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This paper proposes a novel criterion for an improved writer enrolment based on an entropy measure for online genuine
signatures. As online signature is a temporal signal, we measure the time-normalized entropy of each genuine signature, namely,
its average entropy per second. Entropy is computed locally, on portions of a genuine signature, based on local density estimation
by a Client-Hidden Markov Model. The average time-normalized entropy computed on a set of genuine signatures allows then
categorizing writers in an unsupervised way, using a K-Means algorithm. Linearly separable and visually coherent classes of writers
are obtained on MCYT-100 database and on a subset of BioSecure DS2 containing 104 persons (DS2-104). These categories can
be analyzed in terms of variability and complexity measures that we have defined in this work. Moreover, as each category can be
associated with a signature prototype inherited from the K-Means procedure, we can generalize the writer categorization process
on the large subset DS2-382 from the same DS2 database, containing 382 persons. Performance assessment shows that one category
of signatures is significantly more reliable in the recognition phase, and given the fact that our categorization can be used online,
we propose a novel criterion for enhanced writer enrolment.

Copyright © 2009 Sonia Garcia-Salicetti et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Handwritten signature is a behavioural biometric modality
showing high variability from one instance to another of
a same writer. This high variability explains indeed that
the best verification approaches, as particularly reflected for
Online Signature in the results of the First International
Signature Verification Competition SVC2004 [1] and the
Signature Evaluation carried out in the framework of BioSe-
cure Multimodal Evaluation Campaign BMEC2007 [2], are
those tolerating random local variations of the signature,
as elastic matching techniques (Dynamic Time Warping [3–
5] or statistical models, as Hidden Markov Models (HMM)
[3, 6–13] and Gaussian Mixture Models (GMMs) [14,
15]. Nevertheless, the amount of this variability is writer
dependent, in the sense that some writers have a signature
by far more variable from one instance to the next than other
writers.

An automatic signature verification system involves two
steps: the enrolment step and the verification step. In order

to provide a given level of security to an individual signer,
writer enrolment must guarantee that enrolment signatures
are stable and complex enough. Indeed, as studied in [16],
when enrolling a writer, his/her signature will be acceptable
as a reference signature, or as part of a reference set, for any
verification system, only if it is complex enough. In [16], a
“difficulty coefficient” estimates the difficulty to reproduce
a given signature as a function of the rate of geometric
modifications (length and direction of strokes) per unit of
time, in other words as a function of complexity of the hand
draw. Such study concludes that “problematic” signers in
terms of performance of Automatic Verification Systems are
those with signatures which have a low “difficulty coefficient”
(not complex enough signatures).

On the other hand, when enrolling a writer, his/her
signature will be suitable as reference or as part of a
reference set for any verification system only if it is not too
variable; in [16], enrolment signatures are selected by using
a comparison algorithm that computes the spatiotemporal
difference between two signatures (elastic matching). By this
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way, a “dissimilarity index” is proposed to quantify intraclass
variability between different signature samples of a same
writer. In [17], a procedure relying on a correlation-based
criterion detecting local distortions of the hand draw is
proposed to select the reference signatures for a signature
verification system. Such correlation criterion measures how
much local stability values, computed on different signatures
when being matched by elastic matching techniques, are
correlated. Finally, the subset of signatures with highest
correlation is selected as reference set. Alternatively, in
[18], the stability criterion is based on the lowest intraclass
Euclidean distance between feature vectors representing
globally the candidate reference signatures. Finally, in [19],
both complexity and variability criteria were proposed for
offline signature verification by a human expert. A human
operator labels signatures according to both criteria and their
impact on performance is studied. Also in [20], signature
analysis by means of fractal geometry led to the emergence
of a complexity criterion to categorize writers.

All these works suggest the strong impact of complexity
and variability criteria on the classifier performing signature
verification. Indeed, stability is required in genuine signa-
tures in order to be able to characterize a given writer, since
the less stable a signature is, the more likely it is that a forgery
gets dangerously close to genuine signatures in terms of the
metric of any classifier. Also, complex enough signatures are
required at the enrolment step to generate a certain level of
security.

