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Leader-follower Formation and Tracking Control of
Mobile Robots Along Straight Paths

Antonio Loria, Janset Dasdemir, and Nohemi Alvarez Jarquin

Abstract— We address the problem of tracking control of
multiple mobile robots advancing in formation along straight-
line paths. We use a leader-follower approach hence, we assume
that only one swarm leader robot has the information of the
reference trajectory. Then, each robot receives information from
one intermediary leader only. Therefore, the communications
graph forms a simple spanning directed tree. As the existence
of a spanning tree is necessary to achieve consensus, it is the
minimal configuration possible to achieve the formation-tracking
objective. From a technological viewpoint, this has a direct impact
on the simplicity of its implementation; e.g., less sensors are
needed. Our controllers are partially linear time-varying with a
simple added non-linearity satisfying a property of persistency of
excitation, tailored for nonlinear systems. Structurally speaking,
the controllers are designed with aim at separating the tasks of
position-tracking and orientation. Our main results ensure the
uniform global asymptotic stabilisation of the closed-loop system
hence, they imply robustness with respect to perturbations. All
these aspects make our approach highly attractive in diverse
application domains of vehicles’ formations such as factory
settings.

I. INTRODUCTION

There are many situations in which coordinated control of
swarms of mobile robots is significant, e.g., in missions which
cannot be accomplished by a single agent such as surveillance,
recognition, mapping, rescue operations, etc. Besides, the use
of a large group of robots offers increased robustness and
flexibility.

In controlling a large group of robots a decentralized
approach becomes rapidly indispensable [1]. One of the most
popular control approaches is the leader-follower technique
which consists in specifying one or several leader robots
and several followers. For instance, there may be one single
leader which specifies the trajectory for the formation and all
the rest are set to follow the leader, modulo a position and
orientation offset determined by the physical configuration.
Then, following the seminal work [2] on tracking control
of mobile robots, one can use a variety of nonlinear con-
trol techniques to ensure individual tracking control on each
follower. Alternatively, one may form a cascade of leader-
follower configurations in which each robot follows one leader
[3], [4], [5]. Backstepping control is used in [6] and the
problem under additive disturbances is solved via sliding mode
in [3]. Another approach is that of virtual structure control,

This work was supported by the Scientific and TechnologicalResearch
Council of Turkey (TUBITAK) BIDEB under the programme 2219.

J. Dasdemir is with Yildiz Technical University, Turkey. E-mail:
janset@yildiz.edu.tr

A. Loria is with CNRS. Address: LSS-SUPELEC, 91192
Gif-sur-Yvette, France. E-mail: loria@lss.supelec.fr,
Nohemi.ALVAREZ@lss.supelec.fr

in which the swarm is regarded as a virtual rigid structure
advancing as a unit. This approach is tractable for small groups
of autonomous robots [7], [8].

In [9] a very simple cascades-based controller was intro-
duced to solve the leader-follower control problem for two
robots. The approach was used subsequently, for instance in
[10], [11], [12]. The controller is very simple to implement, it
relies on a separation principle by which it is demonstrated that
the translational and orientational kinematics may be stabilized
independently of each other. The disadvantage of this method
is that the controller relies on the assumption that the angular
velocity of the leader robot must be different from zero. This
rules out straight-line paths. Only very few works address
the problem of formation control along straight-line paths;
in [12], [13] where complex nonlinear time varying controls
are designed to allow for reference velocity trajectories that
converge to zero. It is worth to emphasize that [13] covers the
case when also the forward velocity v0 may converge to zero
that is, tracking control towards a fixed point. The controller
from [12] makes the robot to go back and forth on the path.

This paper is the outgrowth of [14]1. We solve the for-
mation control problem on straight-line paths with time-
varying nonlinear controllers which rely on a property of
persistency of excitation for nonlinear systems. The stability
proofs are constructed using small-gain-type arguments and
rely on modern results on nonlinear adaptive control systems.

The rest of the paper is organized as follows. In the
following section we present our main results. For clarity
of exposition we firstly present a result on leader-follower
tracking control (two robots only) and describe the control
approach. Then, we present a result for a cascade-like configu-
ration of leader-follower mobile robots. In the communications
graph, each robot becomes leader to one robot and follower of
another. There is a unique swarm leader robot which receives
the information of the reference trajectory and there is a unique
tail robot which is leader to none. Simulation results which
illustrate our theoretical findings are presented in Section III
and we conclude with some remarks in Section IV.

