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Abstract

For a family of nonlinearly interconnected second order plants, we propose a hybrid modification of the well known high-gain
observer design, which leads to guaranteed asymptotic stability properties of the error dynamics, as well as exhibiting signifi-
cantly reduced peaking. The hybrid modification results in suitable jumps of the observer state, which therefore corresponds
to a discontinuous function of ordinary time. The jump conditions depend on the plant output and on extra states incorpo-
rated in the observer that evolve according to some suitable combination of the output error and of its integral. Our result is
illustrated on a well known case study taken from the literature, and also on a planar robot with rigid links.

1 Introduction

The observer design problem for nonlinear dynamical
systems has attracted the attention of several researchers
over the last years (see the books |Gauthier and Kupka
(2001); Besancon! (2007) and references therein). Differ-
ent approaches are possible such as high-gain observers
(Gauthier et al.| (1992)); Esfandiari and Khalil| (1992));
Khalil and Praly{(2013)) nonlinear Luenberger observers
(see |Andrieu and Praly| (2006)), passivity (as in |Ailon
and Ortegal (1993)) or bounds on the slope of the nonlin-
earity (see e.g.|Arcak and Kokotovic| (2001)). High-gain
observers design dates back to the late 1980’s (Nicosia
et al.| (1989)); Esfandiari and Khalill (1992); |Gauthier
et al| (1992)) and essentially corresponds to the intu-
itive idea that a very strong Lyapunov decrease arising
from high-gain linear output injection is capable of dom-
inating nonlinear terms satisfying a suitable bound. Due
to this intrinsic nature of the high-gain approach, these
observers suffer from the so-called peaking phenomenon
(Kokotovic| (1992); Esfandiari and Khalil (1992); Sepul-
chre et al.|(1997)); Khalil (1999)) wherein the observer
error can grow very large during the transient response.
One of the interest of asymptotic observers is to use the
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state estimation in an output feedback loop to achieve
asymptotic stabilization. To protect the system from the
destabilizing effect of peaking, high-gain observers have
to be followed by saturation as explained in [Esfandiari
and Khalil (1992)). This strategy has been formalized in
Teel and Praly| (1994)) in combination with an a priori
knowledge of a set of initial conditions to achieve semi
global stabilization and in|Kaliora et al.| (2006]) in combi-
nation with a norm observer. |Oliveira et al.| (2013} 2010)
successively exploit a dwell-time control activation to
avoid the peaking phenomenon.

In this paper, we focus on the state estimation problem
and we don’t assume that an estimation of the norm of
the state is available. We revisit high-gain observer de-
signs within the hybrid dynamical systems framework
of |Goebel et al.|[ (2012, 2009)) and, for a family of nonlin-
early interconnected second order plants, we propose a
hybrid high-gain observer having the novel feature of not
exhibiting peaking when the (high) gain of the observer
is increased. In particular, the observers that we propose
comprise a flow dynamics (continuous-time evolution)
which essentially coincides with the original continuous-
time high-gain observer of [Esfandiari and Khalil| (1992]);
Nicosia et al.| (1989); |Khalil (1999), augmented with a
suitable resetting rule enforced on the observer state.
Such a scheme ensures that trajectories approaching a
region of the state space where peaking occurs, are pro-
jected in another region where peaking is absent. We
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show that the Lyapunov function establishing exponen-
tial stability of the error system does not increase, thus
preserving the asymptotic state estimation property of
the observer. Alternative hybrid observation schemes
have been presented in, e.g., Raff and Allgower| (2008));
Paesa et al. (2012) and reference therein, which don’t
specifically focus on peaking reduction.

Preliminary results in the directions of this paper have
been presented in |Prieur et al. (2012)). Here, as com-
pared to those preliminary results, we extend our the-
ory from a single second-order plant to a family of non-
linearly interconnected second-order plant, which allows
us to address the case of joint speed estimation in n-
degrees of freedom Euler-Lagrange systems. Moreover,
we propose different resetting laws and jump and flow
sets, to allow for a suitable adaptation of the results to
the 2n-dimensional case. Another observer approach to
avoid overshoot in the case of planar multidimensional
systems is the reduced order observer. More precisely,
this framework presented in (Besancon, [2000, Lemma
3.1) computes a reduced order observer for any system
for which a high-gain observer has been computed and
thus leads to a reduction of the overshoot. In the con-
text of planar observer (that is n = 1 in (1) below), the
obtained observer is scalar and has a decreasing state es-
timation error. However the estimate has a feedthrough
term from the measurement output and thus is more sen-
sitive to measurement noise. The hybrid observer that is
designed in the present paper can be seen as a tradeoff
between these two techniques. Recently in |Astolfi and
Praly|(2013]) another approach to avoid peaking has been
investigated. It employs a projection approach and re-
quires the knowledge of a convex set in which the state
trajectory remains. This is not required in our approach.

The paper is organized as follows. Section 2 is dedicated
to revise the high-gain observer by introducing suitable
resetting laws for the state of the observer in order to
reduce the peaking. Section 3 deals with an application
of the results to a robotic example.

Notation: Throughout the paper, notation is standard.
|| stands for the Euclidean norm. For any vector x (resp.
matrix A), 27 (resp. matrix AT) denotes its transpose.

