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THE WEAK HARNACK INEQUALITY FOR THE BOLTZMANN EQUATION
WITHOUT CUT-OFF

CYRIL IMBERT AND LUIS SILVESTRE

ABSTRACT. We obtain the weak Harnack inequality and Holder estimates for a large class of kinetic integro-
differential equations. We prove that the Boltzmann equation without cut-off can be written in this form
and satisfies our assumptions provided that the mass density is bounded away from vacuum and mass,
energy and entropy densities are bounded above. As a consequence, we derive a local Holder estimate and
a quantitative lower bound for solutions of the (inhomogeneous) Boltzmann equation without cut-off.
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1. INTRODUCTION

The main result in this article is a version of the weak Harnack inequality, in the style of De Giorgi, Nash
and Moser, for kinetic integro-differential equations. As a consequence, we derive local Holder estimates and
a quantitative lower bound for the inhomogeneous Boltzmann equation without cut-off.

Our estimates are local in the sense that they only require the equation to hold in a bounded domain.

The Boltzmann equation has the form

fi+v-Vof=Q(f,f) for te(-1,0], x € By, ve By.

Here, the function f = f(t,z,v) must be defined for t € (—1,0], x € B; and v € R? in order to make sense
of the nonlocal right hand side Q(f, f).
We recall that Boltzmann’s collision operator Q(f, f) is defined as follows

Q= [ [ GO = F0 @) Bl = vl cost) du, do

/ / 4
where v}, and v’ are given by

VA Ux |0 — vy VA Ux v — vy
v = 5 T O and v, = 5 3
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and cos @ (and sin(6/2)) is defined as

V — Uy

cosf :=

!
o ( and  sin(0/2) := |z/ — Z| ~a> .

|[v — vy .
We assume that the cross-section B satisfies
(1.1) B(r,cos ) = r'b(cosf)  with b(cosf) ~ |sin(/2)|~ (D=2

with v € (—d, 1] and s € (0, 1).

The equation describes the density of particles at a specific time ¢, point in space x and with velocity
v. This model stands at a mesoscopic level, in between the microscopic description of interactions between
individual particles, and the macroscopic models of fluid dynamics.

We define the hydrodynamic quantities

(mass density) M(t,z) = /f(t,x,v) dv,
(energy density) E(t,z) := /f(t,x,v)|v|2 dv,

(entropy density) H(t,z) := /fln ft,z,v) dv.

These are the only quantities associated with a solution f which are meaningful at a macroscopic scale.
Under some asymptotic regime, the hydrodynamic quantities in the Boltzmann equation formally converge
to solutions of the compressible Euler equation, which is known to develop singularities in finite time (see
for example [11]). Because of this fact, one could speculate that the Boltzmann equation may develop
singularities as well. From this point of view, the best regularity result that one would expect is that if the
hydrodynamic quantities are under appropriate control, then the solution f will be smooth. In other words,
that every singularity of f would be observable at the macroscopic scale.

It is proved in [59] that when M(t,z), E(t,x) and H(t,z) are uniformly bounded above, and in addition
M(t,x) is bounded below by a positive constant, then the solution f satisfies the L® a priori estimate
depending on those bounds only. The result in this paper goes a step further by proving a Hélder modulus
of continuity, in all variables, under the same assumptions.

Theorem 1.1 (Holder continuity). Assume s € (0,1), v € (—d,1], v + 2s < 2 and let f be a non-negative
solution of the Boltzmann equation for all t € (=1,0], x € By and v € By. Assume that [ is essentially
bounded in (—1,0] x By x R? and there are positive constants My, My, Ey such that for all (t,z) we
have My < M(t,x) < My and E(t,xz) < Ey for all (t,x) € (—1,0] x By, then f is Hélder continuous in
(—1/2,0] X B1/2 X Bl/2 with

||f||ca((—1/2,o]xBl/ngm) <C

where C' > 0 and « € (0,1) are constants depending on dimension, the L* bound of f, My, My and Ey.

Remark 1.2. Theorem 1.1 also holds true in any cylinder Q@ < R x R? x R%. In this case, constants C' and ~
also depends on the center of the cylinder and its radius.

Note that the value of the entropy H (¢, x) is bounded above by some constant Hy depending only on My,
Ep and [|f||z so we do not need to include the hypothesis H(t,z) < Hp in Theorem 1.1 . Recall also that
| flLe is bounded above for ¢t > 0 in terms of My, M1, Eg and Hy, according to the result in [59], provided
that v + 2s > 0. So, at least in this range of values of 7, the Holder modulus of continuity depends on the
values of My, My, Ey and Hy only.

The best regularity results previously available for the inhomogeneous Boltzmann equation without cut-off
give us C'* regularity depending on the assumption that the solution has infinite moments and belongs to
the space H® with respect to all variables (v, z and t) [7], [3], [28]. Of course this is a much more stringent
assumption than what we need for our Theorem 1.1 to hold. We make further comments about these and
other related results in Section 1.3.

We also obtain a quantitative lower bound for the solution f.
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Theorem 1.3 (Lower bound). Let f be a non-negative supersolution of the Boltzmann equation in [0,T] x
Bgr x Br. Under the same assumptions on 7y, s and f as in Theorem 1.1, we have the lower bound

inf = c¢(R).
[T/2,T]><BR/2><BR/2f ( )

The constant ¢(R) depends on T, R, v, s, d, My, My, Ey, and ||f|r=.

It has been a longstanding issue to find appropriate lower bounds for the solutions of the Boltzmann
equation. The best result available is perhaps from the work of Mouhot [53]. He obtains an explicit
exponentially decaying lower bound for the Boltzmann equation without cut-off. He makes strong a priori
regularity assumptions on the solution f, in addition to the assumptions that we make in this paper. We do
not provide an explicit formula for ¢(R). Its precise decay as R — oo will be the subject of future work.

Remark 1.4. If v+ 2s > 2, similar results can be obtained by further assuming that the (v + 2s)-momentum
of the function f is finite at every point (¢, z).

1.1. A linear kinetic integro-differential equation. The main result of this paper concerns a general
kinetic integro-differential equation. The results for the Boltzmann equation described above follow as
corollaries. We study an equation of the form

(1.2) ft+tv-Vof=L,f+h

for t € (=1,0], € By and v € By, where L, f is a linear integro-differential operator in the velocity variable
of the following form

L,f(t,x,v) = PV/ (f(t,z,v") — f(t,z,v))K(t,z,v,0") dv’
Rd

for a locally bounded function h and a measurable kernel K : [—1,0] x By x Bg x R% — [0, +o0) satisfying
appropriate assumptions that we describe below.

For every value of ¢ and z, the kernel K(t,z,v,w) is a non-negative function of v and w. We assume
that the following conditions hold for every value of t and x (we omit ¢ and x dependence to clean up the
notation).

Let us fix a R > 1. We will make assumptions on the kernel K (v,v’) for v € Bs. We need to pick R
slightly larger than one for technical reasons that will be apparent in Section 5.

Our first assumption is a coercivity condition on L,. We assume that there exists A > 0 and A > 0 such
that, for any function f: R¢ - R supported in By,

W)
(1.3) L |Uiv,|d+25 Qv a0 < = [ Lof(0) o) do+ Al ey

This coercivity condition is well known to hold for the Boltzmann equation when the function f has bounded
mass, energy and entropy density, and its mass is also away from vacuum (see [48, 62, 1] and the discussion
below). The proofs in the literature are based on Fourier analysis. We provide a proof in the appendix which
follows by a direct geometric computation in physical variables.

In the case s < 1/2, we also make the following nondegeneracy assumption.

(1.4) |ilnf1 (v =) -e)2 K(v,v') dv' = Ar®~2* for every value of v € Bj.
el=*J Br(v)
Here, when we write (w - €)%, we mean ((w - e);)? = max(w - ,0).

The coercivity condition would be obviously true if K is symmetric (i.e. K(v,v") = K(v',v)) and
K(v,v") = Mv —v'|79725. These assumptions are not satisfied by the Boltzmann kernel a priori.

For some kernels (not necessarily coming from the Boltzmann equation) it might be difficult to check
whether the coercivity condition (1.3) holds. The nondegeneracy assumption (1.4) is usually very easy to
check in explicit examples of kernels K. We do not know of any example of a kernel which satisfies (1.4) but
not (1.3). It is natural to conjecture this implication (modulo adjusting A by a fixed factor).

The second assumption is a weak upper bound on the kernel K.

5) (1) fRd\B @) K(v,v") dv' < Ar=2¢ for any r > 0 and v € By
1.5 "
(i1) fBR\BT(v,) K(v,v") dv < Ar=2¢ for any r > 0 and v’ € Bp.



4 CYRIL IMBERT AND LUIS SILVESTRE

Note that if K (v,v") < |[v—v'|7972%, then the assumption (1.5) holds. Our assumption only concerns average
values of K on the complementary set of balls. Therefore, a kernel containing a singular part is allowed. We
will see that the Boltzmann kernel satisfies (1.5) even though K (v,v’) < |v—'|~972% may not hold a priori.

Note that both inequalities in (1.5) would be the same if K were symmetric. But we do not assume
symmetry of the kernel. That is K (v,v") # K(v',v) in general. The symmetry assumption is very common
for integro-differential equations because it represents the fact that the equation is in divergence form. It is
equivalent to the operator L, being self adjoint. We explain this concept in Subsection 1.3.3.

The following assumptions provide a mild control on the anti-symmetric part of the kernel.

We assume that
(1.6) Vv € Brgs, PV (K(v,v") = K(V',v)) dv/

Bg

<A

Moreover, if s > 1/2, we need to assume the following extra cancellation.

(1.7) Yo € Brps, <A.

PV/B (v =) (K(v,v") = K(V',v)) dv/

R

When K is symmetric, the left hand sides in (1.6) and (1.7) are identically zero and therefore the assumptions
trivially hold.

When we analyse the scaling properties of our assumptions, we will observe that (1.3) and (1.5) are
critical, and (1.6) and (1.7) are subcritical.

When we apply our results to the Boltzmann equation, the kernel K depends on the solution f and is
determined by the formula

/ / S (9(0') — g(@))B(jv — vg],0) do dv, = / (9(t) — g(@)) K5 (0,0 dv.
Rd J 0By Rd
In this way,

Q(f,g) = /(g(v’) — g(v))Ky(v,v") dv" + (lower order terms).

The constant A in the assumption (1.3) depend only on the mass, energy and entropy densities of f. The
constant A in (1.5), (1.6) and (1.7), depends only on the mass and energy density of f when v € [0,1].
It depends on further integrability properties of f when 7y < 0 (they are bounded in terms of |f| = for
example). All these assumptions will be verified in Section 3.

1.2. Main results. The notion of weak solution will be made precise by the end of Section 5.

Theorem 1.5 (Holder continuity). Assume the kernel is non-negative and there exist A > 0 and A > 0
such that (1.3), (1.5) and (1.6) hold true with R = 2. If s = 1/2, we also assume (1.7); if s < 1/2, we also
assume (1.4). Let f be a solution of (1.2) for allt € (—=1,0], x € By and v € By. Assume that f is essentially
bounded in (—1,0] x By x R%. Then f is Hélder continuous in (—1/2,0] x By x Byjy with

| fle((=1/2,01x Bujax Bra) S C (I1f o0 ((=1,01x By xray + [Bl Lo ((—1,01x By x B1))
where C > 0 and v € (0,1) are constants only depending on dimension, A and A.

This theorem is in fact derived from the following estimate.

Theorem 1.6 (Weak Harnack inequality). There are constants ro, Ry > 1, € and C so that the following
proposition holds. Assume the kernel is non-negative and there exist A > 0 and A > 0 such that (1.3), (1.5)
and (1.6) holds true with R = 2R;y. If s = 1/2, we also assume (1.7); if s < 1/2, we also assume (1.4).
Assume that f is a non-negative supersolution of (1.2) in (—1,0] x Bpi+2: X Bg, . Then

1/e
([ rtevaard) <o (s bl o
o-
where
QF = (—r2%,0] x Biszs X By, and Q7 = (=1,~1+ 2] x B,1+20 % By,

(see Figure 1) and the constants C > 0, € > 0, only depend on dimension, s, A\ and A. The constants ro and
Ry depend on dimension and s only (not on A and A).
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FIGURE 1. The geometric setting of the weak Harnack inequality

te (—1,0]

1.3. Comments on the results and related works.

1.3.1. Difficulties related to this problem. This subsection is our attempt to explain and compare the main
challenges that we faced proving the main results in this paper, and the new ideas that were introduced.

We start by reviewing some recent developments about parabolic kinetic equations in divergence form,
with rough coefficients. In some sense, our main theorems are an integro-differential counterpart of these
previous results. The equations have the form

0 0
Je+v-Vgf= s <aijavjf> .
The diffusion coefficient a;; = a;;(t,z,v) is assumed to be uniformly elliptic. No regularity assumption
should be made in a;;, otherwise the equation may fit into the more classical hypoelliptic theory, and would
not imply such interesting results for the Landau equation. Pascucci and Polidoro [55] obtained the local L™
estimate for this equation using Moser’s method. Continuing in that direction, Wang and Zhang obtained
Holder estimates in [49], [64] and [65]. Their proof is quite involved. A highly nontrivial step is to obtain an
appropriate formulation of a Poincaré inequality adapted to the Lie group action related to the equation.

A simplified proof, following the method of De Giorgi, was recently obtained by Golse, Imbert, Mouhot
and Vasseur [36]. In this paper a version De Giorgi’s isoperimetric inequality is obtained by a compactness
argument. We use that idea for the case s € [1/2,1). This general method is not applicable to the case
s < 1/2, since it uses crucially that the characteristic function of a nontrivial set can never be in H°. We do
not use velocity averaging lemmas like in [36] anywhere in this paper. Instead, we take advantage of more
elementary properties of the fractional Kolmogorov equation.

The first step in the proof of De Giorgi, Nash and Moser, which consists of a local L estimate, needs
to be formulated appropriately to hold for integro-differential equations with degenerate kernels. Our proof
in Section 6 follows a properly adapted version of De Giorgi’s iteration. We do not use either averaging
lemmas, or hypoelliptic estimates for the z variable (like in [36] or [55]). Instead, we iterate an improvement
of integrability obtained directly from the fundamental solution to the fractional Kolmogorov equation.

In the second part of the proof of the theorem of De Giorgi, Nash and Moser we take different strategies
depending on whether s € (0,1/2) or s € [1/2,1). In the first case, we construct a barrier function to propagate
lower bounds as in the method by Krylov and Safonov for nondivergence equations. When s € [1/2,1), the
proof is based on a measure estimate of intermediate sets (as in De Giorgi’s original work) obtained by
compactness (as in [36]), but using a more direct approach based on the fractional Kolmogorov equation
instead of hypoelliptic estimates and averaging lemmas. We could not find a single method that works for
the full range s € (0,1) for general integro-differential equations. However, in the case of the Boltzmann
equation, the method used for the range s € (0,1/2) actually works for the full range, as we explain below.

The kernel Ky, from the Boltzmann equation, satisfies the extra symmetry condition K (v,v + w) =
K (v,v —w) which we do not use in this paper. We chose not to take advantage of this condition in order to
have the most natural result for general integro-differential equations. Using this assumption would allow
us to simplify some of the proofs. Most importantly, the barriers of Section 7 would hold for the full range
s € (0,1) and therefore the results from Section 8 would be unnecessary. Moreover, the proof of Lemma
6.4 could be done more easily using a similar function g as in the proof of Lemma 6.2. The commutator
estimates of Lemmas 4.10 and 4.11 would not be necessary anywhere.

One of the main ideas in the work of Caffarelli, Chan and Vasseur [21] about parabolic integro-differential
equations (not kinetic) is how they formulate De Giorgi’s isoperimetric lemma in the integro-differential
setting. Their original method is purely nonlocal. It does not work for second order equations. It uses
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crucially that £(g4+,9-) 2 |9+t ]g-] L1, where £ is a bilinear form like the one we define in Section 4. In
our context, this is not true for two reasons. First, because we have the additional variable = that plays no
explicit role in the integral diffusion and is not seen by the bilinear form £. Secondly, because the assumptions
that we make in the kernels are too mild for this condition to hold even in the space homogeneous case. In
[21], they assume that the kernel K is symmetric and K (v,v’) = A|jv — v/| 79725 for every value of v and v’.

Our equation (1.2) involves three different variables: ¢, z and v. It reduces to a more standard parabolic
integro-differential equation when f is constant in z. The diffusion takes place with respect to the variable v
only. The equation includes the kinetic transport term v - V. f, which somehow transfers the regularization
effect from the v variable to the x variable. The variable z has to be dealt with differently to the ¢ and
v variables. For example it has a different scaling and it is affected by translations of the function with
respect to the v variable. One major difficulty that it brings is in the proof of the ink-spots theorem. The
original ink-spots covering by Krylov and Safonov was for non-kinetic parabolic equations without the extra
variable z. Including this extra variable changes the geometry. The natural parabolic cylinders, which are
invariant by the Lie group acting on the equation, are oblique in the variable x. With this geometry, there
is no chance to apply a Calderén-Zygmund decomposition like in [40] because we cannot tile the space with
slanted cylinders with varying slopes. We need a custom made version of the ink-spots covering theorem,
which is developed in Section 10. See that section for further explanation on the difficulties and ideas involved
in this covering result.

When we apply our main results to the Boltzmann equation in Theorems 1.3 and 1.1, we only want to
assume a priori some minimal physically relevant information on f. We assume a control, for all ¢ and
x, of the mass, energy and entropy densities. Under these assumptions, there is very little one can say
about the Boltzmann collision kernel Ky. We are forced to work with very general, non-symmetric, and
possibly singular kernels. This paper would be much simpler if we made a convenience assumption like
K(v,v') = K(v',v) ~ |[v —v'|7%72% but it would not suffice to apply the result to the Boltzmann equation.
It is not a priori obvious what assumptions the Boltzmann kernel will satisfy. In Section 3, we prove that
K satisfies (1.3), (1.5), (1.6) and (1.7). Our assumptions (1.6) and (1.7) allow us to consider non-symmetric
kernels whose anti-symmetric part is as singular as the symmetric one in absolute value, but contains some
cancellation. Up to the authors’ knowledge, this is the first time such a condition appears in the literature
of integro-differential equations.

The estimate for the bilinear form given in Theorem 4.1 is interesting in itself and new. It tells us that the
bilinear form (L, f, gy is bounded in H® x H® assuming the very mild, and easy to check, conditions on the
kernel K given in (1.5), (1.6) and (1.7). Such an estimate is reminiscent of some others proved specifically
for the Boltzmann equation, see for instance [9], [4], [51], [28]. Here, the estimate is proved for a very general
bilinear form associated with a non-symmetric integro-differential operator. Note that in previous works in
integro-differential equations, the upper bound of Theorem 4.1 was included as an assumption together with
(1.5) and symmetry (see [43]).

1.3.2. Boltzmann without cut-off. The main results of this paper apply to the Boltzmann equation without
cut-off in the inhomogeneous setting.

In the case of moderately soft potentials, which corresponds to v + 2s > —2, an a priori estimate in L* is
given in [59]. In that case, we obtain a Holder modulus of continuity depending on the bounds on M (¢, z),
E(t,z) and H(t,x) only. For very soft potentials, Theorem 1.1 gives us a Holder modulus of continuity
provided that we know a priori that f is bounded. Note that our estimates do not depend on any further
regularity assumption on the initial data.

Since Carlo Cercignani in 1969, it is believed that the Boltzmann collision operator without cut-off has
a regularizing effect. Some similarities with the fractional Laplacian operator in the velocity variable have
been observed in the form of coercivity estimates. This is the first time that ideas originating in the work of
De Giorgi and Nash for parabolic equations are applied in the context of the Boltzmann equation.

The first results for the Boltzmann equations without cut-off that indicate a regularization effect appear
in the study of the entropy dissipation. A lower bound for the entropy dissipation with respect to a fractional
Sobolev norm is first obtained [48] and improved in [62]. The optimal space H* is finally obtained in [1]. We
can also deduce a coercivity estimate from the proof in this paper. The coercivity estimate, which we mention
in Proposition 3.3, essentially says that the Boltzmann collision operator satisfies the assumption (1.3). It
plays an essential role in most of the works concerning the regularization effect of the Boltzmann equation
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without cut-off. The proof of the coercivity estimate in [1] is done using Fourier analysis after reducing the
problem to the case of Maxwellian molecules (v = 0). There is a simplified proof, also using Fourier analysis
and in particular the Littlewood-Paley decomposition, in [5] and [6]. These proofs are considerably easier in
the Maxwellian case (7 = 0), because they use Bobylev’s formula. We give a new alternative proof in the
Appendix A based on the geometric understanding of the Boltzmann kernel. All computations are done in
physical variables. Our proof works in the same way for any value of . It transparently gives us an estimate
with respect to the same anisotropic weighted Sobolev spaces as in [37].

The coercivity estimate implies some gain of regularity for the Boltzmann equation without cut-off. In the
space homogeneous case, iterating this gain of regularity, it is known that solutions belong to the Schwartz
class for all positive times. This result holds under rather general cross section assumptions, including
essentially hard and moderately soft potentials in the non-cut-off case. See [32], [5], [6], [39], [51] and [27].

For the spacially inhomogeneous case without cut-off, one can also obtain some regularization effect
combining the coercivity with hypoelliptic estimates. Iterating such estimates leads to the C*® regularity of
solutions. However, it is necessary to impose significant conditional regularity in order to start the iteration.
The best regularity results available require the assumptions that (v)¥ f(¢, z,v) belongs to H?([0,T],R?,R?)
for all values of k£ € N, and in addition the mass density is assumed to be bounded below. Under these
assumptions, they prove that f belongs to the Schwartz class for positive time in [7], [9], [28].

