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Abstract—Aggregation operators Reinforcement ... We propose
a n-ary extension of absorbing norms, defined with the help of
generative functions, and its relationship with additive generating
functions of uninorms. In this paper, we also present new
aggregation operators, namely the k-uninorms and k-absorbing
norms. These operators are a generalization of usual uninorms
and absorbing norms for which a set combination of inputs is
introduced. Their main ability is to provide reinforcement for
contradictory inputs, as nullnorms and as opposed to uninorms.
On the other hand it still provides full reinforcement for agreeing
inputs, as uninorms and as opposed to nullnorms. Numerous
examples are given in order to illustrate the behavior of the
proposed operators.
finish the abstract : reinforcement (weak?) before

Index Terms—Absorbing norms, aggregation operator, null-
norms, reinforcement, uninorms

I. INTRODUCTION

Deeper introduction ...

During the last decades, one has witnessed a tremendous
growth in the use of aggregation functions theory and its
applications. A number of aggregation functions are closely
linked to the theory fuzzy sets. In particular, triangular
(co)norms [15], [12], uninorms and nullnorms [27], [3], [8]
are prototypical examples of aggregation functions used in
practice. As opposed to usual aggregation operators such as
the arithmetic mean, these functions allow more flexibility,
and thus present a more interesting data-specific behavior than
standard aggregation operators.

Another reason of using such operators is that they allow
to deal with the inherent uncertainty of the data.
complete on uncertainty

We are interested in this paper in uninorms, as they gen-
eralize both triangular norms and triangular conorms thanks
to their neutral element. We also inspect nullnorms, which
are also operators combining triangular norms and triangular
conorms. Both uninorms and nullnorms show an interesting
structure on the unit interval [9], [14]. In particular, it can be
shown that uninorms act as full reinforcement operators: the
output is large when all the inputs are large, the output is low
when all the inputs are low, and the output is moderate when
the inputs are in-between. There is no such study, or property,

exhibited for nullnorms. Furthermore, the property of full rein-
forcement is not always adapted to the attitude of the decision-
aiding system. This paper addresses the aforementioned issues
by proposing new classes of operators, namely the k-uninorms
and the k-absorbing norms, that show more adaptability to the
input than standard uninorms and nullnorms.

This paper is organized as follows. We first give some
definitions and fundamentals about fuzzy binary connectives
and their n-ary extensions in Section II. In Section III, we give
a short tour on uninorms, nullnorms and absorbing norms,
and propose function generated n-ary extensions of these
operators.

Then we present some recent related works on this topic,
and we propose the k-uninorms and k-absorbing norms, as
well as their properties. We also give some detailed examples
on prototypical examples, and their use in ranking for decision-
aiding, in Section V. Finally, we draw a conclusion and give
some perspectives in Section VI.

II. PRELIMINARIES

In many domains, making the fusion of information, or
aggregation of information, is an important task. Generally
speaking, aggregating data corresponds to mapping several
values into a single value that is representative of the input
values. Often, aggregated values come from evaluation of
whether an expert, or a machine. In this paper, we assume
that, without loss of generality, input values belongs to the
unit interval I = [0, 1].1

More formally, an aggregation operator is defined as follows
[12]

Definition An operator A is an aggregation operator if and
only if it satisfies boundary conditions and monotonicity:

• A(0, · · · , 0) = 0 and A(1, · · · , 1) = 1
• ∀n, x1 ≤ y1, · · · , xn ≤ yn ⇒ A(x1, · · · , xn) ≤

A(y1, · · · , yn)

As additional properties, one can find symmetric, associative
aggregation operators, see [16] for more details and other
properties. Triangular norms, introduced by Menger [22], are a
generalization of the triangle inequality in probabilistic metric

1if not, a simple normalization allows to obtain this property.



spaces. More recently they have been used as conjunctive
operations in logic and intersections in lattices. Triangular
norms (t-norms for short), together with their dual operators,
triangular co-norms, which are disjunctive operators in logic,
can be considered as a family of operators allowing to manage
logical and and or connectives for multi-valued and fuzzy
logic.

More precisely, a t-norm is a binary function ⊤ : [0, 1]2 →
[0, 1] that is, for any x, y and z in the unit interval

• commutative, ⊤(x, y) = ⊤(y, x)
• monotonic, for y ≥ z, ⊤(x, y) ≥ ⊤(x, z)
• associative, ⊤(x, ⊤(y, z)) = ⊤(⊤(x, y), z)
• having 1 as neutral element, ⊤(1, x) = x

It is interesting to note that the associativity of t-norms allows
an easy extension to n-ary operators. Moreover, the representa-
tion theorem [20] allows to obtain generated t-norms thanks to
additive or multiplicative generating functions [15]. A strictly
decreasing function t : [0, 1] → [0, ∞[, with t(1) = 0, can be
used to construct a t-norm

⊤(x1, · · · , xn) = t(−1)

(
n∑

i=1
t(xi)

)
, (1)

where t(−1) is the pseudo-inverse function of t, defined by
t(−1)(y) = sup (x ∈ I|t(x) > y).