2 A hybrid observer with reduced peaking

Before considering a hybrid observer in Subsection 2.2
below, let us first define the class of nonlinear planar sys-
tems and the associated high-gain observer. The peaking
phenomenon is also briefly discussed and illustrated.

2.1 High-gain observer design and Lyapunov properties

Following the standard approach in, e.g., Esfandiari and
Khalil (1992)), we consider a set of n second order nonlin-

ear systems whose state is denoted by = (z1,...,2,) €
R2" and z; = (p;, v;) € R?, where each substate x; obeys
the following second order nonlinear dynamics with non-
linear couplings arising from the terms ; and ¢;:

Pi = vi +Vi(y) , i = ¢iw,u)
Yi = Di,

(1)

foralli =1,...,n, where y = (y1,...,yn) € R™ is the
measurement output, u € RP is a known control input
that is piecewise continuousEand Yiand ¢;,i=1,...,n
are known nonlinearities establishing a nonlinear cou-
pling among the n planar systems. For example, in the
robot example of Section 3, these couplings are caused by
strong nonlinear coupling effects between the two joints.

Remark 1 Note that in [Esfandiari and Khalil (1992)
an output feedback is designed assuming that the nonlin-
earities ¢; are uncertain. In this paper, since we address
the asymptotic observer design problem we consider the

case in which dynamics are perfectly known (as|Gauthier
and Kupka (2001)) or Besancon| (2007)) for instance). 4

High-gain observers are used to provide an estimate &
of the state x. If the following Lipschitz-like condition
holds for a suitable constant Ls > 0:

|pi (1) — ¢s(2,u)| < Lgle — 2|, Vi=1,...,n, (2)

for all z and # in R?", u in R?, then a high-gain observer
can be designed to ensure asymptotic stability of the
origin of the feedback system from the observed state.

Remark 2 Lipschitz condition (2) is standard in the
context of high-gain observer designs. Note however that
it has been relaxed in |Lei et al.| (2005) allowing for a
strictly increasing high-gain parameter. We do not fol-
low this route since this approach may lead to undesir-
able behavior in the context of disturbed measurements.
Moreover, this Lipschitz condition has been also slightly
relaxed in|Andrieu et al.| (2009)) employing homogeneous
tools. Possible extensions of our tools in these directions
are object of future work. a

For system (1) we can design the following high-gain
observer:

A ﬁz
:L‘,L» = . =

i = 1,...,n, where ey,; = y; — p; is the i-th output
error, k1 and ko are any pair of positive scalars, and £ is

0i + i(y) + Lhiepi
gbi (.f, u) + Engepi

‘| = fi<§3,€pi7u)a (3)

2 The assumption on piecewise continuity of input u could
be relaxed but special care has to be paid to the hybridization
of the corresponding function of time (see, e.g., [Sanfelice
(2014) for details).



the “high” gain of the high-gain observer. The following
dynamics can be easily derived from (1), (3) if one defines
the scaled error coordinates e, := (ep;,€y) = (pi —

Di, 571(02' —0;)):

_kll 0
—k2 0 “t w

=:lA.e; +

é; =14

, i=1,...,n, (4)

which reveals the potential for the high-gain £ > 1 to
dominate over each nonlinear term d;, i = 1,...,n. In
particular, from (2), if £ > 1, we obtain

) Ls, .
6i(z, &, w)| < e — 2] < Lole| (5)

A possible way to characterize the set of sufficiently high-
gains ¢ ensuring exponential stability of the error dy-
namics (4) is given in the next proposition, which is given
here for completeness and will be useful for our results.

Proposition 1 Consider plant (1) satisfying (2) and
observer (3), and pick any matriz P = PT > 0 such that
ATP + PA. < 0. Then, for each ¥ > 0, there exists a
high-gain parameter £ > 1 such that

((ATP+ PA.) +nVL31, P[Y]

(PO |5 ©

Moreover, with such a selection of the high-gain £, the
origin is globally exponentially stable for the error dy-
namics (4), as established by the Lyapunov function

e— Ve ZeTPelfe (P®I)e, (7)

=1

where e = (eq, ...
matriz.

sen) and I, € R™ ™ 4s the identity

Remark 3 Before proving Proposition 1, let us note
that in its context, and recalling the definition of the

scaled error, Lemma 3.1 of Besancon! (2000) applies and
leads to the following reduced order observer z; = [ﬁ]
n where v; = w; + pl_llplz p; and w; has

fori=1,...,
the following dynamics w; = ¢;(0,u) + ;’1112[ 0; where

P = [P;* D121 With this observer, the Lyapunov function
of the error system is >, (v; — 9;)?, which has balanced
coordinates. This is not the case for Lyapunov function
(7) in the original error coordinates. Therefore the re-
duced order observer prevents in general peaking, but
its estimate ©; depends directly on p; and is therefore
expected to be more sensitive to measurement noise.

