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Leader-follower Formation and Tracking Control of Mobile Robots Along Straight Paths

We address the problem of tracking control of multiple mobile robots advancing in formation along straightline paths. We use a leader-follower approach hence, we assume that only one swarm leader robot has the information of the reference trajectory. Then, each robot receives information from one intermediary leader only. Therefore, the communications graph forms a simple spanning directed tree. As the existence of a spanning tree is necessary to achieve consensus, it is the minimal configuration possible to achieve the formation-tracking objective. From a technological viewpoint, this has a direct impact on the simplicity of its implementation; e.g., less sensors are needed. Our controllers are partially linear time-varying with a simple added non-linearity satisfying a property of persistency of excitation, tailored for nonlinear systems. Structurally speaking, the controllers are designed with aim at separating the tasks of position-tracking and orientation. Our main results ensure the uniform global asymptotic stabilisation of the closed-loop system hence, they imply robustness with respect to perturbations. All these aspects make our approach highly attractive in diverse application domains of vehicles' formations such as factory settings.

I. INTRODUCTION

There are many situations in which coordinated control of swarms of mobile robots is significant, e.g., in missions which cannot be accomplished by a single agent such as surveillance, recognition, mapping, rescue operations, etc. Besides, the use of a large group of robots offers increased robustness and flexibility.

In controlling a large group of robots a decentralized approach becomes rapidly indispensable [START_REF] Lawton | A decentralized approach to formation maneuvers[END_REF]. One of the most popular control approaches is the leader-follower technique which consists in specifying one or several leader robots and several followers. For instance, there may be one single leader which specifies the trajectory for the formation and all the rest are set to follow the leader, modulo a position and orientation offset determined by the physical configuration. Then, following the seminal work [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] on tracking control of mobile robots, one can use a variety of nonlinear control techniques to ensure individual tracking control on each follower. Alternatively, one may form a cascade of leaderfollower configurations in which each robot follows one leader [START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF], [START_REF] Shao | Leader-following formation control of multiple mobile robots[END_REF], [START_REF] Consolini | Leaderfollower formation control of nonholonomic mobile robots with input constraints[END_REF]. Backstepping control is used in [START_REF] Chen | A backstepping design for directed formation control of three-coleader agents in the plane[END_REF] and the problem under additive disturbances is solved via sliding mode in [START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF]. Another approach is that of virtual structure control, in which the swarm is regarded as a virtual rigid structure advancing as a unit. This approach is tractable for small groups of autonomous robots [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF], [START_REF] Van Den Broek | Formation control of unicycle mobile robots: a virtual structure approach[END_REF].

In [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] a very simple cascades-based controller was introduced to solve the leader-follower control problem for two robots. The approach was used subsequently, for instance in [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF], [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF], [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF]. The controller is very simple to implement, it relies on a separation principle by which it is demonstrated that the translational and orientational kinematics may be stabilized independently of each other. The disadvantage of this method is that the controller relies on the assumption that the angular velocity of the leader robot must be different from zero. This rules out straight-line paths. Only very few works address the problem of formation control along straight-line paths; in [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF], [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] where complex nonlinear time varying controls are designed to allow for reference velocity trajectories that converge to zero. It is worth to emphasize that [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] covers the case when also the forward velocity v 0 may converge to zero that is, tracking control towards a fixed point. The controller from [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF] makes the robot to go back and forth on the path. This paper is the outgrowth of [START_REF] Loria | Decentralized formation tracking control of autonomous vehicles on straight paths[END_REF] 1 . We solve the formation control problem on straight-line paths with timevarying nonlinear controllers which rely on a property of persistency of excitation for nonlinear systems. The stability proofs are constructed using small-gain-type arguments and rely on modern results on nonlinear adaptive control systems.

The rest of the paper is organized as follows. In the following section we present our main results. For clarity of exposition we firstly present a result on leader-follower tracking control (two robots only) and describe the control approach. Then, we present a result for a cascade-like configuration of leader-follower mobile robots. In the communications graph, each robot becomes leader to one robot and follower of another. There is a unique swarm leader robot which receives the information of the reference trajectory and there is a unique tail robot which is leader to none. Simulation results which illustrate our theoretical findings are presented in Section III and we conclude with some remarks in Section IV.