In this work, we propose to exploit for writer enrolment
a time-normalized entropy measure that allows quantifying
both the stability and the complexity of a writer’s genuine
signatures. This entropy, measured in bits per second, is
computed on portions of the signature, and averaged over
such portions. As the entropy of a random variable only
depends on its probability density values, a good estimation
of this probability density is important [21]. As in online
signatures there are local time dependencies in the dynamics
of the hand-draw, a local paradigm for density estimation is
natural.

In the previous works [22, 23], we proposed to estimate
the probability density of a writer’s dynamics locally, by
a Hidden Markov Model (HMM) trained on a set of ten
genuine signatures, to extract a Personal Entropy measure
globally from such set. In this work, we follow the same local
paradigm, but we compute the time-normalized entropy of
a signature sample “Sample Entropy”, namely, the average
entropy per second of such sample, therefore quantified in
bits per second. It is worth noticing that the above mentioned
Hidden Markov Model, whose complexity (topology) is
related to the length of the genuine signatures of a writer, is
only used in our work as a local refined density estimator,
devoted to compute the time-normalized entropy of a
signature sample, and not as a classifier.

Based on the “Sample Entropy”, we then propose to gen-
erate for each writer a “Personal Entropy measure” value, by
averaging the “Sample Entropy” associated to each of his/her
genuine signatures. We show in this work that this measure
allows categorizing writers in linearly separable and visually
coherent categories, by a K-Means procedure [24]. Moreover,

we related this categorisation to variability and complexity
measures, this way showing quantitatively the link between
our new Personal Entropy measure and some behavioural
characteristics of the signature. Our previous performance
assessment study [23], carried out only on random forgeries,
with different classifiers, showed that system performance
changes in function of the different writer categories. In
this work, we first extend our performance assessment
study to skilled forgeries and confirm this interesting result:
there is one category of users, which can be detected by
their Personal Entropy, and are “problematic”, since their
signatures are vulnerable because of their strong variability
and low complexity. At the opposite, there is a category of
“safer” signatures, highly complex and stable, that can also
be detected by their associated writer’s Personal Entropy. Our
aim in this work is to exploit this entropy measure in order
to enhance enrolment in the following ways.

(i) To inform the user of the intrinsic risk related to
his/her signature.

(ii) In case of a “problematic” signature, to leave the
possibility to the signer of choosing between deciding
to pursue enrolment knowing the intrinsic risk of
his/her signature, or alternatively to change his/her
signature for security purposes.

(iii) To adjust the quality of enrolment data according to
the level of security required by the application.

As previously mentioned, writer categories emerge from
our entropy measure, by means of a K-means procedure.
Given this fact, each writer category is naturally associated
to a signature “prototype” or Entropy-Prototype (EP), which
corresponds to the mean of the class. We propose in this work
to exploit such Entropy-Prototypes to identify beforehand
“problematic” signers. We show indeed that after having
generated prototypes on a given reduced data set of 104
writers from the complete DS2 database [25], it is possible to
generalize the writer categorization process on other writers
belonging to the same database. Given the fact that our writer
categorization process is totally automatic, independent
of any classifier (it only relies on our proposed Personal
Entropy measure), and besides can be generalized to new
writers acquired in similar conditions (same digitizer, same
acquisition protocol, similar sampling frequency, similar
resolution), we propose a novel criterion for a better writer
enrolment process targeting enhanced signature verification.
Indeed, our writer categorization process gives as outputs
one Entropy-Prototype per category, which combined to a
Nearest Neighbour Rule [24], naturally allows classifying a
signature sample during the enrolment step. This classifica-
tion allows therefore measuring the intrinsic level of security
of a user’s signature at the enrolment step.