II. MAIN RESULTS

A. Leader-follower tracking control

After the seminal paper [2] the tracking control problem
for mobile robots may be reformulated as that of controlling a
robot in a leader-follower configuration. Hence, for a mobile

1This conference version does not include any technical proof and the
simulation results have been refined.
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robot with kinematic model

Σ1 :


ẋ1 = v1 cos (θ1)
ẏ1 = v1 sin (θ1)

θ̇1 = w1

with forward velocity v1 and angular velocity w1 as control
inputs, the tracking control problem consists in following
a fictitious vehicle Σ0 with forward and angular velocity
references v0 and w0, respectively and coordinates (x0, y0, θ0).
From a control viewpoint, the goal is to steer the following
quantities to zero:

p1x = x0 − x1 − dx0,1
p1y = y0 − y1 − dy0,1
p1θ = θ0 − θ1

where dx and dy are (piecewise-)constant design parameters
imposed by the topology and path planner. For the purpose
of analysis we transform the error coordinates [p1x, p1y, p1θ]
of the leader robot from the global coordinate frame to local
coordinates fixed on the robot that is,e1xe1y

e1θ

 =

 cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1

 p1x
p1y
p1θ

 . (1)

In the new coordinates, the error dynamics between the
virtual reference vehicle and the follower becomes

ė1x = w1e1y − v1 + v0 cos e1θ (2a)
ė1y = −w1e1x + v0 sin e1θ (2b)
ė1θ = w0 − w1. (2c)

The tracking control problem is transformed into that of
stabilizing the origin for the error dynamics (2). It is com-
monly assumed that the reference angular velocity w0 is
different from zero. Indeed, otherwise the system may loose
controllability in the y coordinate –see Eq. (2b). For instance,
the results in [9], and consequently those of [10] which rely
in the former, are based on the assumption that the angular
reference velocity satisfies a persistency of excitation condition
that is, w0(s) := ψ(s)2 where∫ t+T

t

ψ(s)2ds ≥ µ, ∀ t ≥ 0 (3)

for some positive constants µ and T . In [12], [13] where
complex nonlinear time varying controls are designed to
allow for reference velocity trajectories that converge to zero.
Furthermore, in [13] the authors cover the case when also
the forward velocity v0 may converge to zero that is, tracking
control towards a fixed point. In [12] the controller is designed
so as to make the robot converge to the straight-line trajectory
resulting in a path that makes it go back and forth.

Our control approach is inspired by the cascades-based
controllers originally presented in [9], in which persistency of
excitation is used to guarantee exponential stabilisation of the
origin for the error dynamics. We extend this method to the
case in which the reference angular velocity fails to satisfy
the persistency of excitation condition. As a matter of fact,

Σ2 : ė1θ = −c1e1θ

h(t, e1y)d(t, e1θ)

Σ1 :

[
ė1x
ė1y

]
=

[
−c2 w1

−w1 0

][
e1x
e1y

]

Fig. 1. “Small-gain” feedback representation of the closed-loop system with
a persistently exciting controller

we allow for the case in which w0 ≡ 0. Although structurally
similar, the control laws are given by

v1 = v0(t) + c2e1x, c2 > 0 (4a)
w1 = h(t, e1y) + c1e1θ, c1 > 0 (4b)

where h is bounded, locally of linear order in e1y , and
continuously differentiable. It is the term h above which
replaces the zero angular velocity in the controller introduced
in [9] which relies on the assumption that w0 is persistently
exciting. In the present context, we impose as condition that
h(t, 0) ≡ 0 and ḣ is persistently exciting for any e1y 6= 0; a
precise definition is given farther below.

We show that the controller (4) stabilizes globally and
uniformly the error dynamics. In order to understand the
stabilisation mechanism of the controller (4) it is convenient
to examine the closed-loop equations, which result from using
(4) in (2), i.e.