II. MAIN RESULTS

A. Leader-follower tracking control

After the seminal paper [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF] the tracking control problem for mobile robots may be reformulated as that of controlling a robot in a leader-follower configuration. Hence, for a mobile robot with kinematic model

Σ 1 :    ẋ1 = v 1 cos (θ 1 ) ẏ1 = v 1 sin (θ 1 ) θ1 = w 1
with forward velocity v 1 and angular velocity w 1 as control inputs, the tracking control problem consists in following a fictitious vehicle Σ 0 with forward and angular velocity references v 0 and w 0 , respectively and coordinates (x 0 , y 0 , θ 0 ). From a control viewpoint, the goal is to steer the following quantities to zero:

p 1x = x 0 -x 1 -d x0,1 p 1y = y 0 -y 1 -d y0,1 p 1θ = θ 0 -θ 1
where d x and d y are (piecewise-)constant design parameters imposed by the topology and path planner. For the purpose of analysis we transform the error coordinates [p 1x , p 1y , p 1θ ] of the leader robot from the global coordinate frame to local coordinates fixed on the robot that is,

  e 1x e 1y e 1θ   =   cos θ 1 sin θ 1 0 -sin θ 1 cos θ 1 0 0 0 1     p 1x p 1y p 1θ   . (1) 
In the new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ė1x = w 1 e 1y -v 1 + v 0 cos e 1θ (2a) ė1y = -w 1 e 1x + v 0 sin e 1θ (2b) ė1θ = w 0 -w 1 . (2c) 
The tracking control problem is transformed into that of stabilizing the origin for the error dynamics [START_REF] Kanayama | A stable traking control scheme for an autonomous vehicle[END_REF]. It is commonly assumed that the reference angular velocity w 0 is different from zero. Indeed, otherwise the system may loose controllability in the y coordinate -see Eq. (2b). For instance, the results in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], and consequently those of [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF] which rely in the former, are based on the assumption that the angular reference velocity satisfies a persistency of excitation condition that is, w 0 (s) := ψ(s) 2 where

t+T t ψ(s) 2 ds ≥ µ, ∀ t ≥ 0 (3) 
for some positive constants µ and T . In [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF], [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] where complex nonlinear time varying controls are designed to allow for reference velocity trajectories that converge to zero. Furthermore, in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] the authors cover the case when also the forward velocity v 0 may converge to zero that is, tracking control towards a fixed point. In [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF] the controller is designed so as to make the robot converge to the straight-line trajectory resulting in a path that makes it go back and forth. Our control approach is inspired by the cascades-based controllers originally presented in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF], in which persistency of excitation is used to guarantee exponential stabilisation of the origin for the error dynamics. We extend this method to the case in which the reference angular velocity fails to satisfy the persistency of excitation condition. As a matter of fact,

Σ 2 : ė1θ = -c 1 e 1θ h(t, e 1y ) d(t, e 1θ ) Σ 1 : ė1x ė1y = -c 2 w 1 -w 1 0 e 1x e 1y
Fig. 1. "Small-gain" feedback representation of the closed-loop system with a persistently exciting controller we allow for the case in which w 0 ≡ 0. Although structurally similar, the control laws are given by

v 1 = v 0 (t) + c 2 e 1x , c 2 > 0 (4a) w 1 = h(t, e 1y ) + c 1 e 1θ , c 1 > 0 (4b)
where h is bounded, locally of linear order in e 1y , and continuously differentiable. It is the term h above which replaces the zero angular velocity in the controller introduced in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] which relies on the assumption that w 0 is persistently exciting. In the present context, we impose as condition that h(t, 0) ≡ 0 and ḣ is persistently exciting for any e 1y = 0; a precise definition is given farther below.

We show that the controller (4) stabilizes globally and uniformly the error dynamics. In order to understand the stabilisation mechanism of the controller (4) it is convenient to examine the closed-loop equations, which result from using (4) in (2), i.e. (5a) ė1y = -w 1 e 1x + v 0 sin e 1θ (5b) ė1θ = -c 1 e 1θ -h(t, e 1y ).