Proof of Proposition 1. Regarding exponential stability
of (4), we show next that V is a Lyapunov function for
dynamics (4). To this aim, from (5) we get

[ 01 (x,Z,u) ‘|
5,,,(m..,:i,u)
Then, from (8) and for any ¥ > 0, we can write for all x

and & in R2",
—ﬁnL%Izn 0 e
0 I, | [6(x, &,u) (9)

T
lé(x,i“,u)]
= 9(0(x, 2, u)T§(z, &, u) —nLieTe) <0.

0(z, 2,u)| := < VnLsle|. (8)

Now let us rewrite dynamics (4) as follows:
e=l(Ac® L)e+ (Y ®I,)d(z,2,u), (10)

and note that using the well known relation (A® B)(C'®
D) = AC ® BD, the derivative of the function V in (7)
along dynamics (10) can be bounded as follows, where
we also use (9):

V=2eT(P I, <€(Ae ® I)e + ([9] ® I,) 8(z, 2, u))
=eT2(PA. @ L)e+e"2(P[V] @ 1,,)0(x, &, u)

r |(((PA.+ ATP) + InLihL)® I, *
<1[5] . (5],
(P9 ®1,) -1,
< —ev(le]* +[6(z, 2,u)*), (11)

where * denotes symmetric entries, § is a shortcut no-
tation for 6(z, &, u) and where the last inequality holds
for some small enough €y > 0 from combining the strict
inequality in (6) with standard properties of the Kro-
necker product. Since V is quadratic in e, with (Khalil
2002, Thm 4.10), this implies exponential stability of the
origin for the error dynamics (4). O

Remark 4 Since ATP + PA,. < 0, there exist ¥ > 0
and ¢ > 1 such that (6) holds. It should be noted that
(6) is more conservative than the Worst case necessary
condition for obtaining V < 0 in 7} This, in light of
bound (5) can be written as Y-, el (PA. + AT P)e; +
2v/nLslel P[9]]le] < 0 for all e ;é 0 The important
advantage of ( ) with respect to the above necessary
condition is that it is quasi-convex with respect to the
unknown variables P > 0, ¢,7 and thus defines a quasi-
convex domain. It is thus natural to compute the optimal
solution to

PI>nO114119 ¢, subject to (6), (12)

so that one then implements the smallest possible gain
guaranteeing global exponential stability (GES) of the



origin for the error dynamics. The degree of conserva-
tiveness of (6) with respect to the above mentioned nec-
essary condition is easily understood from the proof of
Proposition 1, which is based on an application of the
S-procedure (a necessary and sufficient condition) ap-
plied to bound (8). Therefore (6) is necessary under the
worst case condition (8), which is in general more con-
servative than (5), even though it is equivalent to (5) in
the case n = 1. For n > 1, the increased conservative-
ness allows to formulate the quasi-convex optimization
problem (12). a

Example 1 To motivate our work, we consider the
following example, inspired by (Esfandiari and Khalil,
1992, Example 3) (function ¢(-,-) is perfectly known
here while it is uncertain in |[Esfandiari and Khalil
(1992)) and corresponding to the case n = 1 so that the
state x = 21 = (p1,v1) = (p,v) is two-dimensional:

p=wv, 0 =aysin(p) + byu, (13)

where a; = 1.4 and by = 0.8 are two constant values.
As explained in [Khalil| (1999), this example illustrates
the peaking phenomenon, and shows how high gain can
destabilize the closed-loop system (see also (Sepulchre
et al., (1997, Sections 1.3.2 and 4.5) where the conse-
quences of peaking are studied). The high-gain observer
(3) is designed with the parameter £ satisfying (6) based
on the following condition, which is easily proven to hold
with Ly = %:

5, 0)] = |62, 0) — 6(2,w)] = |oa (sin(p) — sin(p)]
<ailp—l < olp 5|

Using k1 = ko = 1, we may check that the assumption
of Proposition 1 is satisfied with P = [_5.5 *?'5] and
that (6) holds with ¥ = 2 and £ = 20 (the high gain
¢ = 20 is also used E| in [Esfandiari and Khalil| (1992])).
Therefore the conclusion of Proposition 1 holds and the
scaled error system (4) is exponentially stable. Note that
exponential stability of (4) is guaranteed in this example
by using the quadratic Lyapunov function V' (e) = e Pe.

To illustrate the peaking phenomenon on simulations,
let us consider (as in [Esfandiari and Khalil (1992)) the
initial condition (p(0), v(0),p(0),v(0)) = (1,0,0,0). The
phase portraits of (e,, e,) and (p — p,v — 0) = (ep, le,)
are given in Figure 1. We may check on this simulation
that the choice of the high-gain ¢ = 20 induces a peaking
phenomenon for the error coordinates x — & (right plot)
but not for the scaled error coordinates e (left plot).

3 Tt corresponds to the value ¢ = 0.05 using the notation
of |[Esfandiari and Khalill (1992). It is also interesting to ob-
serve that the quasi-convex GEVP in (12) leads to the less
conservative estimate £* = 3.94.
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Figure 1. Phase portrait of the coordinates (ep, €,) (left) and
of (p — p,v — v) (right).