Example • Let t(x) = − log(x), then ⊤(x1, · · · , xn) =∏n
i=1 xi is the product t-norm,

• Let t(x) = 1 − x, then ⊤(x1, · · · , xn) =
max (0,

∑n
i=1 xi − (n − 1)) is the Lukasiewicz t-norm.

Beside mathematical properties, t-norms also show an in-
teresting behavioral property as they provide downward rein-
forcement [31]. More precisely, if all the input values are low,
then the aggregation is even more low. Such aggregation is
seen as pessimistic attitude toward decision.

The dual operator of t-norms (i.e. a commutative, monotonic
and associative operator with neutral element 0) is called a
triangular conorm ⊥ (t-conorm for short). As for t-norms, it
exists a strictly increasing function s : [0, 1] → [0, ∞[, with
s(0) = 0, that can be used to construct a t-conorm:

⊥(x1, · · · , xn) = s(−1)

(
n∑

i=1
s(xi)

)
, (2)

where s(−1) is the pseudo-inverse function of s, defined by
s(−1)(y) = sup (x ∈ I|s(x) < y). Note that additive gen-
erators of a t-norm and its dual t-conorm are related by
s(x) = t(1 − x).

Example • Let s(x) = − log(1 − x), then
⊥(x1, · · · , xn) = 1 −

∏n
i=1(1 − xi) is the sum

product t-conorm,
• Let s(x) = x, then ⊥(x1, · · · , xn) = min (1,

∑n
i=1 xi)

is the bounded sum (Lukasiewicz t-conorm).

By duality of t-norms, t-conorms provide upward reinforce-
ment : if all the inputs are large, then the result is even larger.
Such aggregation is seen as optimistic attitude toward decision.

More details on triangular norms are out of the scope of this
paper, and the interested reader can refer to more complete
surveys, see e.g. [15], for more informations.

III. UNINORMS AND NULLNORMS

A. Uninorms

Triangular norms and triangular conorms provide a down-
ward and upward reinforcement, respectively, but not simulta-
neously. In order to deal with this problem, Yager and Rybalov
[27] introduced an aggregation operator, the uninorm U . This
operator is a generalization of triangular norms and conorms.
The neutral element e belonging to the unit interval allows to
use a t-norm or t-conorm depending on the input values.

Definition An uninorm is a binary operator U which is
commutative, associative, increasing with a neutral element
e lying in the unit interval, and for which every x ∈ [0, 1],
U(x, e) = x holds.

An interesting property of uninorms is that they allow a
compensation between values that are separated by a specified
neutral element. Consequently, uninorm operators are able
to provide both downward and upward reinforcement, as
well as compensation for in-between values. Naturally, the
relationship of uninorms and triangular norms is important,
and one can even write a triangular norm as a function of an
uninorm

⊤U (x, y) = U(ex, ey)
e

(3)

Alternatively, the function

⊥U (x, y) = U(e + (1 − e)x, e + (1 − e)y) − e

1 − e
(4)

is a triangular conorm [10]. The behavior and the structure of
an uninorm is strongly linked to triangular norms in [0, e]2,
while it is related to triangular conorms in [e, 1]2. On the other
parts of the squared unit, U is bounded by the minimum and
the maximum, i.e. for all (x, y) ∈ [0, 1]2\([0, e]2 ∪ [e, 1]2), U
is a compensation operator. Since U is an associative function,
we have U(0, 1) ∈ {0, 1}. One calls a conjunctive uninorm an
uninorm U satisfying U(0, 1) = 0, and a disjunctive uninorm
U(0, 1) = 1. The functions defined in (5) and (6) provide a
generic family of operators :

U(x, y) =


e⊤( x

e , y
e ) if (x, y) ∈ [0, e[2

e + (1 − e)⊥
(

x−e
1−e , y−e

1−e

)
if (x, y) ∈ [e, 1]2

min(x, y) otherwise
(5)

U(x, y) =


e⊤( x

e , y
e ) if (x, y) ∈ [0, e]2

e + (1 − e)⊥
(

x−e
1−e , y−e

1−e

)
if (x, y) ∈]e, 1]2

max(x, y) otherwise
(6)

In (5), one can note that U(0, 1) = 0, implying that U is
a conjunctive uninorm, while in (6), one have U(0, 1) = 1,



making U a disjunctive uninorm. The properties of U , ⊤ and
⊥ allows to extend each uninorm to its n-ary operator [4] :

U(x1, · · · , xn) = U
(

⊤⋆(min(x1, e), · · · , min(xn, e)),

⊥⋆(max(x1, e), · · · , max(xn, e)
)

,

where ⊤⋆, ⊥⋆ are given by

⊤⋆(x, y) = e⊤(x

e
,

y

e
)

⊥⋆(x, y) = e + (1 − e)⊥(x − e

1 − e
,

y − e

1 − e
)

Also, due to its definition, it is important to note that any
uninorm U holds the compromise property (i.e. larger –or
equal– than the minimum and lower –or equal– than the maxi-
mum) if the neutral element lies between the minimum and the
maximum value. A interesting behavior of compensation for
Archimedean uninorms [6] may occur for two values separated
by the neutral element e, in particular, we have the following
definition.

