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Abstract—Cloud-Radio Access Network (C-RAN) is a new
emerging technology that holds alluring promises for Mobile
network operators regarding capital and operation cost savings.
However, many challenges still remain before full commercial
deployment of C-RAN solutions. Dynamic resource allocation
algorithms are needed to cope with significantly fluctuating traffic
loads. Those algorithms must target not only a better quality of
service delivery for users, but also less power consumption and
better interference management, with the possibility to turn off
RRHs that are not transmitting. To this end, we propose in this
paper a dynamic two-stage design for downlink OFDMA resource
allocation and BBU-RRH assignment in C-RAN. Specifically, we
first model the resource and power allocation problem in a mixed
integer linear problem for real-time fluctuating traffic of mobile
users. Then, we propose a Knapsack formulation to model the
BBU-RRH assignment problem. Simulation results show that our
proposal achieves not only a high satisfaction rate for mobile
users, but also minimal power consumption and significant BBUs
savings, compared to state-of-the-art schemes.

Keywords: Cloud-RAN, LTE, Resource allocation, Power
minimization, BBU reduction.

I. INTRODUCTION

Cloud-Radio Access Network, commonly known as
C-RAN, has been introduced by [1] as a new cloud architecture
for future Mobile Network Operators (MNOs) infrastructure.
C-RAN’s architecture is illustrated in Fig. 1. It is based
on a centralized baseband pool regrouping many BaseBand
Units (BBUs), which are composed of high-performance pro-
grammable processors and real-time virtualization technology
that perform baseband (PHY/MAC) processing. BBUs are
deployed on general purpose platforms and are connected via
a high bandwidth low-latency optical network to distributed
Radio Remote Heads (RRHs), which are located at the remote
site. A Cloud controller [2], located in the BBU pool, serves
as a resource manager and performs load balancing between
cloud base stations to accommodate the traffic load of different
cells. This centralized architecture provides operators better
flexibility in network dimensioning, performed adaptability
to non-uniform traffic and efficient utilization of baseband
resources.

However, there are several challenges that need to be
addressed before full commercial deployment of C-RAN so-
lutions. First of all, a high-bandwidth low latency optical
network is needed to transmit the RRH baseband data in an
optical link from the BBU pool to the cell site. Due to the strict
LTE timing requirements of 1 ms for physical layer process-
ing [3], a transmission link with at least 10 Gbit/s with tight
constraints on transmission time and latency is required [4]. On
another side, RRHs must be properly assigned to BBUs, not

Fig. 1: Cloud Radio Access Network (C-RAN) LTE Architec-
ture

only to facilitate collaboration techniques such as Cooperative
Multipoint Processing (CoMP), but also to prevent the BBU
Pool and the transport network from getting overloaded. A
suitable assignment must be done between BBUs and RRHs
regarding interference management, BBU pool capacity and
traffic demand. Moreover, to optimize energy savings of C-
RAN, some RRHs need to be chosen to be turned on/off in a
way that will lessen the overhead in the transport network and
reduce the number of active BBU units within the BBU Pool.

In this context, we propose in this paper a two-stage
design for Dynamic Resource Allocation in C-RAN, namely
DRAC, with real-time BBU-RRH assignment, considering the
constraints in transmission power and Signal-to-Interference-
plus-Noise-Ratio (SINR) for User Equipments (UEs). To the
best of our knowledge, we believe that this paper is the
first attempt to tackle both the resource allocation and BBU-
RRH assignment problems in one framework. Specifically,
we investigate how to dynamically optimize the set of active
RRHs and allocated resources to serve real-time traffic of
incoming UEs. To do so, we first propose a resource allocation
algorithm that associates dynamically the best spectrum set
of frequency/time resources to incoming UEs, with proper
UE-RRH attachment. The problem is first formulated as non-
convex and NP-hard, then linearized into Mixed Linear Integer
Problem (MILP), and solved using a Branch & Cut (B&C)
algorithm. Based on the results of the first phase, the second
stage consists of computing the optimal number of BBUs



required to manage the system, and appropriately assigning
them to RRHs in order to handle the whole traffic load. We
model this second problem as a Multiple Knapsack Problem
(MKP), which can be efficiently solved by modern linear
solvers such as IBM CPLEX [5].