It may be interesting to compare the current state of the regularity results for the Boltzmann equation with
the classical development of nonlinear elliptic equations. Hilbert’s 19*" problem consisted in the regularity
of minimizers of smooth convex functionals in H' (see [66]). These minimizers solve a nonlinear elliptic
equation in divergence form. From the beginning of the century (starting by the work of Bernstein [18]),
people proved that solutions were analytic provided that some conditional regularity assumption was satisfied.
The assumptions were progressively improved through the years. By iterating the Schauder estimates, it was
possible to prove that solutions were analytic starting from a C1'® estimate. However, variational techniques
only provided a weak solution in H'. It was a long standing problem to bridge that gap, and it was finally
achieved independently by De Giorgi [30] and Nash [54]. Our result in this paper plays the role, in the
context of the inhomogeneous non-cut-off Botlzmann equation, of the results of De Giorgi and Nash for
elliptic and parabolic equations. Unfortunately, there is still a gap between what we prove (C'* regularity)
and what is necessary to iteratively obtain C*® regularity of the solution by current methods (H® regularity
plus infinite moments). So, more work is necessary.

In [59], results from general integro-differential equations are applied to the Boltzmann equation. There
is an L™ estimate, a Holder estimate and a lower bound. However, the last two apply only to the space
homogeneous case. The results in this paper are proved with different techniques compared to [59]. In this
work, we develop a result in the flavor of De Giorgi, Nash and Moser theorem for equations in divergence
form. The results in [59] use the methods from [56] which are in the flavor of Krylov-Safonov theory for
equations in nondivergence form. The coercivity estimate plays no role in [59], and it certainly does here.
Our result in Theorem 1.5 complements the L* estimate from [59].

In [3], the authors prove that if the inital data is sufficiently nice, the Boltzmann equation admits a unique
smooth solution locally in time. For small perturbations around a Maxwellian, the equation is known to
have global smooth solutions [38], [37], [8], [2]. As far as existence of weak solutions is concerned, Alexandre
and Villani prove in [10] the existence of a certain type of renormalized solution. Neither the uniqueness
nor the regularity of these solutions is well understood. They prove that the family of solutions is compact
using the entropy dissipation estimate.

The study of the regularity of solutions is relevant for most aspects of the qualitative analysis of the
Boltzmann equation without cutoff. For example, Desvillettes and Villani prove in [31] that the solutions
converge to equilibrium, at a specific rate, provided that the solution remains smooth.

We consider this paper to be an important step towards a longer term goal to prove the following con-
jecture. We believe that if f is a solution to the Boltzmann equation with v + 2s € (0,2] and such that
0 <M <M(t,z) < My, E(t,z) < Ep and H(t,z) < Hy, then f should be C* for positive time.

It is not at all clear whether the assumption v + 2s > 0 is necessary to obtain regularity. However, the
L* estimate for very soft potentials is out of reach by current methods without further assumptions. This
is also the case for the space homogeneous Boltzmann equation.
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It would be possible to study the precise behavior of the constants A and A for which (1.3), (1.5), (1.6) and
(1.7) hold and obtain a global weighted C* estimate using a scaling argument as in Remark A.7. However,
this estimate also depends on the L® norm of f. It is to be expected that the solution f should decay
exponentially for large velocities, in addition to the L* bound given in [59]. See [35] for a result in that
direction in the space homogeneous case. A better decay in f for large velocities would imply a better C*
estimate for large velocities. Because of that, we postpone the analysis of large velocities to future work
when the decay of f is better understood. The local result provided in Theorem 1.5 provides the right tool
to study the C'* estimate for large velocities in terms of the decay of f.

1.3.3. Regularity theory for integro-differential equations. The study of Holder estimates and the Harnack
inequality for integro-differential equations of the form

fi(t,v) = /Rd(f(t,v') — f(t,v))K(t,v,v") dv’

is a very active area of current research. It developed originally motivated by problems in probability, with
applications to mathematical finance [61] and physics [50]. The main technical novelty of this work is our
study of a kinetic equation with this kind of diffusion. Our equation has the extra variable z, and the
transport term v -V, f, without any explicit diffusion in x. Previous Holder estimates for integro-differential
equations may be applied to the Boltzmann equation, at most, in the space homogeneous case only. Yet,
even in the space homogeneous case, the results in this paper present novelties. The assumptions we make
on the kernel (1.3), (1.5), (1.6) and (1.7) are more general than in previous works about integro-differential
equations. Because of that, our main results in Theorems 1.5 and 1.6 are new even in the space homogeneous
case. In this subsection, we review and compare the literature about integro-diferential diffusions. We stress
that all previous results apply to the space homogeneous case only.

The interest in Holder estimates and Harnack inequalities started from the study of regularization proper-
ties of classical parabolic equations of second order. For equations in divergence form (like f; = d;a;;(t,v)0; f),
the estimates were originally obtained independently by De Giorgi [30] and Nash [54], and later reproved by
Moser [52]. For equations in nondivergence form (like f; = a;;(t,v)0;; f) the result was obtain much later by
Krylov and Safonov [46]. The techniques used for equations in divergence or nondivergence form are very
different. In the former case, the equation’s structure is amenable to variational methods, and energy esti-
mates in Sobolev spaces. In the latter case, tools like the Alexandroff estimate and explicit barrier functions
are used for the proofs. Both types of results, with their corresponding approaches, have their counterparts
for integro-differential equations. In this paper, we use the variational structure of the equation and work
with localized energy estimates. These are ideas for equations in divergence form. However, we use some
ideas that originated in the study of equations in nondivergence form, like the ink-spots theorem and barrier
functions. Below, we review other results for integro-differential equations following each approach.

A second order operator in divergence form f — 0;(a;;(t,v)0;f) is characterized by the fact that it is
self-adjoint in L2. For integro-differential operators, this is reflected in a symmetry condition for the kernel:
K(v,v") = K(v',v). A second order operator in nondivergence form f — a;;(t,v)0;;f has the convenient
property that it returns a bounded function when evaluated in a smooth function f. For integro-differential
operators, this is reflected in a different symmetry condition K (v,v + w) = K(v,v — w). The Boltzmann
collision kernel has the symmetry condition that corresponds to equations in nondivergence form. This
structure is exploited in [59] to obtain Holder estimates in the space homogeneous case, and L* estimates
for the full equation. In this paper we apply techniques for equations in divergence form. We include
assumptions (1.6) and (1.7) which measure how much the kernel K is allowed to depart from being symmetric
(as in K(v,v") = K(v',v)).

The Harnack inequality and Holder estimates for integro-differential equations in divergence form has a
long history with several major contributions. Some results in this direction are [44], [14], [41], [29], [21],
[34], [43] and [33]. There is a small survey on the subject in [43]. In these papers the kernel K satisfies the
symmetry condition K (v,v") = K(v',v) plus some ellipticity assumptions. It is perhaps clear that there is
some room in the methods for a lower order asymetric part in K. Our assumptions (1.6) and (1.7) allow us
to consider a non-symmetric kernel K whose asymetric part is as singular as the symmetric part. We require
a control of the asymetric part in terms of cancellation conditions, which is new.

A natural ellipticity condition on the kernel is to assume that it is comparable with the fractional Laplacian.
The classical assumption would be K(v,v') ~ |v — v'|7972% for every value of v and v’. This assumption
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is made in [44], [14], [41], [29] and [21]. The results were extended to a much more general class of kernels
in [34], [43] and [33]. The assumptions there are essentially equivalent to our assumptions (1.3) (the lower
bound on the bilinear form in the symmetric case) and (1.5) (the upper bound on the kernel), plus the
result of our Lemma 4.2 (the upper bound for the bilinear form). It is a new contribution of this paper that
Lemma 4.2 follows from (1.5). We also prove in Theorem 4.1 that the integro-differential operator L, is
bounded in H® to H~* for a non-symmetric kernel satisfying (1.5), (1.6) and (1.7). The proof is significantly
more complicated in the non-symmetric case.

The study of integro-differential equations in nondivergence form followed a parallel path using different
tools. These are the Holder estimates and the Harnack inequality for kernels satisfying the other symmetry
condition: K (v,v+w) = K(v,v—w). There are also many important results in this direction including [17],
[60], [16], [15], [57], [22], [58], [13], [12], [19], [23], [25], [47], [26], [42] and [56]. The majority of these results
make the pointwise assumption on the kernel K (v,v’) ~ [v—v'| =972, and therefore are not directly applicable
to the Boltzmann equation. It is only in [19], [42] and [56] that more singular kernels are considered. The
assumptions in [56] are sufficiently general to be applicable to the space homogeneous Boltzmann equation.
Our result is for equations in divergence form, and thus none of these papers either implies or follows from
ours. Interestingly, we use some of the ideas for nondivergence equations. Most importantly, the ink-spots
theorem that we develop in Section 10 is a generalization of a similar covering argument in [56].

We stress that our main regularity result in Theorem 1.5 requires the equation to hold in a bounded
domain only. The parameters A and A in the assumptions (1.3), (1.5), (1.6) and (1.7) will deteriorate as
|v| = oo in the case of the Boltzmann equation.

1.4. Organization of the article. We set our notation and further analyze our assumptions in Section 2.
The relationship between our main results and the Boltzmann equation is discussed in Section 3, where
we prove in particular that the Boltzmann kernel satisfies the assumptions listed above. The analysis of
the operator L, and its associated bilinear form £ is done in Section 4. This section should be interesting
in itself. This is where the generality of our assumptions on the kernels is reflected. All the results in
Section 4 would be straight forward if we assumed that the kernels satisfy K (v,v") = K(v',v) and K (v,v') ~
|v — v/|79725. The core of the proof of the Weak Harnack inequality and Hélder estimates for integro-
differential equations is done in sections 6, 7, 8, 9, 10 and 11. Section 5 contains fairly unsurprising statements
that are technically necessary for the completeness of the rest of our proofs. Experts will probably skim
through this section quickly. The appendix A contains a new proof of the coercivity bound for the Boltzmann
equation (Subsection A.1) and some technical lemmas (Subsection A.2).

2. PRELIMINARIES

2.1. Notation. For a real number a, a™ = max(a,0).

A constant is called universal if it only depends on dimension and the constants s, A and A in the
assumptions (1.3), (1.5), (1.6) and (1.7).

When we write a < b, we mean that there exists a universal constant C, so that a < Cb. We write a ~ b
when both a < b and b < a hold.

When we write H $(Q) for some 2 = R?, we mean the space whose norm is given by

1 1% () |U*U/|d+25 v dv.

The space H*(Q2) is the one corresponding to the norm
10 ) = 11 ) + 1122 ()

The space H(f2) is obtained by completing the space of C® functions in R? supported in © with respect to
the norm | - || = (). When Q = R%, H§(Q) = H*(Q). We also define H—*(2) as the dual of H§ ().
It is well known that Hf”?l](Rd) = Jpa €125 | £(€)2 d¢. Moreover, f € H*(R) if and only if f = g1 +
(=A)32gy with g1, g, € L2(RY). Similarly, f is in the dual of H*(R?) if f = (—A)*2g for some function
g€ L*(RY).

Note also that if f : R? — R is supported in By, then | f|| s gay, | f] z+(5,) and |f 1l 7+ () are all equivalent.
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FI1GURE 2. The transformation leaving the equation invariant. On the left, a straight cylin-
der centered at the origin. On the right a slanted cylinder centered at zj.

2.2. First consequences of assumptions. After an obvious readjustment of constants (depending on d
and s), the assumption (1.5) is equivalent to the following

(1) fBQr(U)\BT(U) K(v,v") dv' < Ar=2% for any r > 0 and v € B
1 . , K (v,v") dv < Ar~2® for any r > 0 and v’ € Bj.
Bz Bar(v')\Br(v') R
It is also equivalent to
(7) fBT(v) [v —v'|2K (v,v") dv’ < Ar?72% for any r > 0 and v € B
1 _ N|v—wv v,v") dv < Ar*=2% for any r > 0 and v’ € Bp.
.. By () / 2K "N d A 2—2s f 0 d v BR

We use the three forms of the assumption (1.5) indistinctively in different parts of the paper.

2.3. Invariant transformations. If f satisfies the equation (1.2) for some kernel K satisfying (1.3), (1.5),
(1.6) and (1.7), then the scaled function f,.(t,z,v) = f(r®t,r>*Tlx rv) satisfies a modified equation

Ofr + 0Vufr + Ly fr = hy,
where
he(t,z,v) = r**h(r®t,r* e ro),
K, (t,z,0,0") = rT 2K (r25¢ r25 Ty o).

For any r € [0, 1], the kernel K, satisfies the assumptions (1.3), (1.5), (1.6) and (1.7) with a larger radius
R/r instead of R. Moreover, |[hy| 1=,y < m?*|h|L=(0.) < A=)
The equation is also invariant under the family of transformations 7,,. Here zg = (%o, 0, v0) € Rx R4 x R?.

Too (t,2,0) = (tg + t,20 + T + tvg, v + v) = 2g © 2,
Tt m,v) = (t —to, — zo — (t — to)vo, v —vg) = 25 ' 02
(see Figure 2). Indeed, the product o induces a Lie group structure on R x R? x R?. We remark that
(T7 07 O) © (t’ z, U) = (t + T7 z, U)7

that is to say, translation in time coincides with a left Lie product.

Because of the scaling and the group action that keep our class of equations invariant, we are forced to
work with slanted cylinders: for a given center zy = (tg, g, v9) and some radius » > 0 by the following
formula

(2.1) Qr(20) = {(t,x,v) : —1* <t —tg <0, |v —vg| <7, |z — 20 — (t —to)vo| < T35},

Remark that for zg = 0,
QT = QT(O) = (*7’2570] X Br25+1 x B,.
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2.4. The fractional Kolmogorov equation. In this subsection we review the fractional Kolmogorov’s
equation:
(2.2) fe+v-Vof+(=A,)°f =h.

The previous Lie group structure also preserves this equation. There is a fundamental solution J(t,z,v)
which has the following form

1 x v
J(t,xw) =Cd td+d/s J <t1+1/2$7 tl/QS) '

The function J can be computed explicitly in Fourier variables by the formula

1
j(gp,f) = exp <_/0 |€ — T<p|25 dT) .

In the physical variables = and v, the formula for J is not explicit. However, some simple properties can be
deduced from classical considerations. We collect them in the following proposition.

Proposition 2.1 (Fundamental solution of the fractional Kolmogorov equation). The functions J and J
have the following properties.

(1) The function J is C* and decays polynomially at infinity. Moreover, J and all its derivatives are
integrable in R??.

(2) For everyt >0, [poq J(t,z,v) dvde = 1.

(3) Both functions are nonnegative: J =0 and J = 0.

(4) For any p =1, we have

1Tt ) o (goay = ¢TIV T | Ly 2o,
[(=2)2T(t, -, )| Lo (goay = ¢~ 9 OHDATIDZ2 Y A)RT| Ly goay.
In particular, for p. = (2d(1+5)+2s)/(2d(1+5)+s) € (1,2), we have |J(t,-, )| L« (r2e) < Ct1/2=1/ps

and
|| (_A)i/gj(t» % ) ”LP* (R24) < Ot~/

The initial value problem (2.2) is solved by the formula
fto) = [ [ folw)a(t =y o, —w) du dy
R JR4

(23 t
+/ / h(r,y,w)J(t — 1,2 —y — (t — T)w,v — w) dw dy dr
0 JRrd Jrd

We define the modified convolution #; by the formula
v a,0) = [ b wiite — y — tw,0 — w) du dy.

If we make the change of variables j(x,v) = j(z +tv,v), then h#;j(z,v) = h#*j(z—tv,v). Thus, the modified
convolution is the same as the usual convolution conjugated by that change of variables (of Jacobian one).
We observe that this convolution satisfies the usual Young’s inequality:

2o | [y - 0wy

< |[Alze lillze., independenly of ¢.
L;,U

Here 14+ 1/r=1/p+1/q.
The following proposition is simply a consequence of Young’s inequality.

Proposition 2.2 (Gain of integrability). Let f be the solution of (2.2) in [0,T] x R2?, with f(0,z,v) =
fo(z,v) € L2(R??). Assume h e L*([0,T] x R?, H=*(R%)). Then

| £ o, ryxrzay < C(T) (I foll L2®eay + 1A 2o, r) xR, 17—+ (1)) )
for any q such that 1/q > 1/p, — 1/2 and p, is the one from Proposition 2.1.
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Proof. Since h € L?([0,T] x R, H=*(R%)), then there exists h; and ho in L2([0,T] x R??). so that h =
hi + (=A)3?hy and
IP1llzz + [h2lre ~ [hll 2o, rxre, 52 (RAY)-
We use the formula (2.3) to solve (2.2). Let us write f(¢,z,v) = f1(t,z,v) + fo(t, z,v) + f3(¢, z,v), where

fl(ta *y ) = fO *t J(ta "y ')a
t
Folt, ) ;=/O ha(7) #(ny J(E — 7, ) dr,

faltr) = / h(r) ry (—A)J2I(E — 7, ) dr.

Let p € [1, p+) be the number such that 1/¢ = 1/p — 1/2. Applying Young’s inequality for each value of ¢,
we have

1At e < | follrell T | ot/>,

t
Aot Nen < [ 1ha(De2T Lo = )2 a,

t
| £3(t; ) e </0 |2 ()22 |(=A) 2T Lo (¢ — 7)=* dr.

ere o = + 1/s —1/p) + < 1l/p. < 1/p since p < p.. oreover, ¢q —a) > —1so j; €
H dl+1/s)(1 -1 1/2 1 1 i M 1/2 1
L2([0,T] x R?d) with
I fillLa(ro,mx 2y < CTW 24| o 1o
([o,7] )
We estimate the other two terms applying Young’s inequality once again
2llLa(ro,ryxr2a) < CllhalL2((o,7), R29) -
|2 < Clha TV

| 3]l (o, xr2ay < Cllh2llr2(o,7), R2ay TP~

This finishes the proof. (|

Remark 2.3. The power p in Lemma 2.2 can also be taken equal to p, by using the weak-type Young’s
inequality in place of the usual Young’s inequality for convolutions and a finer analysis of the LP**® norm of
J. Since we do not need a sharp result in this paper, we prefer to keep this lemma as elementary as possible.

3. THE BOLTZMANN KERNEL

In this subsection, we explain why the Boltzmann collision operator associated with inverse power-law
potentials (see (1.1)) satisfy the assumptions we made on the kernel as soon the quantities M (¢, z), E(t,x)
and H(t,z) defined in the introduction are under control.

3.1. The collision operator as an integro-differential operator plus a lower order term. It is
classical to observe that B can be replaced with any B satisfying for all k,o € S~1,

B(r,k-0)+ B(r,—k-0) = B(r,k-o) + B(r,—k - 0).

For this reason, we can (and do) follow [59] and assume

(3.1) Ifk-o <0, then B(r k- o)~ r"|cos(6/2)[ 25+
where cos(0/2) := \Z:S:I . \Uﬂ:;:il‘

We split Q in Q1 and Qs as follows: Q(f,g) = Q1(f,g) + Q2(f, g) with
{Ql(f, 9) = [[ filg’ — 9)B dvy do,
Q2(f,g) = (ff(f:k_f*)B dvy dU)g'

Such a decomposition appears for instance in [63, 59].
The term @1 can be rewritten using Carleman coordinates [24].
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Lemma 3.1 (The integro-differential operator [59]). The term g — Q1(f,g) corresponds to some linear
operator L,g with K = K given by

2d71
(3.2) Ks(o) = / (v + w)B(r, cos O)r~%+2 duw
V=V Jylov—v
where
r? = — >+ |w?® and cos® = vt omw vmemw

v—v —w| W —v—uw|

The proof of the previous lemma is simply a change of variables to Carleman coordinates, see [59]. It
is recalled in Appendix for the reader’s convenience, see Lemma A.9. The term Q2(f,g) is of lower order
because of the cancellation lemma [62],[1].

Lemma 3.2 (Cancellation [62], [1]). The following formula holds true for any v e RY,

J[ 5= 108 aveas = il s

with

(d+v)/2
@:Am{aﬂmwmm%wfdw

for any e e S1.

3.2. Coercivity bound. We prove this lower bound in the Appendix A.1. This is a well known result in
the Boltzmann literature.

Proposition 3.3 (Lower bound [1, 37]). Let g : RY — R be a function supported in Bg. Then

Aol < = [, QU.0)0)al0) dv + ClalE o

The constants ¢ and C depend on the mass, energy and entropy of f, the dimension d and the radius R. In
other words, Ky satisfies (1.3) as soon as mass, energy and entropy of f are bounded. In the case of the
mass, we also need it to be bounded below.

The assumption (1.4), which we need in the case s € (0,1/2) is clearly satisfied by the Boltzmann kernel.
This follows as consequence of Lemma 4.8 in [59].

3.3. Upper bounds. In this paragraph, we justify that the Boltzmann kernel satisfies (1.5). We recall that
(1.5)-(i) was already proved in [59]. Recall the equivalent formulations of (1.5) explained in Section 2.

Lemma 3.4 (Upper bound (1.5)-(i) [59, Corollary 4.4]). Assume y+2s < 2. Then for allr > 0 and v € Bp,

/ Ky(v,o') dv' <r72 (/ f(2)]z — o7 +2 dz) .
BZT(U)\BT(U) R4

In particular, Ky satisfies (1.5)-(i) with A that depends only on |f x| - |"*2%| 1w (p,). More precisely, if
v+ 2s€0,2], then A in (1.5)-(i) depends only on mass and energy; if v+ 2s < 0, then it depends on mass,
dimension, v,s and || f| L.