Definition An aggregation operator U is a continuous
Archimedean uninorm if for any (x1, · · · , xn) ∈

∪
n∈N[0, 1]n,

{0, 1} ⊂ {x1, · · · , xn}, if and only if there exists a monotonic
bijection g : [0, 1] → [−∞, ∞], with g(e) = 0, such that

U(x1, · · · , xn) = g−1
( n∑

i=1
g(xi)

)
(7)

As defined by (7), U is a generated uninorm with additive
generator g, with neutral element e. Note that if g(1) = 0, U
is t-norm (see Eq. (1)), while if g(0) = 0, U is t-conorm (see
Eq. (2)).

Uninorms provide full reinforcement, i.e. both downward and
upward reinforcement. When inputs are mixed or contradictory
(i.e. low and large values), the output is averaging the input.
Consequently, an operator providing full reinforcement is
optimistic for positive inputs, and pessimistic for negative
inputs.

In this paper, we use the general additive function g defined
as

gα(x) = log xα

1 − xα
. (8)

Note that using the value α = 1 in (8) allows to retrieve the
uninorm 3Π operator as defined in [31]:

U(x1, · · · , xn) =
∏n

i=1 xi∏n
i=1 xi +

∏n
i=1(1 − xi)

The corresponding pseudo-inverse function g−1
α of (8) is

defined as

g−1
α (x) =

(
exp(x)

1 + exp(x)

) 1
α

. (9)

Note that given a neutral element e of a generated uninorm,

one can obtain the corresponding value of α as α = − log(2)
log(e)

.

As can be observed, limα→0(1/2)1/α = e = 0, and
limα→+∞(1/2)1/α = e = 1. Consequently, both t-norms and

t-conorms can be obtained (by taking the limit). Conversely,
having the function g, one can obtain the corresponding neutral
element by noting that e = g−1(0).

Proposition III.1. Let Uα be defined as Uα(x1, · · · , xn) =
g−1

α

(∑n
i=1 gα(xi)

)
. Then Uα is decreasing with α.

Proof. The general term of Uα is given by

Uα =
( ∏n

i=1 xα
i∏n

i=1 xα
i +

∏n
i=1 1 − xα

i

)1/α

. (10)

Taking the derivative of Eq. (10) with respect to α yields
∂Uα/∂α ≤ 0, whatever α, concluding the proof.2

For the sake of clarity and brevity, we use in this paper
only three different values of α, 0.5, 1 and 2 that correspond
to the neutral elements 0.25, 0.5 and 0.707, respectively. The
corresponding iso-values of these uninorms are given in Figure
1, where pure white encodes the value 0, and blue the value 1.
As can be observed, the values on the four bounds of the unit
interval do not change, but this not the case for the diagonal
x ≈ y. In this case the lower e, the larger output for two low
inputs, and the reverse for two large inputs.

B. Nullnorms

In the previous section, uninorms, which are ordinal sums
of t-norms and t-conorms, have been presented. In this section,
we devote our attention to a family of operators that are closely
related to uninorms, the nullnorms [5]. Instead of relaxing the
neutral element, the nullnorms relax the annihilator constraint
from being one or zero to be any value in the unit interval. By
duality to uninorms, nullnorms behave like a t-conorm when
aggregated values are lower than the absorbing element, noted
a, and behave like a t-norm when aggregated values are larger
than a. In other cases, the nullnorms reduce to their absorbing
element, a.

Definition A nullnorm V is a commutative, associative and in-
creasing function, having a zero-element (absorbing element)
a ∈ [0, 1], which satisfies V(x, 0) = x for all x ≤ a, and
V(x, 1) = x for all x ≥ a.

We say that a is the annihilator of V (by monotonicity). For
a given nullnorm V with annihilator element a ∈]0, 1[, the
binary operator TV defined by:

⊤V(x, y) = V(a + (1 − a)x, a + (1 − a)y) − a

1 − a
(11)

is a t-norm, and for a nullnorm V with annihilator element
a ∈]0, 1[, the binary operator SV defined by:

⊥V(x, y) = V(ax, ay)
a

(12)

is a t-conorm. Therefore, the structure of a nullnorm on [0, a]2
is closely related to a t-conorm, and its structure on [a, 1]2 is
closely related to a t-norm. When fixing ⊤ and ⊥, a unique

2The complete derivation is omitted for sake of brevity.
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Figure 1. Values of generated continuous uninorms on the unit square, for three different values of α = 0.5, 1 and 2. These values are corresponding to the
neutral elements e = 0.25, 0.5 and 0.707, respectively. The middle one (e = 0.5) coincides with the 3Π operator.

nullnorm satisfies Eq. (11) and Eq. (12) on the rest of the unit
square. This is the nullnorm given by:

V(x, y) = a ∀(x, y) ∈ [0, 1]2\([0, a]2 ∪ [a, 1]2) (13)

As for uninorms, one can show that a nullnorm can be written
as

V(x, y) =


a⊥( x

a , y
a ) if (x, y) ∈ [0, a]2

a + (1 − a)⊤
(

x−a
1−a , y−a

1−a

)
if (x, y) ∈ [a, 1]2

a otherwise
(14)

One can also obtain nullnorms from generating functions.