To gauge the effectiveness of our proposal, we compare
our resource allocation design with two existing strategies in
centralized resource allocation and power control: the QP-
FCRA approach [6] and GSB Algorithm [7]. For the BBU-
RRH assignment problem, we compare our solution to the
Semi-static and Adaptive schemes proposed in [8].

The remainder of this paper is organized as follows. In
Section II, we review some recent and noteworthy related
works on C-RAN. Section III describes the mathematical
characterization of our two-stage approach. In Section IV, we
present the B&C algorithm used to implement our approach
and solve the resource allocation problem. Numerical results
are presented in Section V to illustrate the performance of
DRAC. Finally, Section VI concludes this paper.

II. RELATED WORK

There have been plenty of active research efforts on C-RAN
after its recent introduction. Authors in [4] presented a detailed
survey regarding the state-of-the-art literature of C-RAN while
highlighting its advantages for operators compared to tradi-
tional Base Stations (BS). What’s striking, while more BSs are
needed to increase mobile traffic coverage, some of them are
underutilized during certain hours in the day that correspond
to low traffic load, resulting in ineffective use of baseband
resources. C-RAN can address this issue, as motivated in [4]
and [9] by dynamically setting the BBU-RRH connections
and allocating resources to RRHs according to users’ traffic
profiles and volumes. As a result, cost reduction and energy
savings can be achieved due to the reduction in the number
of BBUs and effective utilization of the baseband resources.

Authors in [6] presented the QP-FCRA framework, which
is a centralized approach for resource and power allocation in
femtocells networks that can be applied in C-RAN context.
In their proposal, cooperation between neighboring RRHs
is exploited to improve resource allocation and throughput
satisfaction via power minimization. Within each cluster of
RRHs, a joint resource and power allocation is centralized at
a cluster-head that periodically optimizes the throughput sat-
isfaction. However, real-time resource allocation considering
users arrival and departure was not taken into account.

In [7], the authors presented two Group Sparse Beamform-
ing (GSB) algorithms, to minimize the whole C-RAN power
consumption. Their proposal includes the transport network
power and the power transmitted from the RRHs, with a SINR
constraint at each user. The authors presented the problem
as a joint RRH selection and transmit power minimization
beamforming problem. They have addressed this problematic
by sorting RRHs in an increasing order of their beamforming
gain (i.e., transmitting power). The algorithm successively
switches off RRHs with minimum beamforming gain until
the problem becomes infeasible to minimize the whole power
consumption. However, their approach does not exhibit the
number of BBUs required to manage the entire system. In fact,
their study has been carried out separately, without taking into

account the reconfigurations that can be performed at the BBU
pool level.

Based on the traffic analysis of Tokyo’s metropolitan area,
the authors in [10] proposed a new Colony RAN architecture
that can reduce the number of BBUs by maximum 75%,
compared to the traditional RAN architecture. This neverthe-
less remains a rough estimation by the authors themselves.
In [8], the same authors proposed two BBU-RRH switching
schemes for C-RAN: semi-static and adaptive. The semi-static
algorithm determines the combinations of BBUs and RRHs to
accommodate peak hour traffic load for all RRHs within a
large time interval. In contrast, their adaptive scheme assigns
RRHs to BBUs based on neighboring RRHs loads and BBUs
resource usage limits within a short time interval (one hour).
They demonstrated that under a traffic distribution in an office
area, the number of BBUs can be reduced by 26% and 47% for
the semi-static and adaptive schemes, respectively. However,
their approaches did not take into account that RRHs can be
turned off depending on traffic load fluctuation during a time
interval.

III. MATHEMATICAL MODELS

We consider a densely deployed C-RAN in a large area
consisting of S RRHs denoted by the set S = {i|1 6 i 6 S}.
We denote by K = {k|1 ≤ k ≤ K} the set of available
Physical Resource Blocks (PRBs) jointly assigned by the BBU
pool to all S RRHs.