We can now derive (1.5)-(ii).

Lemma 3.5 (Upper bound (1.5)-(ii)). Assume v + 2s < 2. Then for allv' € By and r > 0,

/]Rd\B ( /)Kf( Yydv <r™ (/ f(2)]z =o' r2e dz) )

In particular, Ky satisfies (1.5)-(ii) with A that only depends on |f x| - WHSHL«; . More precisely, if
v+ 2s € [0,2], it depends only on mass and energy; if v+ 2s < 0, A then it depends on mass, dimension,
v, s and ||f|L=-
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Proof. According to the formula for K(v,v’) in terms of f (Corollary 4.2 in [59]),

Ki(v,v) ~ Jv—o/| 7472 / o+ w)w 2 dw | .
wl(v—v’)
Without loss of generality, let us take v’ = 0 in order to simplify the notation. Therefore

(e0]
/ Ky(v,0)dv < / pfdfzs/ f+w)|w 2 dw dS(v) d
R4\ B r 0B, Jwlv

Applying (A.6) from Lemma A.10,

d—24~+2s

o0 2 _ o\ L=y Tes
/ Kf(v,0) dv < / p2e / 10 L W P
R4\ B, r RI\B, |2|

f(2) /Zl —2s—1 2 2y d=2trt2e
= s - d d
/ o Tr | ) o) d.
</ f(2) (r725|z‘d72+7+2s) dz
RA\B,. |2]42 ’

= 7’725/ f(2)]z]77% dz. O
R4\B,

3.4. The cancellation assumptions. In this paragraph, we justify that the kernel associated with the
Boltzmann equation satisfies the cancellation assumptions (1.6) and (1.7).

The first cancellation condition, assumption (1.6), is essentially the cancellation lemma, which is well
known in the kinetic community.

Lemma 3.6 (Classical cancellation lemma). The kernel K; satisfies for all v € R,

'Pv/Rd(Kf(v,v) K(v,v) </ f(z zmdz>.

In particular, Ky satisfies (1.6) with A that only depends on |[f * |- [Y|=(By). More precisely, if v € [0,2],
A in (1.6) depends only on upper bounds on mass and energy; if v < 0, it depends on mass, dimension, -y

Proof. Let P(v) denote PV [(Ky(v',v) — K¢(v,v")) dv'. In view of the definition of Ky, we have

B 0 B(7, cos§

_ 9d- 1/Rd/wm_v (v +w) — f(v' ))LT’COSQ_) dw dv’

[v" — v|rd=2

since 7 = 7 and cos @ = cosf. Using now (A.3) from Lemma A.9, we get

P(v) —/ / f(vy))B(r,cos ) do dv,.
Rd Jgd— 1
The cancellation Lemma 3.2 tells us that
Pv) = c/ |[v —w|” f(w) dw.
Rd
The proof is now complete. O

Lemma 3.7 (More subtle cancellation lemma). The two following properties hold true.

(3.3) PV /R 0 = 0Ky, dof =0,
</Rd f(2)]z =o't dz) .

(3.4) ‘PV (v —v)K¢(v,v") dv| < C
Rd
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In particular, the kernel satisfies (1.7) and A only depends on || f|-|'"*7| 1o (g, More precisely, ify € [-1,1],
A in (1.7) depends only on upper bounds on mass and energy; if v < —1, it depends on mass, dimension, 7y
and || f|| g -

Proof. The first identity (3.3) is obvious from the symmetry property: K;(v,v +w) = Ky(v,v — w). The
difficulty is thus to justify the second identity (3.4).

Without loss of generality, let us assume v’ = 0. In view of Lemma 3.1 (coming from [59]), the kernel K
can be written for v’ = 0 as follows,

271 1
—/ f(v+w)B(r,cos ) —— dw
{w:wlov} r

]

Kf<v70) =

where 72 = [v]? + |w|* = |2]? and 2z = v + w and

el L e

o+w

cos=v+w-w—v=

The way b(cos ) is modified for cos < 0, implies that

1

———B(r,cos6) ~ |v| 47 |w[1 2L
s Blrcost) ~ o
Since r and cos # only depend on |z| and |v|, this implies that there exists A(|z[, |v|) such that

1 —ad—
WB(T, COSH) = A(lz‘, |UD|’U| d 2$|w|—y+28+1
and a constant C4 > 1 such that for all z, v,

C' < A(l2],Jol) < Ca.

In the following computation, the definition of r changes. We write r = |v|. We integrate in v first on spheres
0B, and then with respect to the radius r.

R
/ 7’7‘#25/ / vA(Jv + w|, [v]) f(v + w) w25 dw do dr
0 0B, Jwlv

’PV/ vKf(v,0) dv
Rd

We use the change of variables (A.7) of Lemma A.10. Note that |w|? + 72 = |2|?.

d—24+~+2s
2

o 2 .2
/ r1*25/ A(|z|,r)zf(z)(|z| " )d dz dr
0 R4\B,. |2|

—d 1 1-2s 2 2y d=247+2s
2f(2)]2 A ) (T =) dr | de
R4 0
|2|
<wd_2CA/ f(2)]z| 2 (/ pl=2s dr> dz
R4 0

- C/Rd £ de.

’PV v (v,0) dv| = wg—2

Rd

= Wd—2

The proof is now complete. O

Remark 3.8. There is a subtle cancellation that allows this proof to work. The whole point of this lemma is

that the principal value of the integral is bounded around the origin. The reader will notice that here we end

up with an integral of the form folz‘ r172% dr. In the proof of Lemma 3.5, we end up with an intergrand r—1—2°

which is not integrable around the origin. The difference originates in Lemma A.10 given in Appendix. The
third identity in that lemma incorporates an extra cancellation due to the fact that the average values of
v € 0B, so that v + w = z, for some w L v, is 7?z/|z|?.
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3.5. Proofs of Theorems 1.1 and 1.3. In this subsection we explain how Theorems 1.1 and 1.3 follow
from Theorems 1.5 and 1.6. Theorem 1.1 is indeed a straight forward application of Theorem 1.5.

Proof of Theorem 1.1. The Boltzmann equation can be written in the form

w0 Vaf = ([ ) = sy a) e [ -l aw) £

Thus, if we define
h:=c (/ flv—w)|w|” dw) 1,
Ra

then h € L® with its norm bounded in terms of ||f| L~ and M.
Moreover, from Proposition 3.3 and Lemmas 3.4, 3.5, 3.6 and 3.7, the kernel K satisfies the assumptions
(1.3), (1.5), (1.6) and (1.7). Thus, the proof is finished as a corollary of Theorem 1.5. O

Theorem 1.3 follows mostly from Theorem 1.6. We use some other results which are presented later in
this article which allow us to extend the lower bound to an arbitrary radius R > 0.

Proof of Theorem 1.3. Without loss of generality, we assume T" = 4. The general case follows by scaling.
Like in the proof above of Theorem 1.1, we have that f is a supersolution of (1.2) for some h > 0. In
particular,

Jt+v-Vaof = L,f.
According to Lemma A.2, there is an Ry > 0, m > 0 and £ > 0 so that for all (¢,z),
{ve Bg, : f(t,z,v) =€} =m
Let r¢ be the one from Theorem 1.6. We have that

/ £ dv da dt > (2 tIr2d
[0,78°1% B 1425 X Br,

It is possible to cover the set [0, 73] x B, 1+2: X Bg, with N slanted cylinders Qo (2) with N < (Ro/r0)??/c

for some universal constant ¢ > 0. This implies that there must be some point z = (rg*,z,v) € {r3*} x
By 2:(ro 1 Ry) % BR, so that

/Q ( )fs dv dz dt > cﬁsmrgs+(3+25)d/R3d.
ro (2

Applying Theorem 1.6 (properly translated), we get

inf
Qry (%) U

for some constant ¢ > 0 and Z € {1} x B P12y gy X BRo-

This bound below in @, () is propagated to [2,4] x Br x Bpg, for any arbitrary R > 0 using the barrier
function from Lemma 7.1 if s < 1/2 or the combination of Lemmas 8.3 and 6.6 if s > 1/2.

Note that the geometric setting of Lemmas 7.1, 8.3 and 6.6 are independent of the constants A and A.
This is important since these ellipticity constants depend on R. O

4. STUDY OF A BILINEAR FORM

This section is devoted to the study of a general bilinear form £ associated with a kernel K through the
following formula,

£(pv) = [ (Loe)e)g(o) do = lim ( Il o) et g w0ty dv>.

In the remainder of this section, we abuse notation by ignoring the limit as ¢ — 0. This means that some
integrals corresponding to the odd part of K may need to be understood in the principal value sense. Indeed,
we recall that the operator L, is given by the formula

(4.1) Lyp(v) := ;1_{]% o )(go(v') — o(v))K (v,v") dv'.
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The limit does not necessarily converge for every value of v, even if ¢ is smooth. The correct understanding
of L, as a distribution is obtained through the analysis of the bilinear form £ done in this section.

When we study the equation (1.2), the bilinear form & will be computed for functions ¢ and g depending
on values of t and x. The kernel, and consequently also the bilinear form, depend on ¢ and x. In this section
we study properties of bilinear forms like this that will be applied for every fixed value of ¢ and x.

In this section, we also assume that the kernel K is defined for all values of v € R? and our assumptions
hold uniformly. This is convenient for the exposition and some of the proofs. In Section 5, we will show that
any kernel satisfying (1.3), (1.5), (1.6) and (1.7) can be extended to all values of v € R? to satisfy a global
version of these assumptions. So, a posteriori, our approach is not limiting.

Since it is not necessary for K to be non-negative for the results in this section to hold, and they may be
used elsewhere, we restate here our main assumption allowing sign changing kernels. We make the following

assumptions for some parameter s € (0,1) and a constant A.

(4) \ g (o) K (0,0)] dv/ < Ar—2s

(4.2) Vv e RY, Vr > 0, fRd\Br( )
(M’) fRd\BT(v) ‘K('UI,'U)‘ dv' < Ar—2s,

We also state a global version of the cancellation assumptions (1.6) and (1.7).

(4.3) Vv e RY, ‘PV/ (K (v,v") = K(v',v)) dv'| < A.
Rd
In the case s > 1/2, we also assume
(4.4) Vo e RY, ‘PV (K(v,0") = K(',v))(v—2") dv'| < A.
Rd

The main result of this section will be that the bilinear form & is bounded in H® x H*® provided that (4.2),
(4.3) and (4.4) hold. We also show some other estimates that we will use.

4.1. Estimates in H®. The main result of this section is the fact that the bilinear form &£ is bounded in
H?® x H* as soon as our assumptions (4.2), (4.3) and (4.4) hold. We state it in the following theorem.

Theorem 4.1 (Estimate in H®). Let K satisfy (4.2) and (4.3). If s = 1/2, we also assume that it satisfies
(4.4). There then exists a constant C depending only on s, d and A, so that

E(f,9) < Clfllmsl gl

It is convenient for some of our proofs to spit £ into the symmetric and anti-symmetric part of K. Let

E(p,9) = E¥™(p,9) + EX(p, g)
with

e (09) = 5 [ (60) ~ o (a0) g NK(0,0) 2’

£ (p.9) = 5PV [ (e(0) = o)) (a(0) + 90N K (0,1/) '
Note that £ = £Y™ and £V = () when the symmetry condition K (v,v") = K(v',v) holds. Likewise, when
K is anti-symmetric (i.e. K(v,v") = —K(v',v)) then £Y™ = 0 and %V = £. Consequently, writing K as
the sum of its symmetric plus anti-symmetric part corresponds to writing £ as the sum of £¥™ and £%keV.
We will prove Theorem 4.1 estimating £%¥™ and £V separately. Note that, because of the density of
smooth functions in H?, it suffices to prove Theorem 4.1 when g and ¢ are smooth.

4.1.1. Estimate of the symmetric part.

Lemma 4.2 (Estimate of the symmetric part). Let K be a kernel satisfying (4.2). Then, there exists a
constant depending only on A, s and dimension, so that for any function g € H*(R?),

£"(g,9) < Clgl..
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Proof. Without loss of generality, we can assume K > 0 here. Otherwise, the value of £%¥™(g, g) would only
increase if we replace K(v,v') by |K (v,v")|. We write

0

(4.5) E™(g,9) = Y, P(2Y)

k=—o0

where, for any r > 0,

re) = 190") — g(0) K (0,0') 4o do.
{(v,v")ERExRE:r<|v—o’|<2r}

The key of this proof is to estimate P(r) with a similar expression involving the kernel |v — instead.
For any values of v and v/, let m = (v + v')/2, we introduce an auxiliary point w € B, /,(m). From the
triangle inequality |g(v') — g(v)[* < 2|g(v') — g(w)|? + 2|g(w) — g(v)[*. Then

1
P(r) < — // / (lg(0") = g(w)* + |g(w) = g(v)[*) K (v,v") dw dv’ dv,
{(v,v")eRe xRe:r<|v—v’|<2r} J Byjg(m)

’U'|7d725

r
we change the order of integration for each term in the integrand,

1
S g // lg(v") — g(w)|? K(v,v') dv | dw dv/
r r/A<|v —w|<5r/4 Qi

1
+ // lg(w) — g(v)[? (/ K(v,v") dv’) dw dv.
r r/4<|v—w|<5r/4 Q

v,w

Here the set €, ,, contains all values of v’ that correspond to any given pair (v,w). We will only use that
Qyw < B, (v)\Br(v). Both terms are bounded by the same expression using each line in (4.2). Thus,
A lg(v') — g(w)[?
P(r) € —— // lg(v") — g(w)|* dw dv < A// 22 dw dv.
Td+23 r/A<|v—w|<5r/4 r/A<|v—w|<5r/4 |U - w|d+28

Applying this estimate for each term in (4.5), we get the desired estimate. |

4.1.2. Estimates of the anti-symmetric part. Finding an appropriate upper bound for & when K is not
symmetric is more complicated than for £¥™. The cancellation assumptions (4.3) and (4.4) are necessary.
We will prove the estimates differently for the case s € (0,1/2) and s € [1/2,1). Note that the hypothesis
(4.4) is only used in the later case.

Lemma 4.3 (Estimate of L, f for s < 1/2). Assume s € (0,1/2). Let K be a kernel satisfying (4.2). The
following estimate holds

fITE

1-2s
ILofllze < CIFILE 1A 550

Proof. For some R > 0, to be determined below, let us write L, f = £y + {1 + {2, where
) = [ (0 = FEDK () do',
Br(v)

l(v) = / FWK(v,0") dv',
RNBR(v)

lo(v) = — </]Rd\BR(v) K(v,v") dv) f).

We prove the estimate for each one of the three terms.
Let us start with £5, which is the easiest. In this case, obviously,

162] 22 < <sup / K(v,v) dv') 1Fle < AR f] 2.
RINBR(v)

v
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The estimate for ¢; involves the Cauchy-Schwarz inequality and an application of Fubini’s theorem. In
this case we use the second line of (4.2).

2
|67 = / (/ fW)K (v,v") dv’) dw,
Re \ JRABR(v)
</ / K(v,v") dv’ / fW)K(v,v') dv' | do,
R4 R4\ Bg(v) RN Bg (v)

< AR™% R f(v')? </{ v/ —v|> R} K(v,v) dv> dv' < AR f|3-.
v:|v—v|>

We estimate £y using the Cauchy-Schwarz inequality together with (4.2) and comments from Subsec-
tion 2.2.

2
2, = Ul — v v Ul 'U/ v
Jeoll = [ (/B)R(v)(f( )~ TN E w0 d ) a,
é/Rd (/BR(U)(f(v)—f(v)) |lv—2'|~ K(v,v)dv) (/BR(U) lv—wv |K(v,v)dv> dv,
< AR-2 / (F(') = F0)2]o — v/ | K (v, ') do’ do.
[lv—v’|<r

The kernel [v — /|71 K (v, ') satisfies (1.5) with s + 1/2 instead of s. Then, we apply Lemma 4.2 to get
”EOH%2 S Rl_QS”in’[sﬂ/z-

The proof is finished choosing R = (|| f| 12/ ] rs+1/2)?/ +29). O
The estimate for |L, f]z2 when s > 1/2 is harder to obtain. We will use the following auxiliary kernel.

dv’.

I d72K /
Av,w) = / v Z|—2 (”U,/Ud)_g
{v'eBRr(v):(v'—v)-(w—v)=|w—v|?} |’LU - U| |’U} -v |

Lemma 4.4 (Estimates on the auxiliary kernel). Let K be a kernel satisfying (4.2) and s = 1/2. We have
(4.6) / (v, w)| dw < B2 and / (v, w)| dv < B2
BR(’U) BR(’LU)

Proof. The first of the two inequalities in (4.6) is a relatively straight forward computation using (4.2). Let
us choose v = 0 without loss of generality. We have

r1d—2 K(0.v'
[ 1o [ [ O v aw,
Br Br J{v'eBr:v" w=|w|?} |w| |w —-v |

1
— [ RO, / - _dw | av,
/BR R e P o

= C/ |K(0,")|]v/|* dv' < CR*™2%.
Br

Let us move to the second inequality in (4.6). Assume without loss of generality that w = 0. We have

/o, d—2 K /
/ |A(v,0)|dv</ / ikl e LS GG WS NS o
Br Br J{v'eBgr(v):v’'-v<0} |/U|d_2|/ul|d_2
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From the triangle inequality [v" — v|?972 < |v]|72 + |0/|972, we can estimate the above integral by I; + I,
where I; and Iy are defined below. We analyze both terms using (4.2) and Fubini’s theorem.

d—2 K
/ / "U| yn |2 (/UdUQ)‘ d’U/ d’l},
Bgr J{v':|v'—v|<R and v’'-v<0} |’U| |U ‘

K
I KO
Bog J{v:lv—v’|<R and v-v<0}nBg |U |

S R_2S/ |,U/|2—d d'U/ $ R2_25.
Bar

r1d—2 K
e | AR 4,
Bpr J{v':|]v'—v|<R and v’"-v<0} |U‘ ‘U |

The computation that proves that Iy < R%272° is almost identical integrating in v’ first and in v second.
This concludes the estimate for every term involved in (4.6). O

We now consider

We will use the following lemma from multivariate calculus when proving estimates on the operator L, f
associated with the kernel K.

Lemma 4.5 (The multi-path lemma). Let f : R? — R be any twice differentiable function. The following
inequality holds for any pair of points v,v' € R%.
1 D*f
<7|’U—1}/|d_2/ | ( )| dw.
Br(m

@n e - s - LTIy < L = =

2
Here R = |v—v'|/2 and m = (v +v")/2. Thus, Br(m) is the ball with diameter from v to v'.

Proof. For any w € Br(m), we write

jw—v| -
|f(w) = f(v) = Vf(v) - (w—v)] < |w— vl/o |D?fl(v + zw —v) dz.

where w — v = (w — v)/|w — v|. In particular, computing with spherical coordinates the integral in the first
line below with origin at w = v,

(7[ F(w) d“’) 1) - Vi) Y
Br(m)

][ F(w) — Fw) — V() - (w—v) du)
Br(m)

Jw—v|
s ﬁR(m) o =] {/0 |D%f|(v + Cw — ) dg} dw

D2
g / DA1(w) 4,
Br(m) |w — vl

This implies that

(f f(w) dw> 1) - Vi) Y
Bgr(m)

Exchanging the role of v and v’ and subtracting the resulting inequalities yields (4.7). O

2
< Rd72/ |D? fl(w) dw.
Br

) 0= 0[2 — ]2

Lemma 4.6 (Estimate of L, f for s > 1/2). Assume s € [1/2,1). Let K be an anti-symmetric kernel (i.e.
K(v,v'") = —=K(v',v)) satisfying (4.2) and (4.4). The following estimate holds

(4-
|Lofllzz < ClAI"ID? fl72 + AV £ e

Proof. We write L,f = fo + {1 + {5 like in Lemma 4.3. The estimates |¢1] > < AR™2%|f|z2 and |[{2]z> <
AR™2%||f| 1= follow an identical proof. The estimate for |[{g] 2 is different.
Recall that

o) = [ ()~ SR w0
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We write £y = €3 + £} + (3 with

1

0= V') — v)) (v —v)K (v,0) dv’
B=5 ), (TI0) = TF0) 0 0K

0= Vf(v)/B ( )(v'—v)K(v,v') dv’,

2 _ o) — U_Vf(v)"'vf(vl).v/_v v.v) dv’
i (=g - HESEE w)) K) av

The same argument that gives us the upper bound for ¢y in Lemma 4.3 gives us in this case
66112 < CRI IV £l < RIS 1D 2",

Indeed, £3 equals the same as £y in the proof of Lemma 4.3 with Vf instead of f and (v — v')K(v,v’)

instead of K(v,v"). The fact that these are vector valued functions does not affect the proof. Note that

(v—v")K (v,v') satisfies (4.2) with s —1/2 instead of s. The second inequality is an elementary interpolation.
The cancellation assumption (4.4) together with (4.2) implies that

[65]ze < AR + 1)[V £ e
1 1
SARVE|fI21D? £ 72 + AV Lo

In order to estimate £3, we use Lemma 4.5. We write

2
I3 = [ (/B ()(f@’)fw)W.<v'v>>f<<v,mdv/> a,

2
v — | 2K (v, v

S/ / / |D? f(w))] ‘_ d|_2 _< /d)—2 dwdv' | do,
Re \ JBgr(v) J B,(m) lw — ]2 w — ']

using Fubini’s theorem

2
:/ / D f(w)| / W oK@ ) ) )
R \ JBgr(v) {0 (v —v)-(w—2)=|w—v|?} lw — v]4=2|w — v’|472

In view of the definition of A(v,w), we can use (4.6) and get

2
itz < [ ([ i rlae e ) an

<[.(/ ) w) ([ 1D () Aw.w) ) do

\O 2—2s 2 2
<cr [ 10f(w) </|

v—w|<R

Av, w) dv) dw < CR*C=2) D2 f|2..

