0 is

arbitrarily fixed. The proof follows by reductio ad absurdum.

We establish that if the solutions grow unboundedly, V1
“becomes” non-increasing along trajectories, for a sequence

of sufficiently large time instances.

More precisely, assume that
∣∣ ˙̃q(t)

∣∣ → ∞ as t → ∞;

according to Lemma 1,
∣∣ ˙̃q(t)

∣∣ satisfies (19). Now, let I := {ti}
be a divergent sequence of ‘large’ time instances i.e., ti → ∞
as i → ∞, t1 ≥ t◦ + T with T ≫ 1. Let I generate

another divergent sequence { ˙̃q(ti)} 3 0. More specifically,

assume that there exists at least one k ≤ n and a sequence

I such that for every ti ∈ I we have ˙̃qk(ti) ≥ 0. As it

shall become clear below, there is no loss of generality in

assuming divergence to +∞ since the same reasoning applies

for any sequence { ˙̃qk(ti)} 2 0 strictly decreasing to −∞.

Also, note that there is no particular assumption regarding

the divergent behaviour of
∣∣ ˙̃q(t)

∣∣; in particular, the sequence

{ ˙̃q(ti)} 3 0 may be constructed even if
∣∣ ˙̃q(t)

∣∣ diverges in an

oscillatory manner. Furthermore, oscillations of unboundedly

increasing frequency are excluded since the origin is uniformly

asymptotically stable –see the proof of Lemma 3 and [9].

By continuity of solutions, for each element of {ti}, and

for each k ≤ n such that { ˙̃qk(ti)} is strictly increasing, let us

define on a ∆-neighbourhood of ti, with ∆ > 0, an absolutely

continuous non-decreasing function νik : [ti −∆, ti] → R≥0

as

νik(t) := ˙̃qk(t) ∀ t ∈ [ti −∆, ti].

Next, let

δik(t) := ˙̃qk(t)− νik(ti), t ∈ [ti −∆, ti];

the function δik is absolutely continuous, strictly increasing,

δik(ti) = 0 and δik(t) ≤ 0 for all t ∈ [ti −∆, ti].

On the other hand, the solution of (18), for any k ≤ n,

t◦ ≥ 0 and t ≥ t◦, corresponds to

ϑk(t) = ϑk(t◦)e
−a(t−t◦) + b

∫ t

t◦

e−a(t−τ) ˙̃qk(τ)dτ

therefore, defining ϑ−ik = ϑk(ti −∆), we obtain,

ϑk(t) = ϑ−ike
−a(t−ti+∆) + bνik(ti)

∫ t

ti−∆

e−a(t−τ)dτ

−b

∫ t

ti−∆

|δik(τ)| e
−a(t−τ)dτ ∀ t ∈ [ti −∆, ti].

By the definition of δik and νik , for sufficiently large ti,
νik(ti) ≥ 2δM where δM = max{δik(t)} for all t ∈
[ti −∆, ti], ti ≥ 0 —as a matter of fact, it has been showed

in [35] that there exists such δM independent of ti— hence,

ϑk(ti) ≥
b

2a
νik(ti)

[
1− e−a∆

]
+ ϑ−ike

−a∆

and
νik(ti)

ϑk(ti)
≤

2a

b
[
1− e−a∆

]
[
1−

ϑ−ike
−a∆

ϑk(ti)

]
. (23)

In view of the non-decreasing nature of {ϑk(ti)} the factor in

brackets on the right-hand side of (23) is positive and smaller

than one for any ∆ > 0 and sufficiently large ti hence, by

setting ∆ ≥ ln 2/a < 1 –see (14), we obtain

νik(ti)

ϑk(ti)
<

4a

b
. (24)

On the other hand, in the limit, as ∆ → 0, we have

νik(ti)/ϑk(ti) ≤ 2(a/b).

The inequality (24) holds for any pair of link coordinates

(ϑk, ˙̃qk) and any k ≤ n but not necessarily with the same

sequence I := {ti}. For each link, i.e., for each k ≤ n, let us

denote by Ik := {kti} the sequence of times which generates a

divergent sequence { ˙̃qk(
kti)} → +∞ for which the previous

computations hold, up to (24). Next, consider the sequence

Ĩ := {τi} formed by the union of all the latter i.e.,

Ĩ := I1 ∪ I2 ∪ · · · Ik · · · ∪ In.
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On the other hand, defining v1(t) := V1(t, q̃(t), ˙̃q(t), ϑ(t)), it

follows from (22) that, for any t,

v̇1(t) ≤ −
kda

b
|ϑ(t)|

2
+ kckδ

∣∣ ˙̃q(t)
∣∣2

hence, the latter also holds for t = τi for any τi ∈ Ĩ. It follows

that, for any subsequence {τ ′i} ⊆ Ĩ such that {|q(τ ′i )|} → +∞
we have, from (24),

v̇1(τ
′
i) ≤ −

kda

b
|ϑ(τ ′i )|

2
+ kckδ |ϑ(τ

′
i )|

2 |νi(τ
′
i)|

2

|ϑ(τ ′i)|
2

≤ −
[kda
b

−
16kckδa

2

b2

]
|ϑ(τ ′i)|

2
(25)

where we introduced νi := [νi1 . . . νin]
⊤. In view of (14) we

have v̇1(τ
′
i) ≤ 0 which implies that the sequence {v1(τ

′
i)}

is non-increasing. Since V1 is positive definite and proper,

it follows that that the sequence {|x(τ ′i)|} is bounded. This

contradicts the initial assumption that {
∣∣ ˙̃q(ti)

∣∣} grows un-

boundedly and implies, in turn, that {|ϑ(ti)|} is also bounded,

since the filter (16) has finite gain. By Lemma 1,
∣∣ ˙̃q(t)

∣∣ and

|ϑ(t)| are also bounded on every interval [ti, ti+1] hence, from

uniform forward completeness, we conclude that
∣∣ ˙̃q(t)

∣∣ and

|ϑ(t)| are uniformly bounded for all t.

The previous arguments also apply (with appropriate mod-

ifications) to any infinite sequence {ti} generating a strictly

decreasing sequence { ˙̃q(ti)} 2 0.

Now we prove that |q̃(t)| is also bounded. Let it be

otherwise and consider the (twice differentiable) function

V2 : R≥0 × R
3n → R≥0,

V2(t, q̃, ˙̃q, ϑ) = (ε1q̃ − ε2ϑ)
⊤D(q̃ + qd(t)) ˙̃q, ε1, ε2 < 1

(26)

which, in view of (17) and (18), satisfies

V̇2 =(ε1q̃ − ε2ϑ)
⊤
(
−kdϑ− kpq̃ − [C(q, q̇) + C(q, q̇d)] ˙̃q

)

+ ε1 ˙̃q
⊤D(q) ˙̃q − ε2(−aϑ+ b ˙̃q)⊤D(q) ˙̃q

+ (ε1q̃ − ε2ϑ)
⊤Ḋ(q) ˙̃q. (27)

Let R be an arbitrary positive number and define

Ω :=
{
x ∈ R

3n : q̃ ∈ R
n, max

{ ∣∣ ˙̃q
∣∣ , |ϑ|

}
≤ R

}
.