(5c)

This system may be rewritten in compact form as

ė1x ė1y = -c 2 w 1 -w 1 0 e 1x e 1y + d(t, e 1θ ) (6a) ė1θ = -c 1 e 1θ -h(t, e 1y ) (6b) 
where we purposefully dropped the arguments of w 1 and defined the interconnection term

d(t, e 1θ ) := v 0 (t)(cos e 1θ -1) v 0 (t) sin e 1θ . (7) 
We are interested in establishing uniform global asymptotic stability of the origin of (e 1x , e 1y , e 1θ ) = (0, 0, 0). To that end, we observe that the system (6) consists in the feedback interconnection of two systems as illustrated in Figure 1. Roughly speaking, after adaptive control systems theory, the system Σ 1 , in the center upper block is uniformly asymptotically stable at the origin, provided that c 2 > 0 and w 1 is persistently exciting, globally Lipschitz and bounded. On the other hand, the origin of the system Σ 2 , in the lower-center block, is exponentially stable if c 1 > 0. As a matter of fact, it may also be established that each of these subsystems is input to state stable. Moreover, the interconnection terms h and d are both uniformly bounded and satisfy d(t, 0) ≡ 0, h(t, 0) ≡ 0. Thus, the interconnected system (6) may be regarded as the feedback interconnection of two input to state stable (ISS) systems. Consequently, stability of the origin of ( 6) may be concluded invoking the small-gain theorem for ISS systems -see [START_REF] Khalil | Nonlinear systems[END_REF].

Although intuitive, the previous arguments hide certain difficulties in the analysis that we intend to clarify next. Firstly, the function w 1 depends on the states and time hence, persistency of excitation must be appropriately defined. We use a relaxed notion of persistency of excitation, originally introduced in [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]; the following is a refined definition reported in [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF].

Definition 1 (uδ-Persistency of excitation) Let f (•, •) be such that the system ẋ = f (t, x), with state x = [x 1 x 2 ] and solution x(t) = x(t, t • , x • ) starting at (t • , x • ) ∈ R ≥0 × R n is forward complete. Let φ : R ≥0 × R n+m → R p×q be such that φ(•, x(•, t • , x • )) is locally integrable for each solution x(•, t • , x • ), e.g., (t, x) → φ(t, x
) is measurable, locally bounded, and locally Lipschitz in x.

The pair (φ, f ) is called uniformly δ-persistently exciting (uδ-PE) with respect to x 1 if, for each r and δ > 0, there exist constants T (r, δ) and µ(r, δ) > 0 such that, for all

(t • , x • ) ∈ R ≥0 × B r , all corresponding solutions satisfy, for all t ≥ t • , min s∈[t, t+T ] |x 1 (s)| ≥ δ ⇒ t+T t φ(τ, x(τ ))φ(τ, x(τ )) dτ ≥ µI (8) In words, the pair (φ, f ) is uδ-PE if the function φ(•, x(•)) is PE in the usual sense of adaptive control, uniformly in initial conditions (t • , x • ) ∈ R ≥0 × B r , whenever the trajectory x(•)
is away from a δ-neighborhood of the origin. For simplicity we may also say, with an abuse of terminology, that the function φ is uδ-PE in the understanding that the pair satisfies Definition 1. For instance, the function φ(t, x) := ψ(t) |x| is uδ-PE if ψ satisfies [START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF].

There are several properties of uδ-PE functions which are useful in control design for nonholonomic systems; these are reported in [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF]. One of them is that if w 1 is uδ-PE then there exists a function w1 which depends only on time and which is persistently exciting in the sense of (3). Moreover, for w 1 in (4b), w1 may be purposefully constructed to satisfy

w1 (t) := h(t, e 1y (t)) + c 1 e 1θ (t) ∀ t : |e 1y (t)| ≥ δ. (9)
Even though the function w1 is parameterized by δ it is guaranteed that for any δ > 0 there exists w1 satisfying all of the above.