1 1
Choosing R = | f||7./|D?f|}. completes the proof. O
We can now prove the main result of this section.

Proof of Theorem 4.1. We prove the upper bound applying Lemmas 4.3 and 4.6 to both operators L, and
its adjoint L!, and doing some sort of interpolation. Note that L! has the same form as L, plus a correction
which is bounded from L? to L? (thanks to the cancellation assumption (4.3)), so Lemmas 4.3 and 4.6 apply
to Lt as well. Indeed,

Lf) = [ ) - SeDRW ) a + ([ K00 - Ko ) o)

The following interpolation is probably classical. We prove it using Littlewood-Paley theory. Since we
have already obtained the estimate for £Y™ in Lemma 4.2, we are only left to prove the estimate for €<V,
In the case s € (0,1/2), the proof below gives the estimate for £ right away. For s € [1/2,1) the proof below
applies to £%% only.
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Let A; be the Littlewood-Paley projectors. We use the convention that all low modes are enclosed in Ag.
That is f = Z;‘io A, f, with the index i being non-negative. We use the fact that for any s > 0,
[Aiflae ~ 27 A f]

Moreover, from Lemma 4.3, if s € (0,1/2),

1—2s 4s

[LoBifliz S 1AFIEE 1A < 27 | Aif e
From Lemma 4.6, if s € [1/2,1),
ILoAiflre < 1A fI2° 1A f I3 + 1 Aaf e < 2% A f| e

The same estimates hold for Lf in the place of L,,.

Therefore,
E(f,9) = D E(Af, Azg),

ij

= DCLoAf, Ajgy + D (A LA g),
i<y i>j

< 227 N AS a1 A g e
0,J
a0 [ee}

= 327N A f e | Disrglme + [ Diirflae ] Diglae,
k=0 i=0
o o 12 /w0 12

< Yok (Z IAifqu> (Z |Ajg%{5> ;
k=0 i=0 i=0

< I flaslglm--

The proof is now complete. O

4.2. A generalized cancellation lemma. As a preparation for the next subsection, we prove the following
generalized cancellation lemma.

Lemma 4.7 (Generalized cancellation). Let K be a kernel satisfying (4.2); if s = 1/2, we also assume that
K satisfies (4.4). Let ¢ be a bounded C? function. Then

PV /Rd(s@(v/) — () [K(v,0') = K, v)] dv' < C[p]c,,
for some constant C depending on A and dimension.

Proof. The proof is a direct computation. We estimate the tail of the integral using (4.2) together with the
boundedness of ¢. Then, we estimate the integral in B; using (4.4) and the smoothness of p. We write the
proof for the case 2s > 1 first, and later indicate its simplification when 2s < 1.

PV / (p(0') — p@)[E (0, ) — K(v',0)] dv/

<PV [ (o) = p(0))[K(v,v") = K(0',v)] dv" + CAlp]| =,

By
<PV [ (f — o) VoK (0,0) — K(',0)]
By
+ |D%¢] o — '[P K (v,0") = K(v',0)] dv' + CAlg| o=,
<CAll¢|ce.

For the last inequality we used that thanks to (4.2),

/ [ —v]?[K (v,v) — K(v',v)] dv/ < A,
B
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and thanks to (4.4),
PV [ (V' =v)[K(v,0") = K v)] dv' <A.
B,

When s < 1/2, we do not need to use (4.4). We simply use (4.2) to get
[ ) = o @) = K@ av' < [ o= vl K (0.0) - Kol av
1 < C’Al[go]cl. O
Remark 4.8. Lemma 4.7 tells us in particular that when K is anti-symmetric, the operator L, f is well
defined pointwise. The same cannot be said for a symmetric kernel of s > 1/2. When K is a symmetric

kernel assuming only (4.2), the value of L, f(v) is not necessarily defined pointwise, even if f is smooth. It
is only through £%™ that we can define L, as an operator from H?® to H°.

4.3. Estimate focusing on the smoothness of only one function. In this section we obtain an estimate
for £(p, g) taking maximum advantage of the smoothness of ¢, and not so much on the smoothness of g.

Lemma 4.9 (Second upper bound for £). Let K satisfy (4.2) and (4.3). If s = 1/2, we also assume (4.4).
For any two functions g € H*(R?) n LY(R?) and ¢ € C? with g = 0 and any € > 0, we have

(4.8) E(p.9) <elglFy. + Ce™elgnl{v e R : g(v) > 0} + Clplczllgle-

Proof. Recall that & = £%Y™ 4+ £k¢V_ We estimate each term separately.
In order to estimate Y™, we apply the following elementary identity

l9(v) = g()] < (Xg>0(v) + Xxg=0(v))|g(v) — g(v');

we then get
&™) = [[ 1) = o) gmal0)lg(o) ~ 9K (0,0) ' o
< // (900) — 90 00') @ v+ (467 [ ) — ) a0 K o)
= 2(50) + (497 [ xgma(0) ([ (610) = )R dv’) dv,
using Lemma 4.2 and the assumption (4.2),
< <ClglE. + C= el [ xgmo v
As far as €%V is concerned, we first rewrite it as follows
£ (p.9) =1 [[(00) = e9(0) + g0 (0,) ~ K(W',0) do do
// "Mg(v) (K(v, V') — K(v’,v)) dv’ dv
_§/g(v) {PV/Rd(go(fU) — () (K (0,0)) — KW', v)) dv’} do,
using Lemma 4.7,

< Ollg|c» / 9(v) dv.

Combining the upper bounds for £¥™ and £V we conclude the proof. O



24 CYRIL IMBERT AND LUIS SILVESTRE

4.4. Commutator estimates.

Lemma 4.10 (Commutator estimate for s € (0,1/2)). Let us assume s € (0,1/2) and that K satisfies (4.2).
Let D be a closed set and Q2 open so that D € Q < R%. Let ¢ be a smooth function supported in D and
fe H*(Q) n L®[R%Y). We have the following commutator estimate

Lulof] = ¢Lof = h1 + ha,
with
[P1] Lo may S lllnee Hf||L00(Rd)d(D»Rd\Q)_QS7
[Pl L2 @aney < Ielee £ 220y d(D, RNQ) 2,
IP2 2 @ey < llelcrlfllzz)-
Moreover, hy = 0 outside Q. Whenever Q = R, we can consider d(D,R\Q) = +o0 and hy = 0.

Proof. From the formula (4.1), we get
Cle fl) i= Lolof](v) = () Lof(v) = | F)(p(') = p(v) K (v,0) dv'.

Let r = d(D,RN\Q)/2, and let E = D + B,. Thus, we have D € E € Q, with d(D,R}\E) = r and
d(D,RN\Q) = 7.
We define

() = / S0 (o)) — p@)E (0, 0) dv!,  hav) = / £ (0(o") — (@)K (0,07) .
Rd\BT(”) BT(U)

From (4.2), for any value of v € R?, we have
|hy(v)] < 2| flL= @l e Ar—2

which is the first inequality.
When v ¢ D, we have ¢(v) = 0. Therefore, the integrand in C[¢, f](v) is nonzero only for v’ € D. We
thus have for v ¢ Q > D,

() = /D )oK (v,0') dv’

Therefore

/W b (v)* dv = /R o < /D F@)p(0")K (v,0') dv’>2 do,
<tolie [, (f sormewaniad) ([ o) a.

<lplietr [ ] S e

using (4.2),

< ol2oAr? /D F@)? ( / | |K<v,v'>|dv> dv = A2l | 122 .
v—ov'|>r

This gives us the second inequality.
In order to estimate |ha| 12, we use Cauchy Schwarz.

2, = v’ ") — o(v v, v dv’ v
|h2Lz/E</BT(U)f< (o) — p(0) K (0,0/) d ) dv,

Nle') — p(v v,v")| dv’ V') — (v v,v')| dv’ | dv
g/E(/B,.@)f(”)M”) @(v)| | K (v,v")| d ></B,.<v>|¢( ) — o(0)] |K(v,v)] d ) dv,
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Since ¢ is bounded and C!, then (4.2) implies (note that s < 1/2),

/ (v ()| 1K (v,v")] dv" < ||l for every value of v € RY,

/ | (v ()| K (v,v")] dv < ||| cn for every value of v’ € R%.

Therefore,
[halZ2 < Hsﬁ\lcn/E </B ( )f(v’)zw(v’)—w(v)IK(vw’)dv’) dv

Sller [ 0 ( Lo |so<v’>—so<v>||K<v,v’>|dv> av

< el £ 122 @)
O

Lemma 4.11 (Commutator estimate for s € [1/2,1)). Let us assume s € [1/2,1) and that K satisfies (4.2)
and (4.4). Let D be a closed set, and Q open so that D € Q < R, Let ¢ be a smooth function supported in
D and f € H*(Q) n L®(R%). We have the following commutator estimate
Lolpf] = ¢Lof = hy + ha + (=2)*hs,

with

1]l Lo ey < 6l |1 £ oo ety (d(D, RINQ) + d(v, D))~

171 2oy S Il |1l c2 oy d(D, RAQ) 72,
Hh2||L2(Rd) < lele2 ”f”HS(Q
R3] 2 (R4) S S llele2 ||f||L2(Q)

Moreover, ho = 0 outside Q. Whenever Q = R?, we can consider d(D,Rd\Q) = 400 and hy = 0.

Proof. We define hy and hsy by the expressions of h; and hg in the proof of Lemma 4.10. The estimates for
hy follow identically. We will split hy = ho + (—A)s/ 2hs, and need to prove the estimate for each term.

Note that, by construction, he(v) = 0 for any v ¢ E.

Let us write K as the sum of its symmetric plus antisymmetric parts: K = Ky + K,. Let us start by
estimating the antisymmetric contribution.

Because of Lemma 4.7, we have that |L%y|r» < |¢[lc2. Then

)

L2(Q)

|hg] 2y == |/B ( )f(U/)(%’(U/) — () Kq(v,0") dv

< + Cllelez £l

L2(©)

/ (f () = F) () = ¢(v)) Ka(v,0) dv'
B, (v)

With respect to the first term, we apply Cauchy-Schwarz and Lemma 4.2 to obtain
2

’/ (f () = F)(e(v)) = p(v) Ka(v,v') dv’

L2(9)
AN v ’U/ 'U/ ’U/ o v 2 v 'U/ v .
</E</ ()(f@) F(0)2|Ka(v,0)] d ></B,,‘<U>“”( )= ()2 Ka (0,0 d ) v,
< lelle- // ()| Ky (v,0")| dv’ dv < HSDHCQHfHH @)

Therefore, we conclude the estimate for the antisymmetric contribution |\?L‘2’||L2(Rd) < Ololellf s -
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Now we need to analyse the contribution of K to hs, which we call iL; We estimate it by duality. Let
g € H*(R?), recall that h? is supported in E and consider

[E B (0)g(v) dv = /E /B SR~ D) av

1 o o
-3 /Ef(v) (/BT(U)(Q(U) —g(v") (") = p(v))K4(v,v") dv dv)

+g(0) ( [, G0 = N0~ o) o) dv> d.
Applying the Cauchy-Schwarz inequality and Lemma 4.2 as above, we get

/Q R (0)9(0) dv < Joles (1]

gllze + [ flz2lgl ) -

Therefore, h§ can be written as a sum h§ + (—A)hs with HiL;HLz(Rd) < lellez | f]

lellc2ll £z )- o
We finish the proof by letting ho = h§ + h3. O

Hs(Q) and HhSHLZ(Rd) S

5. REDUCTION TO GLOBAL KERNELS AND WEAK SOLUTIONS

The assumptions (1.3), (1.5), (1.6) and (1.7) are given in terms of values of v € By only. It is natural
that if we consider the equation (1.2) to hold for v € B; and we intend to prove local regularity estimates,
it should be useless to make assumptions for K(v,v') when v ¢ Bs. It is confortable for the proofs of a few
lemmas (in particular the results in Section 4 above and Lemma 6.1 below) to have a kernel that is globally
defined and satisfies all these assumptions for all values of v and v’. In this section we explain how to extend
a kernel to the full space in order to have that.

5.1. Reduction to global kernels.

Proposition 5.1 (A kernel defined globally). Assume that K : By x R? — R satisfies (1.3), (1.5), (1.6)
and (1.7). There exists a kernel K : RY x R? — R satisfying the following global version of assumptions
(1.3), (1.5), (1.6) and (1.7).

o K(v,v') = K(v,v') whenever v and v’ belong to Bsgys- Moreover K(v,v') =0 for all v,v' € R and
for allv e By,

(5.1) |K (v,0") — K (v,0")] dv' < CA.
Rd
e For any function f e H*(RY),
(52) NFBye < = [ Lot ) o+ Al sy

Here L, is the integro-differential operator corresponding to the kernel K.
o The assumptions (4.2), (4.3) and (4.4) hold for K with a constant CA instead of A, where C' depends
on s and dimension only.

Proof. Let n: R — [0, 1] be a smooth radial function so that = 1 in By and n = 0 outside Brp/;5. We
define
K(v,0") = n()n(v")K (v,0) + AL = n(v)n(v))[o — | 7472
Note that even though K (v, ) is not defined when v ¢ Bj, since we have the factor n(v) = 0 there, there

is no ambiguity in the definition of K (v,’).
The first item in the Proposition is obvious by construction.
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We start by checking (4.2). For any v € R? and r > 0, we have

/]Rd\B ( )f((v7’0’) dv’ = /Rd\B ( )T](U)T](U’)K(U’U') + A(l _ W(U)ﬁ(v'))h} . U/|7d728 dvl,

< n(v)/ K(v,v") dv' + (1 —n(v))A lv — /|72 dv’ S A.
RAB(v) RAB(v)

For any v’ € R? and r > 0, we do almost the same computation

/ K(v,v') dv = / n()n(") K (v,v") + AL = n(v)n(’))|v —o'|742 v/,
RA\B,.(v') RANB,.(v)

< n(v’)/ K(v,v") dv+ (1 —n(v"))A lv — /| 7972 dv S A.
Br\Br(v') RNB,(v')

This completes the justification of (4.2).
Now we verify (4.4). This only applies when 2s > 1.

'PV /]Rd (v—12") (f{(v,v’) — X(v’,v)) dv'| = n(v) PV/B,(U — 0 )n) (K(v,v") — K(v',v)) dv'|,
<) <A+ [, =t = o) (00,4 = K, 0) d)
<A+C/ VIRIK (v,0) — K, v)| dv’) < CA.

We now move on to (4.3). When s € [0,1/2) the proof is similar to the computation above for (4.4).
Indeed,

'PV /R (f{(v,v/) - f{(v’,v)) &’

< n(v) (A +

=1(v)

)

PV/B? n(') (K(v,v") — K(v',v)) dv’

PV/B (n(v") —n(v)) (K(v,v’) - K, 11)) do’

R

)

< n(v) (A + O/B, W — || K (v,0) — K/, 0))) dv’) < CAnv).

)

The last inequality follows from (1.5) because s € [0,1/2).
In the case s € [1/2,1), we modify the estimate of the last line. We have

< n(v) (A +

< n(v) (A +

‘pv /R (Bww) - K0f0) v

PV . (n(v") — n(v)) (K(v, V') — K(v’,v)) dv’

Vn(v) - PV . (v —v) (K(v,v") = K(v',v)) dv’

+ / Clv' —v]?|K (v,v") — K, v)] dv') < CAn(v).
Bg
For the last inequality, we apply (1.5) and (1.7).
We now justify (5.2). We see that

- / Lo f(0)f(v) dv = E5m(f, f) + £ (1, f),

//|f V)PK (v,0") do do’ +/f (PV/(R(W,U’) — K(v',v)) dv’) do,

//de (V) 2K (v,v") dv dv’ — A||f]2..
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Let 3R/4 <r <ry< R so that n(v) < 2/3 if |v| > r; and n(v) > 1/3 if |v| < ro. The first term in the
definition of K (v,v’) of bounded below by K(v,v")/9 when both v and v’ belong to B,,. When v and v’ do

not belong to B,,, we can estimate K (v,v’) from below by Ajv —v/|~%=25/3. If v and v’ belong to B,,\B,,,
the value of K (v,v’) is bounded below by the sum of the two previous terms. We have,

//de (VPR (,v) do dof > // o, [0 = PR o) do

+3 // £~ £ — o472 du v
3 Jrea\(B,, xB,,)

We need to estimate the first term using (1.3). Let ¢ be a smooth radial function so that ¢ = 1 in B,,
and ¢ = 0 outside B,,. Using Lemma 4.7 after some arithmetic manipulations, we see that

eefeh = | ept)() ~ J@PE @) d do

Br R

+ 2/BR ()2 f(v)? (/Rd\BR K(v,v") dv') dv,
< o, 0= SOOPKCf) Qv !+ €1

Combining the last three displayed inequalities with (1.3), we obtain

E(ff) = */L}f(v)f(u) dv,
// ()R (v,0') dv dv/ = A {2,
s - K v
A |2 /1| —d—2s / 2
*3//]de\<3rlerl>'f (v) = F@)Po — o'[742* dv dv’ — A F[3,

o) =l g [ ) SO v,

> win(v0.A/3) ([ 1700 = 50007 = o v ) - €l

+2 [ f(v)*e(v) <PV/B (o(v) = (W) (K (v, ) = K(v',v)) dv’) dv,

co\r—l

O

The extended kernel K can be used to reduce many results to the case of globally defined kernels. The
following results, which we will need later, are examples.

Corollary 5.2 (The operator L, maps H* into H~*). Assume K : B x R? — R is a non-negative kernel
that satisfies (1.5) and (1.6); if s = 1/2, we also assume that K satisfies (1.7). For any f € H*(R?) and
g € H*(R?) supported in Bpg/s,

(5.3) E(f.9) = —/B Ly f(v)g(v) dv < Al f] g ma) |9l s (ra)
R/2

for some positive constant A depending on dimension.

Corollary 5.3 (Second upper bound for ). Let K satisfy (1.5), (1.6). If s = 1/2, we also assume (1.7).
For any two functions g € H*(Bg/) N LY(RY) and ¢ € C?, both compactly supported in Bpa, with g = 0
and any € > 0, we have

(5.4) E(p.9) <elgliy: + CeHVelixl{ve R : g(v) > 0} + Clolczlglrr + Celglze.
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Corollary 5.4. Let K satisfy (1.5), D, Q, ¢ and f be as in Lemma 4.10. Assume that Bg, > Q. We
extend the operator L as in Proposition 5.1. Then,

Llgf] = Lf = hy + ha,
where hy and he satisfy the same estimates as in Lemma 4.10.

Corollary 5.5. Let K satisfy (1.5) and (1.7), D, Q, ¢ and f be as in Lemma j.11. Assume that Bg, > (2.

We extend the operator L asin Proposition 5.1. Then,
Llpf] — @Lf = hy + ho + (—A)¥?hs,
where hy, ho and hg satisfy the same estimates as in Lemma 4.11.

The justifications of the two lemmas above are almost identical. We explain the latter one.

Proof of Corollary 5.5. Let K be the extended kernel according to Proposition 5.1.
Applying Lemma 4.11, we obtain that

Llgf] — @Lf = hy + hy + (—A)*hs.

For this corollary, we want to replace Lpl~/ f by oL f. Since ¢ is supported in D, these two expressions only
differ when v € D. In this case, we have

() Lf (v) — p(v)Lf (v)] = ‘w(ﬂ) / [£0) = S0 (E(0,0) = K(@.0) dv| < Cp(o)|f] 107>

This difference is absorbed by the term hy by setting hy = hy + @(v)Lf(v) — @(v)Lf(v). O

5.2. Definition of weak solutions. We now discuss the concept of weak solutions. In order to justify the
definition we are going to give below, we start with the following preparatory lemma.

Lemma 5.6 (The bilinear form & in the local case). Let suppyp € Bprjy and ¢ € H*(R%). Assume K
satisfies (1.5), (1.6) and (1.7). Then for all f € Lw(Rd\BR/Q) + H*(R%)
E(f,p) < C||f“L°C(Rd\BR/2)+HS(Rd)H‘PHH&(R«!),
where the constant C depends on A, d, s and the support of . Here,
I ety 1ty = 08 {1 o ety + WSl ey = f = o+ f2 and fy =0 in By}

More precisely, the inequality holds for smooth functions, and therefore it allows the bilinear form to be
extended to the appropriate spaces of functions.

Note that the restriction f € LOO(Rd\BR/Q) + H*(R?) imposes some fractional Sobolev regularity in Bpr/s
but not so much outside. In particular, any function f € H*(Bgj.) N LOO(R”I\BE/2 +e) is in this space.