This paper is organized as follows. The next section
describes how the “Sample Entropy” measure associated to
each genuine signature sample is computed by means of a
Writer-HMM, and the resulting “Personal Entropy” value
of each writer. Also, we present the automatically generated
categories of writers, obtained when performing a K-Means
procedure on such “Personal Entropy measure” of each
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writer, on a subset of the BioSecure Data Set 2 (DS2-104)
and on MCYT-100 database, both captured on a digitizer. In
order to give a quantitative interpretation of these categories,
we have defined complexity and variability measures, and we
have shown the strong relationship between our Personal-
Entropy measure and both the complexity and the variability
in signatures. Section 3 presents performance assessment
across such writer categories, by means of two statistical clas-
sifiers of same complexity (number of parameters), namely,
a Hidden Markov Model (HMM) and a Gaussian Mixture
Model (GMM), on DS2-104 and MCYT-100 databases.
Such statistical approaches gave indeed the best signature
verification results in the last Signature Evaluation campaign
in the framework of BioSecure Multimodal Evaluation Cam-
paign BMEC’2007 [2]. Section 4 describes the generalization
of the writer categorization process, relying on Entropy-
Prototypes built on a subset of Data Set 2 (DS2-104) and
evaluated on the large data set DS2-382 of 382 persons;
the resulting global performance on DS2-382 are compared
with performance on each category. Finally, the proposed
enhanced writer enrolment procedure relying on Personal-
Entropy is described in detail.

2. Time-Normalized Sample Entropy and
Writer Categories

2.1. Measuring Time-Normalized Sample Entropy with a Hid-
den Markov Model. We consider in this work a signature as a
sequence of two time functions, namely, its raw coordinates
(x, y). Indeed, raw coordinates are the only time functions
available on all sorts of databases, whether acquired on fixed
platforms (as digitizing tablets) or on mobile platforms (as
Personal Digital Assistants).

The entropy of a random variable only depends on
its probability density values; therefore a good estimation
of this probability density must be performed to compute
reliably an entropy value. As the online signature is piecewise
stationary, it is natural to estimate the probability den-
sity locally, namely, on portions of the signature. In this
framework, Hidden Markov Models [3] (HMM) appear as
a natural tool as they both allow performing a segmentation
of the signature into portions and a local estimation of the
probability density on each portion.

We thus consider each genuine signature of a given writer
as a succession of portions, generated by its segmentation via
such writer’s Hidden Markov Model (HMM). Therefore, we
obtain as many portions in each signature as there are states
in the Writer-HMM. Then we consider each point (x, y) in
a given portion Si as the outcome of one random variable Zi
(see the top of Figure 1) that follows a given probability mass
function pi(z) = Pr(Zi = z), where z belongs to the Alphabet
A of ordered pairs (x, y). Such random variable associated to
a given portion of the signature is discrete since its alphabet
A has a finite number of values, thus its entropy in bits is
defined as

H(Zi) = −
∑

z∈Si
p(z) · log2

(
p(z)

)
. (1)

HMM

1 2 i N

Entropy per portion

AVG

Time normalization

Time Normalized Sample Entropy

Signature length T

H(Z1) H(Zi) H(ZN )

H(Z) = 1
N

N∑

i=1

H(Zi)

H∗(Z) = H(Z)
T

(bits per second)

Figure 1: The Time-Normalized Sample Entropy computation.

Nevertheless, the hand-drawing as a time function is
a continuous process from which we retrieve a sequence
of discrete values via a digitizer. For this reason, although
Z = (x, y) is discrete, we take advantage of the continuous
emission probability law estimated on each portion by
the Writer-HMM. Such density function is modelled as a
mixture of Gaussian components.

To compute the Time-Normalized Sample Entropy of
a signature sample, we first train the Writer-HMM on
10 genuine signatures of such writer, after computing a
personalized number of states, as follows:

N = TTotal

M ∗ 30
, (2)

whereTTotal is the total number of sampled points available in
the genuine signatures, andM = 4 is the number of Gaussian
components per state. We ensure this way that the number
of sample points per state is at least 120, in order to obtain a
good estimation of the Gaussian Mixture in each state (four
Gaussian components).