ė1x = w1e1y − c2e1x + v0 [cos e1θ − 1] (5a)
ė1y = −w1e1x + v0 sin e1θ (5b)
ė1θ = −c1e1θ − h(t, e1y). (5c)

This system may be rewritten in compact form as[
ė1x
ė1y

]
=

[
−c2 w1

−w1 0

] [
e1x
e1y

]
+ d(t, e1θ) (6a)

ė1θ = −c1e1θ − h(t, e1y) (6b)

where we purposefully dropped the arguments of w1 and
defined the interconnection term

d(t, e1θ) :=

[
v0(t)(cos e1θ − 1)
v0(t) sin e1θ

]
. (7)

We are interested in establishing uniform global asymptotic
stability of the origin of (e1x, e1y, e1θ) = (0, 0, 0). To that end,
we observe that the system (6) consists in the feedback inter-
connection of two systems as illustrated in Figure 1. Roughly
speaking, after adaptive control systems theory, the system Σ1,
in the center upper block is uniformly asymptotically stable at
the origin, provided that c2 > 0 and w1 is persistently exciting,
globally Lipschitz and bounded. On the other hand, the origin
of the system Σ2, in the lower-center block, is exponentially
stable if c1 > 0. As a matter of fact, it may also be established
that each of these subsystems is input to state stable. Moreover,
the interconnection terms h and d are both uniformly bounded
and satisfy d(t, 0) ≡ 0, h(t, 0) ≡ 0. Thus, the interconnected
system (6) may be regarded as the feedback interconnection of
two input to state stable (ISS) systems. Consequently, stability
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of the origin of (6) may be concluded invoking the small-gain
theorem for ISS systems –see [15].

Although intuitive, the previous arguments hide certain diffi-
culties in the analysis that we intend to clarify next. Firstly, the
function w1 depends on the states and time hence, persistency
of excitation must be appropriately defined. We use a relaxed
notion of persistency of excitation, originally introduced in
[16]; the following is a refined definition reported in [17].

Definition 1 (uδ-Persistency of excitation) Let f(·, ·) be
such that the system ẋ = f(t, x), with state x = [x>1 x>2 ]> and
solution x(t) = x(t, t◦, x◦) starting at (t◦, x◦) ∈ R≥0 × Rn
is forward complete. Let φ : R≥0 × Rn+m → Rp×q be such
that φ(·, x(·, t◦, x◦)) is locally integrable for each solution
x(·, t◦, x◦), e.g., (t, x) 7→ φ(t, x) is measurable, locally
bounded, and locally Lipschitz in x.

The pair (φ, f) is called uniformly δ-persistently exciting
(uδ-PE) with respect to x1 if, for each r and δ > 0, there exist
constants T (r, δ) and µ(r, δ) > 0 such that, for all (t◦, x◦) ∈
R≥0 ×Br, all corresponding solutions satisfy, for all t ≥ t◦,

min
s∈[t, t+T ]

|x1(s)| ≥ δ ⇒
∫ t+T

t

φ(τ, x(τ))φ(τ, x(τ))>dτ ≥ µI

(8)
In words, the pair (φ, f) is uδ-PE if the function φ(·, x(·)) is
PE in the usual sense of adaptive control, uniformly in initial
conditions (t◦, x◦) ∈ R≥0 ×Br, whenever the trajectory x(·)
is away from a δ-neighborhood of the origin. For simplicity we
may also say, with an abuse of terminology, that the function φ
is uδ-PE in the understanding that the pair satisfies Definition
1. For instance, the function φ(t, x) := ψ(t) |x| is uδ-PE if ψ
satisfies (3).

There are several properties of uδ-PE functions which are
useful in control design for nonholonomic systems; these are
reported in [18]. One of them is that if w1 is uδ-PE then there
exists a function w̃1 which depends only on time and which
is persistently exciting in the sense of (3). Moreover, for w1

in (4b), w̃1 may be purposefully constructed to satisfy

w̃1(t) := h(t, e1y(t)) + c1e1θ(t) ∀ t : |e1y(t)| ≥ δ. (9)

Even though the function w̃1 is parameterized by δ it is
guaranteed that for any δ > 0 there exists w̃1 satisfying all of
the above.