Then,
∣∣ε1q̃⊤C(q, q̇)⊤ ˙̃q

∣∣ ≤ ε1kc |q̃|
∣∣ ˙̃q
∣∣ [R+ kδ

]
(28a)∣∣ε2ϑ⊤C(q, q̇)⊤ ˙̃q

∣∣ ≤ ε2kc |ϑ|
∣∣ ˙̃q
∣∣ [R+ kδ

]
(28b)

–see (11), which implies that for all x ∈ Ω, all the terms of

undefined sign on the right-hand side of (27) may be upper

bounded by a first-order polynomial of |q̃|. Therefore, using

Assumption 1 and (28), we see that there exist positive num-

bers c1, c2 such that v2(t) := V2(t, q̃(t), ˙̃q(t), ϑ(t)) satisfies

v̇2(t) ≤ −ε1kp |q̃(t)|
2
+ c1 |q̃(t)|+ c2 (29)

for all t ≥ t◦ and x(t) ∈ Ω. Furthermore, let V : R≥0×R
3n →

R≥0 be defined as

V (t, x) := V1(t, q̃, ˙̃q, ϑ) + V2(t, q̃, ˙̃q, ϑ) (30)

which is positive definite and proper under the conditions

of Theorem 4 and we show that its total derivative along

trajectories becomes negative for large values of |q̃(t)|. To

that end, let us define

M1(t, x) :=

[
kpI 2ε1D(q̃ + qd(t))

2ε1D(q̃ + qd(t))
⊤ D(q̃ + qd(t))

]

M2(t, x) :=

[
kd

b
I −2ε2D(q̃ + qd(t))

−2ε2D(q̃ + qd(t))
⊤ D(q̃ + qd(t))

]
,

so we have

V (t, x) ≥
1

4

[
q̃
˙̃q

]⊤
M1(t, x)

[
q̃
˙̃q

]
+

1

4

[
ϑ
˙̃q

]⊤
M2(t, x)

[
ϑ
˙̃q

]

and both M1(t, x) and M2(t, x) are positive definite (uni-

formly in t) respectively if

kp

4dM
> ε21,

kd

4bdM
> ε22 . (31)

For any given positive gains kp, kd and b and the constant dM
one can always find ε1, ε2 > 0 such that the inequalities in

(31) hold. Moreover, from Assumption 1.1 we also see that V
is drecrescent; indeed, we have

V (t, x) ≤

[
q̃
˙̃q

]⊤
M1(t, x)

[
q̃
˙̃q

]
+

[
ϑ
˙̃q

]⊤
M2(t, x)

[
ϑ
˙̃q

]
(32)

where the induced norms of M1 and M2 are uniformly

bounded from above, due to (9).

Now, using (22) on v1(t) as well as (29) we see that v(t) :=
V (t, x(t)) satisfies

v̇(t) ≤ −ε1kp |q̃(t)|
2
+ c1 |q̃(t)|+ c2 + kckδR

2

for all x(t) ∈ Ω, t ≥ t◦ ≥ 0. We see that v̇(t) ≤ 0 for

sufficiently large values of |q̃(t)|, which implies that v(t) is

bounded from above by a non-increasing function. Since V is

proper |x(t)| is uniformly globally bounded.

Lemma 3 The origin of the system (1) under the conditions of

Theorem 4 is uniformly (asymptotically) stable. Furthermore,

assume that the solutions are uniformly globally bounded;

then, the origin is uniformly globally attractive.

Proof: Let the control gains be fixed according to (14)

and, for any r > 0, let the property of uniform global

boundedness generate R = γ(r) + c (see Definition 1), such

that, for all t◦ ≥ 0 and all x◦ ∈ Br, x(t, t◦, x◦) ∈ BR for all

t ≥ t◦. Consider a function V : R≥0 ×BR → R defined as in

(30). Under Assumption 1 its total time-derivative along the

trajectories of (17), (18) satisfies, for all (t, x) ∈ R≥0 ×BR,

V̇ ≤ −
ε1kp
2

|q̃|
2
−
ε2bdm

2

∣∣ ˙̃q
∣∣2 + ε1dM

∣∣ ˙̃q
∣∣2

−
1

2

[
|q̃|∣∣ ˙̃q
∣∣

]⊤[
ε1kp/2 −ε1kc (R+ kδ)

∗ ε2bdm/2

][
|q̃|∣∣ ˙̃q
∣∣

]

−
1

2

[
|q̃|

|ϑ|

]⊤[
ε1kp/2 −(ε1kd + ε2kp)

∗ kda/2b

][
|q̃|

|ϑ|

]

−
1

2

[∣∣ ˙̃q
∣∣

|ϑ|

]⊤[ε2bdm
2

−ε2
[
kc(R + kδ) + adM

]

∗ kda/2b

][∣∣ ˙̃q
∣∣

|ϑ|

]

−

(
kda

2b
− ε2kd

)
|ϑ|

2
+ kckδ

∣∣ ˙̃q
∣∣2 (33)
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where “*” stands for the opposite element in the matrix

with respect to the main diagonal. Note that the second and

third terms on the right-hand side of the previous inequality

may be grouped together and the resulting factor of ˙̃q, i.e.,[
(ε2bdm/2)− ε1dM

]
, is positive for sufficiently small values

of ε1/ε2. Also, the first matrix above is positive definite if

ε2
4ε1

bdm ≥
k2c (R + kδ)

2

kp

which holds for control gains independent of the initial con-

ditions and of R, if

ε2
ε1

= O
(
R2
)

(34)

which also imposes ε1/ε2 to be “small”. The second matrix

is positive if

ε1kpkda

4b
≥ (ε1kd + ε2kp)

2

which holds for sufficiently small values of ε1 and ε2. Finally,

the third matrix is positive definite if

kdadm
4

≥ ε2

[
(R + kδ)kc + adM

]2

which is satisfied for sufficiently small values of

ε2 = O

(
1

R2

)
(35)

which in turn, in view of (34), imposes that

ε1 = O

(
1

R4

)
. (36)

Furthermore, the factor of ϑ2 is negative if ε2 < a/2b. Note

that none of these definitions violate (31) nor they restrict

the gains relatively to the value of R. Thus, for all (t, x) ∈
R≥0×BR and for any R ≥ 0 there exist c′ > 0 and λ ∈ (0, 1)
such that

V̇ (t, x) ≤ −c′ |x|
2
−

λkda

2b
|ϑ|

2
+ kckδ

∣∣ ˙̃q
∣∣2 ∀ t ≥ 0, x ∈ BR

(37)

with control gains independent of R. Therefore, recalling that

v(t) := V (t, x(t)) we obtain

v̇(t) ≤ −c′ |x(t)|2−
λkda

2b
|ϑ(t)|2+kckδR

2 ∀ t◦ ≥ 0, x◦ ∈ Br.

(38)

On the other hand, recalling (22) we see that

v̇1(t) ≤ −
λkda

2b
|ϑ(t)|2 + kckδR

2 ∀ t◦ ≥ 0, x◦ ∈ Br.

Integrating the latter from t◦ to t, for any t ≥ t◦, we obtain,

v1(t)− v1(t◦) ≤ −

∫ t

t◦

[λkda
2b

|ϑ(τ)|
2
− υ̃
]
dτ (39)

where υ̃ := kckδR
2. Furthermore, from (21) and the property

of uniform global boundedness (see Def. 1 ), we have v1(t) ≤

α1R
2 = α1

[
γ(r) + c

]2
and v1(t◦) ≤ α1 |x◦|

2
. Therefore,

defining βr :=
[
γ(r) + c

]2
+ r2, we obtain

∫ t

t◦

[λkda
2b

|ϑ(τ)|
2
− υ̃
]
dτ ≤ α1βr (40)

for any υ̃ and for all t ≥ t◦ ≥ 0.

Next, we integrate on both sides of (38) from t◦ to t, for

any t ≥ t◦ and we rearrange some terms to obtain

c′
∫ t

t◦

|x(τ)|
2
dτ +

∫ t

t◦

[λkda
2b

|ϑ(τ)|
2
− υ̃
]
dτ ≤ v(t◦)− v(t),

which implies that

c′
∫ t

t◦

|x(τ)|
2
dτ +

∫ t

t◦

[λkda
2b

|ϑ(τ)|
2
− υ̃
]
dτ − α1βr

≤ v(t◦)− v(t).

Now, in view of (40), there exists ε ∈ [0, 1) such that

c′
∫ t

t◦

|x(τ)|
2
dτ − εα1βr ≤ v(t◦)− v(t).

Finally, reconsider (32) and let mM be an upper-bound on the

induced norms of M1 and M2 then, v(t) ≤ 2mM [γ(r) + c]2

and v(t◦) ≤ 2mM |x◦|
2
. Therefore,

c′
∫ t

t◦

|x(τ)|
2
dτ ≤

[
α1ε+ 2mM

]
βr (41)

for all t ≥ t◦, t◦ ≥ 0 and x◦ ∈ Br. The proof is completed

by observing that the previous computations hold for arbitrary

r and invoking Theorem 3 with βrυ̃ := (α1ε+ 2mM )βr and

Υ(s) := c′s2.