The undesirable peaking phenomenon illustrated by Ex-
ample 1 (see Figure 1) can be understood well in terms
of the trend of the norm of the estimation error |z — 2| =
’ [ ;ep: 1] A coarse understanding of the trend of this er-
ror can be gained by neglecting the nonlinear terms in
the error dynamics (4), because these are dominated by
the high-gain linear dynamics (see Proposition 1). Then,
neglecting those nonlinear terms, one obtains:

d
§|$ — i‘|2 = —2€(k1812)i + (€2k2 — 1)61,1‘61”‘),

which indicates that the flow dynamics (4) naturally en-
forces non increase of the norm of the estimation error
in the quadrants ep;e,; > 0, whereas the peaking effect
(increase of |z — #|) arises in the second and fourth quad-
rants where ep;e,; < 0. Thus one would expect that a
reasonable thing to do when e belongs to the second (or
fourth) quadrant is to change the sign of e,;, thus jump-
ing on the opposite side of the vertical axis so that the
size of e,; will stop increasing (see also Figure 2). The
following result substantiates this intuition.

Lemma 1 Consider the matrices in (4) and assume that
(6) holds for some P, 9. Given any e satisfying eprepr < 0
for some k € {1,...,n}, define e as the vector with the
following components:

6i+:{el, ifie{l,...,n}\ {k} )
(—aepi,en), ifi=k,

where a € [0,1] is a real number. Then the function V
defined in (7) satisfies V(et) < V(e).

Proof. Since inequality (6) implies AT P+PA, < 0, then,
from the structure of P and A, we have that the elements

# # ]
<0,
# 2p12

where # denotes “don’t care” entries. Since the diagonal
terms must be negative, we have p12 < 0. Consider now

of P :=[JL Bi2] satisfy: ATP 4+ PA, =




the equation

(042 —1p1 =

(eN)T Peff —ef Pey = e},
—(1 + Oé)plg 0

‘| €k, (15)

where x denotes symmetric terms. The term (1,1) in
(15) is negative and the term (1, 2) is positive. Therefore
as long as epreyr < 0, it holds (e',:)TPe;C" —el'Pep <0
which concludes the proof of Lemma 1. (Il

2.2  Hybrid observer equations and properties of solu-
tions

In this section we inherit the continuous-time dynam-
ics (3) of the high-gain observer and introduce suit-
able resetting laws for the estimate & in such a way
to reduce the peaking along the intuitions provided by
Lemma 1. This is formally done by considering the fol-
lowing hybrid system and by denoting the overall state
€= (2,2,(,n) € R x R x R" x R™:

i = fi(&, epiyu)
£€C, ¢ G=0 (16a)

i = (yi — )%
i =

€Dy, G = (ui—9:)° (16b)
i =0,
. [y — a(p; — yz)]

¢epr, % (16¢)
G =a®(yi —i)°
i =0,

where ¢ = 1,...,n and in the jump rules the unspecified

states remain constant across jumps and « € [0, 1]. The
flow and jump sets C and D are defined as:

C ={£eR": —A,, <€ — G+ 2lkin; < Ay, Vi},
D = D’uDrm,
=1

DY :={6 e RO": €2, — (i + 2lk1n; > Ay},
'Dlmiz{f € RO . efai — G+ 2lkin; < —Am},

(16d)
where ¢ = (C1,---,GCn)s 1 = (N1, -.,1n) and Ap > 0,
A,, > 0. Using the notation in |Goebel et al.| (2012,
2009), the hybrid dynamics should be interpreted taking
the jump set as the union of all the jump sets D!, DY
(as specified in (16d) and a set-valued jump map corre-
sponding to the outer semicontinuous hull (see (Rock-

afellar and Wets| 1998, pp. 154-155)) of the 2n jump

maps in (16b)—(16c), which may be written as follows:

&= U d@)u( U )

i: €eDP i: €€D

where g and ¢/, i = 1, ..., n, denote the functions spec-
ified in (16b) and (16¢), respectively, augmented with
trivial identity functions for the remaining components
of the states (see also [Phillips and Sanfelice| (2015) for
this type of jump map constructions with outer semi-
continuous hulls). Then when any of the i-th jumps in
(16b), (16¢) is enabled, the solution jumps following that
specific jump rule for component ¢ while the other com-
ponents remain unchanged across the jump. Then, the
overall hybrid closed loop between plant (1) and observer
(16) is understood as the combination of the flow and
jump dynamics in (16) with the flow dynamics in (1)
and the trivial (omitted) jump dynamics associated to
the states that remain constant among jumps. For ex-
ample, one always has 21 = x, resembling the fact that
the (continuous-time) plant state x never jumps. Note
also that the proposed jump rules all imply Cj = (e;;i)2
and ;" = 0, so that (e;ri)2 — ¢+ tkin = 0 so that
&t ¢ DPuD

The following proposition establishes well behaved-
ness of the proposed hybrid observer in terms of num-
ber of jumps. In particular, since we are interested in
continuous-time observation laws, the proposition en-
sures that all solutions satisfy an average dwell-time
condition so that no Zeno solutions may occur and all
maximal solutions are complete and have unbounded
time domain in the ordinary time direction. Its proof
is an extension of the proof of our main result and is
therefore given at the end of the next section.