This property is useful because, for any δ and for all t such
that |e1y(t)| ≥ δ, the trajectories of Σ1 in Figure 1 coincide
with those of

ż1 = Ã(t)z1, Ã(t) :=

[
−c2 w̃1(t)
−w̃1(t) 0

]
, z1 :=

[
e1x
e1y

]
(10)

which is linear. Therefore, the behavior of the trajectories of
(6a) with d ≡ 0 may be analyzed as for the linear system (10),
at least while the trajectories are away from the origin (strictly
speaking away of any δ-neighborhood). On the other hand,
global exponential stability of the origin of (10) is easily con-
cluded invoking classical results on adaptive control systems
–see [19]. Consequently, one may use the following intuitive
contradiction argument to establish uniform global asymptotic
stability of (6a) with d ≡ 0: assume that the origin is not

attractive then, the trajectories (tend to) remain away of an
arbitrary δ-neighborhood of the origin. In that case, since they
coincide with those generated by (10) which is exponentially
stable, it follows that the trajectories of (6a) must converge to
zero. The argument may be repeated for any arbitrarily small
δ hence, the “exponential” rate of convergence diminishes
but remains uniform in the initial conditions. Precise general
statements for nonlinear time-varying systems are reported in
[17]. For the purpose of the system (6) we proceed by showing
that
• the origin is uniformly stable;
• the solutions are uniformly globally bounded;
• the origin is uniformly globally attractive.
The first bulleted item comes from the fact that the system

corresponds to the feedback interconnection of two locally
input to state stable systems. For the first block, Σ1, the
origin is uniformly globally asymptotically stable provided
that w1 is uniformly δ-PE with respect to e1y , bounded and
with bounded derivatives –see [17]. On the other hand, local
input to state stability (also known as total stability) with
respect to the additive input d is a direct consequence of
uniform global asymptotic stability –see [20]. For Σ2 it is
evident that the origin is globally exponentially stable and
that Σ2 is input-to-state stable with respect to h. Actually,
the interconnected system showed in Figure 1 is (locally)
uniformly asymptotically stable.

The boundedness property follows from the fact that the
trajectories of (10), for all t such that |e1y(t)| ≥ δ, co-
incide with those of Σ1 in Figure 1, which are globally
uniformly bounded. To see the latter we remark that since
w̃1 is persistently exciting the origin of (10) is globally
exponentially stable. This implies that, for any δ, there exist
positive definite symmetric matrices Pδ and Qδ such that
−Qδ(t) = Ã1δ(t)

>Pδ(t) + Pδ(t)Ã1δ(t) + Ṗδ(t) and the total
derivative of

V1δ(t, z1) = z>1 Pδ(t)z1

along the trajectories of (6a) satisfies

V̇1δ(t, z1) ≤ −z>1 Qδ(t)z1 + 2z>1 Pδ(t)d(t, e1θ)

for all t such that |e1y(t)| ≥ δ. In turn, we have

V̇1δ(t, z1) ≤ −qm
2
|z1|2 +

p2M
2qm
|d(t, e1θ)|2

where we used pMI ≥ Pδ(t) and Qδ(t) ≥ qmI . Since
d(t, e1θ(t)) is bounded –see (7), it is clear that if |z1(t)| → ∞
then V̇1δ(t, z1(t)) ≤ 0 for sufficiently large t. This implies
boundedness.

We argue in a similar way for the trajectories of (6b); the
total derivative of V2δ(e1θ) := 0.5 |e1θ|2 yields

V̇2δ(e1θ) ≤ −λc1
2
|e1θ|2 +

|h(t, e1y)|2

2c1λ

for any λ > 0. Recall that, by assumption, h is bounded.
Next, we show that the origin of (6) is uniformly globally

attractive; that is, we must show that for any r and σ > 0,
there exists T such that

|e1(t◦)| ≤ r =⇒ |e1(t)| ≤ σ ∀ t ≥ t◦ + T. (11)
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So let r and σ be arbitrary given positive constants and define
δ := σ. To establish the convergence property (11) we study
the behavior of the solutions of[

ė1x
ė1y

]
=

[
−c2 w̃1(t)
−w̃1(t) 0

] [
e1x
e1y

]
+ d(t, e1θ) (12a)

ė1θ = −c1e1θ − h(t, e1y) (12b)

whose trajectories, as we have emphasized, coincide with those
of (6) for all t such that |e1y(t)| ≥ δ. Therefore, it suffices to
establish global exponential stability of the origin of (12). To
that end, let

λ :=

√
5vM0
2

pM
qmc1

ε :=
λc1
4

η :=
2qm
p2M

ε (13)

and consider the Lyapunov function Vδ := ηV1δ+V2δ . Its total
derivative satisfies