This property is useful because, for any δ and for all t such that |e 1y (t)| ≥ δ, the trajectories of Σ 1 in Figure 1 coincide with those of

ż1 = Ã(t)z 1 , Ã(t) := -c 2 w1 (t) -w1 (t) 0 , z 1 := e 1x e 1y (10) 
which is linear. Therefore, the behavior of the trajectories of (6a) with d ≡ 0 may be analyzed as for the linear system [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF], at least while the trajectories are away from the origin (strictly speaking away of any δ-neighborhood). On the other hand, global exponential stability of the origin of ( 10) is easily concluded invoking classical results on adaptive control systems -see [START_REF] Ioannou | Robust adaptive control[END_REF]. Consequently, one may use the following intuitive contradiction argument to establish uniform global asymptotic stability of (6a) with d ≡ 0: assume that the origin is not attractive then, the trajectories (tend to) remain away of an arbitrary δ-neighborhood of the origin. In that case, since they coincide with those generated by [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF] which is exponentially stable, it follows that the trajectories of (6a) must converge to zero. The argument may be repeated for any arbitrarily small δ hence, the "exponential" rate of convergence diminishes but remains uniform in the initial conditions. Precise general statements for nonlinear time-varying systems are reported in [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. For the purpose of the system (6) we proceed by showing that

• the origin is uniformly stable;

• the solutions are uniformly globally bounded;

• the origin is uniformly globally attractive.

The first bulleted item comes from the fact that the system corresponds to the feedback interconnection of two locally input to state stable systems. For the first block, Σ 1 , the origin is uniformly globally asymptotically stable provided that w 1 is uniformly δ-PE with respect to e 1y , bounded and with bounded derivatives -see [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. On the other hand, local input to state stability (also known as total stability) with respect to the additive input d is a direct consequence of uniform global asymptotic stability -see [START_REF] Hahn | Stability of motion[END_REF]. For Σ 2 it is evident that the origin is globally exponentially stable and that Σ 2 is input-to-state stable with respect to h. Actually, the interconnected system showed in Figure 1 is (locally) uniformly asymptotically stable.

The boundedness property follows from the fact that the trajectories of [START_REF] Lefeber | Tracking control of nonlinear mechanical systems[END_REF], for all t such that |e 1y (t)| ≥ δ, coincide with those of Σ 1 in Figure 1, which are globally uniformly bounded. To see the latter we remark that since w1 is persistently exciting the origin of ( 10) is globally exponentially stable. This implies that, for any δ, there exist positive definite symmetric matrices P δ and Q δ such that -Q δ (t) = Ã1 δ (t) P δ (t) + P δ (t) Ã1δ (t) + Ṗδ (t) and the total derivative of V 1δ (t, z 1 ) = z 1 P δ (t)z 1 along the trajectories of (6a) satisfies

V1δ (t, z 1 ) ≤ -z 1 Q δ (t)z 1 + 2z 1 P δ (t)d(t, e 1θ )
for all t such that |e 1y (t)| ≥ δ. In turn, we have

V1δ (t, z 1 ) ≤ - qm 2 |z 1 | 2 + p 2 M 2qm |d(t, e 1θ )| 2 
where we used p M I ≥ P δ (t) and Q δ (t) ≥ q m I. Since d(t, e 1θ (t)) is bounded -see [START_REF] Do | Nonlinear formation control of unicycle-type mobile robots[END_REF], it is clear that if |z 1 (t)| → ∞ then V1δ (t, z 1 (t)) ≤ 0 for sufficiently large t. This implies boundedness.

We argue in a similar way for the trajectories of (6b); the total derivative of V 2δ (e 1θ ) := 0.5 |e 1θ | 2 yields

V2δ (e 1θ ) ≤ -

λc1 2 |e 1θ | 2 + |h(t, e1y)| 2 2c1λ
for any λ > 0. Recall that, by assumption, h is bounded. Next, we show that the origin of ( 6) is uniformly globally attractive; that is, we must show that for any r and σ > 0, there exists T such that

|e 1 (t • )| ≤ r =⇒ |e 1 (t)| ≤ σ ∀ t ≥ t • + T. ( 11 
)
So let r and σ be arbitrary given positive constants and define δ := σ. To establish the convergence property [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF] 

whose trajectories, as we have emphasized, coincide with those of ( 6) for all t such that |e 1y (t)| ≥ δ. Therefore, it suffices to establish global exponential stability of the origin of [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF]. To that end, let

λ := 5v M 0 2 pM qmc1 ε := λc1 4 η := 2qm p 2 M ε (13) 
and consider the Lyapunov function V δ := ηV 1δ +V 2δ . Its total derivative satisfies