Proposition 2 Consider the hybrid closed loop between
plant (1) and observer (16). If (6) holds for some P and 9,
then all mazimal solutions are complete and each solution
has a hybrid domain satisfying an average dwell-time
condition.

Remark 5 Hybrid observer (16) produces a hybrid es-
timate & of the continuous plant state x. By Proposi-
tion 2, this estimate &, whose domain dom Z is a hy-
brid time domain, can be projected on the ordinary
time axis ¢, thereby obtaining a discontinuous function
of time whose value at the jump instants may be se-
lected in multiple ways depending on the type of pro-
jection method (for example imposing that the function
be left- or right-continuous). Note that the speed esti-
mates 0;, ¢ = 1,...,n are continuous functions of the
ordinary time, indeed from (16b) and (16¢) it is clear
that ©; does not change across jumps. However, the po-
sition estimates p; do experience discontinuities across
jumps occurring from D} (see (16¢)), therefore these es-
timates are discontinuous functions of the ordinary time
t. In our preliminary work (Prieur et al., 2012, §IV), we



proposed an extension of observer (16) that makes suit-
able use of a hybrid logic state ¢ toggling between —1
and 1 to obtain a continuous estimate of the position.
We avoid repeating here the same type of generalization
that can be obtained by following the steps in (Prieur
et al., 2012, §IV). We emphasize, in addition, that the
toggling therein suggested is such that when ¢ = —1 one
obtains a direct feedthrough term from the output y to
the state estimate Z (see (Prieur et al. 2012, eqn (15))).
Due to this reason, and since we insist here on the advan-
tages arising from the use of a strictly proper observer
as compared to an observer with feedthrough terms (see
the discussion at the end of Remark 3), we promote the
observer dynamics (16), which is an enhanced general-
ization of the preliminary observation law proposed in
(Prieur et al.l [2012] §IIT). J

2.8  Proof of convergence of the error dynamics

In hybrid observer (16), for each i € {1,...,n}, as long
as £ € DY, we implement the resetting law suggested by
Lemma 1 and corresponding to (14). Indeed, note that
the first equation in (16¢) implies e;ri =y —p = —aep.

In addition, to suitably define the jump and flow sets,
hybrid observer (16) implements two extra states (; and
71;. The state (; remains constant during flows and, at
each jump time, jumps to the value of the i-th squared
output error immediately after the jump, namely (e;ri)2
(this fact can be easily seen by inspecting (16b) and
(16¢)). This means that ¢; acts like a sample and hold of
the value of efn- immediately after the latest jump. The
state n;, instead, is reset at zero at each jump time and
then integrates the i-th squared output error ezi during
flows. Finally, A, > 0 and A,, > 0 are (constant) design
parameters, which can be tuned by bearing in mind that
smaller values of A,, lead to increased observer jumps
(and reduced peaking) of the hybrid observer dynamics,
while large values of A,, induce less resets and possibly
no resets at all for very large values.

Based on the above observation, given any hybrid solu-
tion & to the hybrid closed-loop (1), (16), denoting (¢;)
the sequence in R such that (¢;, j) and (¢;, j+1) € dom¢&,
and any (t, j) € dom £ such that, for somei € {1,...,n},
ni(t;j,7) = 0 and (;(t;,5) = €pi(t;,j), we have the fol-
lowing property:

Gi(t,5) = eni(ts,3) 5 mi(t,5) = / e (1, j)dr,  (17)

tj

for alli = 1,...,n. The next lemma is the main motiva-
tion for the introduction of the extra states.

Lemma 2 Consider any solution & to the hybrid closed
loop between plant (1) and observer (16) starting from
initial conditions satisfying 1(0,0) = 0 and ¢(0,0) =

ep(0,0). Foreach (t,7) € dom &, ifE(¢, j) € DI for some
ie{l,...,n}, then epi(t, j)evi(t,7) <O0.

The following simple claim will be useful for the proof
of Lemma 2.

Claim 1 Given any two non-negative reals satisfying
0 <t; <t ascalar 6 € R and a continuous function
©(s), s € [t;,t], assume that:

t E]

/w(T)dT <6, and s < /¢(T)d7, vs € [t;,1), (18)

t; t;

then @(t) < 0.

Proof. First note that fttj o(T)dr = limg_y; ft“j o(T)dr

and thus it follows from (18) that |, tt'_ o(T)dr = §. More-

over defining the continuously differentiable function ¥
by ¥ :s e [tj,t)— ftj o(7)dr, it follows from the second
inequality in (18) that W(t) < ¥(s), for all s in [t;,1).
Considering the derivative of ¥ at ¢, this inequality im-
plies ¢(t) < 0.