V̇δ(t, z1, e1θ) ≤ −
(
q2m
p2M

ε− vM0
2c1λ

)
|z1|2 −

(
c1λ

2
− ε
)
|e1θ|2

where we introduced the bound vM0 ≥ |v0(t)| and we used the
assumption that |h(t, e1y)| ≤ vM0 |z1| and |d(t, e1θ)| ≤ |e1θ|.
In view of the expressions in (13), V̇δ is negative definite,
actually,

V̇δ(t, z1, e1θ) ≤ −α |z1|2 − ε |e1θ|2 , α > 0

We conclude that the trajectories of (6), which coincide with
those of (12) for all t such that |e1y(t)| ≥ δ, tend to zero
exponentially fast as long as the latter inequality holds. In view
of this there exists a finite time T such that for any δ′ ∈ (0, δ],
we have |e1(t◦ + T )| ≤ δ′. From uniform stability, we have
|e1(t)| ≤ δ for all t ≥ t◦+T . Since δ = σ is arbitrarily given,
the statement follows.

Remark 1 Note that even though this reasoning is reminis-
cent of ultimate boundedness we conclude convergence to
zero. This is due to the fact that the previous arguments hold
for fixed values of the control gains and any given δ > 0.

Lemma 1 The origin of the system (6) is uniformly globally
asymptotically stable if c1 > 0, c2 > 0, v0 is bounded and w1

is uδ-PE, bounded and locally Lipschitz in e1y uniformly in t.
Moreover, uδ-PE of w1 is also a necessary condition.

The previous lemma establishes a strong, yet intermediary,
convergence result in the pursuit of our main objective: track-
ing control of nonholonomic robots. It is left to state under
which conditions w1 is uδ-PE. As a matter of fact, this has
been established in the context of set-point stabilization, in
[18]. The control input w1 satisfies the differential equation

ẇ1 = −c1w1 + ḣ(t, e1y)

which corresponds to the equation of a low-pass filter. That is,
a stable strictly proper linear system with input ḣ. It is well-
known from adaptive control textbooks that the output of a
low-pass filter driven by an input that is persistently exciting,
is also persistently exciting –see [21], [19]. Now, for nonlinear
functions we have an analogous property –see [18]. Therefore,
w1 which corresponds to a “filtered version” of ḣ, is uδ-PE if
so is ḣ.

Proposition 1 Consider the system (2) in closed-loop with the
controller (4). Let h be bounded, once continuously differen-
tiable and such that h(t, e1y) has a unique zero at e1y = 0
for each fixed t. Assume further that there exists c > 0 such
that

sup
t,e1y

{
|h(t, e1y)| ,

∣∣∣∣∂h(t, e1y)

∂e1y

∣∣∣∣ , ∣∣∣∣∂h(t, e1y)

∂t

∣∣∣∣} ≤ c (14)

and, for any δ > 0, there exist positive numbers µ and T such
that

|e1y| ≥ δ =⇒
∫ t+T

t

∣∣∣ḣ(τ, e1y)
∣∣∣ dτ ≥ µ, ∀t ≥ 0. (15)

Then, the origin of the closed-loop system is uniformly globally
asymptotically stable.

Remark 2 The function h may be defined as a monotonic
locally linear function of e1y and smooth, persistently exciting
in t; for instance, h(t, e1y) = ψ(t)sat(e1y) where sat(·) is a
saturation function and ψ is persistently exciting.

Proof of Proposition 1. The closed-loop system is given by
Eqs. (6) and it may be showed, using V1 and V2 above, that the
system is forward complete. Now, since ḣ is a scalar function
(15) implies that

min
τ∈[t,t+T ]

|e1y(τ)| ≥ δ ⇒
∫ t+T

t

∣∣∣ḣ(τ, e1y(τ))
∣∣∣ dτ ≥ µ

holds for all t ≥ 0 and any trajectory. Therefore, ḣ satisfies the
properties in Definition 1 and, in view of the filtering property
previously mentioned, it follows that w1 is uδ-PE. The result
follows from Lemma 1 �

B. Leader-follower formation control

Now, we extend the previous result to the case of formation-
tracking control. Consider a group of n mobile robots with
kinematic models,

ẋi = vi cos (θi) (16a)
ẏi = vi sin (θi) (16b)
θ̇i = wi, i ∈ [1, n] (16c)

where, for the ith robot, xi and yi determine the position with
respect to a globally-fixed frame, θi defines the heading angle,
and the linear and angular velocities are denoted by vi and wi
respectively.