The following statement, which is implied by Theorem 4,

may be deduced from the previous proof. Yet, it improves the

main result in [9] in the sense that the conditions on the control

gains are significantly relaxed.

Corollary 1 The origin of the closed-loop system (1) with (15)

under condition (14) is semiglobally uniformly exponentially

stable.

Proof: Consider the function V : R≥0 × R
3n → R≥0

defined in (30). Let r and R be two positive numbers such

that R = R(r). Then, following the steps of the proof of

Lemma 3 to compute the total derivative of V , we find that,

for all trajectories x(t, t◦, x◦) such that x◦ ∈ Br implies that

x(t) ∈ BR,

V̇ ≤ −
ε1kp |q̃|

2

2
−

(
kda

2b
− ε2kd

)
|ϑ|

2

−

[
ε2bdm

2
− ε1dM − kckδ

] ∣∣ ˙̃q
∣∣2 .

Therefore, it suffices to set b ∝ 1/ε2 i.e., b = O
(
R(r)2

)
while

being sufficiently large to dominate over kckδ , to render the

factor of
∣∣ ˙̃q
∣∣2 negative. Under these conditions, we conclude

that V̇ is negative definite on compacts that depend on the size

of initial states and these sets may be arbitrarily enlarged for

appropriate choices of the control gains.

Corollary 2 The origin of the closed-loop system (1) with

(15) under condition (14) is uniformly globally asymptotically

stable and exponentially stable on any compact.

We conclude that the origin is uniformly locally exponentially

stable, which in turn implies that the state trajectories are

uniformly square-integrable.
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IV. SYSTEMS WITH RELATIVE DEGREE m+ 2

In this section we consider the output-feedback problem, as

stated in Definition 5, for systems in which case the control

input enters through a chain of m integrators, that is,

D(q)q̈ + C(q, q̇)q̇ + g(q) = ξ1 (42a)

ξ̇1 = ξ2
...

ξ̇m = u (42b)

where u, ξi ∈ R
n for all i ≤ m, m ≥ 1.

The model (42) covers several interesting cases which may

be related to other challenging open problems of nonlinear

control such as the control of Lagrangian (mechanical) sys-

tems, taking into account the actuator dynamics, that is,

D(q)q̈ + C(q, q̇)q̇ + g(q) = ξ1 (43a)

ẋa = fa(t, xa) + τ, ξ1 = h(t, q, q̇, xa) (43b)

where xa denotes the actuator’s state and τ its control input.

Provided that the actuator dynamics (43b) is input-output

(globally) feedback-linearizable with respect to the output ξ1,

the model (43) may be transformed into (42). Although this

task is very difficult in general, there exists a considerable bulk

of literature on the subject, particularly for electrical machines

–see [36]. A “simple” example concerns the flexible-joint

robot manipulator model, simultaneously and independently

introduced in [37], [38],

D(q1)q̈1 + C(q1, q̇1)q̇1 + g(q1) = K(q2 − q1) (44a)

Jq̈2 +K(q2 − q1) = τ (44b)

where q1 and q2 denote, respectively, the link and actuator

generalized coordinates, g(q1) represents potential forces, K
is the joint-stiffness matrix (positive diagonal), J is the rotor

inertia matrix and τ is the (physical) control input. It is easy

to see that this system may be “transformed” into a system

of the form (42) with m = 2. For this, we define g(q1) =
g(q1) +Kq1, ξ1 = Kq2 and ξ2 = Kq̇2 then, ξ̇1 = ξ2 and

ξ̇2 = KJ−1
[
τ − ξ1 +Kq1

]

hence, it suffices to define τ = ξ1 − Kq1 + JK−1u. Fur-

thermore, it is clear that the same computation goes through

if (44b) contains nonlinear terms, provided that they may be

canceled via output feedback, i.e., without measuring q̇1.

The solution that we propose to the output-feedback control

problem for the system (42) consists in a recursive design,

reminiscent of backstepping control. We design successive

virtual control laws, ξ∗i , which are set as references for the

integrator variables ξi, starting with

ξ∗1 = −kp0
q̃ − kd0

ϑ0 +D(q)q̈d + C(q, q̇d)q̇d + g(q) (45)

–cf. (15c) —in the sequel, we use the symbols kpi
and kdi

to

denote ‘proportional’ and ‘derivative’ control gains, defined as

positive reals for all i ∈ [0,m].

In contrast to classical backstepping control, instead of

successive derivatives of ξ∗i , which involve unmeasured states,

we use a cascade of approximate differentiators

ϑi =
bis

s+ ai
ψi ⇔ ϑi =

bi
s+ ai

ψ̇i, ∀ i ∈ [0,m] (46)

where ψ0 = q̃ and ψi is to be defined for each i ∈ [1,m]. We

stress that ϑi may be defined in two equivalent manners: the

first shows how the filter is to be implemented using the input

ψi while the second is important since it defines the dynamics

of a strictly proper first order system which is internally stable,

defines an output-strictly passive map ψ̇i 7→ ϑi and it is input

to state stable with respect to the input ψ̇i. These properties are

fundamental for the analysis of the overall closed-loop system

–cf. [29] and Section V.

For clarity of exposition, we first present the rationale of

the control design approach for the case of a single added

integrator. Then, in Section IV-B, we solve the problem for

the general case, i.e., for m > 1.

A. Case of one added integrator

We have m = 1 hence,

ξ̇1 = u. (47)

To develop intuition let us consider first the ideal control law

u = −kp1ξ̃1 + ξ̇
∗

1, kp1 > 0 (48)

where ξ̃1 := ξ1−ξ
∗
1. It is easy to see that in this case ξ1 → ξ∗1.

Actually, the origin of the closed-loop equation ˙̃ξ1 = −kp1ξ̃1
is globally exponentially stable. Furthermore, since ξ1 = ξ̃1+
ξ∗1 the overall closed-loop system, using (42a) and (46) with

i = 0, yields

D(q)¨̃q + [C(q, q̇) + C(q, q̇d)] ˙̃q + kp0
q̃ + kd0

ϑ0 = ξ̃1 (49a)

ϑ̇0 = −a0ϑ0 + b0 ˙̃q. (49b)

In view of Theorem 4 the origin of the system (49) with zero

input (i.e., ξ̃1 = 0) is uniformly globally asymptotically stable.

Therefore, a simple cascades argument (see e.g. [39]) leads

to uniform global asymptotic stability for (42) in closed loop

with (45) and (48). The obvious inconvenient of (48) is that its

implementation requires ξ̇
∗

1, which depends on the unmeasured

velocities. Indeed1,

ξ̇
∗

1(t, q, q̇, ϑ0) =
[
C(q, q̇d) + C(q, q̇) + C(q, q̇)⊤

]
q̈d +D(q)q

(3)
d

+Mq̇d +
∂g

∂q

⊤

q̇ − kp0

˙̃q − kd0
[−a0ϑ0 + b0 ˙̃q] (50)

where

M =




q̇⊤
∂cd1

∂q
+ q̈⊤d

∂cd1

∂q̇d
...

q̇⊤
∂cdn

∂q
+ q̈⊤d

∂cdn

∂q̇d




and cdi denotes the i-th row of C(q, q̇d). To overcome this

difficulty, we use an approximate differentiator for ξ∗1 and we

1To avoid a cumbersome notation we drop the argument (t) of qd and its

derivatives; also, we write ˙̃q in place of q̇ − q̇d(t).
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replace the unavailable ξ̇
∗

1 in (48) with the correction term

kd1ϑ1, where ϑ1 corresponds to the dirty derivative of ξ∗1,

modulo an additional redesign term added to the input of the

filter. That is, we modify (48) into

u = −kp1ξ̃1 + kd1ϑ1 (51a)

ϑ1 = qc1 + b1ξ
∗
1 + ζ1 (51b)

q̇c1 = −a1ϑ1 (51c)

ζ̇1 = −kd1ξ̃1. (51d)

Note that the equations (51b)–(51c) correspond to the filter in

(46), with i = 1 and input ψ̇1 = ξ̇
∗

1 + ζ̇1/b1 that is, the term

ζ1 modifies the input but not the filter dynamics. Actually,

the equations (51) correspond to an implementable (output-

feedback) realization of the dynamic controller

u = −kp1ξ̃1 + kd1ϑ1 (52a)

ϑ̇1 = −a1ϑ1 − kd1ξ̃1 + b1ξ̇
∗

1 (52b)

with state ϑ1 and output u. Furthermore, by direct substitution

of (52a) in (47), we obtain the error equation

˙̃ξ1 = −kp1ξ̃1 + kd1ϑ1 − ξ̇
∗

1 (53)

which is “similar” to (52b).