Vδ (t, z 1 , e 1θ ) ≤ - q 2 m p 2 M ε - v M 0 2c1λ |z 1 | 2 - c1λ 2 -ε |e 1θ | 2
where we introduced the bound v M 0 ≥ |v 0 (t)| and we used the assumption that |h(t, e 1y )| ≤ v M 0 |z 1 | and |d(t, e 1θ )| ≤ |e 1θ |. In view of the expressions in (13), Vδ is negative definite, actually,

Vδ (t, z 1 , e 1θ ) ≤ -α |z 1 | 2 -ε |e 1θ | 2 , α > 0
We conclude that the trajectories of ( 6), which coincide with those of ( 12) for all t such that |e 1y (t)| ≥ δ, tend to zero exponentially fast as long as the latter inequality holds. In view of this there exists a finite time T such that for any δ ∈ (0, δ], we have |e 1 (t • + T )| ≤ δ . From uniform stability, we have |e 1 (t)| ≤ δ for all t ≥ t • + T . Since δ = σ is arbitrarily given, the statement follows.

Remark 1 Note that even though this reasoning is reminiscent of ultimate boundedness we conclude convergence to zero. This is due to the fact that the previous arguments hold for fixed values of the control gains and any given δ > 0.

Lemma 1 The origin of the system ( 6) is uniformly globally asymptotically stable if c 1 > 0, c 2 > 0, v 0 is bounded and w 1 is uδ-PE, bounded and locally Lipschitz in e 1y uniformly in t. Moreover, uδ-PE of w 1 is also a necessary condition.

The previous lemma establishes a strong, yet intermediary, convergence result in the pursuit of our main objective: tracking control of nonholonomic robots. It is left to state under which conditions w 1 is uδ-PE. As a matter of fact, this has been established in the context of set-point stabilization, in [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF]. The control input w 1 satisfies the differential equation ẇ1 = -c 1 w 1 + ḣ(t, e 1y ) which corresponds to the equation of a low-pass filter. That is, a stable strictly proper linear system with input ḣ. It is wellknown from adaptive control textbooks that the output of a low-pass filter driven by an input that is persistently exciting, is also persistently exciting -see [START_REF] Narendra | Stable adaptive systems[END_REF], [START_REF] Ioannou | Robust adaptive control[END_REF]. Now, for nonlinear functions we have an analogous property -see [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF]. Therefore, w 1 which corresponds to a "filtered version" of ḣ, is uδ-PE if so is ḣ.

Proposition 1 Consider the system (2) in closed-loop with the controller (4). Let h be bounded, once continuously differentiable and such that h(t, e 1y ) has a unique zero at e 1y = 0 for each fixed t. Assume further that there exists c > 0 such that sup t,e1y and, for any δ > 0, there exist positive numbers µ and T such that

|e 1y | ≥ δ =⇒ t+T t ḣ(τ, e 1y ) dτ ≥ µ, ∀t ≥ 0. (15)
Then, the origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 2

The function h may be defined as a monotonic locally linear function of e 1y and smooth, persistently exciting in t; for instance, h(t, e 1y ) = ψ(t)sat(e 1y ) where sat(•) is a saturation function and ψ is persistently exciting.

Proof of Proposition 1. The closed-loop system is given by Eqs. ( 6) and it may be showed, using V 1 and V 2 above, that the system is forward complete. Now, since ḣ is a scalar function [START_REF] Khalil | Nonlinear systems[END_REF] implies that

min τ ∈[t,t+T ] |e 1y (τ )| ≥ δ ⇒ t+T t ḣ(τ, e 1y (τ )) dτ ≥ µ
holds for all t ≥ 0 and any trajectory. Therefore, ḣ satisfies the properties in Definition 1 and, in view of the filtering property previously mentioned, it follows that w 1 is uδ-PE. The result follows from Lemma 1

B. Leader-follower formation control

Now, we extend the previous result to the case of formationtracking control. Consider a group of n mobile robots with kinematic models,

ẋi = v i cos (θ i ) (16a) ẏi = v i sin (θ i ) (16b) θi = w i , i ∈ [1, n] (16c) 
where, for the ith robot, x i and y i determine the position with respect to a globally-fixed frame, θ i defines the heading angle, and the linear and angular velocities are denoted by v i and w i respectively.