A. Downlink Resource Allocation Problem Formulation

As a first step, we focus on the resource allocation problem
for a real-time fluctuating traffic of static mobile users. We
model UEs’ arrivals with a Poissonian process where each
arriving UE u will be attached and served by one RRH i.
User demands represent the required bandwidth, and can be
expressed in number of required PRBs Nu. Our goal is to
find the optimal resource allocation strategy - i.e., to find
the best-serving RRHs and best PRBs allocation in downlink,
while minimizing the gap between the required and allocated
resources. Note that, the transmission power from RRH i to
UE u can be independently allocated on each assigned PRB k.
In fact, dynamic or fixed power allocation can be performed
depending on the channel’s variation speed [11]. We define
our PRB allocation, user’s attachment to RRH and transmit
power allocation using the following variables:

yuik =

{
1, if PRB k is allocated to UE u on RRH i,
0, otherwise.

(1)

xui =

{
1, if UE u is attached to RRH i,
0, otherwise.

(2)

puik =

{
p ∈ (0, Pmax], if yuik = 1,
0, otherwise.

(3)

The SINR achieved by UE u, attached to RRH i and on a
given PRB k can be written as:

Γu
ik =

puikg
u
ik∑

j 6=i

∑
v 6=u p

v
jkg

u
jk + σ2

(4)

Where guik is the path gain between RRH i and UE u, and
σ2 is the noise power. Let N denote the set of time events



corresponding to a UE’s arrival and Un the set of existing UEs
in the system at event n ∈ N . Our optimization problem can
be written as follows:

min
xu,yu,pu

f (1)n =
∑
u∈Un

∑
i∈S

∑
k∈K

α
puik
Pmax

− (1− α)
xui y

u
ik

K

(5)

subject to
∑
i∈S

∑
k∈K

xui y
u
ik 6 Nu, ∀u ∈ Un (6)∑

i∈S
xui 6 1, u ∈ Un (7)∑

u∈Un

∑
k∈K

puik 6 Pmax, i ∈ S (8)

Γu
ik > yuikγu, i ∈ S, k ∈ K, u ∈ Un (9)
puik > yuikp

u
min, i ∈ S, k ∈ K, u ∈ Un (10)

∀(u, v) ∈ U2
n, y

u
ik + yvik 6 1, i ∈ S, k ∈ K

(11)
yuik 6 xui , i ∈ S, k ∈ K, u ∈ Un (12)
xui , y

u
ik ∈ {0, 1}, i ∈ S, k ∈ K, u ∈ Un (13)

Where α is a constant optimization weight between 0 and
1. Constraint (6) stresses the fact that the total allocated
resources for each UE cannot exceed its requested demand Nu.
Constraint (7) denotes that a UE can only be served by at most
one RRH. (8) and (10) are the power constraints on RRH and
UE, respectively, where Pmax is the maximum transmission
power for each RRH and pumin is the minimum power that
can be transmitted to UE u. (9) is the SINR constraint where
γu refers to UE’s u individual SINR threshold. (11) ensures
that two UEs attached to the same RRH cannot use the same
PRB, (12) imposes all yuik = 0 if xui = 0, i.e., the RRH i is
not transmitting any PRBs, and finally (13) refers that yuik and
xui are binary variables.
It is worth noting that the optimization problem in (6) is a
Mixed Integer Non-Linear Program (MINLP), which is NP-
hard due to the quadratic objective function fn and the non-
convex SINR constraint (9) [12]. To simplify the resolution
of this problem, we reformulate it as a MILP thanks to the
big-M method [13]. In fact, we can replace the product of the
two binary variables yuik and xui by a new binary variable zuik
and add the new following constraints:

zuik 6 xui , (14)
zuik 6 yuik, (15)
zuik > xui + yuik − 1. (16)

For the SINR constraint, we can rewrite it as follows:

(1 +
1

γu
)puikg

u
ik > yuikΩu

k + yuikσ
2 (17)

Where Ωu
k is equal to

∑
j

∑
v p

v
jkg

u
jk. The non-convex product

between binary variable yuik and continuous variable Ωu
k can

also be linearized using the big-M modeling, providing we
know Ωu

k’s lower and upper bounds. From (3) and (10) we
can easily deduce L and U , the lower and upper bounds of
Ωu

k , respectively. Thus, the product yuikΩu
k can be replaced by a

new continuous variable wu
ik and the corresponding constraints

can be rewritten as:

yuikL 6 wu
ik 6 yuikU (18)

(1− yuik)L 6 Ωu
k − wu

ik 6 (1− yuik)U (19)