At this point, the motivation to include the term −kd1ξ̃1
in equation (52b), generated via the integrator (51d), may be

clearer: note that in view of the ‘matching’ terms −kd1ξ̃1 and

kd1ϑ1 the two equations (52b) and (53) form an input-to-state

stable system (since kp1, a1 > 0) with respect to the input ξ̇
∗

1.

In particular, in the case that ξ̇
∗

1 = 0 the origin is exponentially

stable. To see this, let

W1 =
1

2

[∣∣ξ̃1
∣∣2 + |ϑ1|

2
]
;

then, a direct computation shows that its total derivative along

the trajectories of (52b), (53) yields

Ẇ1 = −kp1
∣∣ξ̃1
∣∣2 − a1 |ϑ1|

2
+ ξ̇

∗⊤

1 [b1ϑ1 − ξ̃1] (54)

that is, W1 is an input-to-state-stability Lyapunov function.

Thus, the system (52b), (53) is input-to-state stable with

respect to the input ξ̇
∗

1 while the remaining two closed-loop

equations, given by (49), form (at least locally) an input-to-

state stable system from the input ξ̃1. Actually, following the

proof guidelines of Lemma 3, it may be showed that input-to-

state stability holds semiglobally.

Even though these properties seem well in place for the

purpose of constructing a small-gain-type argument to es-

tablish stability, the previous arguments rely on whether the

reference qd satisfies the constraint ξ̇
∗

1(t, qd, q̇d, 0) ≡ 0. This

is necessary for the origin (in terms of a closed-loop system’s

state, including the tracking errors) to be an equilibrium point.

In order to lift this restriction on qd, which may appear

conservative in some cases, we further modify the controller

(51) by introducing some feedforward terms. That is, let

u = −kp1ξ̃1 + kd1ϑ1 + ξ̇
∗

1(t, qd, q̇d, 0) (55a)

ϑ1 = qc1 + b1ξ
∗
1 + ζ1 (55b)

q̇c1 = −a1ϑ1 (55c)

ζ̇1 = −kd1ξ̃1 − b1ξ̇
∗

1(t, qd, q̇d, 0) (55d)

and, to shorten the notation, define ξ̇
∗

1◦ := ξ̇
∗

1(t, qd, q̇d, 0). A

direct computation shows that the closed-loop equations now

correspond to (49) and, instead of (52b) and (53), we have

˙̃ξ1 = −kp1ξ̃1 + kd1ϑ1 − [ξ̇
∗

1 − ξ̇
∗

1◦], (56a)

ϑ̇1 = −a1ϑ1 − kd1ξ̃1 + b1
[
ξ̇
∗

1 − ξ̇
∗

1◦

]
. (56b)

Note that the introduction of the feedforward term ξ̇
∗

1◦ only

shifts the equilibrium of the closed-loop system, leaving the in-

ternal controller structure unchanged. Therefore, the previous

claims on internal stability (without input) as well as input-

output and input-to-state stability continue to hold, only with

respect to a different input. In particular, the interconnected

systems (56) form an input-to-state stable system with respect

to the input
[
ξ̇
∗

1 − ξ̇
∗

1◦

]
and with Lyapunov function W1. The

derivative of the latter, along the trajectories of (56), yields

Ẇ1 = −kp1
∣∣ξ̃1
∣∣2−a1 |ϑ1|2+

[
ξ̇
∗

1− ξ̇
∗

1◦

]⊤
[b1ϑ1− ξ̃1]. (57)

Thus, with aim at developing a small-gain type argument,

we need to establish input-to-state stability with respect to

the tracking errors. To that end, we introduce a (mild) addi-

tional technical hypothesis on the system (42). Assumption

2, below, together with (11) and Assumption 1, guarantees

that ξ̇
∗

1(t, q, q̇, ϑ0) is globally Lipschitz in the last two ar-

guments, uniformly in t, and that it is bounded in the first

two arguments. More precisely, there exist non-negative real

numbers η1, η2 and η3, as well as a continuous saturation

function sat : R → R such that y sat(y) > 0 for all y 6= 0 and

|sat(y)| ≤ 1, such that,

∣∣[ξ̇∗1 − ξ̇
∗

1◦

]∣∣ ≤ η1sat(|q̃|) + η2
∣∣ ˙̃q
∣∣+ η3 |ϑ0| . (58)

Assumption 2 (1) let the Coriolis and centrifugal forces func-

tion (w, y) 7→ C be globally Lipschitz and uniformly bounded

in w, i.e., assume that there exists a saturation function sat,

as defined above, such that, for all w, y, z ∈ R
n,

|C(w, y)− C(z, y)| ≤ sat(|w − z|) |y| ;

(2) let the function representing the potential-energy force

satisfy

∃ kv > 0 :

∣∣∣∣
∂g

∂q

∣∣∣∣ ≤ kv, ∀ q ∈ R
n. (59)

Remark 4 Assumption 2 is fairly weak; it holds, e.g., for

robot manipulators with only prismatic or only revolute joints,

since w 7→ C and q 7→ g are defined via constants and

trigonometric or linear-growth functions. Readers interested in

the regularity properties of the Coriolis matrix are invited to

see [32]. On the other hand, the Jacobian of g(q) is thoroughly

studied in [40]. For the particular case of flexible-joint robots

(44), we have g(q1d) = g(q1d) +Kq1d hence, inequality (59)

holds if

∣∣∣∂g
∂q

∣∣∣ ≤ kv and K is bounded •

We are now ready to present the main result of this section.

Theorem 5 Consider the system (49), (50), (56), which cor-

responds to the closed-loop of (42), (45) and (55). Let qd be

given as in Definition 5, let Assumptions 1 and 2 hold and the
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control gains satisfy: kp0
> 1,

kd0

[
a0

4b0
− 1
]
>

3

2
+

(2kckδ + 3/2)a20
b20

(60a)

kp1 >
1

2

(
η22 + η23

)
+ 2 (60b)

a1 >
1

2

(
η22 + η23

)
b21 + 1. (60c)

Then, the origin is uniformly globally asymptotically stable.

Proof: The state of the closed-loop system, which is given

by Equations (49) and (56), is denoted by

x = [q̃⊤ ˙̃q⊤ ϑ⊤0 ξ̃1
⊤

ϑ⊤1 ]
⊤. (61)

We establish uniform global asymptotic stability of {x = 0}
by showing uniform forward completeness, uniform global

boundedness and uniform global attractivity.

Uniform forward completeness. Consider the function V1 as

defined in (20), for the system (49) that is,

V1(t, q̃, ˙̃q, ϑ0) =
1

2

(
˙̃q⊤D(q̃ + qd(t)) ˙̃q + kp0

|q̃|
2
+
kd0

b0
|ϑ0|

2

)
.

(62)

The total derivative of V1 := V1 +W1 along the trajectories

of (49), (56) yields

V̇1 =−
a0kd0
b0

|ϑ0|
2
+ kckδ

∣∣ ˙̃q
∣∣2 + ˙̃q⊤ξ̃1

− kp1
∣∣ξ̃1
∣∣2 − a1 |ϑ1|

2
+
[
ξ̇
∗

1 − ξ̇
∗

1◦

]⊤[
b1ϑ1 − ξ̃1

]
(63)

where ξ̇
∗

1 is given in (50). On the other hand, the term
[
ξ̇
∗

1 −
ξ̇
∗

1◦

]
satisfies, in view of Assumption 2, the “Lipschitz bound”

(58). Using this and the triangle inequality, it follows that the

last term on the right-hand side of (63), which comes from

(57), satisfies

[
ξ̇
∗

1−ξ̇
∗

1◦

]⊤[
b1ϑ1−ξ̃1

]
≤
∣∣ ˙̃q
∣∣2+|ϑ0|

2
+η1sat(|q̃|)

[
b1 |ϑ1|+

∣∣ξ̃1
∣∣
]

+

(

η2
2 + η2

3

)

2

[
b21 |ϑ1|

2
+
∣∣ξ̃1
∣∣2
]
. (64)

Using the latter in (63) and the triangle inequality on ˙̃q⊤ξ̃1,

we get

V̇1 ≤−
[
a0kd0
b0

− 1
]
|ϑ0|

2
+
[
kckδ +

3

2

] ∣∣ ˙̃q
∣∣2

−

[
a1 −

b21
2

(
η22 + η23

)]
|ϑ1|

2 + η1sat(|q̃|)
[
b1 |ϑ1|+

∣∣ξ̃1
∣∣
]
.