Proof. As mentioned above, we assume for the proof that both f and ¢ are smooth. Afterwards, the
inequality is obtained by density when f e L*(R%\ By o) + H® (R%) and o € H*(R?) is compactly supported
in By /2
Let f = f1 + f2 as in the definition of the norm in LOO(Rd\BR/Q) + H*(R?). Applying Corollary 5.2,
IE(f2, )| < | fallzrs | @l zzs- We are left to compute E(f1, ). We have
el =lim ] ()~ DK, ) e
v —v|>¢

e—0

= lim / FLWYK (v, 0") dv' | p(v) do,
€20 Jsuppp \ /RI\B. (v)

_ / . ( /R ey SV @) dv’) o(v) dv.
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Here § is the distance between the support of ¢ and R%\ B R/2-

< A6 o] e ( [ e dv) < OAF | ful e ol e,
supp @

O

Another way to describe Lemma 5.6 is that L, is a bounded operator from L% (Rd\BR/Q) + H*(R?) to
H~%(Bg). We will use this to define the concept of weak solution.

Definition 5.7 (Weak solutions). Assume K satisfies (1.5), (1.6) and (1.7). Given the cylinder Q
(0,T) x Bgjayi+2e X Brja, We say that a function f : [0,T] x B(g)i+2: X R* — R is a subsolution of (1.
in the cylinder Q if
f € CO((O, T), LZ(B(R/Q)HZS X BR/Q)) N LZ((O, T) X B(R/Q)HQS,LOO(Rd\BR/Q) + Hs(Rd)),
fe+v-Vaof € L*((0,T) x Bgjay+as, H *(Bpy)),

and for all non-negative test function ¢ € L*((0,T) x B(R/Q)st,Hs(Rd)) so that for every t and z, o(t, )
is compactly supported in By,

(5.5) [ v ovanes [[ o~ [[[ne <o

A function f is a supersolution of (1.2) in Q if —f is a subsolution of (1.2) in Q. A function f is a
solution of (1.2) in Q if it is both a sub- and a supersolution.

Remark 5.8. Assuming that f € C°((0,T), L*(B(g/z)1+2: X Bgy)) and f € L*((0,T) x B(gyzy1+2:, H*(Bp/s))
is rather natural in view of the energy estimates one can easily get from the coercivity assumption.

Note that the bilinear form [[ E(f,¢) in (5.5) is well defined because of Lemma 5.6.

2)

6. THE FIRST LEMMA OF DE GIORGI

This section is devoted to the first intermediate result in the proof of the weak Harnack inequality. It is
referred to as the first lemma of De Giorgi. It consists in controlling a local pointwise bound in the interior
of a cylinder by an integral quantity in the cylinder. Its proof (see Subsection 6.2) relies on a global energy
estimate (See Subsection 6.1).

For degenerate integral equations, the situation is different than for equations of second order. It is not
true that the maximum of a nonnegative subsolution can be bounded by above by a multiple of its L? norm.
One needs to impose an extra global restriction (in this case we assume 0 < f < 1 globally). This is because
of nonlocal effects, since the positive values of the function outside of the domain of the equation may pull
the maximum upwards. The strong Harnack inequality fails in general. This fact is well documented and
there are counterexamples (see [20]).

6.1. Energy estimates. The proof of the first lemma of De Giorgi relies on an iteration of energy estimates
applied to certain truncated functions. For kinetic equations, the energy estimate naturally gives us some
regularization with respect to the v variable. We use the fractional Kolmogorov equation to translate this
regularization in v to a higher degree of integrability of the function.

Lemma 6.1 (Global energy inequality and gain of integrability). Assume K, and its corresponding operator
L., satisfy (5.2), (4.2), (4.3) and (4.4). Let G = 0 be a weak sub-solution of

61) (0 +v-Va)G — L,G < Hi+(—A)y?Hy,  in [0,T] x R,
' G(0,z,v) = Go(z,v) in R24
with a source terms Hy, Hy € L?([0,T] x R??). Then,

(6.2)
2

sup HG(T)Hiz(RM) G152 o xra 7=y < C oHiz(de) +1 1“%2([0,T]><R2’1)+H 2“%2([0,T]XRM) .
o Gle (o, r1 xR, 1o (ma) G H H
T€[0,

Moreover, there exists p > 2 (only depending on dimension and s) such that

(6.3) 1GI2 5 f0.17xR2ay < C (”GOH%Q(RM) + ”HlH%?([O,T]><R2d)+HH2”%2([0,T]XRQd)) ;



THE WEAK HARNACK INEQUALITY FOR THE BOLTZMANN EQUATION WITHOUT CUT-OFF 31

for some constant C depending on X\, A, d, p, s, and T.
Proof. Multiplying the equation by G and integrating on the time interval [0, 7] for 7 € [0, T], we get

1 T 1
GO gy + [ [ £66.6)dr e < G1Galaan + [ (14 (-2)HG,

[0,T] xR24

Using (5.2) from Proposition 5.1, we have
(6.4)

1 T 1
GO ageany + [ [ AGIE, = AIGIE do de <31Gol e
0 R4

+/0 [H (D)2 | G2 + [Ha(8)] L2 |G(B)] - -

Therefore,
SO ey + [ [~ SI61: aw at < HGoliuan € [ IO + 103 at

Integrating against exp(—A7/2) with respect to 7 yields

HGH%Q([O,T]X]R%) <C <||G0H2L2(R2d) + HHlHQLQ([O,T]x]R?d) + HH2H2L?([O,T]><]RM)> :
Using this information back into (6.4), we finally get
(6.5) S[Up IG(r )HLmRM + HGHLz LHE (e b]X]R2d) (HGOH%%RM) + HHlH2L2([0,T]xR2d)+HH2H2L2([o,T]xﬁw)) :
Te[0
The function G is also a subsolution of the fractional Kolmogorov equation with an appropriate right hand
side
Gi+v-VG + (=A)°G < (—~A)*G + L,G + Hy + (—A)*?Hs,.

Thus, G is smaller or equal to the exact solution of this equation. Theorem 4.1 ensures ‘Ehat L,Ge L2([0,T] x
R¢, H=*(R%)). We then can apply Proposition 2.2 to G with h = H;+(—A)*?Hy + L,G + (—A)*G so that
Il L2 (o,7) xR 1 < |Hilp2+|Hz| 2 + CHGHL2 Ts([0,T] xR24) "
and get (6.3). O

Let us analyze a localized version of the energy dissipation.

Lemma 6.2 (Local energy dissipation). Let f be a subsolution of (1.2) in [0,T] x Bri+2s X Bg with h = 0.
Assume 0 < f < 1 almost everywhere in [0,T] x Brivas x R%. Assume K satisfies (1.3), (1.5), (1.6) and
(1.7) with R = 2R. Then, for any ¢ € (0,1), we have

(6.6) sup // f(t,z,v)? dv dl’+/ / ‘f”?qs(BR 5y da dt
te[0,T] JJ B yi+2s XBRr—s -

(R—6 (R 5)1+2s

< // £(0,2,v)* dv dz + C52|{f > 0} n [0,T] x Bpi+2: x Bgl.
Brit2s XBr

Remark 6.3. The factor in §~2 can be improved in terms of s (probably to 6=2¢). The optimal power is
irrelevant for the rest of our proof.

Proof. Let ¢ : R?? — [0, 1] be C*®, supported in Bpit2: x Bg, so that ¢ = 1 in B(r_gy1+2s X Br_s. It is not
hard to check that we can construct such ¢ with |p[cz < 672,

Let g = (p+f—1)+ and g = (1 — p — f)— We use g as a test function for (1.2) and obtain for a.e.
e [0, 77,

02/(ft+vvxf)gdvda:+/5(f,g) dz,

:—5%//9 dvdx+/€gg dx—/é’gg dx—/E 0,9 dx+/g(0t<p+v-vg;<,0)dvdx.
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We used the fact that V,(g%) = 29(—V.p + V. f). Remarking that £(7,¢) < 0 and using (1.3) and (5.4)
from Corollary 5.3 yields for any ¢ € [0, 77,

1 to
5//92(250,37,1)) dv dx+)\/0 /Hg”% dx dt

to
< // 2(0,2,0) dv d + ¢ / / 913, da dt + Ce [l g > 0} ~ {0 < ¢ < to}| + Cllglez gl s + ClalZ
0

to
+/ //g(étww-vx@) dv dz dt.
0

Recall that [¢]c1 < 67! and [¢fc2 < 672, Also g(t,z,v) € [0,1] for all (¢,z,v), therefore |g]z: and ||g|2.
are both bounded by |{g > 0}| < |{f > 0} n[0,T] x Bgri+2s x Bg|. Therefore, taking supremum in ¢,

1 T
sup 7//92(1?,3:,1)) dv dx—i—/ /HgH%{s dx dt
te[0,7] 2 0

T
< //92(0@,1)) dv dz +<€/ /||gH§,s dzdt+ (e7'67%+62+2) [{f >0} n [0,T] x Bpi+2- x Bg|.
0

Note that g = f in Br_sy1+2s X Br—s, g < f everywhere, and g = 0 outside of Bri+2s x Bg. We thus
conclude the proof picking € > 0 small. ]

Lemma 6.4 (Local gain of integrability). Let f be a subsolution of (1.2) in [0,T] x Bri+2s x B with h = 0.
Assume 0 < f < 1 almost everywhere in [0,T] x Brivas x R%. Assume K satisfies (1.3), (1.5), (1.6) and
(1.7) with R = 2R. Then for any 6 € (0,1) and § < R,

T 2/17
(6.7) / // 7 dt do dae
0 B(r_s)y1+2s XBr-s

<52 [ £0,,0) dv da -+ C3 [{f > 0}~ ([0,7] % Bpisas x Br)|
Bri+2s XxBr

where p > 2 is some universal constant (explicit).

Remark 6.5. The exponents in the factors 62 and §~* are most certainly not optimal. This is not important
for the rest of our proof.

Proof. Let us start by the following simple observation. Wherever f(¢,z,v) = 0, we have f; + v-V,f =0
(a.e.) and L,f > 0. In particular, the following equation also holds and contains slightly more information
than (1.2).

(68) ft +v- vzf - va < _(va)X{f:O} = - ( iy f(v’)K(v,v’) d"U/) X{f=0}-
Let us call

N := 6_2/3 . f(0,2,v)* dvdz + C5~*|{f > 0} n ([0,T] x Bri+2s x Bg)|.
R14+2s XDR

From Lemma 6.2, we know that

T
2 2
/0 /B |15 (s dz dt < 82N

(R—6/2)1+2s
Let ¢ : R?¢ — [0, 1] be C*®, supported in B(r—s/2)1+2: X Br_s)2, s0 that ¢ = 1in B(g_g)1+2: X Br_s. It
is not hard to check that we can construct such ¢ with [De| e < 671 and | D?*¢| - < 572
Let us analyse what equation the funtion g = ¢f satisfies. Combining Corollaries 5.4 and 5.5 with (6.8),
we have

[815 +v- Vm - Ev]g < f(’U . Vmgﬁ) - @(va)X{fzo} — hl - hg - (—A)S/th in [0, T] X B(R,5/2)1+2s X BR—5/2-

We want to verify that the right hand side belongs to L%([0,7T] x R¢, H~*(R%)) with norm bounded above
by N.
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Following the proofs of Lemmas 4.10 and 4.11 and Corollaries 5.4 and 5.5, we have
hy = / e(0)f(V)[K (0,0") = K(v,0")] + f (") (p (') K (0,0") = p(v) K (v,0")) dv'.
RIN\Bjs /2 (v)
Therefore, at the points in {f = 0} we have

— (Lo f)X{f=0y — 1 < /

@) (o) = DE(@,0) = o) K (0,0)) dof <0.
RN\ Bjs /2 (v)

This allows us to simplify the equation to
(6.9) [0t +v-Vo—Lay]g < f(v:Vap) — hax(s=o; —h2 — (—A)?hs i [0,T] x B(g_s/2)1+2: X Br_g)a-
Corollaries 5.4 and 5.5 tell us that
Ihallz2s | hslL2 o7y xra L2 Ry S 621 FllL2([0,71% By sae  # (Br)) < N-
Since (v - V) is bounded and supported in B(r_s/2)1+2s X Br_g/2, and 0 < f < 1, we clearly have

|f(v-Vep)|r2 < N. Likewise ||h1X{f=0}[z2 < N.
We conclude the proof applying Lemma 6.1 to (6.9). a

6.2. De Giorgi’s iteration. This subsection is devoted to the proof of the following lemma.

Lemma 6.6 (First lemma of De Giorgi). Let Q = [—7,0] x Bpi+2: X B, and Q = [-7,0] x Bpi+2: X Bp,
with 0 < 7 < 7 and Ry < Ry. There exists g > 0 (depending on 7, 7, R1, Ra, dimension, s, A and A) such
that for all supersolution f of fi +v-Vuf —Lyf =0 in Q such that f > 0 almost everywhere in [—7, 0] x R4
and

(6.10) /(2 — £)1 dt dv dx < e,
Q

we have B
f=1 ae inQ.

FiGURE 3. The cylinders Q and Q

After Lemma 6.4, the proof of Lemma 6.6 follows by the relatively standard De Giorgi’s iteration.

Proof of Lemma 6.6. Let us consider the sequences
=142 rm=Ri+R—R)2F  tr=r-2"F-1).

0
Ay = / // (€, — )2 dv de dt.
tk M B 1125 XBry
k

The assumption (6.10) tells us that Ag < €. The strategy of De Giorgi’s iteration is to prove that Ay — 0
as k — oo provided that ¢ is sufficiently small. The conclusion clearly follows from that.
In order to prove that Ay converges towards 0, we are going to prove that

(6.11) Apyr < 020k AL TE

We define
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for some ¢ > 0.
We first pick ¢3, 1 € [ty,tr+1] such that

1 tht1
// (U — Fltpss,z,0)2 dvdz < 7/ // (= f)2 dv de dt < O2% A,
B 142sXBry, 2 le+1 — tk th B 1425 X Bry,
k k

Note that (£x+1 — f)+ is a subsolution with values in [0, 2] (in particular half of it takes values in [0, 1]).
We then apply Lemma 6.4, and obtain the following inequality (note that f11 < £)
(6.12)
2/p

0
/ / (ék.t,_l — f)g_ dv dz dt < O4kAk + Cle‘{f < £k+1} M ([thrl/Qa O] X BT_11€+25 X Brk)|
tk+% BT]lci?ls x B

Tk+1

We now estimate |{f < lx11} N ([tis1/2,0] X By, x By, )| in terms of Aj. We use Chebyshev inequality and
get

{f < esr} 0 ([trarje, 0] X Bravae x Bl = [{(6e = £+ > 277} A ([trs1/2, 0] X Byavas x By,

< 16F AL,

(6.13)

Combining (6.12) and (6.13), we get

0
/ // (€k+1 — f)l_),'_ dt dv dz < C28kAk
tht1 BT}C‘:?S x B

3

Tk+1

(we used that ¢, 1 < fr41 <0). We can now combine this estimate with (6.13) and get

0
_2
Ak+1 < / // (£k+1 — f)ﬁ dt dv dz |{f < gk-&-l} N ([tk+1,0] X BT1+2s X Brk+1)|1 P
(7] Br}ci?st k+1

Tk+1
1+ﬂ
<Co2%4, T

This yields (6.11) with ¢ = 2%” > 0. The proof is now complete. |

7. BARRIER FUNCTIONS FOR s < 1/2

A remarkable difference between the range s < 1/2 and s > 1/2 is that, in the former, the integral
expression in the definition of L, f(v) is computable pointwise for all smooth functions f provided that K
satisfies the first line in (1.5). The reason for this is simply that from the Lipschitz continuity of f we get

my £0) = T . 0) 40 < ol s [ K(0,0') do' < Al fluggr .
Bz (v)\Br(v) Bar(v)\Br(v)
This is summable for 7 = 27% as k ranges accross the natural numbers when s < 1/2.

If we assumed further than K is symmetric in the non-divergence sense K(v,v + h) = K(v,v — h), then
the same analysis as above would hold for s € (0,1) and f € Cb! (instead of f € Lip) and the results in
this section could be extended to the full range s € (0,1). Note that the Boltzmann kernel satisfies this
symmetry, but we do not make that assumption in Theorems 1.6 and 1.5.

We build barrier functions using crucially the assumption (1.4).

Lemma 7.1 (Existence of barriers). For any r >0, R >0, 7 > 0 and T > 0, there exist constants § > 0
and Ry > 0, and a function ¢ : [0,00) x R? x R? — [0, 1] such that

e we have p € CH1([0,00) x R??); moreover, ¢ is smooth in the open set {p > 0};

e for any kernel K (t,z,v) that satisfies (1.5) and (1.4) with R = Ry, and all (t,z,v) € Q < [0,00) x R4,
we have

0t +v-Vzep—Lyp <0 in Q;

at the initial time, the support of ©(0,-,-) is contained in Byit2s X By.;
we have the following lower bound: o(t,z,v) = 6 if t € [7,T], x € Bri+2s and v € Bg;
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e the function ¢(t,z,v) vanishes if t € [0,T] and (z,v) ¢ Bpivas X Bp, .
The function ¢ depends on r, R, 7, T, dimension d, A, A and s (which should be in (0,1)). The radius
Ry depends onr, R, T, T, dimension d, and s (but not A and A).

Lemma 7.1 will be proved by the end of this section. We remark that we only use the first line in (1.5).
It is convenient to define the extremal (Pucci type) operators which correspond to the supremum and
infimum of all values of L, f(v) for any kernel K satisfying (1.5) and (1.4).
Let us say that a nonnegative kernel K : R — [0, +00] belongs to the class Kq if
Jpap, K (w) dw < Ar=2s,

KeKye
0 {infe_l [, (w- e)2 K(w) dw = Ar?=2.

Correspondingly, we define the extremal operators M+ and M.
Mt f(v) = sup{/ (f(') = f)K@ —v)dv' : K e ICO} ,
Rd

M= f(v) = inf {/Rd(f(v’) _ F)K@ —v) dv': K e /co} .

Note that the infimum and supremum are taken only with respect to a family of translation invariant
linear operators, whose kernels depend only on v’ —v. However, the kernel which achieves the extremal value
will be different at every value of v. Therefore, effectively, the operators M™ f and M~ f correspond to the
supremum and infimum value of L, f for all kernels K (v,v’) satifying the first line in (1.5) and (1.4).

We start by pointing out a simple continuity property of M* and M.

Lemma 7.2. Let f and g be two bounded functions that are Lipschitz in B,.(v), then
IM™ f(v) = M~ g(@)] < Cp (If = glle@ay + | f — 9lLina. (o)) -
The same holds for M™.

Remark 7.3. Note that the norm |f — g|| ey can be weighted. Indeed, the same estimate holds with
11+ [v])=7(f(v) = g(v))] = (me) instead provided that o < 2s.

Proof. 1t is enough to notice that each linear operator in the infimum of the definition of M~ satisfies the
continuity estimate. O

Corollary 7.4. If f, is a sequence of functions so that f, — f uniformly in R? and f, — f in Lip(),
then M f,, and M~ f,, converge to M* f and M~ f uniformly in compact sets of Q.

The following is perhaps not strictly a corollary of Lemma 7.2, since it requires a slightly sharper analysis
(but standard and elementary).

Corollary 7.5. Let f be a bounded continuous function in R* and Lipchitz in some open set Q. The
functions M~ f and M™ f are continuous in .

Since the operators M™ and M~ are a supremum and infimum of linear ones, then they are also sub-
and super-additive respectively. That means that for any f and g,

M7 (f+9)(v) =M™ f(v) + M7g(v),  MT(f+g)(v) <M f(v) + M g(v).
Lemma 7.6 (The function ¢;). Let 1 : RY — [0,1] be a nonnegative, radially symmetric function, so that
o {1 >0} =By, g1 € C*(By), g1 =1 in Byjz, and v- Vi (v) < 0;
e 01 € C*(By) and ¢ € CYY(RY); more precisely, there is a discontinuity of D*¢1 on 0By so that
lim,_,1- D?py(re) = e®e for any |e| = 1.
Then, there exist two constants § > 0 and 0 > 0 so that

M7 p1(v) = 0 for any v € By so that ¢1(v) < 6.

Remark 7.7. We can choose any function ¢;(z) = ¥(]z|) with ¥ non-increasing in R, positive and C? in
[0,1], supported in [0,1], ¥ =1 in [0,1/2], and ¥/(1) = 0 and ¥"(1) = 1.
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Proof. Since M~y is continuous in By, it is enough to prove that M~ is strictly positive on 0B;. From
radial symmetry, we are left to show that M~ ¢(e) > 0 for e = (1,0,...,0).
Let € > 0. From the super-additivity of M ™, we have
M7i(e) = M (p1xB.(e))(€) + M (P1XR\B.(¢)) (€)-
For any K € Ky, since K > 0 and ¢ > 0, we have
[ (1w, o)@) = (s @@KE - dv' = [ o)KW - o dv' >0
Rd R\ B, (e)
Therefore M~ (p1Xra\ B, (e))(€) = 0.
We now show that M~ (p1x Ba(e))(e) is bounded below for £ > 0 small. Essentially this follows because
©1(v') is approximately ((v/ —e) - (—e))2 in Bc(e).
Indeed, let the scaled function ¢, be
e 2p1(e+ew) if |uw| <1,
pel(w) = {o if |w| > 1.
Thus
M (p1xB.())(€) = €272 M ¢ (0).
From the definition of ¢; ,we know that

*U}'ez or |w
mw)eq(w):—{( S el =

0 for |w| =1,
uniformly in R? and also in Lip(B; /2)- Therefore, using Corollary 7.4,
M7 (0) > M7¢q(0) = A\

The last inequality comes from the non-degeneracy condition (1.4).
Therefore, choosing ¢ sufficiently small,

A
M p1(e) = M (p1XB.(e))(€) = 552728 > 0.