Hence, the MILP formulation of our DRAC problem can
be expressed as follows:

min
xu,yu,pu

f (2)n =
∑
u∈Un

∑
i∈S

∑
k∈K

α
puik
Pmax

− (1− α)
zuik
K

(20)

subject to
∑
i∈S

∑
k∈K

zuik 6 Nu, ∀u ∈ Un (21)

(7), (8), (10), (11), (12), (13)

(14), (15), (16) (22)

(1 +
1

γu
)puikg

u
ik > wu

ik + yuikσ
2 (23)

(18), (19) (24)

B. RRH-BBU Assignment
In conventional RRH-based RAN system, one BBU is used

per RRH to handle the total traffic load. Thanks to C-RAN’s
centralization, the resource of one BBU can be shared between
different connected RRHs that have few traffic load [10]. For
instance, if a remote site is covered by 5 RRHs and each
RRH has 20% of traffic load, one BBU is enough to manage
all five RRHs. We can compute the optimal number of BBUs
Bn needed at each epoch n to manage the whole system as
follows:

Bn = dTotal Charge of the C-RAN
K

e (25)

Where d.e is the ceiling function and K is the total number
of available PRBs in the system.

Our goal in this second stage is to properly assign RRHs to
BBUs using a Multiple Knapsack Problem (MKP) formulation
[14] where the objects are the RRHs and the Knapsack is
the BBU capacity to handle the real-time traffic load. This
assignment can be dynamically performed following the traffic
load evolution at each epoch n. From the results of the first
phase, we can collect the load of each RRH i that we note
ci ∈]0, 1], corresponding to the weight of active RRH i, and
the vector c = [c1, ..., ci, ..., cS ] corresponding to all S RRHs’
traffic load. The Knapsack’s capacity is then defined as the
optimal number of BBUs calculated in (25). We introduce a
new binary variable rij , which is equal to one if RRH i is
attached to BBU j and zero otherwise. Our BBU-RRH MKP
problem will be thus formulated as follows:

maximize
r

Bn∑
j=1

S∑
i=1

rij (26)

subject to
S∑

i=1

cirij 6 1, j ∈ {1, ..., Bn}, (27)

Bn∑
j=1

rij 6 1, i ∈ {1, ..., S}, (28)

rij ∈ {0, 1}, i ∈ {1, ..., S}, j ∈ {1, ..., Bn}
(29)



Constraint (28) denotes that one RRH cannot be attached to
more than one BBU.

IV. PROPOSAL: DRAC ALGORITHM

In this section, we present our Dynamic Resource Allocation
in C-RAN (DRAC) approach to solve the afore-mentioned
problem formalized in (20). It is based on a B&C algorithm,
which is executed at each UE’s arrival.

The Branch and Cut Algorithm [15] combines the ad-
vantages of Branch and Bound and Gomory Cutting Planes
Schemes into one algorithm, that is not only reliable, but also
much faster than Branch and Bound alone. The algorithm is
based on a linear relaxation of integer variables into continuous
ones, while adding Cutting Planes to improve the problem
relaxation and come closer to approximate integer solutions.
Considering our MILP problem formalized in (20), its vari-
ables are zuik, xui , yuik, puik, and wu

ik, which all contribute in a
very huge optimization problem. Solving (20) with the B&C
scheme will seemingly take a fair amount of time, that will
undoubtedly exceed the strict LTE 1 ms of timing constraint.
Nevertheless, having a closer look at these variables, we
remark that they are interdependent, in a way that variable
zuik constitutes a “core” variable while the other ones can be
derived from this core variable. In fact, variables xui and yuik
can be derived from the big-M reformulation constraints (14),
(15), (16), and puik comes as a “sub-core” optimization variable
which can be deduced from (7) and (10). Consequently, we can
focus our resolution on a smaller optimization space, generated
by the core variable zuik. Also, due to delay constraints imposed
by real-time processing, we define in our B&C algorithm an
upper bound itermax on the number of iterations to reduce
the computing time and to get closer to the processing time
within the BBU pool’s Cloud controller. The pseudo-code of
the proposed PRB resource allocation problem is summarized
in Algorithm 1, which is executed at each new UE’s arrival.