Proof of Lemma 2. For all (t,j) > (tj,j) € dom &,
s + &(s,7) is absolutely continuous and in particular
(4) makes sense for all almost all s € [t;,t). By multi-
plying the first equation in (4) (with ¢ = k) by 2e,;, we
get 2ep:€p; = 20epie,; — 20k, 612”-, which can be integrated
between t; and s € [t;,t] to get

) . Sd .
exi(s,5) — eni(tj. d) =/ enilT0)dr
t; aT

:/ gp(T)dT—%kl/ efn-(ﬂj)dT

tj tj

where ¢(T) = 20e,,; (T, j)eyi (T, §). Using the identities in
(17) (which hold for j > 1), this implies:

/t S o(P)dr = (s, 5) — Gls.g) + 2hkni(s,d). (19)

J

Since we also have {(s,j) € C forall s € [t;,t) (otherwise
the solution could not flow in this interval), then using
the definition of flow set in (16d) and the assumption of
the lemma, we have that

e2:(s,5) — Cils,7) + 2Chkimi(s, 5)

Z *Am,y
exi(t,5) = Gt ) + 20kin;(t, ) < —Apy,

Vs € [tj7 t)

which, combined with (19), implies equation (18)

with § = —A,, and then by Claim 1 we have
o(t) = 2lepi(t,j)esi(t,j) < 0, which completes the
proof. O



In light of Lemma 2, the rationale behind the hybrid ob-
server dynamics (16) can now be explained. As long as
the solution £ belongs to the flow set, the observer dy-
namics coincides with that of the continuous-time high-
gain observer. However, the extra variables ¢ and n keep
track of the quantities in (17) for each ¢ € {1,...,n}.
These quantities are used in the jump/flow rules of (16d)
to detect (based on Lemma 2) whether a substate e;
belongs to the second/fourth quadrant. In particular,
once we detect £ € Dj* for some ¢, then from the last
equation in (16d) we have 61291' — (i + 20k < A,
and Lemma 2 applies. Such an event triggers the jump
rule in (16c) which implies that e = (—ae,;,e,;) and
then non-increase of the Lyapunov function follows from
Lemma 1. This result is formalized in the next statement
which is the main result of this paper.

Theorem 1 Consider plant (1) satisfying (2), and ob-
server (16). Assume that (6) holds for some P and 9.
Then there exist positive scalars M, \ such that the esti-
mation error e = x — I satisfies

le(t, 5)] < M exp(—At)|e(0,0)], V(¢ j) € dom e, (20)

for any solution £ to the closed loop between plant (1) and
observer (16) starting from initial conditions satisfying
7(0,0) = 0 and ¢(0,0) = e,(0,0).

Remark 6 Due to the expressions of the flow set, it
yields that (x,Z,(,n) is in C if and only if
_Am - e?n' + C’L
20k;

Ay — 61297: + G

S0k, , Vi .

<n <
In light of Proposition 2 (ensuring that all maximal so-
lutions have unbounded domain in the ordinary time
direction t), Theorem 1 states the exponential conver-
gence to zero of ey;. Since along flow (; are constant,
this implies that n; are also bounded along flow. With
the expression of the jump map in (16a)-(16¢), it yields
boundedness of the variables ( and 7 along the solutions
to the hybrid system. J

Proof of Theorem 1. Consider the Lyapunov function
V(e) = eT (P ® I,)e as in (7), which satisfies:

2 2 2n
aile]” < V(e) < aslel*, VeeR™, (21)
for some positive scalars a1, a. Moreover, since the flow
dynamics in (16a) coincides with the continuous-time
high-gain observer dynamics, one has from Proposition 6

(see in particular (11) and the scalar ey therein intro-
duced):

V(€) < —evlel? < —Z—VV(e), Ve ec. (22)
2

Regarding the change of V' across jumps, notice that
from (16b) £ € DY leads to e™ = o™ — 2T =2 — 3 =

e, which means V(et) — V(e) = 0,V¢ € D?. As for
D;" we need to specifically look into solutions and apply
Lemmas 1 and 2. In particular, for any solution £(t, j),
(t,j) € dom¢,if&(t;,j—1) € DI for some jump time ¢,
then we have from Lemma 2 that ep;(t;, 7 — 1)eyi (¢, 5 —
1) <0, which, from Lemma 1 implies V(e* (¢;,7 —1)) =
Ve(t;, 7)) < V(eT(t;,7—1)). More specifically, we have
for all (tp,h) € dom &,

Vie(tn,h)) — V(e(tp,h — 1)) <O0. (23)
Consider now a hybrid time (¢,j) € dom &. and, for
simplicity, let us denote t;41 = t (even though t;; is
not necessarily a jump time). Along any flowing interval
[thyth+1], h € {0,...,7}, we know that the solution be-
longs to C (because C is closed) and then we may use (22)
to characterize the continuous variation of V' as follows:

%V(e(T, W) < =LV (elr, b)), ¥r € (tn,trsa). (20

Using standard comparison theory and the fact that V'
is continuous along flow, we may transform (24) into an
exponential bound. Then, concatenating all the bounds
from h = j to h = 0 and exploiting recursively (23), we
get:

<oxp (=L (- 1)) Vietto,0)

2

where to = 0 by definition. Finally, using (21) we get

(1, ) < - V(elts) < - e (—Zt) V(e(0.0))

< a2 exp (_ﬂ/t> le(0,0)2, (25)
a2

ai

2 g

completing the proof with A = 267‘/2 and M = /&2
Proof of Proposition 2. To show that all (maximal) so-
lutions are complete, let us first note that the Viabil-
ity Condition (VC) of (Goebel et al., 2012, Prop 6.10)
holds and that C U D = R®". Moreover, using (22) and
(23), we obtain that function V' is nonincreasing along
solutions, therefore solutions cannot escape to infinity
in finite time. Therefore, with (Goebel et al., 2012, Prop
6.10), all maximal solutions are complete. Moreover it
follows from (25) that

le(t, )] < \/fe((),()ﬂ7 Y(t,j) € dom e. (26)