−
[
kp1 −

1

2

(
1 + η22 + η23

)]∣∣ξ̃1
∣∣2 (65)

It follows that there exist c and c′ > 0 such that V̇1 ≤ cV1 +
c′ hence, integrating the latter and invoking the comparison

principle, as in the proof of Lemma 1 –cf. (22), we obtain that

the closed-loop system is uniformly forward complete that is,

the closed-loop trajectories satisfy (19) with an appropriate

redefinition of the state and of the constants c1 and c2.

Uniform global boundedness. We proceed by contradiction,

based on the proof of Lemma 2. Let |x(t)| → ∞ as t→ ∞ and

consider two cases: first, assume that ξ̃1 and ϑ1 are uniformly

bounded then, in view of (65), there exists c > 0 such that

V̇1 ≤ −
[
a0kd0
b0

− 1
]
|ϑ0|

2
+
[
kckδ +

3

2

] ∣∣ ˙̃q
∣∣2 + c. (66)

If on the contrary,
∣∣ξ̃1(t) ϑ1(t)

∣∣ → ∞ as t → ∞ then2, for

sufficiently large t the sum of the last three terms on the right-

hand side of (65) becomes non-positive so (66) holds with

c = 0 for large t. In either case, the rest of the proof follows

as in Lemma 2 –cf. (22).

Uniform global attractivity. We proceed as in the proof of

Lemma 3. In view of uniform global boundedness for each

r > 0 there exists R(r) such that if x(t◦) ∈ Br then x(t) ∈
BR for all t ≥ t◦ where x is defined in (61).

Consider the function V : R≥0 ×BR → R defined by

V(t, x) = V1(t, q̃, ˙̃q, ϑ0) + V2(t, q̃, ˙̃q, ϑ0) +W1(ξ̃1, ϑ1)

where V1 and V2 are defined as in (62) and (26) respectively.

With some obvious modifications, in view of Assumptions 1

and 2, the condition3 (14), and after the proof of Lemma 3,

we obtain

V̇1 + V̇2 ≤ −
1

2

[
ε1kp0

|q̃|
2
+ ε2b0dm

∣∣ ˙̃q
∣∣2
]

+
(
kckδ + ε1dM

) ∣∣ ˙̃q
∣∣2 −

[
kd0a0

2b0
− ε2kd0

]
|ϑ0|

2

+ ξ̃1
⊤[ ˙̃q + ε1q̃ − ε2ϑ0

]

–cf. (33). Applying the triangle inequality to the last term on

the right-hand side of the previous inequality we obtain

V̇1 + V̇2 ≤
(
kckδ + ε1dM +

1

2

) ∣∣ ˙̃q
∣∣2 + 1

2

(
1 + ε1 + ε2

)∣∣ξ̃1
∣∣2

−
1

2

[
ε1
(
kp0

− 1
)
|q̃|

2
+ ε2b0dm

∣∣ ˙̃q
∣∣2
]

−
[
kd0a0

2b0
− ε2

(
kd0

+
1

2

)]
|ϑ0|

2
. (67)

Next, define

α1 =
kd0a0

2b0
− ε2

(
kd0

+
1

2

)
− 1

α2 = kp1 −
1

2

(
η22 + η23 + 2 + ε1 + ε2

)

α3 = a1 −
1

2

(
η22 + η23

)
b21 − 1

α4 = kckδ +
3

2
+ ε1dM

and, for each µ > 0, α5(µ) = η21(b
2
1 + 1)sat(µ)2/2. Note that

α1, α2 and α3 are positive in view of (60a). Then, adding (67)

to (57) and using (64) we finally obtain

V̇(t, x) ≤ −
1

2

[
ε1(kp0

− 1) |q̃|
2
+ ε2b0dm

∣∣ ˙̃q
∣∣2
]
− α1 |ϑ0|

2

− α2

∣∣ξ̃1
∣∣2 − α3 |ϑ1|

2 + α4

∣∣ ˙̃q
∣∣2 + α5(|q̃|).

Next, let uniform global boundedness generate R = γ(r) + c
such that max{|q̃(t)| ,

∣∣ ˙̃q(t)
∣∣} ≤ R for all t ≥ t◦ ≥ 0, and

define z⊤ =
[
q̃⊤ ˙̃q⊤ ξ̃

⊤

1 ϑ⊤1
]
,

c′ = min
{
ε1(kp0

− 1), ε2b0dm, α2, α3

}
.

We have, for all t ≥ t◦ ≥ 0, all r > 0 and all x◦ ∈ Br,

V̇(t, x(t)) ≤ −c′
∣∣z(t)

∣∣2 − α1 |ϑ0(t)|
2
+
[
α5(R) + α4R

2
]

which is similar to (38). The rest of the proof follows as the

proof of Lemma 3, by invoking Theorem 3.

2In view of uniform forward completeness, the solutions may either be
uniformly bounded or grow unboundedly, also uniformly.

3Note that (60a) implies (14) hence we may proceed as in the proof of
Lemma 3.
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B. Case of m > 1 added integrators

Based on the previous developments, we follow a control-

design approach reminiscent of backstepping in which approx-

imate differentiators are used at each step in place of the

unavailable derivatives of intermediate virtual control inputs,

ξ̇
∗

i . To start with, let the reference to the second integrator,

i.e., ξ∗2, correspond to the right-hand side of (55a) and let the

subsequent references, ξ∗j>2, be defined in a similar manner,

that is,

ξ∗i+1 = −kpi
ξ̃i + kdi

ϑi + ξ̇
∗

i◦ ∀ i ∈ [1,m− 1] (68a)

ϑi = qci + biξ
∗
i + ζi

q̇ci = −aiϑi
ζ̇i = −

(
kdi

− σi
)
ξ̃i − biξ̇

∗

i◦



 ∀ i ∈ [1,m] (68b)

u = −kpm
ξ̃m + kdm

ϑm + ξ∗m◦ (68c)

where σi is a control “redesign” constant gain defined as

σ1 = 0, σi = bikpi−1
∀ i ∈ [2,m]

and ξ̇
∗

i◦ is a feedforward term that is function of t and is

defined as the ith derivative of ξ∗1◦ which, according to (45),

corresponds to ξ∗1◦ := D(qd)q̈d + C(qd, q̇d)q̇d + g(qd). The

purpose of the feedforward term ξ̇
∗

i◦ is, as in (55), to place the

equilibrium of the closed-loop system at the origin without

restricting the desired reference trajectories qd. The choice of

the notation “ξ̇
∗

i◦” comes from the fact that ξ̇
∗

i◦ corresponds

to the steady-state value of the virtual control law ξ∗i+1 at the

origin (x, ξ̃i, ϑi) = (0, 0, 0) hence, we recover ξ∗i+1 = ξ̇
∗

i◦

which may be viewed as a reference dynamics for each of the

system’s equations ξ̇i = ξi+1.

Let us proceed to write the error dynamics equations. To

that end, let ξ̃i = ξi − ξ∗i then, the equation ξ̇i = ξi+1 is

equivalent to ˙̃ξi = ξ̃i+1 + ξ∗i+1 − ξ̇
∗

i and, from (68), we have,

for all i ∈ [1,m],

˙̃ξi = −kpi
ξ̃i + kdi

ϑi − [ξ̇
∗
i − ξ̇

∗
i◦] + ξ̃i+1 (69a)

ϑ̇i = −aiϑi − (kdi
− σi)ξ̃i + bi[ξ̇

∗
i − ξ̇

∗
i◦] (69b)

with ξ̃m+1 := 0. Reminiscent of the case m = 1, for each i >
1, these equations form a pair of interconnected stable linear

systems with input [ξ̇
∗

i − ξ̇
∗

i◦]. For the sake of analyzing the

stability based on a small-gain-based reasoning we show that

Equations (69) may be expressed in the form of interconnected

stable linear multivariable systems with “input” [ξ̇
∗

1− ξ̇
∗

1◦]. See

the shadowed block labeled Σi in Figure 1.