Then we exploit the Writer-HMM to generate by the
Viterbi algorithm [3] the portions on which the entropy
is computed for each genuine signature. On each portion,
we consider the probability density estimated by the Writer-
HMM to compute locally this entropy. We then average the
entropy over all the portions of a signature and normalize
the result by the signing time of the signature sample
(see Figure 1). This measure is a Time-Normalized Sample
Entropy, expressed in bits per second. Our experiments show
that in order to get a good estimation of Personal Entropy, it
is necessary to have at least 10 signatures of each writer.
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Averaging this measure across the 10 genuine signatures
on which the local probability densities were estimated
by the HMM allows generating a measure of Personal
Time-Normalized Entropy, denoted “Personal Entropy” in
the following of this paper. Time normalization allows
comparing users between them in terms of entropy; indeed,
without such time normalization, due to the great difference
in length between signatures of different persons, entropy
tends to be higher on longer signatures.

2.2. Databases Description. We used three databases in this
work: the freely available and the widely used MCYT
subset of 100 persons [26], and two subsets from the
online signature database acquired in the framework of the
BioSecure Network of Excellence [25]: DS2 (for Second Data
Set of the whole data collection), acquired on a digitizer. The
first subset DS2-104 contains data of 104 persons, and the
second subset DS2-382 contains data of 382 persons. The
whole BioSecure Signature Subcorpus DS2 [25], acquired
on several sites in Europe, is the first online signature
multisession database acquired in a digitizer.

DS2 contains data from 667 persons acquired in a PC-
based offline supervised scenario and the digitizing tablet
WACOM INTUOS 3 A6. The pen tablet resolution is 5080
lines per inch, and the precision is 0.25 mm. The maximum
detection height is 13 mm, and the capture area is 270 mm
(width) × 216 mm (height). Signatures are captured on
paper using an inking pen. At each sampled point of the
signature, the digitizer captures at 100 Hz sampling rate
the pen coordinates, pen pressure (1024 pressure levels),
and pen inclination angles (azimuth and altitude angles of
the pen with respect to the tablet). This database contains
two sessions, acquired two weeks apart, each containing
15 genuine signatures. The donor was asked to perform,
alternatively, three times five genuine signatures and twice
five forgeries. Indeed, for skilled forgeries, at each session,
a donor is asked to imitate five times the signature of two
other persons after several minutes of practice and with the
knowledge of the signature dynamics.

2.3. Writer Categories with Personal Entropy Measure. We
performed on the two databases described in Section 2.2
(DS2-104 and MCYT-100), containing around 100 persons,
a K-Means procedure [24] on Personal Entropy values
for different values of K . We reached a good separation
of signatures with K = 3 on both databases, as shown
in Figure 2 for some signatures in DS2, whose owners
authorized their publication.

Figure 3 shows that the obtained three categories are
actually linearly separable, as represented by indicative lines
reporting the automatic classification results given by the K-
Means procedure.

As mentioned before, time normalization allows compar-
ing users between them in terms of entropy since there is
a great difference in length between signatures of different
persons.

We notice that on the two databases, the first category
of signatures, those having the highest Personal Entropy

(a)

(b)

(c)

Figure 2: Examples of signatures from DS2-104 of (a) high, (b)
medium, and (c) low Personal Entropy (with authorization of the
writers).

(Figure 2(a)), contains short simply drawn and not legible
signatures, often with the shape of a simple flourish. At the
opposite, signatures in the third category, those of lowest
Personal Entropy (Figure 2(c)), are the longest and their
appearance is rather that of handwriting, some being even
legible. In between, we notice that signatures with medium
Personal Entropy (second category, Figure 2(b)) are longer
than those of the first category, often showing the aspect of a
complex flourish.

Categories of signatures seem at this step visually related
to complexity and variability criteria. We therefore propose
quantitative measures of complexity and variability, with
which we will analyze the obtained Entropy-based categories.

2.4. Relation between Our Personal Entropy and Complexity
and Variability Measures. In order to measure complexity,
we consider a vector of seven components related to the
shape of handwriting: numbers of local extrema in both x
and y directions, changes of pen direction in both x and y
directions, cusps points, crossing points, and “star points”
[27]. We consider the Euclidean norm of the vector as the
indicator of complexity for each signature. We then average
such measure on the 10 genuine signatures in order to
generate a complexity measure for a given person.