This concludes the proof. O
Lemma 7.8 (The function ¢s). Let tg > (0,1) be arbitrary and o1 be a function as in Lemma 7.6. Let
A= (5+5). Let us define the function s : R* — [0,1] to be

wa(z,v) = p1(x)pr (v — Ax).
There exists a constant 6 > 0 so that if at some point (x,v), pa(x,v) <, then

1 1
(7.2) (—1 — 25> - Vgpg — 20 Vo + to (v - Vapa — ./\/lv_gaz) <0.

Proof. Since min ¢y = 0, then M s = 0 wherever o = 0. Thus, the inequality is trivial wherever o = 0.
We are left to verify it at points where @2 > 0. Note that this is a bounded set since there |z| < 1 and
o] < Alz|+1< A+ 1.

We expand the left hand of (7.2), in terms of o, z and v, as the sum of two terms T7 + T», where

1 1
T = p1(x) {Vgol(v — Az) - (A (1 + 25) x— (toA + 25) v) —toM ™ p1(v — Ax)} ,
1
Ty = p1(v — Az)Vr () - { (1 + 25> x+ tov} .
We first claim that
(7.3) there exist 6; > 0 such that 77 < 0 if 1 (v — Az) < ;.

Using Lemma 7.6, we pick d; sufficiently small so that M~ ¢;(v — Az) > 6 whenever ¢;(v — Az) < 6.
Thanks to the continuity of V1, we pick §; smaller if necessary so that whenever ¢q (v — Az) < d1,

1 1 2%
Vi (v — Az) - (A (1 + 25) T — (toA + 28) v) —toM p1(v— Ax) < —07.
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Therefore, we have

tob
T < —%1(33) whenever o1 (v — Az) < 1.
In particular, (7.3) holds true.
We next claim that
(7.4) there exist d5 > 0 such that Ty if @1 (z) < de.

Because of the second derivative of 1 of 0B, we have the following expansion
T
Vi (z) = —(1— \l‘l)m +O0((1 — [2])?).

Whenever 1 (v — Az) > 0, also v € By (Ax), and therefore

Vi (z) - {— (1 + 21s> x + v} < (1—|z))(~A4)z| + 1) + 01 — |z])* < —(1 — |z|) + C(1 — |=|)>.
Thus,
Ty < —p1(v — Ax)(1 — |z|)/2 < 0 whenever ¢;(x) < 02

and dy is sufficiently small. In particular, (7.4) holds true.
In view of (7.3) and (7.4), Th + T2 < 0 if v1(v — Az) < 61 and p1(z) < Ja.
Let us analyse the case @1 (z) = Jo; in this case consider 1 (v — Az) < §11 < d1 so that

T +Ts < —t0629/2 + Cd11.

Picking d1; sufficiently small (depending on the previous choice of d2), we assure 71 + T3 < 0 in this case.
We are left with the case p1(v — Az) = §;. In this case we have for p;(z) < da1,

< Cpi(a) = ¢r(v — Az)(1 = [2])/2,
< Cégy — 51(1 — |£C|)/2 <0,

provided |z| is sufficiently close to 1, which follows if ¢1(x) < d21 < do with do1 sufficiently small.
Finally, we finish the proof picking 6 = §11d21 to ensure that at least one of the three cases above holds. [

Lemma 7.9 (The function p3). Let @9 be the function from Lemma 7.8 and tg > 0. The function @3(t, z,v)

given by
14+ L 1
ps(t, z,v) = fo P2 ) TE ()
T (t+to)P t+ to "\t +to ’

is a subsolution of the equation

Oips +v - Vypz — M3 <0,
provided that p is sufficiently large (depending on w1, A\, A, s and d, but not ty).
Proof. We write the equation in terms of po. We have
tp

Orps + v Vapg — M7 g = W

{pSDQ(XaV)

(1= L) X Ve (X, V) — V- V(X V)
2s a2l 2s vzl

+tOVVISOQ(XaV)_tOM;QOQ(XaV)}7

where X = (to/(t + to)) "2z and V = (to/(t + to))z v.

Let § > 0 be as in Lemma 7.8, so that the right hand side is non-positive when po < §. We choose p
large so that the term pps > pé is larger than all the others terms when 5 > §. Thus, the right hand side
is never positive. O



38 CYRIL IMBERT AND LUIS SILVESTRE

Proof of Lemma 7.1. Note that ¢3(0,z,v) = pa(x,v), where p2 and @3 are the functions in Lemmas 7.8 and
7.9 respectively. Note that these fuctions depends on the choice of ¢ty which will be made below. Also, the
value of p depends on ty. The function @5 is supported in By x Bay1. We must rescale 3 in order to obtain
a function so that ¢(0,x,v) is supported in B, x B,.. We pick p > 0 small and let
o(t,z,v) = p3(p™ %, p~ >, p~ M),

so that p(A + 1) < r. This ensures the first three items in Lemma 7.1. Indeed, the function ¢ satisfies

wr+v-Vap— M7 <0.
In particular, also

pr+v-Vap—Lyp <0,

since Ly = M@ in Q.

In order to obtain the lower bound in [r,T] x Bg, we are going to choose the parameter ¢y accordingly.
Note that the value of ¢tg does not affect (0, z,v).

From the construction of ¢; and o, we have ¢o(z,v) = 1 whenever |z| < 75 and |v| < 1/4. Picking to
sufficiently small, for (¢,x,v) € [1,T] x Bri+2s X Bg, we have

1+5- 1435
t 2s t 2s 1
—2s5—1 0 —2s5—1 0 1+2s
2 x| < — R < —
p (t + t0> el <o < T > 4A°

1
t 2s to\ * 1
-1 0 -1 0
< — R < -.
P <t+to> |U| « <T> 4

Therefore, when (¢, z,v) € [7,T] x Bg x Bg, we have
tg tg
p725t + to)p (pfst + to)p

p(t,z,v) = ( =:60>0.

This justifies the fourth item in Lemma 7.1.

Finally, for the last item, we just pick R; sufficiently large. The function ¢ is supported in By X By 4.
Depending on our choices of ¢y and p above, the function ¢(t,-,-) is supported inside Bgr, x Bg, for all
t € [0,T]. This achieves the construction of the barrier.

Note that the only parameters in this construction that depend on A and A are p and 6. O

8. THE INTERMEDIATE-VALUE LEMMA FOR s > %

This section is devoted to the statement and proof of a version of De Giorgi’s isoperimetric lemma in the
case s > 1. It is inspired by the compactness method in [36]. However, unlike [36], we do not use averaging
lemmas. Instead, the analysis of the fractional Kolmogorov equation plays a critical role.

The first lemma of this section concerns a supersolution of the equation (1.2). In this case we add a
nonnegative measure to the right hand side in order to have an exact solution. The purpose of this lemma
is to provide a basic control of the total measure that we add.

Lemma 8.1 (A priori estimate on a nonnegative measure). Let Q = [0,T] x Bgi+2s x Bgr, f:[0,T] x R? x
R? — [0, 1] be supported in Q. Assume also that

fe+v-Vof+(=A)P°f=h in [0,T] x R? x RY,
for some he L2([0,T] x R, H=*(R)). Then
fetv - Vof+(=A°f=h+pu  in[0,T] x R? x RY,
where p is a nonnegative measure supported in [0,T] x B(agyr+2s X Bag such that
Q) < CL+ [l pre)
and h = h in [0,T] x Bggyi+2 x Bog and

il s e < O+ Bl grme)-
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Proof. Note that for (z,v) ¢ Bri+2s X Bg, ft + v -V, f = 0. Moreover,

|(—A)Sf(t,$,’l))| =c

ft, @, w)|w — 0|~ dw| < (Jo] = B) ™| Br|X|a)<r-
Br

Therefore, f; +v- Vo f + (=A)*f = (—A)*f is an L? function outside of Bri+2: x B3ps.

Let ¢ : R?? — [0,1] be a smooth bump function so that ¢ = 1 in Bgis2s x Bsg/2 and ¢ = 0 outside of
B(QR)1+2S X BQR.

We first need to justify that there is h € L2([0,T] x R%, H=*(R%)) so that

h=he+(1—¢)(=A)"f.
We clearly have that (1—¢)(—A)* fisin L7  H, *. We are left to justify that ho € L2([0, T]xR%, H*(R?)).
This follows by duality once we observe that for every g € LfJ:HS, we also have pg € H*(R9).
With this definition of iL, we still have

fe+v-Vof+(=A)¥f=h  in[0,T] x R? x RY,

with equality for (z,v) ¢ Bagyi+2s X Bag.
Let 41 be the nonnegative measure, supported in [0, T] x Bagyi+2s x Bag, defined by

pi=fi4v-Vaof + (=A)°f —h.

In order to estimate the total measure of u, we test it against a test function which is identically one on
its support. Let ¢ = 1 in B(yg)1+2s X Bagr and be supported in B(zg)i+2s x Bzg. We have

W(o.T) xR Ry = [ G
[0,1] x R24

:/ @(ft+v~vxf+(—ﬁ)sf—ﬁ> dv dz dt,
[0,T] xR2d
= [ U(@a0) = £020)5(0) do ds
R2d
+/ {[fv Vap+ (A f — @ﬁ} dv de dt < C. O
[0,T] xR24

Lemma 8.2 (Intermediate sets for the Kolmogorov equation). Let s € [1/2,1). Let f: [0,T] x R? x R% —
[0,1]. Assume f is a supersolution of the fractional Kolmogorov equation

fi+v-Vof+(=A)¥°f=h in [0,T] x RY x RY,

where h € L2([0,T] x R, H5(RY)). Letry > 0, 79 > 0,0 <73 <7y and 0 < t; < to < T such that
1128 2 ¥29) (ty — t1). We define

r3/2 > (1]

Q' = [0.t:1] x B,i+2s x By,

Q* = [t2, T x B, 1t2: x By,

Q3 =[0,T] x B, 1420 X By,

Q* =[0,7] x B,1+2: % By,
Let us assume that f is supported in Q* and f € L*([0,T] x R%, H*(R4)) n C ([0, T], L?>(R? x RY)). For every
pair of positive numbers d1, 02, there exist @ > 0 and p > 0 so that whenever

{f=11nQ' =6  and [{f<O}nQ* =0,
then
o< f<1}n@=p

Here, the constants 6 and p depend on 01, 02, HhHLfﬂvas, ||f\|L%mH5, t1, ta, T, 11, T2, T3, T4, S and d.
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T,_>
Q2
t ta— :
t1— ro
Q' Q? Q*
t=0—

(z,0)

FIGURE 4. The geometric setting of Lemma 8.2.

Proof. Assume the contrary. Then, there is a sequence of functions f;, uniformly bounded in L2([0,T] x
R< H*(R%)), h; uniformly bounded in L2([0,T] x R?, H~*(R%)), and sequences of positive numbers 6; — 0
and p; — 0 so that all hypotheses in the lemma hold, however
{fi=1}n Q' =0,
(8.1) [{fi <0} 0 Q7| = &2,
{0: < fi <1} 0 Q%] < pua.
We will find a contradiction by compactness. That is, we will find a subsequence that converges and find a
limit function f,, which only takes the values 1 and 0 in Q3. We will derive a contradiction there provided
s€[1/2,1).
According to Lemma 8.1, there are measures pu;, supported in [0,7] x B(ar)1+2s X Bay,, and modified
right hand sides h; so that }
[6t +v- Vz + (—A)S]fl = hl + i
Moreover, ;([0,T] x R? x RY) < C, ||i~11||L% g <C.
Let us write h; = b 4+ (—A)¥2h} for hi and hi in L2([0,T] x R?%), with k]2 < C and |h}| < C.
Up to extracting a subsequence, we can assume that f;(0,-,-) converges weakly in L?(R2?), f;, hi and hj
converge weakly in L2([0,T] x R??) to fy, h¥ and hY, and u; converges weakly-# in the space of Radon
measures M([0,7] x R?9) to some measure fio.
Using the formula (2.3), we can write f; = Tofi(0,-,-) + Tiu; + Tohi + T3h. Here, the operators Tp :
L3(B,,) — LY(Q%), Ty : M([0,T] x R??) — LY(Q*), Ty, T : L*([0,T] x R??) — L2(Q*) and are given by

Tofo:= fo*e J(t,-,-).

t
Ty = / w(t) = J(t —7,-,-) dr,
0

t
Tth = hl(t) *¢ ‘](t — T, ) dTa
0

t
Tsho := / hg(t) N (—A)S/2J(t — T, ) dr.
0

Note that T1, T» and T3 are exactly convolutions in all variables (¢, z, v) with respect to the natural Lie group
structure. Also Tj is the same as T} applied to a singular measure concentrated on ¢t = 0 with marginal
density fo.

The operators T, Th and T3 are compact simply because they are convolutions with the L' functions J
and (—A)%/2J. Therefore f; = Ty £;(0, -, -) +T1p; +Toh} +Tshl converges strongly in L'(Q?) to some function
fo- Since we have 0 < f; < 1, then in fact f; converges strongly to fy, in LP(Q?) for any p € [1, +00).

The function fo, solves, in the sense of distributions,

[0 + v Vi + (—A)] for = hE + (=A)*/2hT.
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Moreover, since f; — fy in L1, from (8.1) we deduce that
o =1} A Q' >
(8:2) {0 = 0} 1 Q% > 6,
{0 < fo <1} n @3 =0.

Then, f, only takes the values 0 and 1, almost everywhere in Q3. Moreover, we have | fo, I 22 (0,77 xRe, 2 (ReY) <
C. Thus fy(t,x,) € H*(B,,) almost everywhere in [0,7] x Bréws. Since s > 1/2, this implies that
f(t,z,-) is either constant 1 or constant 0 in B, for (¢,x) € [0,7T] x B, 1+2:. From this point on, we write
fo(t,z) := folt,z,v) provided that (t,x,v) is restricted to Q3. Note that (—A)*fy is not constant in Q3
due to the nonlocality of (—A)*.

Let ¢ : R4 — [0, 4+00) be a smooth bump function supported in B,., /2, such that

/Rdgo(v)dvzl, /Rdgo(v)fudv=0.

For any vg € B,,; and (t,z) € [0,T] x B,,, we have

fOO(ta‘T) = iy foo(t, l')QD(U — ’Uo) dwv.

Therefore, using the equation

Orfoo(t, ) = /Rd [ — v Vafolt,x) — (A foo (b, 2,v) + AL (t,2,v) + (—A)S/Qhao(t,x,w)]go(v — wp) dv,

= —vg - Vafolt,z) + /d {(—foo(t,z,v) + RP(E, 2, 0))(—A) (v — vg) + h (v —vg)} dw.
R
Thus, for any vg € B,, 2, foo(t, z) satisfies the transport equation
Otfoo + 00 Vafo = Hvo(t,l').
where H,, is the function in L?([0,T] x Bré+2s) given by
Hop(t.2) = [ (= Foltia0) & B (6,0)(~A)p(0 = w0) + B0 o) do.
R

From (8.2), we know that there exist some 71 € [0,%1] and 75 € [t2,T] so that

4
Kz : fo(m,z) =1} n By | = i,
2 Folray) = 0} 0 Bl > 572
CJoo\T2, - ro| = T—tz.
Let S1 ={z: fo(m,z) =1} n B, 142: and Sy = {z: folre,z) =0} n B, 1+2:. Since
8102
= > 2
HXS1 *X—SzuLl ‘S1||SQ| tl(T—tQ)

then, there exists one vector wg € B, 1+2: 1+2s such that
1 2

+
6102
tl(T — t2)|BT%+2s+T;+2s|

|Sl N (SQ—’LU())| = =:Cp.

Let vg = wo/(12 — 71). We have |ug| < |wp|/(t2 — t1) < r3/2.
Since the right hand side H,, € L?([0,T] x BTéHs), in particular, for almost all z € S; n (S2 — wp), the

function ¢ — Hy, (t,x + (t — 71)vo) is in L?(7y, 72).
Because of the transport equation that f, satisfies in @3, we have

d
Efoo(t,x + (t —11)vo) = Hy, (t,z + (£ — 71)v0).
In particular, for almost every x € B, , there is a constant C(x) > 0 so that

foo(fg,x -+ (1?2 — 7'1)1}0) — foo(il,l‘ -+ (El — 7'1)’[)0) = *C(l’)(iz — 51)1/2, for any t < 1?1 < fg < t9.
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However, since fy (t, 2+ (t—71)vg) only takes the values 0 and 1, and fy, (71, 2) = 1 for every z € S1n(Sa—wyp),
then fo(t,x + (t — 71)vg) = 1 for every . € S1 n (S2 — wp) and t € [, T1.

We arrive to a contradiction since fo (72, x4+ (12 —71)vg) = foo (72,2 +wp) = 0 for every x € S1 N (S2 —wyp).
This achieves the proof. O

Lemma 8.3 (Intermediate sets for local super-solutions). Let s € [1/2,1). Let ry, ro, 13, 14, t1, t2, T, Q1
Q?, Q3 and Q* be like in Lemma 8.2. Let f :[0,T] x By, x R — [0, +00). Assume f is a supersolution of

fi+v-Vof —L,f >0 in Q*.
For every pair of positive numbers 01,02, there exists 0 > 0 and p > 0 so that whenever
{f21nQ' =0 and  [{f<0}nQ* >0,
then
Ho<f<1}n@=p

Here, the constants 6 and p depend on 01, 2, t1, to, T, 11, 72, 73, 74, A\, A, s and d.

Proof. By replacing f with min(f,1) (see Lemma A.11 in Appendix), we can assume that 0 < f < 1
everywhere.

Let p > 0 so that 2p > r4 — 3.

Applying Lemma 6.2 to 1 — f, we obtain that f e L*([0,T] x B(,_p)1+2:, H*(By,—,)), with

T
2
L[ i, e

ra—p
for some constant C' depending only on r4, p, d, A, A and s.

Let ¢ : R x R? — [0, 1] be a smooth bump function supported in By, —2p)1+2: X By, 5, and such that
p=1in BT;+2S x B;,. We now have

T
(8.3) / / lo 13 ray dae dt < C.
0 JRd
From a direct computation, we get
[0 + v Vo= Ly](ef) = (v Vap) f — (Lo(of) — ¢Lu f) in [0, 7] x R x R™.

The term (v - V,¢)f is bounded by one, and supported in B(yy—2py1+2¢ X Br,—2,. The second term is a
commutator, which is also bounded in L2([0,T] x R?, H~*(R%)) because of Lemmas 4.10 and 4.11. Let

ho = (v- Vap)f = (Luo[of] = ¢Lo f) € L*([0,T] x RY, H*(RY)).
Now, we rewrite the equation for ¢ f as a fractional Kolmogorov equation
[0+ v Vo + (=A)3](0f) = ho + (=A)5(ef) + Lo(ef).

Because of (8.3), there is a function hy € L2([0,T] x R? x RY) such that (—A)3(of) = (—A)3 *hy.

Also because of (8.3) and applying Corollary 5.2, L,(pf) belongs to H~%(R%).

Summarizing, (¢f) is a supersolution to a fractional Kolmogorov equation with a right hand side in
L2([0,T] x RY, H—%(R%)),

[0 +v-Va+ (=A)2](pf) = ho + (=A)2hy + Ly(of)  in [0,T] x R x R%.
We finish the proof applying Lemma 8.2 with r4 — 2p instead of ry4. O

Lemma 8.4 (Propagation in measure). Under the same assumptions as in Lemma 8.3, For every pair of
positive numbers 1, da, there exists 6 > 0 so that whenever

Hf=213nQY =6 then |{f<0}nQ? <0y,

Here, the constant 0 depends on 01, 02, t1, to, T, r1, T2, 73, T4, A\, A, s and d.
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Proof. Let 6 and p > 0 be the values from Lemma 8.3. In this lemma we choose 6 := 6% where k is the
smallest integer larger than |Q3|/u.

_ Assume the conclusion of the lemma was not true. Then for all values of j = 0,1,...,k — 1, the function
0~7 f would satisfy the hypothesis of Lemma 8.3. Therefore, for every j = 0,1,...,k —1,

{7 < f <0} n Q% =

This is clearly impossible since all these are disjoint sets contained in @3, so their measures cannot add up
to more than |Q3|. O

9. THE PROPAGATION LEMMA

We call propagation lemma a result that says that as soon as a (super)solution is above a large constant
in most of a cylinder, then it is bounded from below by 1, say, for later times.

The difference between this propagation lemma and the first De Giorgi lemma proved in Section 6 lies in
the sets of points where the estimates hold. Essentially, the propagation lemma is the result of De Giorgi’s
first lemma, combined with a propagation of the lower bound to later times and larger sets. This propagation
is obtained using the barrier function of section 7 when s € (0,1/2) or the intermediate-value lemma from
Section 8 when s € [1/2,1).

Lemma 9.1 (Propagation lemma). There exist Ry > 0 (large, only depending on dimension and s), § > 0
(small, universal) and M > 1 (large, universal) such that for T = 225 if f is a supersolution

fe+v-Vof —Lyf =0  in[-1,T] x Bpi+z: % Br,

which is non-negative in [—1,T] x R®*¢ and such that
(9.1) {f > M} Q] = (1-0)[Q]
then f =1 in Q where Q = [0,T] X Bozes1 x By (see Figure 5).

FIGURE 5. Geometric setting of the propagation Lemma 9.1.

Proof. We will prove the equivalent result that if |[{f < 1} N Q1| < & then f = 1/M in Q. The proof will be
different depending on whether s € (0,1/2) or s € [1/2,1).

Let us start with the case s € (0,1/2). We combine De Giorgi’s first lemma with a barrier function.

We first apply Lemma 6.6 to 2f, shifted in time, with Q = [-1,—1/2] x By x By and Q= [—3/4,—-1/2] x
Byja x Byjg. For § suffiently small, we obtain that f > 1/2 in Q. In particular f(—1/2,z,v) > 1/2 for all
(z,v) € Byja x Bys.