Once the resources are allocated to incoming users, the next
step is to optimize the BBU-RRH assignment by solving the
MKP in (26). We used IBM’s linear solver CPLEX, which
was able to find optimal results with very low computation
time (around 3 ms at each epoch).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed DRAC framework and compare the benefits of our
solution with respect to state-of-the-art schemes: QP-FCRA
[6] and Iterative GSB Algorithm [7] for the resource allo-
cation problem, as well as Semi-static and Adaptive switch-
ing algorithms [8] for the BBU-RRH assignment problem.
Simulations are conducted on MATLAB, where we simu-
lated a wireless LTE environment consisting of 16 RRHs,
each one at the center of a hexagonal cell. The distance
between two nearest RRHs is 100m. We considered the
following channel model: hui = 10−L(du

i )/20
√
φui s

u
i g

u
i , where

L(dui ) is the path-loss at distance dui between RRH i and
UE u, φui is the antenna gain, sui is the shadowing co-
efficient, and gui is the fading coefficient. We used IBM’s
linear solver CPLEX as well as the modeling tool YALMIP
[16] to develop our algorithms. We generated 60 simulation
runs for two scenarios of SINR threshold γ: 10 and 25 dB.

Algorithm 1 Downlink PRB Resource Allocation Algorithm

Inputs: Number of existing UEs u with their demand Nu

and position at each arrival epoch n
Outputs: matrix z
I. Initialization:
1. Denote the initial problem P 0 and the set of active
problem nodes to be L = {P 0}.
2. Let the initial value set of core variable z∗ = ∅ and the
initial lower bound LB = −∞. Set f∗ = −∞ the initial
value of objective function.
II. Iteration: do
while Number of iterations ≤ itermax do

3. Select and delete a problem P l from L.
4. Solve P lR, relaxed version of P l, where z takes
continuous values between 0 and 1.
5. if P lR is infeasible, go back to step 3. else denote the
optimal solution zlR with objective function value f .
6. if f ≤ f∗ go back to step 3.
7. if zlR is integer, set f∗ ← f and z∗ ← z. Go back to
step 3.
8. If desired, search for cutting planes from previous
dropped constraints that are violated by zlR; if any are
found, add them to the relaxation and return to step 3.
9. Branch to partition the problem into new problems with
restricted feasible regions. Add these problem to L and
go back to step 3.
10. Go to the next iteration.

end while

Parameters Values
Number of RRHs 16

Bandwidth 10 MHz
Total number of PRBs 50

Max power Pmax 20 mW
Min power Pmin 0.1 mW

Constant α 0.5
Path loss model 148.1 + 37.6log10(d), d in Km

Shadowing standard deviation 5 dB
Fading model Normal distribution N (0, I)
Thermal noise −174 dBm/Hz

Transmit antenna power gain 8 dBi
Poisson Parameter λ ∈ [1, 10] (default 1)

Departure rate µ = 0.1
UE’s PRB demand Uniform distribution U(1, 10)

Table I: Simulation Parameters

For a fixed arrival rate of mobile users (λ ∈ [1, 10]), we vary
at each run their stay time and service demand following an
Exponential and Uniform law, respectively. Note that UEs’
positions are randomly generated at each run and remain fixed
during their whole stay time in the network. The service
demand of each user is expressed in terms of number of
PRBs from a downlink LTE frame of 50 PRBs. We fixed
the itermax metric of the B&C algorithm to 200 iterations.
Table I reports the simulation parameters. In what follows,
we present the corresponding simulation results in terms of
Throughput Satisfaction Rate (TSR), Spectrum Spatial Reuse
(SSR), transmitted power per RRH, number of BBUs, along
with the active number of RRHs.

1) Throughput Satisfaction Rate (TSR): Fig. 2 shows the
Cumulative Distributed Function (CDF) of the TSR, which is
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Fig. 2: Throughput Cumulative Density Function

Table II: Mean Spectrum Spatial Reuse

SINR DRAC QP-FCRA GSB
10 dB 1.2256 0.4602 1.0118
25 dB 1.2152 0.4577 1.0076

the ratio of the number of allocated PRBs to the total initial
demands Nu. As we can observe, more than 50% of UEs
have their TSR greater than 75% in both SINR thresholds
for DRAC. The TSR is lessened to 63% and 55% for QP-
FCRA and GSB, respectively - as shown in Fig.2–a - at low
SINR threshold, and to 60% and 44%, respectively, in Fig.2–b,
when the SINR threshold is high. Hence, our proposed DRAC
approach outperforms both QP-FCRA and GSB schemes.