The control objective is to make the n robots take specific
postures determined by the topology designer, and to make the
swarm follow a path determined by a virtual reference vehicle
labeled R0. Any physically feasible geometrical configuration
may be achieved and one can choose any point in the Cartesian
plane to follow the virtual reference vehicle.

We solve the problem using a spanning-tree communica-
tion topology and a recursive implementation of the tracking
leader-follower controller (4). That is, the swarm has only
one ‘leader’ robot tagged R1 whose local controller uses
knowledge of the reference trajectory generated by the virtual
leader R0. Therefore, in the communications graph, R1 is
the child of the root-node robot R0 and the other robots
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are intermediate nodes labeled R2 to Rn−1 that is, Ri acts
as leader for Ri+1 and follows Ri−1. The last robot in the
communication topology is denoted Rn and has no followers
that is, it constitutes the tail node of the spanning tree. We re-
mark that the notation Ri−1 refers to the graph communication
topology and not to the formation topology.

The fictitious vehicle, which serves as reference to the
swarm, describes a freely generated reference trajectory; in
particular, it produces the desired linear and angular velocities
v0 and w0 which are communicated to the leader robot
R1 only. According to this communication topology, and
following the setting for tracking control, the formation control
problem reduces to that of stabilisation of the error dynamics
between any pair of leader-follower robots, i.e., for all i ≤ N ,

ėix = wieiy − vi + vi−1 cos eiθ (17a)
ėiy = −wieix + vi−1 sin eiθ (17b)
ėiθ = wi−1 − wi (17c)

and for each i ≥ 1 we define the control inputs vi and wi as

vi = vi−1 + c2ieix (18a)
wi = wi−1 + c1ieiθ + hi(t, eiy) (18b)

where hi is once continuously differentiable, bounded and with
bounded derivative. Then, the closed-loop equations yield[
ėix
ėiy

]
=

[
−c2i wi
−wi 0

] [
eix
eiy

]
+

[
vi−1[1− cos eiθ]
vi−1 sin eiθ

]
(19a)

ėiθ = −c1ieiθ + hi(t, eiy) (19b)

which has the form of (6) and inherits similar properties;
actually, similarly to Lemma 1 we have the following.
Lemma 2 The origin of the system (19) is uniformly globally
asymptotically stable, for any i ≤ N , if c1i > 0, c2i > 0, v0
is bounded and wi is uδ-PE, bounded and locally Lipschitz in
eiy uniformly in t. Moreover, uδ-PE of wi is also a necessary
condition.
The proof of this statement follows mutatis mutandis along
the proof-lines of Lemma 1 observing that: 1) the function hi
is, by assumption, continuous and bounded; 2) for (19a) with
eiθ = 0, the origin is uniformly globally asymptotically stable
provided that wi is uδ-PE and 3) the interconnection term

di :=

[
vi−1[1− cos eiθ]
v1−1 sin eiθ

]
is also bounded, along trajectories. To see the latter, consider
first i = 2 then,

d2 :=

[
v1[1− cos e2θ]
v1 sin e2θ

]
where v1 = v0(t) + c21e1x is a function of t and e1x. Hence,
the function d̃2 defined along trajectories as

d̃2(t, eiθ) =

[
v1(t, e1x(t))[1− cos e2θ]
v1(t, e1x(t)) sin e2θ

]
,

is also continuous and bounded if so is v1(t, e1x(t)). On
the other hand, e1x(t) is part of the solution of (6) whose
origin, after Lemma 1, is uniformly globally asymptotically

stable. Therefore, e1x(t) is uniformly globally bounded and
so is v1(t, e1x(t)). The statement of Lemma 2 for the case
i = 2 follows hence, v2(t, ē2x(t)) where ē2x := [e1x e2x]>,
is uniformly bounded for any t. Using this and proceeding by
induction, we conclude that the result of the lemma holds for
any i ≥ 2. We are ready to present our second main result.

Proposition 2 Consider the system (17) in closed loop with
the controllers (6) and (18). Assume that, for each i ≤ N ,
hi(t, eiy) has an isolated zero at eiy = 0,

sup
t,eiy

{
|hi(t, eiy)| ,

∣∣∣∣∂hi(t, eiy)

∂eiy

∣∣∣∣ , ∣∣∣∣∂hi(t, eiy)

∂t

∣∣∣∣} ≤ c, (20)

∑i
j=1 ḣj is uδ-persistently exciting and the control gains c1i,

c2i are positive. Then, the origin of the closed-loop system is
uniformly globally asymptotically stable.