The control objective is to make the n robots take specific postures determined by the topology designer, and to make the swarm follow a path determined by a virtual reference vehicle labeled R 0 . Any physically feasible geometrical configuration may be achieved and one can choose any point in the Cartesian plane to follow the virtual reference vehicle.

We solve the problem using a spanning-tree communication topology and a recursive implementation of the tracking leader-follower controller (4). That is, the swarm has only one 'leader' robot tagged R 1 whose local controller uses knowledge of the reference trajectory generated by the virtual leader R 0 . Therefore, in the communications graph, R 1 is the child of the root-node robot R 0 and the other robots are intermediate nodes labeled R 2 to R n-1 that is, R i acts as leader for R i+1 and follows R i-1 . The last robot in the communication topology is denoted R n and has no followers that is, it constitutes the tail node of the spanning tree. We remark that the notation R i-1 refers to the graph communication topology and not to the formation topology.

The fictitious vehicle, which serves as reference to the swarm, describes a freely generated reference trajectory; in particular, it produces the desired linear and angular velocities v 0 and w 0 which are communicated to the leader robot R 1 only. According to this communication topology, and following the setting for tracking control, the formation control problem reduces to that of stabilisation of the error dynamics between any pair of leader-follower robots, i.e., for all i ≤ N ,

ėix = w i e iy -v i + v i-1 cos e iθ (17a) ėiy = -w i e ix + v i-1 sin e iθ (17b) ėiθ = w i-1 -w i (17c)
and for each i ≥ 1 we define the control inputs v i and w i as

v i = v i-1 + c 2i e ix (18a) w i = w i-1 + c 1i e iθ + h i (t, e iy ) (18b) 
where h i is once continuously differentiable, bounded and with bounded derivative. Then, the closed-loop equations yield

ėix ėiy = -c 2i w i -w i 0 e ix e iy + v i-1 [1 -cos e iθ ] v i-1 sin e iθ (19a) ėiθ = -c 1i e iθ + h i (t, e iy ) (19b) 
which has the form of ( 6) and inherits similar properties; actually, similarly to Lemma 1 we have the following. Lemma 2 The origin of the system ( 19) is uniformly globally asymptotically stable, for any i ≤ N , if c 1i > 0, c 2i > 0, v 0 is bounded and w i is uδ-PE, bounded and locally Lipschitz in e iy uniformly in t. Moreover, uδ-PE of w i is also a necessary condition.

The proof of this statement follows mutatis mutandis along the proof-lines of Lemma 1 observing that: 1) the function h i is, by assumption, continuous and bounded; 2) for (19a) with e iθ = 0, the origin is uniformly globally asymptotically stable provided that w i is uδ-PE and 3) the interconnection term

d i := v i-1 [1 -cos e iθ ] v 1-1 sin e iθ
is also bounded, along trajectories. To see the latter, consider first i = 2 then,

d 2 := v 1 [1 -cos e 2θ ] v 1 sin e 2θ
where v 1 = v 0 (t) + c 21 e 1x is a function of t and e 1x . Hence, the function d2 defined along trajectories as 

d2 (t, e iθ ) = v 1 (t,
i j=1 ḣj is uδ-persistently exciting and the control gains c 1i , c 2i are positive. Then, the origin of the closed-loop system is uniformly globally asymptotically stable.

Remark 3

The condition of uδ-persistency of excitation holds if we introduce N different harmonics:

h j (t, e ey ) = ψ j ( j t)α(e iy )
where, for simplicity only, ψ j is a periodic function of period 2π j .

Proof of Proposition 2. We must establish that under the conditions of the proposition, the control input w i defined in (18b) is uδ-PE with respect to e iy . We proceed by induction. Under the conditions of Proposition 2 and since w 1 is uδ-PE with respect to e 1y , the function Φ 2 is uδ-PE with respect to ē2y . Then, in view of the fact that filtered uδ-PE functions are uδ-PE -see [START_REF] Loría | UGAS of skew-symmetric timevarying systems: application to stabilization of chained form systems[END_REF], so is w 2 . It follows that

Φ i (t, ēiy ) = i-1 j=1 [c 1j+1 -c 1j ]w j + ḣj (t, e jy ) + ḣi (t, e iy )
with i = 3 is uδ-PE with respect to ē3y and, consequently, by the filtering property of uδ-PE functions, so is w 3 . By induction, it follows that Φ i (t, ēiy ) is uδ-PE with respect to ēiy and so is w i , which satisfies ẇi = -c 1i w i + Φ i (t, ēiy ), for any i ≥ 2.