Definition An aggregation operator V is a continuous nilpo-
tent nullnorm with absorbing element a if and only if there
exists an increasing bijection q : [0, 1] → [0, 1] such that

V(x1, · · · , xn) =

q−1

(
med

(
n∑

i=1
q(xi),

n∑
i=1

q(xi) − (n − 1), q(a)

))
(15)

In practice, nullnorms are barely used, due to their proper-
ties. In particular, whenever there are two values, one above
and one below the absorbing element, then the output is
this absorbing element. Unfortunately, this is almost always
the case for real data. A soften version of nullnorm, called



absorbing norm, has been introduced in [25]. This relaxation
particularly focus on the monotony of nullnorms, which is
the reason why nullnorms can barely be used in practical
applications.

Definition An absorbing norm V is a commutative and as-
sociative function, having a zero-element (absorbing element)
a ∈ [0, 1], which satisfies V (x, a) = a for all x ∈ [0, 1].

As for nullnorms, if we set a to 0, then V (x, y) is a t-norm, and
alternatively, setting a to 1 gives a t-conorm. Two important
classes of absorbing norms are the conjunctive and disjunctive
absorbing norms, defined by

V (x, y) =


a⊥( x

a , y
a ) if (x, y) ∈ [0, a]2

a + (1 − a)⊤
(

x−a
1−a , y−a

1−a

)
if (x, y) ∈ [a, 1]2

M(x, y) otherwise
(16)

where M(x, y) can be either the minimum operator or the
maximum operator. The most important consequence, com-
pared to nullnorms, is that it is not constant and equal to the
absorbing element in [0, a] × [a, 1] and [a, 1] × [0, a].

Proposition III.2. Let us write the n-ary extension of absorb-
ing norm using multiplicative generator as

V (x1, · · · , xn) = h−1

(
n∏

i=1
h(xi)

)
(17)

where the function h : [0, 1] →]−∞, ∞[ is a strictly increasing
and continuous mapping satisfying h(0) = −∞, h(a) = 0 and
h(1) = +∞. V (x1, · · · , xn) is a an absorbing norm.

Proof. Commutativity is easily obtained by commutativity of
the product. Let us consider the associative property.

V (x1, V (x2, · · · , xn)) = h−1(h(x1)h(V (x2, · · · , xn)))

= h−1

(
h(x1)h(h−1(

n∏
i=2

h(xi)))

)

= h−1

(
n∏

i=1
h(xi)

)

= h−1

(
h(h−1(

n−1∏
i=1

h(xi)))h(xn)

)
= V (V (x1, · · · , xn−1), xn)

which concludes the proof.

Note that if h(0) = 0, V is t-norm (see Eq. (1)), while if
h(1) = 0, V is t-conorm (see Eq. (2)).

Proposition III.3. The element a for which h(a) = 0 holds
in (17) is an absorbing element of V (x1, · · · , xn).

Proof. Let a ∈ {x1, · · · , xn}, then we have
∏n

i=1 h(xi) = 0.
Therefore, we have V (x1, · · · , xn) = h−1(0) = a, which
concludes the proof.

Note that V (x1, · · · , xn) does not satisfy the boundary
conditions on 0 and 1 of nullnorms. In particular, we have

V (x1, · · · , xn, 0) =

 0 if for all i, xi > a
a if a ∈ {x1, · · · , xn}
1 if ∃i, xi < a

(18)

and

V (x1, · · · , xn, 1) =

 0 if ∃i, xi < a
a if a ∈ {x1, · · · , xn}
1 if for all i, xi > a

(19)

Consequently, V (x1, · · · , xn), as defined by Eq. (17), is not
a nullnorm, but an absorbing norm (see [1] and [13]). As
described in [26], this operator can be seen as the negation
of the fuzzy xor operator.

Proposition III.4. The element e defined by h−1(1) is a
neutral element of V (x1, · · · , xn).

Proof. Let h−1(1) ∈ {x1, · · · , xn}, therefore ∃k ∈
{1, · · · , n} such that xk = e. Then V (x1, · · · , xn) =
h−1 (

∏n
i=1 h(xi)) = h−1

(
h(xk)

∏n
i=1,i̸=k h(xi)

)
.

Hence, V (x1, · · · , xn) = h−1
(∏n

i=1,i ̸=k h(xi)
)

, concluding
the proof.