In order to measure the variability of a client’s signature,
we use Dynamic Time Warping [3], which relies on a local
paradigm to quantify distortions. We compute the distances
between all the possible couples of genuine signatures (45 as
we consider 10 genuine signatures) and average the obtained
distances to get the indicator of signature variability. Four
features are extracted locally per point: absolute speed, the
angle between the absolute speed vector and the horizontal
axis, curvature radius of the signature, and the length to
width ratio on a sliding window of size 5.

Figure 4 shows Personal Entropy versus Complexity and
Variability indicators, per category on DS2-104 and MCYT-
100. We see that signatures of highest Personal Entropy are
highly variable and of rather low complexity. At the opposite,
signatures of lowest Personal Entropy are by far more
complex and more stable (show low variability). We noticed
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Figure 3: Personal Entropy values on data from DS2-104 (a) and from MCYT-100 (b) across the 3 writer categories. Two indicative lines
report the separation between categories obtained by the K-Means procedure.

that this behaviour is verified for all the databases considered
in this work. We therefore conclude that our Personal
Entropy measure allows quantifying both the complexity and
variability of a writer’s signatures simultaneously.

3. Verification Performance

In this section, we study the relationship between Personal
Entropy-based categories and performance of two different
automatic signature verification systems, on two different
databases: DS2-104 and MCYT-100.

3.1. Score Computation by the Two Classifiers. Two classifiers
are used in this study considering only the raw coordinates
description of signatures as input data: a Hidden Markov
Model [3] and a Gaussian Mixture Model [14].

For performance assessment, both skilled and random
forgeries are considered. Ten random samplings are carried
out on genuine and impostor signatures in the following
way: each sampling contains five genuine signatures used
as the training set for both statistical classifiers. For test
purposes, the remaining 25 genuine signatures and 20 skilled
forgeries (belonging to two sessions) are used for DS2-104.
For MCYT-100, we tested on the remaining 20 genuine sig-
natures and 25 skilled forgeries. Also, 30 impostor signatures
randomly sampled in equal number in each Personal Entropy
category (10 random forgeries per category) are considered
for both databases. The False Acceptance and False Rejection
Rates are computed relying on the total number of False
Rejections and False Acceptances obtained on the whole ten
random samplings.

Concerning the topology of the two statistical models,
we used a GMM and a left-to-right HMM of the same
complexity in terms of Gaussian components. It is worth
noticing that the HMM classifier differs from the HMM used
for Personal Entropy computation. Indeed, the former is
devoted to classification, while the latter only performs local
density estimation. We considered for the HMM classifier a
6 states and 4 Gaussian components per state, as a tradeoff
in complexity between the signatures of the two extreme
categories. For the GMM, accordingly, we considered 24
Gaussians to model a person’s signatures. The dissimilarity
matching score for both statistical models is

Score = |LL− LLBA|, (3)

where LL is the Log-Likelihood of the test signature (nor-
malized by the length of the test signature), and LLBA is
the corresponding average Log-Likelihood of the training
signatures.

3.2. Performance Assessment on DS2-104 and MCYT-100 with
the Two Classifiers. In our experiments, both HMM and
GMM classifiers were intentionally not optimized, since our
aim is not to improve absolute system performance but to
analyze the relative differences in classifiers’ performance
between writer categories.

We notice on Figures 5 and 6 corresponding to DS2-
104, and on Figures 7 and 8 corresponding to MCYT-100,
that the results lead to different behaviours in terms of
performance according to the category of Personal Entropy
that we consider.
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Figure 4: Personal Entropy versus complexity (left) and Personal Entropy versus variability (right) on MCYT-100 and DS2-104 databases,
for Personal Entropy-based categories.

There is a significant difference in classifiers’ perfor-
mance between the two extreme categories, for both skilled
and random forgeries: GMM and HMM classifiers give the
best performance on writers belonging to the category of
lowest Personal Entropy, that is, those having the longest
most complex and most stable signatures, as those shown
in Figure 2(c). At the opposite, HMM and GMM classifiers
give the worst performance on writers belonging to the
highest Personal Entropy, those having the shortest simplest
and most unstable signatures, as those shown in Figure 2(a).
We also notice that performance values for the category of
writers with medium Personal Entropy are in between those
of the two extreme writer categories.