Then, using (4) and (5), we get for almost every t
and for all j such that (¢,j) € dom e, |é(t,j)] <

(£|Ae®ln| Z—f—f—nLg) 16(0,0)] =: M.|e(0,0)|. Based

|
on the definition of jump set in (16d), we know that the
solution does not jump as long as 6; = \e?ﬂ—g}—i—%kzl ni| <
min{A,, A, } =: 9, for all i = 1,...,n. This bounded-
ness property, together with the fact that C U D spans
the whole space, implies that solutions can always be
continued and then maximal solutions are complete.

Consider now identities (17) and conclude that imme-
diately after each jump time ¢; with the jump triggered
by D UD!™, we have 0;(t;,j) = 0. Moreover, using (17)
and (26) we have

16] < 4]é||e|+20ky [e]? < (4Me o 4 2€klg—f) (0, 0|2 =
M.

Therefore, for each t € [t;,t; +6/Mjy), such that (¢, h) €
dom e for some h > j, we have 0;(¢, h) < §, which implies
by definition of § that £(¢, h) ¢ DY UD{™. Therefore any
pair of hybrid times such that the state is in the same
jump subset DY U DI should be separated by at least
d /My flowing time, for each ¢ € {1,...,n}. Since there
are n instances of subsets DY U DI, we conclude that
each solution jumps at most n times in any ordinary
time interval of length 6/My. In other words, following
the characterization of (Cail et al., 2008, Prop. 1.1) all
solutions to the hybrid observer closed loop satisfy an
average dwell-time condition with parameters (My/d, n).

Example 2 Let us reconsider Example 1 and compare
the classical high-gain solution with the hybrid solution
having the same parameters and with the selection A, =
A, = 0.01 and a = 0.5. Starting from the same initial
condition as in Example 1, we obtain the phase portraits
of (e1,ez) and (z1 — &1, 29 — &2) given in Figure 2.

By comparing Figures 1 and 2, we note that the high-
gain reduces dramatically the peaking experienced in
the linear case. The Lyapunov function V(e) = el Pe
decreases exponentially fast to zero when flowing, while
it does not increase across jumps, as established, respec-
tively, in (22) and (23) in the proof of Theorem 1.

In particular, Figure 3 shows the ordinary time evolu-
tion of this Lyapunov function for various selections of
« within the allowable range. From the top plot it is
apparent that smaller values of a lead to a more sub-
stantial decrease of the Lyapunov function across jumps
(despite the fact that only non-increase is guaranteed by
our results). On the other hand, comparable transients
are experienced on the norm squared of the unscaled er-
ror (1 — &1, 22 — T2) (bottom plot), thus showing that,
regardless of the selection of «, the hybrid high-gain ob-

Hybrid observer|
~2[| = = = Linear Observe

-0.5 0 0.5 1
&

Figure 2. Phase portrait of the coordinates (e1, e2) (left) and
of (x1 — &1, 2 — Z2) (right), with o = 0.5.
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Figure 3. Time-evolution of the Lyapunov function V(e)
(top) and of the squared norm of the non-scaled error (bot-
tom), with various selections of a.

server shows a tremendous improvement on the peaking
of the standard high-gain solution (the dashed curve in
the lower plot reaches a peak value of 11.9). For this spe-
cific simulation, the selection a@ = 0.25 appears to be the
most desirable one, and the selection o = 0 surprisingly
leads to just a few resets. J

Remark 7 As illustrated in Example 2 below, the hy-
brid high-gain observer proposed here is capable of sup-
pressing the peaking behavior, as illustrated in Figure 3,
where the estimation error |z — %| is represented. When
A, and A, are selected sufficiently small as compared
to the period of the revolving trajectories, once the er-
ror enters the “peaking-prone” region epe,; < 0, the
resetting rule in (16¢c) changes the sign of ep;, thereby
transferring the trajectory to the good region ey;e,; > 0
where the error is decreasing again. Since the sign of
epi€yvi is detected by our algorithm based on an integral



inequality, then some increase of the norm of the error
should be expected (see e.g., the black curves in the bot-
tom plot of Figure 3) but this increase is expected to
be significantly smaller than the one experienced from
peaking (the dashed curve in the bottom plot of Figure 3
reaches a peak of 11.9). J

3 Application to a planar robot example

A relevant class of systems that falls into the setting
of equation (1) is that of fully actuated Euler-Lagrange
systems (see, e.g., |Ortega et al| (1998); [Sciavicco and
Siciliano|(2000))). Denoting by ¢ the generalized positions
and by ¢ € R? the generalized velocities, the equations
of motion of these systems can be compactly represented
as (see, e.g., (Sciavicco and Siciliano), (2000} §7.1))

D(q)§+ C(q,4)q + h(q) = u, (27)

where D(q) is the inertia matrix, which satisfies d,in I <
D(q) < dpmax! for all ¢ and for a suitable selection of
positive values dpin, dmaz, C(q,¢)¢ comprises centrifu-
gal and Coriolis terms (namely quadratic terms in ¢),
h(q) is the gravitational vector, and u represents the ex-
ternal forces/torques applied on each degree of freedom
of the system.