Let ¢ be the barrier of Lemma 7.1 with T' = 3/2, 7 = 1/2 and r = 1/2. Lemme 7.1 also gives us the value
of Ry. We apply the comparison principle to get that f > %Lp(t +1/2,-,-) in [-1/2,T] x Bg, x Bg, and
conclude the proof. In this case M = 2/60, where 6 > 0 is the constant from Lemma 7.1.

For the case s € [1/2,1), we combine the intermediate set lemma with De Giorgi’s first lemma.

We apply Lemma 8.4 to f(t — 1,z,v), with riy = 1,190 =3, 173 =4, 14 = Ry =5, t1 = 1/2, to = 3/4,
T=T+ 1, arbitrary ; = § > 0 and Jo > 0 sufficiently small. We obtain that there is a 67 > 0 so that

{f > 61} " ([~1/4,T] x Bgi42: x Bs)| < 0s.

Then we apply Lemma 6.6 to 2f/61 (again shifted in time) with Q = [~1/4,T] x Bsi+2« x Bs and Q =
[0,T] x Bgi+2s x Bo. This concludes the proof. O
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The propagation lemma implies the following corollaries.
Corollary 9.2 (Stacked propagation). Let Ry and § be the constants from Lemma 9.1. Let k = 1, T}, =
Zle 225" and Ry = 28Ry. If f is a supersolution of (1.2) with h =0 in [—1,T}] x BR11€+25 x Bpr, and
[{f > M Q1] > (1-9)|Qul,
then f =1 in Q[k] := [Tk—1,Tk] x Byat2sx X Bas.

FIGURE 6. Geometric setting of Corollaries 9.2 and 9.3.

Proof. This is simply an iteration of Lemma 9.1. Indeed, getting f > 1 in Q implies that |{f > M} n Q| >
(1 —19)|Q| where f = M f. Choosing @ as the new cylinder @ in the basic propagation lemma yields that f
is bounded from below by M ~! in a new cylinder. Iterating this estimate, we get the corollary. O

Corollary 9.3 (Propagation of minima). Let Ry and 6 as in Lemma 9.1. Let f be a supersolution of (1.2)
with h =0 in Q = [-1,0] x BR%MS X Bpg,. Let Q,(to,x0,v0) € Q1 such that

H{f > A} 0 Qr(to, w0, v0)| > (1 —0)|Qy].

Then, there exists some p > 0 and ¢ > 0 so that

t—to\ P
fltow)z A(1+ =50 )

whenever (t,x,v) belongs to the set

1+

S = S(to, o, v0) 1= {(t,m,v) it > to, |z — xg — (t — to)vg| < ((1 B 2725)(2& it + 7‘25) 7
o o] < (1 =2 et +72)F |

Proof. Let t, = to + Zle(Qir)Qs, 2%r) and

T = (
Qlk] := Qr, (tr, To + trvo, Vo).
The change of variables (¢, z,v) — (r?$(t — to),r**2%(z — 29 — (t — to)vo),7(v — vg)), which preserves the
equation, transforms the cylinder Q; into Q,(to, xo, vo) and the cylinders Q[k] of Corollary 9.2 into Q[k].
We can easily check that S < | Q[k]. Corollary 9.2 tells us (after the change of variables above) that
f = A/M* in Q[k]. Observe that (t — to + r2%) ~ (2¥r)2* in Q[k], therefore

t—to+ 1\ ""
r2s ’

ft,z,v) = AM~F ZA(

log (M) 0O

where p = Tog(27°)

Remark 9.4. Tt is possible that in the proof of Corollary 9.3 some cylinder Q[k] extends pass the time ¢t = 0
and thus it is not strictly contained in (). This is not a problem since we are dealing with a parabolic
equation and future values of f do not affect earlier values. Indeed, we can readily verify that Lemma 9.1
also holds for any value of T € (0,2%%). The only thing that matters is that R; is sufficiently large.
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10. THE INK-SPOTS THEOREM FOR SLANTED CYLINDERS

This section is dedicated to the statement and proof of a theorem involving a covering argument in
the flavor of Krylov-Safonov growing ink spots theorem, or the Calderén-Zygmund decomposition. Such a
theorem is used in the proof of the weak Harnack inequality. The statement of the theorem involves stacked
(and slanted) cylinders:

(10.1) Q" (20,7) = {(t,z,v) : 0 <t —tg <mr?,|v —vo| <7, |x — 20 — (t — to)vo| < (M + 2)r' T2}

(see Figure 7).

F1GURE 7. Stacked cylinders

The cylinder Q™ is a delayed version of Q. It starts immediately at the end of Q. Its duration in time is
m times as long as Q. Its radius in x is (m + 2) times the radius in @. It shares the same values of velocities

v as Q.

Theorem 10.1 (The ink-spots theorem). Let E < F be two bounded measurable sets. We make the following
assumption for some constant p € (0,1).

e EcQ and |E| < (1-pIQi. )

o If any cylinder Q Q1 such that Q™ < Q1 satisfies |Q N E| = (1 — u)|Q|, then Q™ < F.

Then |E| < ™EL(1 — cp)|F| for some constant c € (0,1) depending on s and dimension only.

There is no chance to adapt the Calderén-Zygmund decomposition to this context. It would require that
we split a larger piece into smaller pieces of the same type. Even if we replace balls with cubes, the different
slopes, depending on the center velocities, make this tiling condition impossible.

What we do is a variation of the growing ink-spots theorem. The original construction by Krylov and
Safonov can be found (in English) in the Appendix 1 of [45]. Here, we have one extra dimension, x, which
plays a different role and presents additional difficulies. The most significant difficulty is to go from a lower
bound on the measure of the union of disjoint cylinders @ (Lemma 10.7) to a lower bound on the measure
of the union of their delayed versions @™ (Theorem 10.1). The problem is that if the center velocities of two
cubes flow towards each other, they may create extra overlaps in their delayed versions. This is addressed
essentially in Lemma 10.9, using that we expand the radius in z only by a fixed factor.

The values of z that belong to a slanted cylinder Q,(to, xo,vo) change for different values of ¢. They are
contained in a ball with radius r**2 which flows in the direction of v and is shifted a total distance |vg|r?
from the initial to the end time. For small values of r, the lenght of this shift is an order of magnitude
larger than the radius of the ball 71*2°. Dealing with this shift is non-trivial, and that is the main difference
between the covering argument described in this section and the usual ink-spots theorem.

The following corollary will be used when we need to confine both E and F' to stay within a fixed cylinder.

Corollary 10.2 (Ink-spots theorem with leakage). Let E c F be two bounded measurable sets. We make
the following assumption for some constant p € (0,1).

.ECQl.
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e If any cylinder Q < Q satisfies |Q n E| = (1 — p)|Q|, then Q™ < F and also Q = Q,(t,x,v) for
some r < rg.

Then |E| < ™ (1— cp)(|F 0 Q1|+ Cmrd®) for some constants ¢ and C' depending on s and dimension only.

10.1. Stacked cylinders and scaling. For any factor k, we define the scaled cylinder kQ, by

k?s —1
kQT = Qk’r ( r2sa070> .

2

Here, we scaled the radius r by a factor k and kept the same center of the cylinder. Note that the point
(to, o, vo) in Q(to, xo, v) refers to the top of the cylinder, not its center. In order to keep the center fixed,
we updated the top.

Consistently with the Lie group action, we define

kQr(to, %0, v0) := T(t,20,00)FQr

k25 1 kQS -1
:{(t,x,v):—i;— 2 <t —tg, < 5

|v —wo| < kr,

|z — 1z — (t —to)vo| < (kr) 251

T2S’

Note that [kQ,(to, zo,v0)| = k454D |Q, .
The first version of the growing ink-spots lemma uses essentially a variation of the Vitali covering lemma
together with a generalized Lebesgue differentiation theorem.

10.2. A generalized Lebesgue differentiation theorem. In [40], a generalized Lebesgue differentiation
theorem was derived for parabolic cylinders. Here, even though we have one additional variable (z), the
proof is the essentially the same. It relies on an adaptation of Vitali’s covering lemma (Lemma 10.5 below)
and a maximal inequality (Lemma 10.6 below).

Theorem 10.3. Let f e L'(Q, dz® dv® dt) where Q is an open set of R2*1. Then for a.e. (t,z,v) €,

lim |f — f(t,z,v)| dz dv dt = 0.

=07 JQ,.(t,,v)

Theorem 10.3 is obtained from Lemma 10.6 exactly as in [40]. For the reader’s convenience we will provide
below a proof of the maximal inequality.

In our setting, the cylinders @, (to, zo,vo) are not the balls of any metric. The important properties of
cylinders are explicitly given by the following lemma.

Lemma 10.4. Let Q.,(to,x0,v0) and Qr, (t1,21,v1) be two cylinders with nonempty intersection. Assume
that 2rg = r1. Then

er (t1, L1, Ul) < kQTo (tO’ Lo, UO)a
for some universal constant k (it depends on s only).

Proof. Since all our definitions are invariant by the action of the Lie group, we can assume without loss of
generality that (to,zo,v0) = 0 (the general case is reduced to this applying 72_1 ).

£0,20,v0)
‘We need to choose the constant £ so that

k=5,
k> >1+2-2%,
k28 > 1 4221428,

The first inequality implies the other two when s > 1/2. The second inequality implies the other two when
s < 1/2. In particular the third inequality is always redundant. In any case, we pick the smallest k satisfying
these inequalities, which depends only on s.
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Let (t2,22,v2) € Qry N Qr, (t1,21,v1). Let (t,2,v) € Qr, (t1,21,v1). Then all the following hold

k2 — 1
t<t) <ty + T‘%S < (27”0)28 < 5 ’I"gs,

t=t =11 >ty =11 = =g — (2r0)* > *k%; 17’(2)57
[v] < |v—v1| + |v1 — vo| + |v2| < 2r1 + 7o < 51 < kg,
2] < |& — @1 — (t— t)or| + |22 — 21 — (b2 — t1)or| + |aa| < 202571 4 2ot < p2oHLp2eHL
Thus, we get that (¢, z,v) € kQ,, and we conclude the proof. O

Lemma 10.5 (Vitali). Let {Q;};es be an arbitrary collection of slanted cylinders with bounded radius. Then,
there exists a disjoint countable subcollection {Q;,} so that

UQj = Uijm

jeJ i=1

The proof of Lemma 10.5 is the same as the classical proof of the Vitali coverling lemma using Lemma
10.4 instead of the fact that in any metric space By, (1) € 5By, if By, (1) N By, # & and 11 < 27g.
We next define the maximal function M f as follows: for (z,v,t) € Q,

Mtz = sw £ 7]
Q3(x,v,t) JQNQ

where the supremum is taken over cylinders of the form (y,w, s) + RQ;.

Lemma 10.6 (The maximal inequality). For all A > 0,
M > X 9l < Sl
Proof. For (z,v,t) € {Mf > A} nQ, there exists a cylinder @ 3 (z,v,t) such that
L f=5ene

Then {M f > A} nQ is covered with cylinders {@Q;} such that the previous inequality holds. From Lemma 10.5,
there exists a disjoint countable subcollection {Q;,} so that

{Mf >}k,
=1

for some integer k only depending on s.
We now write

I >/QQ fl - Z/Q G

A A A
>Z§|Qﬁ N Q| = §| Vi Q5 N Q| = W' vi kQj, 0 QY
3
A M AN Q
>W|{ f>An Q.
We obtain the desired inequality with C' = 2k2(d+ds+s) ]

10.3. Preliminary version without time delay.

Lemma 10.7. Let E < F < @ be two measurable sets. Assume that there is a constant p > 0 such that

o [El < (1—p)|Ql
o if any cylinder Q c Q1 satisfies |Q N E| = (1 — p)|Q|, then Q c F.

Then |E| < (1 — cu)|F| for some constant ¢ depending on s and dimension only.
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Proof. Using the generalized Lebesgue differentiation theorem (see [40] for an adaptation of the classical
Lebesgue differentiation theorem 10.3, for almost all points = € F, there is some cylinder Q* containing x
such that |Q* n E| = (1 — u)|Q%|. For all Lebesgue points = € E, let us choose a maximal slanted cylinder
Q® < @ that contains z and such that |Q® N E| = (1 — p)|Q*|. Here Q* = Qr(¢,,v) for some 7, ¢, T and .
From one of the assumptions, we know that Q* # )1 for any . The other assumption tells us that Q% c F.

We claim that |Q* n E| = (1 — 1)|@Q"|. Otherwise, for § > 0 small enough, there would be a @ such that
Q*cQc (1+0)Q* Qc @ and |Qn E|> (1— pu)|Q|, contradicting the maximality of the choice of Q7.

The family of cylinders QF covers the set E. By Lemma 10.5, we can select a finite subcollection of non
overlapping cylinders @; := Q%7 such that F c U;.lzl kEQ;.

Since Q; < F and |Q; n E| = (1 — 1)|Q;|, we have that |Q; n F\E| = p|Q;|. Therefore

IF\E| > )7 1Q; n F\E|

j=1

> @yl
j=1

_ k—2(d+ds+s)u Z |kQ]| > k_z(d+ds+s)u|E|.
j=1

We thus get

IF| > (1+ ) Bl
with ¢ = k~2(ds+d+5)  GSince éu € (0, 1), this implies

IE| < (1— )] F|
with ¢ = ¢/2. O
10.4. Stacked cylinders and leakage. The following lemma can be deduced from Lemma 4.29 in [40]

(There is a typo in the statement in that note, we embarrassingly apologize).

Lemma 10.8. Consider a (possibly infinite) sequence of intervals (a; — hy,a;]. Then

m
sap + mhy)| = — hg, .
ij(ak ar + mhy) o ij(ak ks Q|
Proof. We first assume that £ = 1,..., N for some finite number N.
Let
N
U (ak, ar, +mhy) = Ufz,
k=1 ¢

for a disjoint family of intervals I,. Here, each I, is a union of intervals of the form (a;,a; + mh;]. Let
ag — hg be the minimum of a; — h; and a; + mhy be the maximum of a; + mh; respectively, for all ¢ so that
(ai,a; + mh;] < I,. Naturally, we have

m

Iy = + mhy) — >
[Ie| = (a1 +mhy) — ag o

(ai — hi,ai]|,
{i:(ai,a;+mh;]ci,}

" (@ mhn) = (ao — ho)) >

Therefore
N
(ag, ap, + mhy]
k=1

ULl = X, 1,
[ 0
mTi 1 2 U (ai - hivai] ,

£ {i:(ai,a;+mh;|cly}

\%

m
>
m+1

(a; — hiyas]|.

i=1,..,N
It is now enough to let N — o0 to conclude. O
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Lemma 10.9. Let {Q;} be a collection of slanted cylinders, and Q;" be the corresponding delayed versions

as in (10.1). Then
Jai-
J

Proof. Because of Fubini’s theorem, we know that for any set A © R x R? x R?,
4| = /|{(t7x) (t) € A} dv.

Therefore, in order to prove the lemma, it is enough to show that for every v € R,

{(tx (t,,0) UQ’“} {(t,x:txv UQ]}‘

From now on, let v be any fixed v € R
Any cylinder Q; corresponds to @y, (t;,x;,v;) for some choice of r; > 0, t; € R and z;,v; € R%. If
|[v —v;| < r;, we have

{(t,x) : (t,x,v) € Q;”} ={t,z):0<t—t; < mr?s, |z —x; — (t —tj)v;] < (m+2)r 1+2'3}

T m+1

(10.2)

m+1

The set in the left hand side would be empty when |v —v;| >
When |v — v;| < r;, we have |(t —t;)(v; —v)| < mr]1+2€ Therefore, we can switch v; with v in the last

term, changing the right hand side, and we obtain a smaller set.
{(t,2) : (t,x,0) € QT'} D {(t,x): 0 <t —t; <mr

Let z = x — tv. The change of variables (t,z) — (t, z) has Jacobian one. We will estimate the measure of
the points (¢, z) so that (¢, z + tv) belongs to the set above. Thus

2 142
il =y — (t—ty)v] < 2r; 7L

(10.3) X (ta): (b, e | QFpl=

Jilv—vj|<r;

U {(t,2) : 0 <t—t; <mrf, |z —a;+t;0] <2r1+25},

Jilv—vjl<r;
Let Qj be the cylinders in R x R? used in the right hand side of the inequality above,

Qj={(t,2): 0 <t—t; <mr¥

32 7| 1+23}

z—xj +tjv] <2r;

Applying Fubini’s theorem again,

U Qj :/ U (tj,tj—kmrjzs] dz

d
[v—vj|<r; R {7:]lv—vj|<ry,

|z— ;c]+tjv|<27"1+25}

Using lemma 10.8,

~ m s
U Q; >m+1/Rd U (tj—'l"?,tj] dz,

fo=vsl<r; {G:lo—v, | <r;,
|z—z;+t; v|<2r1+2*}
__m U {(t,a): —r2* <t —1t; <O,[x —x; — (t —t;)v] <2r}-+25} :
(104) mt1 Jilv—vjl<r;
= m {(t,z) : —r2s <t—t; <0,|lz—x;— (t—t;)vj| < 1+25} ’
ml Jilo=vjl<r; !
= mnj—l {(t,x (L, x,v) UQJ}‘
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For the last inequality we used that if —r2* <t —t; <0, then (t; — t)[v — v;] < rj1+2s.

Combining (10.3) with (10.4), we obtain (10.2) and finish the proof. O
We can now turn to the proof of the main theorem.

Proof of Theorem 10.1. Let Q be the collection of all cylinders @ < @ such that |Q n E| = (1 — p)|Q|.
Let G := UQEQ Q. By construction, the sets E and G satisfy the hypothesis of the Lemma 10.7. Therefore
(1 —cp)|G| = [E]. _

From our hypothesis UQGQ Q™ < F. We conclude the proof applying Lemma 10.9,

Uer UQ‘= = _al. O

QeQ QeQ m+1

m

|F| >
m+1

=

Proof of Corollary 10.2. Note that the condition |F| < (1—40)|Q1] is implied by the second assumption when
ro < 1. Moreover, the result is trivial for g = 1 choosing C sufficiently large.

Let Q be the collection of all cylinders Q@ < @y such that [Q n E| > (1 — p)|Q]. Let G := Jpeo @™
From Theorem 10.1, we have that |E| < ;%5 (1 — cu)|G|. Moreover, our hypothesis tell us that G = F.

In order to conclude the corollary, we will estimate the measure G\@Q; using the fact that each of the
cubes Q = Q. (t,z,v) < Q1 has radius bounded by 7o. Recall that

Q" ={(t,z,0):0<t—t<mr®,
|0 —v| <,
|Z —x — (F—t)v] < (m + 2)r*+25}.
Since Q = Q1, then t < 0. So t < mrZ*. Moreover, |v| < 1, since the velocities in Q™ are the same as in Q.
Also, |z| < 1, so |Z| < 1+ mr3®. Therefore, Q™ < (—1,mra®] x By 4 mp2s x Bi. The same thing applies to G.
G c (=1, mrg®] x By ympzs x By.

Therefore |F n Q1] = |G n Q1] = |G| — |G\Q1] = |G| — Cmr3® and we conclude the proof. O

11. PROOFS OF THE MAIN RESULTS

In this section we complete the proofs of our main results. At this point, the main tools have already been
established in previous sections. The weak Harnack inequality is proved combining the propagation lemma
(Lemma 9.1) with our special version of the ink-spots theorem (Theorem 10.1). The structure of this proof
is inspired by the work of Krylov and Safonov [46] for equations in nondivergence form.

11.1. The weak Harnack inequality.

Proof of Theorem 1.6. We choose Ry to be the radius given in Lemma 9.1. We choose ry sufficiently small
so that the set S(tg, zg,v9) from Corollary 9.3 contains @ for any (to,zo,v) € Q- and r € (0,79).
Replacing f and h with c¢f and ch where the constant ¢ is choosen as follows

e = @inf £ +2lhlue0n) "

we reduce to the case where info+ f < 1/2 and |h] 1 (q,)) < 1/2.
We can further reduce to the case infg+ f < 1 and h = 0. Indeed, if the function f is a supersolution of

ft+v'va:f_va>_1/2>

then the function f(t,x,v) = f(t,2,v) + (t + 1)/2 is a nonnegative function in [—1,0] x R2¢ which is a
supersolution to (1.2) with h = 0. Moreover, infg+ f <infg+ f+1/2 <1 and f* < f°.

The proof relies on the application of the propagation lemmas 9.1 and Corollary 9.3. The constants M, §
in the remainder of the proof are chosen so that these propagation lemmas can be applied.
We are going to prove that in this case

fet, z,v) dv doe dt < Oy
o-
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In order to do so, it is enough to prove that
(11.1) Yk >1, {f>M"} A Q7| < Cyni(l—6)F

for some universal constants M > 1, Cy, ;. = 1 and 6 € (0,1).
Estimate (11.1) is proved by induction. For k = 1, we simply choose Cy, 1,;. and ¢’ so that

Q7| < Cyni(1=0) and & <6.

Note that by choosing a larger constant Cy, ;. we can make sure the inequality holds for arbitrarily many
values of k.

Assume that the inequality holds true up to rank k& > 1 and let us prove it for k + 1. We want to apply
Corollary 10.2 of the growing ink spots theorem 10.1 with p = 4, some integer m > 1 (to be fixed later, only
depending on 4), and

M=Mm"
where § and M given by the propagation lemma 9.1, and
E={f>M"~Q" and F={f>M'}nQ.