As shown in Tables 1 and 2, for the two classifiers,
at the Equal Error Rate functioning point, performance
is roughly improved by a factor around 2 for skilled and
random forgeries when switching from the highest entropy

category to the lowest one, on both DS2-104 and MCYT-
100. Confidence Intervals at 95% are given to show the
significance of results. At other functioning points, this
gap in performance between the two extreme categories is
maintained for the two classifiers, as shown in Figures 5, 6, 7,
and 8.

For a better insight on the impact of high and medium
Personal Entropy categories on system performance, we
ordered, in a decreasing way, users from such categories
according to their Personal Entropy. Then, we compute when
removing the top x% of such users, the relative improvement
Δ(x) of the Equal Error Rate with regard to the average EER
on the whole DS2-104 database (denoted by EER) defined as
follows:

Δ(x) = EER− EER(x)
EER

, (4)
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Figure 5: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category on DS2-104 subset with the GMM
classifier.
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High Personal Entropy EER = 21.44%
Medium Personal Entropy EER = 13.65%
Low Personal Entropy EER = 8.29%
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Figure 6: DET-curves considering skilled forgeries (a) and random forgeries (b), on each category on DS2-104 subset with the HMM
classifier.
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Figure 7: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category on MCYT-100 database with the
GMM classifier.
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MCYT-100: skilled forgeries with HMM classifier

High Personal Entropy EER = 30.08%
Medium Personal Entropy EER = 20.62%
Low Personal Entropy EER = 15.19%
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MCYT-100: random forgeries with HMM classifier

High Personal Entropy EER = 10.41%
Medium Personal Entropy EER = 7.72%
Low Personal Entropy EER = 3.38%

(b)

Figure 8: DET-curves considering skilled forgeries (a) and random forgeries (b), on each category on MCYT-100 database with the HMM
classifier.
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Table 1: Equal Error Rate and Confidence Interval in each writer category on DS2-104 subset, with HMM and GMM classifiers considering
skilled and random forgeries.

DS2-104 subset

GMM classifier HMM classifier

Skilled forgeries Random forgeries Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%)

High entropy 32.28 ±0.100 25.61 ±0.057 30.26 ±0.100 21.44 ±0.080

Medium entropy 26.09 ±0.040 20.34 ±0.026 23.29 ±0.027 13.65 ±0.018

Low entropy 18.24 ±0.010 15.27 ±0.007 14.90 ±0.009 8.29 ±0.001

Table 2: Equal Error Rate and Confidence Interval in each writer category on MCYT-100 database, with HMM and GMM classifiers
considering skilled and random forgeries.

MCYT-100 database

GMM classifier HMM classifier

Skilled forgeries Random forgeries Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%) EER (%) CI (95%)

High entropy 33.42 ±0.170 19.58 ±0.160 30.08 ±0.200 10.76 ±0.120

Medium entropy 26.59 ±0.050 12.84 ±0.028 20.62 ±0.042 7.56 ±0.023

Low entropy 22.64 ±0.018 9.33 ±0.006 15.74 ±0.010 4.13 ±0.003
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Figure 9: The relative improvement Δ(x) of the average EER on
DS2-104 subset when removing x% of users from high and medium
Personal Entropy categories.

where EER(x) represents the average Equal Error Rate on the
whole DS2-104 database after removing x% of users from
high and medium Personal Entropy categories.

We notice in Figure 9 that for both the GMM and HMM
classifiers, and both random and skilled forgeries, when
removing progressively an increasing percentage x of users
from high and medium Personal Entropy categories (accord-
ing to their Personal Entropy measure),Δ(x) increases. When

Table 3: The relative improvementΔ(x) of the average EER on DS2-
104 subset when removing all users from high and medium Personal
Entropy categories.