To that end, we first develop each element of ξ̇
∗

=
[ξ̇

∗

1 · · · ξ̇
∗

m]⊤ as a function of ξ̃ = [ξ̃1 · · · ξ̃m]⊤, ϑ =
[ϑ1 · · · ϑm]⊤ and ξ̇

∗

1. In view of (68a) and (69) we have, for

all i ∈ [2,m],

ξ̇
∗

i =
[
k2pi−1

− k2di−1
+ kdi−1

σi−1

]
ξ̃i−1

−kdi−1

[
kpi−1

+ ai−1

]
ϑi−1 − kpi−1

ξ̃i

+
[
kpi−1

+ kdi−1
bi−1

]
[ξ̇

∗

i−1 − ξ̇
∗

i−1◦] + ξ̈
∗

i−1◦,

which exhibits the recursive definition of ξ̇
∗

i . Figure 1 illus-

trates the fact that the recursive definition of these references

leads to nested feedback interconnections of input-to-state

stable systems. In view of this recursiveness and of the

linearity of ξ̇
∗

i as a function of ξ̃i−1 and ϑi−1, a direct albeit

long computation –see the Appendix in [34], shows that for

all i ∈ [2,m],

ξ̇
∗

i = −kpi−1
ξ̃i +

i−1∑

k=1

ηik ξ̃k − µikϑk +

i−1∏

j=1

βj [ξ̇
∗

1 − ξ̇
∗

1◦] + ξ̇
∗

i◦

(70)

where

βj = kpj
+ bjkdj

, j ∈ [1,m− 1] (71)

and, for each4 i ∈ [2,m] and k ∈ [1, i− 1],

ηik=

i∏

j=k+1

β
sgn(i−j)
j

[
k2pk

− k2dk
− kpk

kpk−1
sgn(k − 1)

]
, (72)

µik =

i∏

j=k+1

β
sgn(i−j)
j kdk

[
kpk

+ ak
]
. (73)

Therefore, collecting Equations (70) in vector form, we obtain

ξ̇
∗
= Γ1ξ̃ + Γ2ϑ+ Γ3[ξ̇

∗

1 − ξ̇
∗

1◦] + ξ̇
∗

◦ (74)

with

Γ1 =




0 0 · · · 0

η21 −kp1

...
...

. . .

ηm1
ηm2

· · · −kpm−1




Γ2 =




0 0 · · · 0

−µ21 0
...

...
. . .

−µm1
−µm2

· · · 0



. Γ3 =




1
β1
β1β2

...


 .

Furthermore, we also “collect” the control gains ai, bi, kdi
, kpi

etc., into the diagonal matrices A := diag{ai}, B := diag{bi},

Kd := diag{kdi
}, K ′

d := Kd − diag{σi}, and we define

ξ̃
⊤
=
[
ξ̃1

⊤
· · · ξ̃

⊤

m

]
,

ϑ⊤=
[
ϑ⊤1 · · · ϑ⊤m

]
,

ξ̇
∗⊤

◦ =
[
ξ̇
∗⊤

1◦ · · · ξ̇
∗⊤

m◦

]
,

Kp =




kp1
−1 0 · · · 0

0
. . .

. . .
...

... −1
0 · · · · · · 0 kpm



.

Hence, Equations (69) become

˙̃ξ = −Kpξ̃ +Kdϑ− [ξ̇
∗
− ξ̇

∗

◦] (75a)

ϑ̇ = −Aϑ−K ′
dξ̃ +B[ξ̇

∗
− ξ̇

∗

◦]. (75b)

–cf. (56). Using (74), Equations (75) take the desirable form

˙̃ξ =−(Kp + Γ1)ξ̃ + (Kd − Γ2)ϑ− Γ3[ξ̇
∗

1 − ξ̇
∗

1◦] (76a)

ϑ̇=−(A−BΓ2)ϑ− (K ′
d −BΓ1)ξ̃ +BΓ3[ξ̇

∗

1 − ξ̇
∗

1◦] (76b)

which consists in a linear multivariable autonomous system

with input [ξ̇
∗

1 − ξ̇
∗

1◦], which vanishes at (q̃, ˙̃q, ϑ0) = (0, 0, 0).

Thus, provided that one choose A, Kp, Kd and B to render

the origin of (76), subject to ξ̇
∗

1 = ξ̇
∗

1◦, globally exponentially

stable, we obtain input-to-state stability of (76) with respect

to the input [ξ̇
∗

1 − ξ̇
∗

1◦]. Moreover, we recall that ξ̇
∗

1(t, q, q̇, ϑ0)

4With an abuse of notation, in (72) and (73) we consider that sgn(0) = 0.
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ϑm−1

+

−

−
+

−

+

+

∑

i

−

[ξ̇
∗

m − ξ̇
∗

m◦]
[ξ̇

∗

i − ξ̇
∗

i◦]

kdmϑm

ξ̃m ξ̃i+1
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−kp0q̃ + feedfwd
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Eq. (69a)
low-pass

filter

low-pass
filter

ϑi

Fig. 1. Schematic block-diagram of the error dynamics, not the control implementation. The closed-loop system consists in a series of nested feedback-
interconnections of input-output, input-to-state stable systems.

is globally Lipschitz in q, q̇ and ϑ0, uniformly in t therefore,

(76) is input-to-state stable with respect to the input (q̃, ˙̃q, ϑ0).
On the other hand, the rest of the closed-loop equations, i.e.,

(49), form (at least locally) an input-to-state stable system with

respect to the input ξ̃1. The following statement on uniform

global asymptotic stability relies on these observations and an

inductive trajectory-based analysis along similar proof-lines as

those of Theorem 5.

Remark 5 The controller (68) relies on the measurement of

ξi for all i ∈ [1,m] however, a certainty-equivalence controller

with a Luenberger observer for ξ may be used, based on the

measurement of ξ1 only. This is not developed here.

Theorem 6 Let qd be given as in Definition 5. Consider the

system (42) and the output-feedback dynamic controller (45),

(68) under Assumptions 1 and 2. Consider A and B as defined

on top of next page. Assume that the control gains are such

that A is Hurwitz,

kd0

[
a0

4b0
−m

]
>

m+ 2

2
+

[2kckδ + (m+ 2)/2]a20
b20

(77)

and there exist positive definite matrices Q and P such that

Q = −A⊤P − PA and

Q > (η22 + η23)diag
{
|[PB]i|

2 }
(78)

where [PB]i with i ∈ {1 . . . 2m} denotes the ith n× n block

of PB ∈ R
2mn×n. Then, the origin of the closed-loop system

is uniformly globally asymptotically stable.

Sketch of proof. The proof follows mutatis mutandis that of

Theorem 5. Defining X := [ξ̃ ϑ]⊤, the equations (76) become

Ẋ = AX+B[ξ̇
∗

1 − ξ̇
∗

1◦] (79)

and the total derivative of

W (X) =
1

2
X
⊤PX (80)

along the trajectories generated by (79) satisfies

Ẇ ≤ −
1

2
X
⊤QX+ X

⊤PB [ξ̇
∗

1 − ξ̇
∗

1◦]. (81)

On the other hand, using (58) we obtain

X
⊤PB[ξ̇

∗

1 − ξ̇
∗

1◦] =

(
m∑

i=1

ξ̃i
⊤
[PB]i + ϑ⊤i [PB]m+i

)
[ξ̇

∗

1 − ξ̇
∗

1◦]

≤
1

2

(
m∑

i=1

∣∣ξ̃i
∣∣2 |[PB]i|

2
+ |ϑi|

2
|[PB]m+i|

2

)
(η22 + η23)

+ η1

(
m∑

i=1

∣∣ξ̃i
∣∣ |[PB]i|+ |ϑi| |[PB]m+i|

)
+

m

2

[∣∣ ˙̃q
∣∣2+

∣∣ϑ20
∣∣
]
.

hence the total derivative of

V =
1

2

(
˙̃q⊤D(q̃ + qd(t)) ˙̃q + kp0

|q̃|2 +
kd0

b0
|ϑ0|

2

)
+W (X)

(82)

yields

V̇ ≤ −
[
a0kd0
b0

−
m

2

]
|ϑ0|

2
+
[
kckδ +

m+ 2

2

] ∣∣ ˙̃q
∣∣2

−
1

2
X
⊤
[
Q− (η22 + η23)diag

{
|[PB]i|

2 }]
X

+ η1

(
m∑

i=1

∣∣ξ̃i
∣∣ |[PB]i|+ |ϑi| |[PB]m+i|

)
.