2) Spectrum Spatial Reuse (SSR): Table II reports the SSR
of the three aforementioned approaches. The SSR represents
the average portion of RRHs transmitting the same PRB within
the C-RAN system. The more a PRB is reused, the better is the
performance. This is clearly shown in Table II, where DRAC
fosters more PRBs reuse, by a factor of 2.6632 and 1.2113
compared to QP-FCRA and GSB approaches, respectively, at
low SINR threshold. When the SINR threshold is high, the
reuse factor is enhanced by 2.6550 and 1.2060, respectively.

3) Transmitted Power per RRH: Fig. 3 illustrates the av-
erage power transmitted from each RRH. The GSB scheme
performs the minimum power consumption by switching off
RRHs based on their successive RRH selection algorithm.
However, this is negatively reflected on the TSR of mobile

a) SINR = 10 dB

b) SINR = 25 dB

Fig. 3: Transmitted power per RRH

users, as seen in Fig. 2, since they are less satisfied by their
allocated PRBs. In fact, while the iterative GSB method fosters
more RRHs switching off, it will result in less transmission
power consumption in the system, but will severely impact the
throughput satisfaction for mobile users due to the dynamic
scaling between power puik and PRB allocation yuik variables.
The QP-FCRA approach, on the other hand, supposes all RRH
are turned on, which leads to a higher power consumption but
to a good TSR. As observed in Fig.3 –a and –b, our proposed
DRAC scheme performs a good tradeoff between satisfaction
rate and overall power consumption for both SINR threshold
levels, since our method finds the optimal balance of RRHs to
be switched on/off to satisfy mobile users to their best, while
minimizing the power consumption in the system.

4) Number of BBUs and On RRHs: Fig. 4 illustrates the
number of BBUs needed per time for the conventional RAN,
the RRH-based RAN and the C-RAN contexts, when the
SINR threshold is equal to 25 dB. The one-one mapping in
conventional RAN imposes as many BBUs as deployed RRHs
to handle the radio site coverage. RRH-based RAN represents
the number of on RRHs based on our proposal to serve the



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120  140  160  180  200

N
u

m
b

e
r
 o

f 
B

B
U

s

Time

DRAC
RRH-based RAN

Conventional RAN

Fig. 4: Number of needed BBUs per time

Table III: Number of BBUs and RRHs

Scheme Mean BBU min max Mean RRHs min max
DRAC 1.63 1 3 6.54 1 5.6

Semi-static 11.74 10 14 16 1.6 2.1
Adaptive 8.8 8 10 16 1.44 4.75

fluctuating traffic load. The number of BBUs calculated using
our DRAC approach can achieve up to 80% and 87.5% savings
of BBUs compared to traditional RAN scenarios. Table III
presents the average number of BBUs and on RRHs as well
as the minimum and maximum average number of handled
RRHs per BBU. Clearly, our DRAC approach achieves more
BBUs savings to handle the same volume of traffic load with
reduced number of RRHs. This not only improves the network
capacity, since many cells will be managed by the same BBU,
but also creates less overhead in fronthaul links of the network.

5) Number of changed states: Finally, Fig. 5 investigates
the stability of our approach by computing the impact of users’
arrival rate on the number of changed states in the network.
Here, ”state” refers to the user allocation vectors (i.e., PRB
and power allocation) after solving the optimization problem
in (20) at each new user arrival. As shown in this figure, we
can see that the system encounters minimal state changes - up
to 9% and 10.1% for low and high SINR threshold cases,
respectively, which highlights the stability of our proposed
DRAC approach.
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VI. CONCLUSION

In this paper, we have proposed DRAC, a novel two-stage
design for Cloud-Radio Access Networks to address, firstly,
the resource allocation and power minimization problems
subject to power and SINR constraints, as well as the BBU-
RRH assignment problem. Our framework can determine at
each UE’s arrival the optimal number of RRHs to be turned
on and the number of needed BBUs to handle the whole
traffic load. Through simulations, we demonstrated that our
proposal achieves a good tradeoff between transmit power
minimization and high throughput satisfaction rate for mobile
users compared to state-of-the-art schemes. It has also been
shown that our method result in significant BBU savings with
maximum number of handled RRHs per BBU. This result will
consequently lead in less overhead in fronthaul links as well
as less interference issues between cells.
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