Nor nullnorms nor absorbing norms show any reinforcement
property. In particular, when both elements are below the
absorbing element, and therefore considered as low, the result
is larger than the maximum value (due to the use of t-
conorm) of the elements. Conversely, when both elements
are above the absorbing element, the result is lower than the
minimum. Consequently, such an operator is the dual of full
reinforcement operators : it is optimistic for negative inputs,
and pessimistic for positive inputs.

Proposition III.5. Let g be an additive generative function of
a representable uninorm. Then

V (x1, · · · , xn) = g−1

(
n∏

i=1
g(xi)

)
is an absorbing norm, where the neutral element of the
uninorm is equal to the absorbing element of the absorbing
norm.

Proof. The proofs of Propositions III.2, III.3 and III.4 gives
the sufficient material to prove this proposition.

In the sequel, we use the same generating function, defined
by gα(x) = hα(x) = log xα

1−xα (see Eq. (8)) for both generated
uninorms and generated absorbing norms. Let Vα be defined
as Vα(x1, · · · , xn) = g−1

α (
∏n

i=1 gα(xi)).

Example Using α = 1, we obtain

V1(x1, · · · , xn) =
exp

(∏n
i=1 log xi

1−xi

)
1 + exp

(∏n
i=1 log xi

1−xi

)
Here again, for the sake of clarity and brevity, we use only
three different values of α, 0.5, 1 and 2 that correspond



Uα α = 0.5 α = 1 α = 2

v1 0.998 0.990 0.952
v2 0.009 0.001 0.001
v3 0.926 0.6 0.181

Table I
VALUES OF GENERATED UNINORMS ON PROTOTYPICAL EXAMPLE

VECTORS {v1, v2, v3}.

to absorbing elements 0.25, 0.5 and 0.707, respectively. The
corresponding iso-values of these absorbing norms are given
in Figure 2, where pure white encodes the value 0, and blue
the value 1.

As can be observed, the values on the four bounds of
the unit interval do not change, whatever α. If we consider
the diagonal x ≈ y, one can see that it is decreasing till
reaching the absorbing element a, and then increase towards
1. This operator gives a low output for contradictory inputs,
and a large output for agreeing inputs, especially for elements
close to the boundary. In general, increasing the value of the
absorbing element tends to increase the output of the operator.

C. A numerical example

Let us consider three different vectors characterizing three
different situations. Those three vectors will be used through-
out all the paper in order to emphasize the behavior of the
different aggregation functions that will be presented.

• three high values : v1 = {0.9, 0.8, 0.75},
• three low values : v2 = {0.05, 0.1, 0.2},
• mixed (contradictory) values : v3 = {0.4, 0.9, 0.2}.

Using generated uninorms on {v1, v2, v3} gives the Table I.
As can be expected, the output for v1 and v2 are respectively
high and low, whatever the value of α. For these specific
inputs, Uα thus provides full reinforcement. Considering v3,
the conclusion are not so clear, depending on the value of
α. In particular, if α = 1, corresponding to the 3Π-operator,
the output value of 0.6 lies between the minimum and the
maximum value, whereas it is not the case for α = 0.5
and α = 2. More precisely, using a small value for α
only provides upward reinforcement (0.926 ≥ max(v3)) ,
and a large value of α provides downward reinforcement
(0.181 ≤ min(v3)). It can be explained by the fact that
when α tends toward zero, then Uα converges to a t-conorm.
On the other hand, when α increases, Uα converges to a t-
norm. This behavior is interesting for a number of reasons,
but particularly because it allows to use operators providing
full reinforcement for unmixed inputs (e.g. v1 or v2), and
whether downward (pessimistic attitude) or upward (optimistic
attitude) reinforcement for mixed inputs (v3).

However, it does not differentiate well the amount of well
satisfied criteria for mixed inputs. In particular, let us consider
three criteria, and the following two inputs a = {0.9, 0.8, 0.1}
and b = {0.9, 0.3, 0.2}. Both a and b have contradictory
inputs, but a clearly has two satisfied criteria, whereas b only
one. This difference is not well represented by Uα, so that one

Vα α = 0.5 α = 1 α = 2

v1 0.999 0.965 0.743
v2 0.201 0 0
v3 0.173 0.774 0.999

Table II
VALUES OF GENERATED ABSORBING NORMS ON PROTOTYPICAL EXAMPLE

VECTORS {v1, v2, v3}.

needs a tool to cope with it. In particular, we are interested
in providing operators that are able to evaluate to what extent
an input presents mixed values, and how many high and low
values, while keeping a full reinforcement behavior for clear
inputs.

Using generated absorbing norms on {v1, v2, v3} gives the
Table II. The operator Vα is the absorbing norm generated by
the function gα, defined in (8). As can be seen, here again,
the outputs obtained for v1 and v2 are high and low for any
value of α, respectively. More precisely, as mentioned in the
previous section, low values of α make Valpha tends to a
t-norm. Consequently, even if the output is larger than the
maximum value of v2 (0.201 > 0.2), as expected, it is a rather
low value. On the opposite, when α increases, Vα converges
to a t-conorm. In this case, we obtain an output which is lower
than the minimum value of v1 (0.743 < 0.75). Moreover, one
can note that, for mixed inputs, the impact of α on Vα is the
opposite of the impact of α on Uα. It can be noted that the
output for v2 is low for the following reason: the first two
elements (with any permutation) agree on being low, so that
the intermediary output is large, being in contradiction with
the third element, therefore resulting in a low output.