By assumption, the quadratic term in X is negative definite.

The rest of the proof follows as for Theorem 5 –cf. (65). �

Theorem 6 constitutes a fairly general statement, albeit at

the cost of not giving explicit conditions on the control gains

to ensure uniform global asymptotic stability. In the following

proposition we restrict the choice of the control gains so as to

make the constants ηik in A –see (72), equal to zero. Then,

more tractable sufficient conditions for A to be Hurwitz follow.

Proposition 1 Let qd be given as in Definition 5. Consider the

system (42) and the output-feedback dynamic controller (45)
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A =




−kp1
1 0 0 kd1

0 · · · · · · 0

−η21 −[kp2
− kp1

] µ21

. . .

... −η32
. . .

... µ32

1
...

. . . 0
−ηm1

−ηm2
· · · −[kpm

− kpm−1
] µm1

µm2
· · · µmm−1

kdm

−kd1
0 · · · 0 −a1 0 · · · 0

b2η21 −kd2
−b2µ21

. . .
...

... b3η32
. . .

... −b3µ32

0
...

. . . 0
bmηm1

bmηm2
· · · −kdm

−bmµm1
−bmµm2

· · · −bmµmm−1
−am




⊗ In×n

B =

[
−1 − β1 − β1β2 · · · −

m−1∏

j=1

βj b1 b2β1 b3β1β2 · · · bm

m−1∏

j=1

βj

]⊤
⊗ In×n.

and (68) under Assumptions 1 and 2. Consider the expressions

(58) and (71) and let the control gains be such that (77) holds,

{m ≥ 2} ⇒ kp1
= kd1

(83a)

kpi
=

kpi−1
+

[

k2
pi−1

+ 4k2
di

]½

2
, (83b)

∀i ∈ [2,m− 1], m ≥ 3

and, for all i ∈ [1,m] and m ≥ 2,

min

{
ai

b2i
, kpi

+ sgn(1 − i)kpi−1

}
>
[
η22 + η23

]
(

i−1
∏

j=0

βj

)2

,

(84)

where sgn(0) = 0 and β0 := 1. If moreover the matrix Q
on top of next page is such that Q−½ diag{Q} is positive

semidefinite, the origin is uniformly globally asymptotically

stable.

The definition of kpi
in (83) solves the equations ηik = 0,

according to (72), for all applying i, k ≤ m = 3. In other

words, condition (83b) is not needed if m < 3. Then, we

can set P = I and, consequently, Q = −(A⊤ + A). This

matrix, which for ease of reference is written in the top of

next page, is positive semidefinite if: (i) the shadowed block

Q1⊗I is positive definite, which holds if kpi
> kpi−1

and

kpi
[kpi

− kpi−1
] > 1 for all i ≤ m; (ii) the shadowed block

Q3⊗I is positive definite for sufficiently large values of ai >
ai−1. Furthermore, the Schur complement of Q3⊗I i.e., [Q1−
Q⊤

2 Q
−1
3 Q2]⊗I , is positive for sufficiently large values of ai,

i ≤ m, that is, if Q is diagonal-dominant. One may draw the

same conclusion for Q−½ diag{Q} by enforcing the lower

bounds on ai and kpi
. The condition (84) implies that

1

2
diag{Q} >

[
η22 + η23

]
diag

{
|[PB]i|

2 }
(85)

with P = I2mn×2mn –cf. Ineq. (78).

Note, from (71), that βj depends on kdj
, kpj

and bj
therefore, the right-hand side of (84) depends on the control

gains indexed up to i − 1 only. Thus, by a suitable choice

of kpi
, according to (83b), the latter and (84) may be met

simultaneously.

Proof of Proposition 1. Since in view of (83b) we have ηik =
0 for all applying i and k the derivative of W = |X|

2
yields,

using Q−½ diag{Q} ≥ 0 and (81),

Ẇ ≤ −

(
m∑

i=1

[kpi
− kpi−1

]
∣∣ξ̃i
∣∣2 + ai |ϑi|

2

)
− kp0

∣∣ξ̃i
∣∣2

−2

(
m∑

i=1

i−1
∏

j=0

βj ξ̃
⊤

i − bi

i−1
∏

j=0

βjϑ
⊤
i

)
[ξ̇

∗

1 − ξ̇
∗

1◦] (86)

Furthermore, considering once more (58), we obtain

[
ξ̃i + biϑi

]⊤
[ξ̇

∗

1 − ξ̇
∗

1◦] ≤
1

2

m∑

i=1

[η22 + η23 ]
( ∣∣ξ̃i

∣∣2 + b2i |ϑi|
2
)

+η1

( ∣∣ξ̃i
∣∣ + |ϑi|

)
+
[ ∣∣ ˙̃q
∣∣2 + |ϑ0|

2
]
m

hence, in view of (84) we conclude that there exist positive

constants α1i , α2i for all i ∈ {1 . . . ,m}, such that the total

derivative of

V =
1

2

(
˙̃q⊤D(q̃ + qd(t)) ˙̃q + kp0

|q̃|
2
+
kd0

b0
|ϑ0|

2

)
+

1

2
|X|

2

along the closed-loop trajectories of (49), (76) satisfies

V̇ ≤ −
1

2

(
m∑

i=1

α1i

∣∣ξ̃i
∣∣2 + α2i |ϑi|

2

)
+ η1

( ∣∣ξ̃i
∣∣+ |ϑi|

)

−
[
a0kd0
b0

−m
]
|ϑ0|

2 +
[
kckδ +

m+ 2

2

] ∣∣ ˙̃q
∣∣2 (87)

–cf. Ineq. (65). The rest of the proof follows as for Theorem

5. �

An important corollary, for the case of m = 2, stems

from Proposition 1: a statement on uniform global asymptotic

stability under output feedback for robot manipulators with

flexible joints –Eq. (44). This corollary is another significant

contribution to the theory of robot control since we are not

aware of any similar result. Indeed, it must be recalled that

very few results exist on position feedback tracking control

of flexible-joint manipulators, one of the first of this nature

is [41]. In the article [42] the same authors present a global
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Q2Q1

Q3

Q =




2kp1
−1 0 · · · 0 0 · · · · · · 0

−1 2[kp2
− kp1

] −µ21

. . .
...

0
. . .

... −µ32

... −1
...

. . . 0

0 · · · −1 2[kpm
−kpm−1

] −µm1
−µm2

· · · −µmm−1
0

0 −µ21 · · · −µm1
2a1 b2µ21 · · · bmµm1

...
. . .

... b2µ21

. . .

...

. . .
... b3µ32

...
. . . −µ2m−1

...
. . . bmµmm−1

0 · · · · · · 0 bmµm1
bmµm2

· · · bmµmm−1
2am




⊗ In×n

result using link positions and velocities. The controller in the

following corollary makes use of actuator velocity measure-

ments q̇2 but not of link velocities nor, of course, any other

higher derivative (accelerations, jerks, etc).