III. SIMULATION RESULTS

We illustrate our theoretical findings via some simulation results obtained using SIMULINK TM of MATLAB TM . We consider a group of five mobile robots. In a first stage of the simulation, the desired formation shape of the mobile robots is linear and they follow a straight line trajectory with initial conditions: The imposed path by the leader robot consist in a "stadiumcircuit" shape composed of two straight lines and two half circumferences, as illustrated by the NE plot in Figure 2. The forward reference velocity is set to v 0 (t) ≡ 10 [m/s], while the angular reference velocity is defined as ω 0 (t) := 0.3 [rad/s] for all t ∈ [10T, 10(T + 1)) for all odd integer values of T and ω 0 (t) ≡ 0 otherwise. That is, it switches between 0 and 0. The control laws are given by v i = v (i-1) + c 2i e ix ω i = ω (i-1) + c 1i e iθ + ϕ(t) tanh(e iy )

[x 1 (0), y 1 (0), θ 1 (0)] = [0, -1, π/15], [x 2 (0), y 2 (0), θ 2 (0)] = [20, -4, π/12], [x 3 (0), y 3 (0), θ 3 (0)] = [
with control gains c 1i = 2 and c 2i = 5. The function ϕ is generated as a square-pulse-train signal of amplitude 0.5, period of four seconds and pulse width of 3.2[s]. Note that this function is not smooth but it is persistently exciting hence; the term ϕ(t) tanh(e iy ) induces enough excitation to stabilize the system in the y direction as long as there is an error in this coordinate. The rapid response and excellent performance may be appreciated from the plots of the formation-tracking errors, depicted in Figure 2.

IV. CONCLUSION

We presented a very simple decentralized controller for the problem of formation-tracking control of mobile robots in order to follow straight paths. Our approach relies on a simple idea which consists in maintaining the reference angular velocity different from zero by an amount proportional to the translation error. Extensions of this approach to more complex models and under relaxed assumptions such as timevarying topologies, state dependent interconnection gains, and the case of force-controlled robots, are currently under study.

ė1x = w 1 e

 1 1y -c 2 e 1x + v 0 [cos e 1θ -1]

2 w 2 =

 22 Let ēiy := [e 1y • • • e iy ] ; now, for i = w 1 + c 12 e 2θ + h 2 (t, e 2y ) satisfies ẇ2 = -c 12 w 2 -[c 11 -c 12 ]w 1 + ḣ1 (t, e 1y ) + ḣ2 (t, e 2y ) =: -c 12 w 2 + Φ 2 (t, ē2y ).

  20, 4, π/10], [x 4 (0), y 4 (0), θ 4 (0)] = [30, -5, π/8] and [x 5 (0), y 5 (0), θ 5 (0)] = [30, 8, π/6]. The linear formation shape with a certain desired distance between the robots is obtained by defining [d x1,2 , d y1,2 ] = [0, 1], [d x2,3 , d y2,3 ] = [0, -2], [d x3,4 , d y3,4 ] = [0, 3] and [d x4,5 , d y4,5 ] = [0, -4].

  3[rad/s] every 10[s]. The total simulation time is set to 40[s].

5 Fig. 2 .

 52 Fig. 2. Described paths and resulting tracking errors for five robots

  e 1x (t))[1 -cos e 2θ ] v 1 (t, e 1x (t)) sin e 2θ , is also continuous and bounded if so is v 1 (t, e 1x (t)). On the other hand, e 1x (t) is part of the solution of (6) whose origin, after Lemma 1, is uniformly globally asymptotically stable. Therefore, e 1x (t) is uniformly globally bounded and so is v 1 (t, e 1x (t)). The statement of Lemma 2 for the case i = 2 follows hence, v 2 (t, ē2x (t)) where ē2x := [e 1x e 2x ] , is uniformly bounded for any t. Using this and proceeding by induction, we conclude that the result of the lemma holds for any i ≥ 2. We are ready to present our second main result.
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