Remark 3 The condition of uδ-persistency of excitation holds
if we introduce N different harmonics:

hj(t, eey ) = ψj($jt)α(eiy)

where, for simplicity only, ψj is a periodic function of period
2π$j .

Proof of Proposition 2. We must establish that under the
conditions of the proposition, the control input wi defined in
(18b) is uδ-PE with respect to eiy . We proceed by induction.
Let ēiy := [e1y · · · eiy]>; now, for i = 2

w2 = w1 + c12e2θ + h2(t, e2y)

satisfies

ẇ2 = −c12w2 − [c11 − c12]w1 + ḣ1(t, e1y) + ḣ2(t, e2y)

=: −c12w2 + Φ2(t, ē2y).

Under the conditions of Proposition 2 and since w1 is uδ-PE
with respect to e1y , the function Φ2 is uδ-PE with respect to
ē2y . Then, in view of the fact that filtered uδ-PE functions are
uδ-PE –see [18], so is w2. It follows that

Φi(t, ēiy) =

i−1∑
j=1

[c1j+1 − c1j ]wj + ḣj(t, ejy) + ḣi(t, eiy)

with i = 3 is uδ-PE with respect to ē3y and, consequently,
by the filtering property of uδ-PE functions, so is w3. By
induction, it follows that Φi(t, ēiy) is uδ-PE with respect to
ēiy and so is wi, which satisfies

ẇi = −c1iwi + Φi(t, ēiy),

for any i ≥ 2. �

III. SIMULATION RESULTS

We illustrate our theoretical findings via some simu-
lation results obtained using SIMULINKTM of MATLABTM.
We consider a group of five mobile robots. In a first
stage of the simulation, the desired formation shape of
the mobile robots is linear and they follow a straight
line trajectory with initial conditions: [x1(0), y1(0), θ1(0)]

>
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= [0,−1, π/15], [x2(0), y2(0), θ2(0)]
>

= [20,−4, π/12],
[x3(0), y3(0), θ3(0)]

>
= [20, 4, π/10], [x4(0), y4(0), θ4(0)]

>

= [30,−5, π/8] and [x5(0), y5(0), θ5(0)]
>

= [30, 8, π/6]. The
linear formation shape with a certain desired distance between
the robots is obtained by defining [dx1,2, dy1,2] = [0, 1],
[dx2,3, dy2,3] = [0,−2], [dx3,4, dy3,4] = [0, 3] and [dx4,5, dy4,5]
= [0,−4].

The imposed path by the leader robot consist in a “stadium-
circuit” shape composed of two straight lines and two half
circumferences, as illustrated by the NE plot in Figure 2. The
forward reference velocity is set to v0(t) ≡ 10 [m/s], while the
angular reference velocity is defined as ω0(t) := 0.3 [rad/s]
for all t ∈ [10T, 10(T + 1)) for all odd integer values of T
and ω0(t) ≡ 0 otherwise. That is, it switches between 0 and
0.3[rad/s] every 10[s]. The total simulation time is set to 40[s].
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Fig. 2. Described paths and resulting tracking errors for five robots

The control laws are given by

vi = v(i−1) + c2ieix

ωi = ω(i−1) + c1ieiθ + ϕ(t) tanh(eiy)

with control gains c1i = 2 and c2i = 5. The function ϕ
is generated as a square-pulse-train signal of amplitude 0.5,
period of four seconds and pulse width of 3.2[s]. Note that this
function is not smooth but it is persistently exciting hence; the
term ϕ(t) tanh(eiy) induces enough excitation to stabilize the
system in the y direction as long as there is an error in this
coordinate. The rapid response and excellent performance may
be appreciated from the plots of the formation-tracking errors,
depicted in Figure 2.

IV. CONCLUSION

We presented a very simple decentralized controller for
the problem of formation-tracking control of mobile robots
in order to follow straight paths. Our approach relies on
a simple idea which consists in maintaining the reference

angular velocity different from zero by an amount proportional
to the translation error. Extensions of this approach to more
complex models and under relaxed assumptions such as time-
varying topologies, state dependent interconnection gains, and
the case of force-controlled robots, are currently under study.
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