Classifier Type of forgeries EER Δ (100%)

GMM
Skilled forgeries 21.57% 15.43%

Random forgeries 18.19% 16.06%

HMM
Skilled forgeries 18.43% 19.16%

Random forgeries 10.90% 23.94%

all users from high and medium Personal Entropy categories
are removed (x = 100%), this relative improvement Δ(x)
reaches in all cases more than 15%, as reported in detail in
Table 3. Moreover, given that the first 21% of users belong
to the high Personal Entropy category (7 users), and the
remaining 79% belong to the medium Personal Entropy
category (26 users), we conclude that the main improvement
is obtained when the first 60% of users are removed (that is
all users from the high Personal Entropy category and 50%
of users from the medium Personal Entropy category).

4. Generalizing Writer Categorization

4.1. On Categorizing New Writers Relying on Entropy-
Prototypes Obtained Offline. We have this far shown that
there is one category of users which are much easier to
recognize than others, and much easier to discriminate from
skilled and random forgeries, those having a low Personal
Entropy value. Alternatively, there is another category of
users which are extremely difficult to recognize, those having
a high Personal Entropy value.
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DS2-382: skilled forgeries with HMM (generalization)

High Personal Entropy EER = 15.67%
Medium Personal Entropy EER = 13.4%
Global performance EER = 13.34%
Low Personal Entropy EER = 11.42%
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DS2-382: random forgeries with HMM (generalization)

High Personal Entropy EER = 6.99%
Medium Personal Entropy EER = 4.07%
Global performance EER = 4.28%
Low Personal Entropy EER = 3.07%

(b)

Figure 10: DET-curves considering skilled forgeries (a) and random forgeries (b), on each writer category and globally on DS2-382 database
with the HMM classifier, after computing entropy-prototypes on DS2-104.

Table 4: Equal Error Rate and Confidence Interval in each writer category on DS2-382 database, with the HMM classifier considering skilled
and random forgeries.

DS2-382 with HMM classifier

Skilled forgeries Random forgeries

EER (%) CI (95%) EER (%) CI (95%)

High entropy 15.67 ±0.025 6.99 ±0.015

Medium entropy 13.4 ±0.012 4.07 ±0.006

Low entropy 11.42 ±0.014 3.07 ±0.005

Global performance 13.34 ±0.003 4.28 ±0.003

Each writer category is naturally associated to an
Entropy-Prototype (EP) inherited from the K-Means pro-
cedure used to “cluster” writers. Our aim in this section is
to study the possibility of categorizing new writers based on
previously generated Entropy-Prototypes (EPs), on a data set
of limited size. We carry out this study by generating three
Entropy-Prototypes on DS2-104, and using such prototypes
to categorize writers from another data set: DS2-382.

Indeed, we categorize a writer belonging to such data set
as follows:

(1) computing the writer’s Personal Entropy with 10
genuine signatures of such writer from DS2-382;

(2) retrieving the three Entropy-Prototypes (one per
category) computed offline on DS2-104 database;

(3) associating to such writer from DS2-382 the category
of closest Entropy-Prototype by the Nearest Neighbor
Rule [24].

In order to study the relevance of the previous protocol,
we study performance on the obtained categories after
generalization. In order to carry out this study, we only
consider in the following an HMM classifier, since the same
results are obtained with a GMM classifier.

4.2. Generalization on the Same Database from DS2-104
to DS2-382. Figure 10 and Table 4 show the performance
obtained on DS2-382 with an HMM classifier on each of
the obtained categories after computing Entropy-Prototypes
on DS2-104, with skilled and random forgeries respectively.
We also compare results per category to global results on the
complete DS2-382 database.
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As on DS2-104, on which the Entropy-Prototypes have
been computed originally, we notice that also on DS2-
382 there is a difference in classifiers’ performance between
the two extreme categories, for both skilled and random
forgeries: the HMM classifier gives the best performance
on writers belonging to the category of lowest Personal
Entropy. At the opposite, the HMM classifier gives the worst
performance on writers belonging to the highest Personal
Entropy.