As a side remark, it is interesting to note that absorbing
norms Vα are not increasing nor decreasing with respect to α,
see e.g the values for v1 and v3.

D. Related works

Recently, in [19], the class of almost equitable uninorms
has been proposed. These operators have been introduced to
deal with contradictory inputs. In particular, they are uninorms
respecting U(x, N(x)) = e, where N(x) is the strong negation
of x. In other terms, considering one value and its opposite is
neutral in the aggregation. An interesting point is that if one
considers representable uninorms with additive generator g,
then using N(x) = g−1(−g(x)) as strong negation provides
an almost equitable uninorm.

In [28], Yager introduced the concept of noble reinforce-
ment for aggregation operators. By noble reinforcement, the
author means that only sufficiently large input should reinforce
each output and produce a large output. This is in opposition
with the behavior of t-conorms, where a large number of low
values may result in a large output. As for full reinforcement
operators, noble reinforcement operators are obtained thanks
to a Takagi-Sugeno-Kang fuzzy system. The property of noble
reinforcement is also extended so that reinforcement only
occurs if a required number of large values is observed.

In [7], the property of mean reinforcement is presented.
It is slightly related to full reinforcement, in that low scores
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Figure 2. Values of generated continuous absorbing norms on the unit square, for three different values of α = 0.5, 1 and 2. These values are corresponding
to the absorbing elements a = 0.25, 0.5 and 0.707, respectively.

produce low score, and large scores produce large scores.
However, bounds are different. In case of low values, the
output must be lower than the average, while it must be larger
than the average for an input containing only large values.
They propose a generalization of the 3Π operator with the help
of symmetric sums, that is satisfying the proposed property.

In [23], the authors present the concept of fuzzy majority
opinion. By relating the current problem to the quantification
in fuzzy logic, they are using linguistic quantifiers for defining
OWA operators [30]. Stating that similar values have close
positions if they are sorted, they use an induced ordered

weighted average (IOWA) operator defined as

IOWA() = complete equation (20)

Talk about specificity measures [29]

In [21] and [18], the authors present k fuzzy connectives,
aiming to assess to what extent several (k) values are high or
low in unconstrained fuzzy sets. Their proposition is based
on the set combination of triangular norms and triangular
conorms. In particular, considering the powerset P of a set
{1, · · · , n}, and P(k) the subset of P such that |P(k)| = k,



the k fuzzy disjunction is defined by

⊥
k

(x1, · · · , xn) = ⊤
θ∈P(k−1)

n

⊥
j=1,j /∈θ

xj , (21)

where we impose 1 ≤ k ≤ n. Using additive generators of
triangular norms and triangular conorms, one can write Eq.
(21) as

⊥
k

(x1, · · · , xn) = t(−1)

( ∑
θ∈P(k−1)

t
(

s(−1)( ∑
j=1,j /∈θ

s(xj)
)))

,

where t and s are additive generators of triangular norms (see
Eq. (1)) and triangular conorms (see Eq. (2)), respectively.
Naturally, one can use the same transformation for the dual
operator, the k fuzzy conjunction

⊤
k

(x1, · · · , xn) = s(−1)

( ∑
θ∈P(k−1)

s
(

t(−1)( ∑
j=1,j /∈θ

t(xj)
)))

.

This operator is a step toward the objective of this paper, but
it does not provide full reinforcement, thus showing the same
drawback as triangular norms and triangular conorms.

IV. k-UNINORMS AND k-ABSORBING NORMS

A. k-uninorms

In order to provide both full reinforcement and the ability to
discriminate the number of high (low) values, we propose to
define the set combination of uninorms and absorbing norms.
The k-uninorm is thus given by the absorbing norm of the
uninorm, following the same principle as in Eq. (21)

More specifically, we define the k-uninorm as

Uk(x1, · · · , xn) = Vθ∈P(k−1)
(
Un

j=1,j /∈θ(xj)
)

.

Using additive generator and multiplicative generator of uni-
norms and absorbing norms, respectively, one can write

Uk(x1, · · · , xn) = g−1

 ∏
θ∈P(k−1)

g

g−1

 n∑
j=1,j /∈θ

g(xj)

 ,

which can be further simplified as

Uk(x1, · · · , xn) = g−1

 ∏
θ∈P(k−1)

n∑
j=1,j /∈θ

g(xj)

 . (22)

Proposition IV.1. Uk(x1, · · · , xn), defined by (22), is an
aggregation operator, i.e. it is a monotonic operator satisfying
boundary conditions.