Selecting y = p = ¢ and v = ¢, model (27) can be
represented as in (1) with selection ¢ (y) = 0 and

¢((p,v),u) = D~ (q) (u = C(p,v)v — h(p)). (28)

While we may apply our technique to any such Euler-
Lagrange system, we concentrate on a planar two-link
rigid robot manipulator with rotational joints, used in
many existing works (see, e.g., (Sciavicco and Sicilianol,
2000, §7.3.2)). We use the parameters used in|Morabito
et al.| (2004).

A typical control selection for robotic systems is the feed-
back linearizing controller, which can be implemented as
follows in feedback from the measured position and the
observed velocity:

u = C(p,v)v+ h(p) — D(p)(Kpp + Kqv), (29)

where we select K, = [2) 0] and K4 = [% %] to induce
a desirable and graceful response of the closed-loop sys-
tem via state feedback (see the top curves in Figure 4).
To describe a practical scenario, we carry out simulations
by taking into account a disturbance acting on the po-
sition measurement p, corresponding to the presence of
a quantizer, possibly arising from the use of incremental
encoders that measure the joint positions. The quantizer
level is chosen as 27/3600, namely we assume that the
encoder has 10 steps per degree. Since it is known that
high-gain observers are sensitive to measurement noise,

in addition to the quantization level, we add a band lim-
ited white noise to the position measurements (after the
quantization) having sample time 0.01 and noise power
107, so that the sensitivity to noise is comparatively
assessed. EAS customary in robotic applications, rather
than relying on the conservative bound on ¢ arising from
Proposition 1, we tune parameter ¢ with the goal of ob-
taining a suitable filtering action for the quantization
noise, thereby obtaining the value ¢ = 5. We still imple-
ment the reduced order observer described in Remark 3
by computing a matrix P, from (6) by maximizing the
allowable Ls for this specific value of ¢ (similar to Re-
mark 4, this is a generalized eigenvalue problem). We
also select A, = A,, = le — 3 so that resets are suit-
ably induced during the transient response of the hybrid
observer.

Figure 4 shows the simulation results starting from
the initial condition p(0) = (50,0) degrees and
v(0) = (50, 50) degrees/sec. The peaking occurring with
the bare high-gain solution is quite evident from the left
graph on the third row, while this peaking is removed by
both the hybrid high-gain solution and the reduced or-
der solution of the second and fourth rows. Interestingly,
most resets of the hybrid observer occur during the ini-
tial transient (when peaking must be removed) and only
a few resets occur in the remaining part of the response
(see the last row of the figure). This reveals that after
the initial transient, the hybrid solution essentially pro-
duces responses coinciding with those of the high-gain
solution (essentially without resets, except for seldom
ones caused by noise). The advantage of the hybrid
solution versus the reduced order one is evident at the
steady state (right graphs in Figure 4), where unpleas-
ant bursts can be inspected in the curves of the second
row, corresponding to the reduced order solution. These
bursts arise from the fact that the high-gain and hybrid
high-gain solutions are both strictly proper observers,
thereby providing a filtering action that is impossible
to obtain from the reduced order approach, where the
position measurement is directly fed to the input of the
controller. [°| No disturbance is used in the state feed-
back simulation (upper curves) to better illustrate the
desirable features of the (ideal) undisturbed state feed-
back response. Note also that in the presence of noise
having larger amplitude, one expects a graceful perfor-
mance degradation of the proposed scheme due to the
semiglobal practical stability results proven in (Goebel
et al.l 2012, Thms 7.20 & 7.21), which hold for our so-
lution because it satisfies the hybrid basic conditions by

4 We realize that the presence of noise after a quantizer is

not physically meaningful but we expressively carry out this
test to verify the observers responses in a worst case scenario.
> Maybe the bursts, obtained with the reduced order ob-
server, may be avoided by adding an appropriate one-order
filter to recover the same dimension of the dynamics as the
the hybrid observer. However the tuning of this filter may
be problematic.
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Figure 4. Output responses for the two link robot arm: state
feedback (top), classical high-gain (middle-top), hybrid high-
-gain (middle-bottom), Remark 3 (bottom).

virtue of the regularity of the data in our solution.

4 Conclusion

Considering a family of nonlinearly interconnected sec-
ond order plants, the high-gain observer design has been
revised within a hybrid dynamical systems framework,
with the objective to avoid the peaking phenomenon.
A hybrid high-gain observer has been proposed by aug-
menting the original continuous-time high-gain observer
dynamics with a suitable resetting rule relying on the
observer state. This approach has been illustrated on an
example borrowed from the literature, and also by means
of simulations on a planar robot. The hybrid high-gain
observer is also interesting when compared to a reduced
order observer, since both observers reduce peaking, but
the hybrid high-gain observer exhibits a few number of
jumps and avoids bursts of the input, that are present

when closing the loop with a reduced order observer.
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