Corollary 3 (Flexible-joint manipulators) Let q1d be a

given reference trajectory satisfying Definition 5. Consider

the system (44) under Assumptions 1 and 2 with g(q1) =
g(q1) +Kq1 in closed-loop with the controller

τ = K(q2 − q1) + JK−1u,

Equations (68) with m = 2,

ξ∗1 = −kp0
q̃ − kd0

ϑ0 +D(q1)q̈1d + C(q1, q̇1d)q̇1dg(q1)

Let kp0
, kd0

satisfy (77) with m = 2. Furthermore, define

kd1
= kp1

, µ = kp1
[kp1

+ a1] and β = kp1
(1 + b1) and

assume that

min

{
kp1

,
[kp2− kp1 ]

β2
,
a1

b21
,

a2

b22β
2

}
>
[
η22 + η23 ] (88)

[kp2
− kp1

] ≥ max

{
2

kp1
,

4µ2

a1

}
, a1a2 ≥ 2b22µ

2, (89)

Under these conditions, the origin of the closed-loop system

is uniformly globally asymptotically stable.

Proof: The definition kp1
= kd1

implies that η21 = 0
–see (72). That is, the condition (83a) holds and (83b) does

not apply since m = 2. The condition (88) implies (84) with

i ∈ {1, 2} hence, also (85) with

Q =




2kp1
−1 0 0

−1 2[kp2
− kp1

] −µ 0
0 −µ 2a1 −b2µ
0 0 −b2µ 2a2


⊗In×n.

Moreover, we see that Q−½ diag{Q} is positive semidefinite

if so are
[
kp1

−1
−1 ½[kp2

− kp1
]

]
,

[
½[kp2

− kp1
] −µ

−µ ½a1

]
,

[
½a1 −b2µ
−b2µ a2

]
,

which conditions hold in view of (89).

V. DISCUSSION AND OPEN PROBLEMS

Conceptually, the controller (15) may be regarded as com-

posed of two parts: a set-point control law of the type

“Proportional-Derivative with gravity cancellation” (similar,

e.g., to that from [10]) which is passivity-based, and a second

part which plays the role of a “feedforward”5:

v := D(q)q̈d + C(q, q̇d)q̇d + kpqd. (90)

Then, the control input (15c) may be re-written as

u = −kpq − kdϑ+ g(q) + v (91)

and the closed-loop system takes the form

ẋ = F (x) +G(x)w, x := [q⊤ q̇⊤ ϑ⊤]⊤ (92)

where w = [0 v⊤ q̇⊤d ]
⊤,

F :=




q̇
D−1[−Cq̇ − kpq − kdϑ]

−aϑ+ bq̇


, G(x) :=



0 0 0
0 D−1 0
0 0 −b


.

The equation ẋ = F (x) corresponds to that of the closed-loop

system with the passivity-based set-point controller from [10],

for the particular set-point reference qd = 0. Furthermore, the

total time-derivative of the storage function

V (q, q̇, ϑ) =
1

2

(
q̇⊤D(q)q̇ + kp |q|

2
+
kd
b
|ϑ|

2

)
(93)

along the trajectories of (92), yields

V̇ = −
kda

b
|ϑ|2 − ϑ⊤bq̇d + q̇⊤v

from which we see that, since bq̇d is bounded, for any given

positive number λ we have

|ϑ| ≥ λ =⇒ V̇ ≤ −

(
kda

b
−
bk2δ
λ

)
|ϑ|

2
+ q̇⊤v. (94)

The latter may be interpreted as the map v 7→ q̇ being passive

for “large” values of the filter output ϑ. On the other hand, the

dirty-derivatives filter (15a), (15b) defines an output strictly

5The use of quotes is motivated by the fact that v depends on the states q.
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passive map ˙̃q 7→ ϑ with finite L2 and DC gains. This

reasoning leads, at least at an intuitive level, to recognize that if

the outputs of the filter grow then, the feedback-interconnected

system “becomes” passive hence, input-output stable. Such is

the underlying idea in the proof of boundedness (Lemma 2).

Formal statements and even appropriate definitions to describe

these properties formally from an input-output viewpoint are

missing at this point.

On another note, we emphasize that a key feature of the

controller (15) is that it guarantees uniform global asymptotic

stability which in turn implies total stability, that is, robustness

with respect to bounded disturbances. This concept, introduced

in [43], is better known in modern literature as local input-

to-state stability. Establishing global input-to-state stability

via a (strict) Lyapunov function remains an open challenge,

both for Lagrangian systems under output-feedback and, more

generally, for nonlinear time-varying systems.

In the context of the “global tracking problem” for robot

manipulators, a remarkable paper pursuing this direction is

[5]. Not underestimating the authors’ contribution it must

nevertheless be recognized that the main result in the latter

reference is stated for systems with friction, i.e., given by (2).

Indeed, a direct computation shows that by applying

u = −kpq − kdϑ+ g(q) + F q̇d + v

to (2) we obtain the “power” balance equation

V̇ ≤ −
kda

b
|ϑ|

2
− (F − kckδ)

∣∣ ˙̃q
∣∣2 + [0 ˙̃q⊤ ϑ⊤]⊤w (95)

which is in clear contrast with (22). The closed-loop system

clearly defines an output strictly passive map w 7→ [0 ˙̃q⊤ ϑ⊤]
for sufficiently large F . However, subject to w = 0, we have

V̇ ≤ 0 so V does not qualify as an input-to-state-stability

Lyapunov function. Nonetheless, the authors of [5] smartly

establish input-to-state stability under output feedback.

In that regard, note that input-to-state stability based on

so-called “Lyapunov functions satisfying Lasalle’s conditions”

has been studied, at least since the milestone paper [33], where

the main result is also motivated by a robot control problem.

The topic is also formally treated in considerable depth in [4]

and a number of references therein. Roughly speaking, in [33]

it is established that a time-invariant system

ẋ = f(x,w) x := [x⊤1 x
⊤
2 ]

⊤ ∈ R
m (96)

with input w, admits an input-to-state-stability Lyapunov func-

tion V (positive definite and proper) such that

∂V

∂x
f(x,w) ≤ −α1(|x|) + γ(|w|), α1 ∈ K∞, γ ∈ K

provided that:

• there exist positive-definite proper functions V1 and V2,

as well as class K functions α11, α21, α22, γ1 and γ2,

such that

∂V1
∂x

f(x,w) ≤ −α11(|x2|) + γ1(|w|) (97)

∂V2
∂x

f(x,w) ≤ −α21(|x|) + α22(|x2|) + γ2(|w|); (98)

• the functions α22 and α11 have the same order of growth.

The first property i.e., the existence of V1 satisfying (97), in

[33] is called quasi-input-to-state stability. The prefix quasi

is motivated by the negative semi definiteness of V̇1 when

w ≡ 0. The second property is referred to as input-output-to-

state stability with output x2 and it is a notion of detectability

for nonlinear systems. A direct comparison of (95) and (97)

reveals that the latter two have the same form. This is not the

case for (94) since the arguments of the corresponding α11

and α12 are different.

Thus, as far as we know, the state of the art in constructing

Lyapunov functions for nonlinear time-varying systems relies

on functions that “satisfy Lasalle-like conditions” such as

(97). The construction of an input-to-state-stability Lyapunov

function V for systems satisfying

|x1| ≥ λ =⇒
∂V

∂x
f(x,w) ≤ −α1(|x1|) + α2(|x2|)γ(|w|),

as is the case of V in (94), is, in our humble opinion, a

challenging and interesting open problem. Inspired by the

rationale of proof of Lemma 2, a good start seems to impose

a finite input-output gain relation between x1 and x2.

VI. CONCLUSIONS

We established a constructive proof of uniform global

asymptotic stability Lagrangian systems without dissipative

forces in closed loop with an observerless dynamic output

feedback controller. Our technical results close a significant

chapter on output feedback control of nonlinear systems

and formalize the very intuitive conjecture that the damping

necessary to stabilize the system may be effectively injected

through a passive filter, even for high-order systems.

We believe that our findings may pave the way towards

a simple observer-less dynamic output feedback control ap-

proach inspired by the backstepping method but avoiding the

often-resulting cumbersome highly nonlinear control laws. On

the grounds of systems’ analysis, we have briefly sketched new

challenging open problems on construction of strict Lyapunov

functions for systems satisfying Lasalle’s conditions modulo

the gain of a passive filter. Research in these directions is

currently pursued.
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Paris-Sud XI, Orsay, France, 2010.

[17] J. G. Romero, Robust Energy Shaping Control of Nonlinear Systems.
PhD thesis, Univ Paris Sud, Feb. 2013.
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