Proof. Let us consider the boundary conditions. We consider
the generic case where 1 ≤ k ≤ n. With constant value xi = a
for any i, we can write (22) as

Uk(a, · · · , a) = g−1
(

((n + 1 − k)g(a))(
n

k−1)
)

Setting a to 0 gives Uk(0, · · · , 0) = 0 due to the bound values
of g. The same property gives Uk(1, · · · , 1) = 1 for the other
bound. Now we proof that Uk(x1, · · · , xn) is monotonic. By

Uk k = 1 k = 2 k = 3

v1 0.998 1 0.999
v2 0.009 0.002 0.201
v3 0.926 0.915 0.173

Uk k = 1 k = 2 k = 3

v1 0.990 1 0.965
v2 0.001 0 0
v3 0.6 0.068 0.774

Uk k = 1 k = 2 k = 3

v1 0.952 0.972 0.743
v2 0.001 0 0
v3 0.181 0.386 0.999

Table III
k-UNINORMS WITH DIFFERENT VALUES OF k AND α (α = 0.5, 1, 2, FROM

LEFT TO RIGHT).

definition, g is monotonic and increasing, so that, for any θ,
we have

n∑
j=1,j /∈θ

g(xj) ≤
n∑

j=1,j /∈θ

g(yj),

for x1 ≤ y1, · · · , xn ≤ yn. Finally, we obtain
Uk(x1, · · · , xn) ≤ Uk(y1, · · · , yn), concluding the proof.

Proposition IV.2. Using k = 1 in equation (22) provides an
uninorm as defined by (7).

Proof. Replacing k by 1 in (22) gives

Uk(x1, · · · , xn) = g−1

 ∏
θ∈P(0)

n∑
j=1,j /∈θ

g(xj)

 ,

and therefore, we obtain

Uk(x1, · · · , xn) = g−1

 n∑
j=1

g(xj)

 ,

which is the definition of a generated uninorm, thus concluding
the proof.

Let us set α = 1, so that the generated uninorm corresponds
to the 3Π operator, and the generated absorbing norm is given
by

V (x1, · · · , xn) =
exp

(∏n
j=1 log xj

1−xj

)
1 + exp

(∏n
j=1 log xj

1−xj

) .

In Table III, the output values of the k-uninorm operator is
given, when applied to the same prototypical examples v1,
v2 and v3. The order k of the operator ranges from 1 to
3 (i.e. the length of the vector), and the parameter α takes
the values 0.5, 1 and 2. As can be noted in this table, the
columns for which k = 1 corresponds to uninorm operators,
so that a full reinforcement can be observed. Conversely, the
column for which k = 3 corresponds to absorbing norm
operators, and same comments as in section III-C can be
stated. Finally, the column for which k = 2 is an interesting
intermediate step between uninorms and absorbing norms.
The full reinforcement property is still observed, and is more
prominent than for uninorms (e.g. for α = 2, 1 > 0.990 and
0 < 0.001). However, for contradictory inputs (v3), depending
on the value of α, the operator provides whether upward



reinforcement (α = 0.5), downward reinforcement (α = 1)
or compensation (α = 2).

B. k-absorbing norms

One can define the dual operator of k-uninorms by consid-
ering the combination of absorbing norms and uninorms. In
particular, we define the k-absorbing norm as

Vk(x1, · · · , xn) = Uθ∈P(k−1)
(
V n

j=1,j /∈θ(xj)
)

.

Again, using multiplicative generator and additive generator
of absorbing norms and uninorms, respectively, one can write

Vk(x1, · · · , xn) = h−1

 ∑
A∈Pk−1

h

h−1

 ∏
j∈N\A

h(xj)

 ,

(23)
which can be further simplified as

Vk(x1, · · · , xn) = h−1

 ∑
A∈Pk−1

∏
j∈N\A

h(xj)

 . (24)

Proposition IV.3. Vk(x1, · · · , xn), defined by (22), is an
aggregation operator, i.e. it is a monotonic operator satisfying
boundary conditions.

Proposition IV.4. Using k = 1 in equation (24) provides an
absorbing norm as defined by (17)

Proof. There are no set (except the empty one) θ such that θ ∈
P(0), so that V1(x1, · · · , xn) = h−1

(∏n
j=1 h(xj)

)
, which is

the absorbing norm defined by (17).

Proposition IV.5. Using k = n in equation (22) provides an
absorbing norm as defined by (17).

Proof. If k = n, then Un(x1, · · · , xn) =
g−1

(∏
θ∈P(n−1)

∑n
j=1,j /∈θ g(xj)

)
, so that Un(x1, · · · , xn) =

g−1
(∏n

j=1 g(xj)
)

.

Proposition IV.6. Using k = n in equation (24) provides an
uninorm as defined by (7).

Proof. Let k = n, so that Vn(x1, · · · , xn) =
h−1

(∑
θ∈P(n−1)

∏n
j=1,j /∈θ h(xj)

)
, which is equal to

h−1
(∑n

j=1 h(xj)
)

, giving the generated uninorm defined by
Eq. (7).