As shown in Table 4, at the Equal Error Rate functioning
point, performance is roughly improved by a factor 2 for
skilled forgeries and 1.4 for random forgeries when switching
from the highest entropy category to the lowest one. We also
notice that performance values for the category of writers
with medium Personal Entropy are in between those of the
two extreme writer categories.

Moreover, the global performance on the whole data
set DS2-382 is degraded compared to performance on the
category of writers with lowest Personal Entropy.

4.3. Our Proposed Criterion for Writer Enrolment. We have
shown that Entropy-Prototypes generated offline on a
database of limited size (104 persons) can be used to perform
writer categorization on new writers from the same database.
We thus propose to exploit such Entropy-Prototypes, which
are totally independent of the verification system, to identify
beforehand signatures that are not secure in terms of
performance. The enrolment procedure that we propose has
the following steps.

(1) Ten genuine signatures are requested from the writer
to be enrolled.

(2) A Writer-HMM is built for such writer by training the
HMM on such ten genuine signatures.

(3) The Personal Entropy of such writer is computed.

(4) The three Entropy-Prototypes computed offline are
retrieved.

(5) The category of the closest Entropy-Prototype by the
Nearest Neighbor Rule [24] is associated to the writer.

(6) When a writer is classified as belonging to the
highest Personal Entropy category, he/she should
be informed of the intrinsic risk related to his/her
signature. Indeed, this category of writers gives
unreliable results relatively to other Personal Entropy
categories; we thus propose to the user either to
pursue enrolment knowing the intrinsic risk of
his/her signature, or alternatively to change his/her
signature for security purposes.

(7) When a writer belongs to the category of lowest
Personal Entropy, the writer is enrolled.

(8) When a writer belongs to the category of middle
Personal Entropy, we recommend to the writer to do
a more complex and less variable signature, but still
can retain his/her signature.

Based on our experiments, we can assert that the more
Personal Entropy lowers, the more reliable is the signature in

terms of security. This should be to take into account when
using online signature in practical applications.

5. Conclusion

We have proposed a novel criterion for writer enrolment
that allows guaranteeing a higher level of security to the
individual writer, regardless of the verification system that
is used. Such criterion relies on an unsupervised auto-
matic writer categorization process, carried out on a Time-
Normalized Personal Entropy measure, quantified in bits per
second. We first introduce in this work a “Sample Entropy”
measure associated to each enrolment signature sample,
computed locally by means of a Writer-HMM trained on
ten enrolment signatures. Then we explain how the resulting
“Time-Normalized Personal Entropy” value of each writer is
retrieved.

We show that a writer can be categorized according to
this measure and to Entropy-Prototypes computed offline,
into one of three categories of writers. This categorization
process is crucial because verification systems’ performance
is significantly different between the extreme categories of
highest and lowest Personal Entropy. Indeed, we show across
two data sets that our Personal Entropy measure allows
classifying writers automatically into three visually coherent
and linearly separable categories, opposing long, complex
and stable signatures to short, strongly variable and simple
signatures. Moreover, we have quantified the behaviour
of the signature in terms of complexity and variability,
and we have linked these values to our Personal Entropy
measure.

We have shown that Entropy-Prototypes, naturally inher-
ited from the K-Means procedure and performed to generate
writer categories, can be generated offline on a data set of
limited size (around 100 persons) and be used to perform
writer categorization on new writers of another data subset,
providing the same acquisition conditions. More generally,
a database of roughly 100 persons is enough to generate
the categories, then allowing the online categorization of
any new user whose signatures are acquired in similar
conditions (same digitizer, similar tablet resolution, and
same acquisition protocol).

Based on this result, we propose an enrolment writer
criterion related to such Entropy-Prototypes, totally inde-
pendent of the verification system, to identify beforehand
signatures which are not secure in terms of performance.
Indeed, a Nearest Neighbour Rule on Entropy-Prototypes
generated offline, on a database of roughly 100 persons,
allows categorizing a writer after requesting from him ten
instances of his/her signature. A stable and reliable result
emerges of our study: the more Personal Entropy lowers,
the more reliable is the signature in terms of security. This
statement allows adapting the quality of the enrolment data
to the level of security requested by the application.
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