In Table IV, the output values of the k-absorbing norm
operator is given, when applied to the same prototypical
examples v1, v2 and v3. The order k of the operator ranges
from 1 to 3 (i.e. the length of the vector), and the parameter α
takes the values 0.5, 1 and 2. Following from the propositions
IV.4, IV.5 and IV.6, the column for which k = 1 and k = 3
have already be described in Table III: V1 is an absorbing
norm, and is equivalent to U3, and V3 is a generated uninorm.
Consequently, we focus on the columns for which k = 2 in
this analysis. Let us consider the case α = 1. The output for
agreeing inputs such as v1 and v2 is large, while it is low for

Vk k = 1 k = 2 k = 3

v1 0.999 0.999 0.998
v2 0.201 0.640 0.009
v3 0.173 0.490 0.926

Vk k = 1 k = 2 k = 3

v1 0.965 0.999 0.990
v2 0 0.999 0.001
v3 0.774 0.03 0.6

Vk k = 1 k = 2 k = 3

v1 0.743 0.890 0.952
v2 0 1 0.001
v3 0.999 0.385 0.181

Table IV
k-ABSORBING NORM WITH DIFFERENT VALUES OF k AND α

(α = 0.5, 1, 2, FROM LEFT TO RIGHT).

contradictory inputs, such as v3. The operator can be seen as
a measure of agreement between the input values. Observing
the values of v1 and v2, we see that the values of v2 are
lower than the value of v1 are larger. It can be detected when
increasing the value of α to 2: the measure of agreement of
v2 is larger the one of v1 (1 > 0.890). Conversely, when
α decreases, this behavior is reversed: the agreement within
v2 decreases, while agreement within v1 remains constant.
The value V2(v3 for α = 1 is low, meaning that there are
no agreement between the input values. This is moderated by
changing the value of α, either by increasing or decreasing it.

finish comments of Table IV

V. A CASE STUDY IN MULTI-CRITERIA DECISION MAKING

In this section, we consider a scenario of multi-criteria
decision making. In particular, we have four different, and
supposed independent, criteria Ci, i = 1, · · · , 4 that may
represent the degree of utility of an individual x to a context
dependent task (e.g. hiring for a job, getting a bank credit,
auctions, . . . ). In our simple case study, we consider ten
different individuals xj , j = 1, · · · , 10 that represent various
prototypical characteristics. Complete values and characteristic
of each individual are given in Table V. In this table, a +
symbol represents a large input, a − symbol stands for a low
input, and the symbol ∼ is used for moderated inputs.

We give in Table VI the corresponding outputs of k-
uninorms and k-absorbing norms, for different values of α.
In this table, we also give the three clusters obtained for each
operator if we consider the following intervals

• output is considered as low if it belongs to [0, 0.25]
• output is considered as moderate if it belongs to

]0.25, 0.75[
• output is considered as large if it belongs to [0.75, 1]

Each cluster is represented by a color: low , moderate and
large . Interestingly, the 18 different possible operators all

give a different partition of individuals, while presenting some
similarities. In particular, for U1, individuals {x1, x6, x9} and
{x2, x8} are often clustered together. This result was expected
from the characteristics of these individuals (see Table V): the
first cluster is considered as large and slightly large inputs,
and the second one as low inputs. The operators U2 and U3
tend to cluster together {x4, x5} and {x7, x8}. These two



Individual C1 C2 C3 C4 Characteristic

x1 0.8 0.9 0.95 0.75 4+
x2 0.2 0.15 0.1 0.25 4−
x3 0.85 0.7 0.3 0.2 2+, 2−
x4 0.75 0.6 0.45 0.25 1+, 3 ∼
x5 0.55 0.5 0.5 0.45 4 ∼
x6 0.8 0.95 0.9 0.2 3+, 1−
x7 0.05 0.25 0.25 0.8 1+, 3−
x8 0.5 0.2 0.15 0.1 1 ∼, 3−
x9 0.5 0.9 0.8 0.75 3+, 1 ∼
x10 0.55 0.45 0.9 0.15 1+, 2 ∼, 1−

Table V
DESCRIPTION OF EACH INDIVIDUAL IN TERMS OF CRITERIA Ci AND ITS

CHARACTERISTIC.

clusters correspond to moderate inputs and slightly low inputs,
respectively. U4 (which is also V1) clusters together {x6} and
{x7}, which show an odd number of well separated large
(or low) values, therefore illustrating its property of negation
of exclusive operator. Finally, V2 and V3 tends to provide
the cluster {x3, x4, x10}, which are moderated inputs having
contradictory values.

In the next table, Table VII, the ranking of the output, for
each of the 18 operators is given. As can be expected, x1 is
ranked first with 15 out of the 18 operators.
finish comments of Table VII

VI. CONCLUSION

We presented in this paper . . .
finish conclusion

A natural application of the proposed operators is consensus
reaching for group decision making problems [24]. Among
the potential perspectives, . . . on weighting operators, as in
[18], in a context of similarity measurement [17], [11], or for
recommender systems [2], or even
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