The sets E and F are bounded and measurable and £ ¢ F < Q1. We consider a cylinder Q = Q,(z) <
@~ (in particular r € (0,7¢)) such that |Q n E| > (1 — §)|Q)|, that is to say

(11.2) {f > M n Q7> (1-9)Ql.

We now prove that r is small. Since we have infy+ f < 1 and S(to, zo,vo) contains @, Corollary 9.3 yields

s —-p
M1 <1 + 1_276(2)> <1.

TQS

Therefore r < M~/ (252) In particular Q™ < @ (at least for k large).
Now, we want to prove that, @™ < F', that is to say,

(11.3) QM c {f > M*}.

This follows simply from Corollary 9.2, with k = m to the function f = M~*f o T -
Applying Corollary 10.2 to E and F with g = § and ro = M%) we get

(> My Q< D

(1 — ed) {|{f = M"Y A Q|+ C’mM”“/”}

where C' = C(s,d). We now use the induction hypothesis and get

(f > My g < D

(1 - C(S) {va.h.i.(1 - 6/)k + CmM*k/P} .

Choosing &' smaller than M /P we have

m+1

[{f > M} A Q7| < Cya. -

(1—ed) {1+ Cy 1, Cm} (1 -8

We next pick m large enough (depending on §) and then Cy 1, large enough (depending on § and m) so
that
m+1
m

(1—e6){1+C,},Cm} <1—(c/2)d.
Now imposing ¢’ < (¢/2)d, we get the desired inequality:
[{f > M A Q7| < Cyna (1= )

This achieves the proof of Estimate (11.1) and of the theorem. O
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11.2. The Holder estimate. In order to prove Theorem 1.5, we first prove two preparatory results,
Lemma 11.1 has the flavor of a weak Harnack inequality, but for supersolutions that can take (controled) neg-
ative values. The lemma then implies Corollary 11.2 which is concerned with the improvement of oscillation
of solutions with small forcing terms.

Lemma 11.1. Let ro and Ry as in Theorem 1.6 and p = ro/Ry. Let Q, be
Q_ := Q,(—R* + p**,0,0).
Let f:(—1,0] x By x R? - R be a function satisfying the following assumptions.

Jt+v-Vof = Lyf +hin Qq, with h > —&o;
Forte (—1,0], x € By, ve By, f(t,z,v) €[0,1];

Forte (—1,0], z € By and ve RN\By, f(t,z,v) > — (%) gt 1;
{f=1/2)nQ-| = 5|Q-|.

If ag > 0, g9 > 0 and 0 > 0 are sufficiently small, then

f=9d1inQ,.

Proof. We can assume that h < 0 without loss of generality. Let us first scale the function by defining
ft,z,v) = f(R7?*t, Ry 2%z, R{ 'v). This function satisfies the equation

8tf+ v - fo — ljvf = *SORl_?S = —€q,

in Qg,. The rescaled kernel in L, satisfies the same assumptions (1.3), (1.5), (1.6), (1.4) if s < 1/2, and
(1.7) if s = 1/2. Note that Qg, contains (—1,0] x Bpi+2s x Bp, .

Let f+ = max( f ,0). This function satisfies the following equation in Qg,,

%ﬁ+w-VJ4>A;@Aw%aﬁWDK@ﬂwdw+h— J- () K (v,w) du,

|w|=2R,
> [ ) = @)K () duw =2,

provided «q is small.
Applying Theorem 1.6 (the weak Harnack inequality), we get

1/e
f+><[ ]FE) —2¢ n Q4

1 -
> 5101V — 22

=0 for €9 and ¢ sufficiently small.
Rescaling back to f, we finish the proof. O
Corollary 11.2. Let f be a solution of (1.2) in Q1 with |h| < e&o. Assume that

0SC < (12%) for all R = 2.

(71,0])(31 XBR

Then

osc f <1-—09.
pr

Here, eg > 0, 0 > 0, ag > 0 and p > 0 are the same constants as in Lemma 11.1.

Proof. Let a = essinf(_ g)xB,xB, f and b = €SSSUD(_1,0]x B, x Ba f- The values of f(t,z,v) are either above
or below the middle value (a +b)/2 in at last half of the points in Q_. Thus, one of the following inequalities

holds. b ) . )
{f>“; }m(z_ >51Q-| o Hf<“; }mQ_ > 21Q-1.

Assume the former. The opposite case would follow from the same proof upside down.
Consider the function

ft,x,v)=1—-b+ f(t,x,v).
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This choice is made so that €SSSUP(_1,0]x B, x Bs f =1.
Since 0S¢(—1,0]x By x B, f <1, then f e [0,1] for (t,z,v) € (—1,0] x By x Bs.

[e% - — v [e3
Since 0s¢(_1,01xB, xBr | < (%) * for R > 2 and esSSUP(_1 0]x B, xB, / = 1, then f(t,z,v) > 1 — (‘—2‘) ’

for t € (—1,0], # € By and v € R)\B,. )
Thus, f satisfies the hypothesis of Lemma 11.1, f € [§,1] in B, and the corollary follows. a

Proof of Theorem 1.5. Without loss of generality we assume | f/ o ((—1,01x B, xre) < 1 and |k z=(q,) < €o,
where €( is the constant from Lemma 11.1. Otherwise, we replace f by
~ 1

f(t7 a';7 U) =
11 e ((—1,01x By xRay + B Lo (1) /20

ft,x,v).

We want to prove that there exists some universal constant C' so that for all » > 0,

osc f < Cr®.

r

We choose o < min(ayg, In(1 —d)/In(p/2)), where p, § and o are the constants from Lemma 11.1.

Let A(r) := oscq, f = esssupg, f —essinfq, f. It is a monotone increasing function. We cannot assume a
priori that A is a continuous function, but it is always left continuous. Since |f| < 1, we also have A(r) < 2
for all » > 0. Hence, we can choose C large enough so that A(r) < Cr® for all r > p.

Assume the theorem is not true, then let

ro :=sup{r: A(r) > Cr®} € (0, p).

Since A(r) is left continuous, A(rg) = Cr§.
Let fo be the rescaled function

1 0 a To 2s o 2s5+1 o
t === — ] t{— -l
Jolt, @) c(2r0) f((ﬂ) ’<p> x’ﬂ”)
Since A(r) < Cr® for r > ro,
%sc fo < (R/2)” for R > p.
R

In particular, since a < ag, we can apply Corollary 11.2 and obtain that

%scfogl—é.

P

Therefore, in terms of the original function f,

A(ro) < C (2;0>a (1-9).

This contradicts that A(rg) = Cr§ since a < In(1 — 6)/In(p/2), and we finish the proof. O

APPENDIX A. NEW PROOFS OF KNOWN ESTIMATES AND TECHNICAL LEMMAS

A.1. The coercivity estimate for the Boltzmann kernel. In this appendix we give a geometric proof
of the following coercivity estimate for the Boltzmann equation. It says that the Boltzmann kernel satisfies
the assumption (1.3).

Proposition A.1. Assume that the function f satisfies the inequalities
My < f(’l]) dv < MOa
Rd
[P r) do < £,
Rd
/ F(0)In f(v) dv < Ho.
Rd

Assume also that f*|-]7 is bounded by some constant Kq. This bound is controlled by My and Ey if vy € [0, 2],
and it is an extra assumption when v < 0.
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Let g : R?* - R be a function supported in Br. Then

- / Lug(v)g(v) dv > Algl, — Algl3-.

The constants A and A depend only on My, My, Fy, Hy, Kq the dimension d and the radius R.
In particular, for an appropriately larger constant A,

| Qo) wa(w) do < ~glE, + Al

Note that the extra assumptions about the boundedness of f #|-|? comes from the usual condition for
the classical cancellation Lemma to give us a bounded function. It is the same assumption as in Lemma 3.6.

The constant ¢ above may go to zero as R — o depending on the value of . The precise optimal rate
for this can be easily deduced from the proof. We explain this in remark A.7

The proofs of Proposition A.1 that can be found in the Boltzmann literature are done using Fourier
analysis. Here, we present a relatively elementary proof based on a direct computation and a geometric
argument in physical variables.

We define K¢, Q1(f,9) = Log and Qa(f,g) = c(f *|-|7) g as described in Section 3.

In [59], there is an estimate for K in terms of a simplified integral expression. It says that

(A.1> Kf(U,U/) I~ </ f(’l) + w) |,w|'y+2s+1 dw> |’Ul _ U‘_d_Qs.
{w-(v'—v)=0}

A1.1. Lower bounds for Ky in a cone of directions. We obtain a lower bound for Ky(v,v") in a symmetric
cone of directions with vertex v. This was done in [59]. It follows essentially from the following lemma.

Lemma A.2. Let f : RN — R be as in Proposition A.1. There exists anr > 0, £ > 0 and m > 0 depending
on My, Ey and Hg such that

Hv: f(v) > nB=m

Combining Lemma A.2 with the expression (A.1), we deduce the following statement. It is essentially the
same as Lemma 4.8 in [59], but with a more detailed description of the cone of directions where the lower
bound holds.

Lemma A.3. Let f: RN — R be non-negative and

M1 < f(’l}) dU < M(),
RN

/ (02 £(v) dv < By,
]RN

(v)In f(v) dv < H,.
RN
For any v € RY, there exists a set of directions A = A(v) € 0B1, so that K(v,v') = A(1 + |v]|)1 270 —
V'|[79725 for all v’ so that (v —v)/]v" —v| € A.
Moreover, this set of directions A S~ satisfies the following properties.

o A is symmetric: A = —A.

e Any big circle in S71 intersects A on a set of (one dimensional) measure at least ¢(1 + |v])~L. In
particular, the (d — 1) dimensional measure of A is at least u(v) := c(1 + |v]) 7.

e A is contained on a strip of width < C(1 + |v|)~1 around the equator perpendicular to v.

By a big circle, we mean a closed geodesic in S¢~!. They are the intersection of S92 with any 2-
dimensional subspace.

The proof of Lemma A .3 is similar to the one of Lemma 4.8 in [59]. Here we have a more precise description
than in that paper because we add a lower bound of the measure of the intersection of A with any big circle
instead of only its total measure. The proof is relatively easy to explain with a picture on the blackboard,
but perhaps somewhat cumbersome to write down.
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Proof. Let F = {v: f(v) > ¢} n B, be the set described in Lemma A.2, which has measure at least m.
From the formula for Ky given in (A.1), one immediately sees that ¢ € A(v) when the hyperplane
perpendicular to o intersects F' in a set of measure at least cm/r, with A = cfm/r.
The three properties described in the lemma are simple geometric consequences of this construction using
only that the measure of F' is bounded below and F' B, for some given constant r. Indeed, as o takes all
values on a big circle in 0By, its perpendicular hyperplanes swipe the space R? (see Figure 8).

FIGURE 8. As o moves along a big circle in 0By, its perpendicular planes swipe the space

Because of Fubini’s theorem, the points o on that big circle for which its perpendicular hyperplane
intersects F in a set of measure at least em/(1 + |v|) has to be at least of measure em/(1 + |v]).

Note that depending on the direction of the big circle, the lower bound on its intersection with A(v) could
be improved. For example, if the big circle is perpendicular to v, the measure of its intersection with A(v)
is bounded below independently of v. This fact will not be relevant to any of the computations below. [

Figure 9 is taken from [59] and shows all the elements in Lemma A.3.

We may call Z(v) the symmetric cone of values of v so that (v' —v)/|v' —v| € A. In particular, the lower
bound K ¢(v,v") = A(1 + |v])}*+2+7|v — v'| 7972 holds when v’ € Z(v).

The second item in Lemma A.3 says that there is a universal lower bound on the density of Z(v) inside
the cone of v' given by (A.2). This is all we will use in order to prove the coercivity estimate below.

The third item in the properties of A says that for any v’ € Z(v),

(A.2) lv- (v —v)] < Ch' — .

This third point plays no role in the local version of the coercivity estimate. It is useful to understand the
global coercivity estimate as explained in Remark A.7.

The set A on 0B,
Here Ky(v,v’) is bounded below /

/
/// \ A is contained inside a band

/

/ of width at most C/|v]|

FIGURE 9. The geometric setting of Lemma A.3. The cone Z(v) is generated by the set {f > [}.
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A.1.2. Proof of the lower bound. It turns out that the conditions on the kernel K given by Lemma A.3 plus
the cancellation lemma is all we need to obtain the bound from below of Proposition A.1. For some arbitrary
R >0, let us call u:=c(1+ R)™! to the lower bound on the one-dimensional measure of the intersection of
A(v) with big circles as in the last item of Lemma A.3.

We start with a few preparatory lemmas.

Lemma A.4. (See Figure 10) Let Z(v) be the cones corresponding to the sets of directions A(v) as in
Lemma A.3. Let L be a line in R? at distance p > 0 from a point v € R?. Then, for some constants ¢ and
C depending only on p(v),
|2(v) n L " Be,| = cp.

Proof. The projection of the line £ — v on the sphere S¢~! is half of a big circle. According to Lemma A.3,
the intersection of this projection with the set of directions A = A(v) has (one-dimensional) measure at least
1(v)/2 (recall that A(v) is symmetric). At least half of these directions form an angle with £ of at least u(v)/8.
For each of these points z € A(v) = S9!, there corresponds an actual intersection point in v +az € Z(v) N L,
with o € [p, 8u(v) "' p]. Thus, the one dimensional measure of the points v+ az € Z(v) N L n Be, is bounded
below by cp, where C' = 8u(v)~! and ¢ = p(v)/4.

)\
9

FIGURE 10. Intersection of a line £ with a cone Z(v).

O

Lemma A.5. Let E(v) be the cones corresponding to the directions A(v) as in Lemma A.3. Let vi and vy
be two points in RY. Assume |v1| = |va|. Let u(vi) = po and p(ve) = po for some po >0 . We have

I2(v1) N E(v2) N By(v2)] = clvy — va?,

where r = Clvy — va|, and ¢ and C' depend on py only.

[1]

(v2)

Z(v1) N

U2

FIGURE 11. The intersection of two cones inside a ball.
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Proof. The lines £ contained in Z(v;) are indexed by their directions e € A(vy). At least half of these lines
form an angle 6(u) > 0 with the vector v — v1. In particular, all such lines are at distance at least c|v; — vg]
from wvo, where ¢ depends on u and d only. According to Lemma A.4, for all such L,

|Z(v2) N L N Br(v2)]| = clvg — va.
Integrating over all directions e € A(v1) we conclude the lemma. ]

The following lemma is the main estimate in the context of integro-differential equations, which implies
Proposition A.1 when combined with the cancellation Lemma.

Lemma A.6. Let K : R? xR? — R be a non-negative kernel like in Lemma A.5. Let p = inf{u(v) : v € Br}.
Then, there is a constant ¢ > 0, depending only on p , A , d and s, so that for any function g supported
mn BR,

I (0) = g0 ) dv de' > el
R4 xR4

Proof. Symmetrizing the integral, we can replace K (v,v’) by (K (v,v") + K(v',v)). Thus, we assume that
K is symmetric.

From Lemma A.5, we have that for all v1,vy € Bap, there is a constant Cy (sufficiently large depending
on R and the various constants involving f) so that

I2(01) N E(v2) N Beyjuy s (v2)] = €lvr — v2|.
Note that Beyjp,—v,|(V2) © B(cy+1)|v1—vs|(v1). Moreover, we can choose ¢ small enough so that

2(v1) N E(v2) N Bey oy —um| (V2)\Beg oy v (V1) \Beg oy —vs| (v2)] = clvr — v2]%.

For the same choice of constants ¢y and Cp, let
Nw:= [ 19(0) — 9(w)2K (v, w) du.
Begr(v)\Begr(v)

Therefore, for any vy, v € Bag, using that |g(vi) — g(2)[* + [g(v2) — g(2)1? = |g(v1) — g(v2)|?/2, if we let
r=|v — Vg,

Ny (v1) + Nyp(v2) = ¢ ( lg(v1) — g(2) 2|y — 2|72 dz

~/E(’U1)ﬁBCOV,V(’U1 )\BUO r (Ul)

+ / l9(v1) = 9(2)P v — 2|77 dz) ’
E(vz)r\Bcgr(l&)\Bcor(UZ)

26(

> clg(v1) — g(v2)[Jvr — va| 2.

(1]

lg(v1) = g(va)[Prme72 dZ> ;

(Ul)ﬁE(U2)mBCoT('UZ)\BCOT(WI)\BCOT('L&)

Therefore

gl <

C [ laton) = glea) Pl — ol oy
BZXB2
< C// (N, (v1) + Ny (v2)) o1 — v2| ™ dvy duvg here 7 = |v; — vgl,
BQXBQ

= 20// N,«(’Ul)|’01 — 1}2|7d d’U1 dUQ,
BQXBQ

0
< C/ / Nr(vl)r_l do dr duy, using polar coordinates for vy,
B2 r=0J8d-1

ey Hvr—z|
c/ / lg(v1) — g(2) 2K (v1, 2) (/ rt dr) dz doy,
By JRe Cy or—2

0/32 /Rd lg(v1) — g(2)[2 K (v1, 2) dz dvy.
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This finishes the proof. O
Once we have Lemma A.6, we can derive Proposition A.1 as a corollary.

Proof of Proposition A.1. It follows from a simple computation using Lemma A.6 and Lemma 3.6.

,/ng(v)g(v) dv =//Rd Rd(g(v) g g(W) K (v, ') d' do,
1 ) / /
:Q //Rdx]Rd(g(v) - g(v ))2Kf(v,v ) dv’ dv

w5 [ ([ w0 - ke av) a

= Mgl7re — Allgli.

The first term was bounded using Lemma A.6 and the second term using Lemma 3.6. ]

Remark A.7. We sketch the precise asymptotics of the coercity estimate for large velocities. This computation
plays no role in this paper, but it is interesting to see how the metric introduced in [37] arises naturally from
the geometry described above. We only analyze the symmetric part of the bilinear form as in Lemma A.G.
Analyzing the full bilinear form requires another similar computation for the cancellation estimate.

For large values of v, the cone A(v) is approximately of width 1/|v| and perpendicular to v. The lower
bound in Lemma A.6 depends only on a lower bound for u(v) in Br and the lower bound for K (v,v’) for
v' € Z(v). Tt is easy to see how the estimate behaves for large velocities from a scaling argument. Indeed,
let vy € RY. For every v € By(vg), the cone Z(v) has measure u(v) = (1 + |vo])~! and it is approximately
perpendicular to vy in the sense described above. Let T' be the linear change of variables

Tv = (1+ |vo]) ' Pv + Ptu, where Pv = <|U’1fg>v0, Pty =v— Pu.
vo

Let g(v) = g(Tw). So that
I ) =R dvad = [ () g2 R ) du
where
K(v,0v') = |det(DT)|2K (Tv, Tv") = (1 + |vo|) 2K (Tw, Tv').

The point of this change of variables is to make the non-degeneracy cone K bounded below in measure for all
v € By (T~ Y(vp)), uniformly in vy, i.e. fi(v) = 1 for all v € By (T~ 'vy). Moreover, for v’ in this nondegeneracy
cone E(v), we have

K(v,v") = (1+ |vo|) 2K (Tv, Tv'),
> M1+ |vo]) T Ty — Tw! | 79725,

Therefore, from the computation in the proof of Lemma A.G, for some universal constant r > 0, and
D, = T(BT(T_1UO))7 we get

[, (o0 = s RE ) ava = ] (3(0) = 30K (0,0) dv do’,

Bl(Tfl’U())XBl(Tfll)())

~ =0\ 2
> (1 + |vo|) 72 // (9() = 5(")° /9(1(321) dv dv’,
B (T~ 100) x B (T~ 1vg) [v — /|
~ = (|2
e |v0|)_1+w+28// Ig(vl lgd(fz)sl do v,
B (T~ o) x B, (T~ 1) v — /|

_ AYP
= c(1+ [vo) +7+2 // Al
D, xD, |

T-1y — T_1U’|d+25
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Note that |T~'v — T~1/| is equivalent to the metric d(v,v’) introduced in [37]. The set D, is exactly the
ball of radius r centered at vg. Therefore, covering R? with these balls D,.(v) and adding up, we get

\\2 / / 1+~v+2s |g(v) — g("/)‘g /
gv) —g())*K(v,v") dv dv’ = ¢(1 + |vg]) ™7 // = dvdv.
~~//d(v,v’)<1( ( ) ( )) ( ) ( ‘ |) d(v,v')<r d(v7vl)d+25

The right hand side is the same as the norm |g|%... introduced in [37] minus a lower order correction
corresponding to the tails of the integral.

Remark A.8. It is interesting to notice that the estimate of Lemma A.G depends only on the structure of the
kernel described in Lemma A.3. It would be interesting to see whether the result of Lemma A.6 holds for
general kernels K (not necessarily arising from the Boltzmann equation) under less restrictive conditions on
the cones A(v). There is an interesting conjecture mentioned in [33] which is related to our condition (1.4).

A.2. Technical lemmas.
A.2.1. Change of variables. We recall here a change of variables from [59].

Lemma A.9 (Change of variables [59, Lemma A.1]). For any non-negative function of (v,vs,v',v}),

1 1
(A.3) / F dodv, = 247! / F—— dw dv/
Rd J§d—1 R4 |Ul - ’U| wlv'—v rd=2

1 1

- rU‘ wlvy —v

Other changes of variables were used in proofs.

Lemma A.10 (Change of variables — IT). Let F': R? — R be any integrable function. Then, the following
identities hold.

F
(A.5) / / F(w) dw do = wd_grd_l/ Fz) dz,
0B, J{w:wlo} Rd |Z‘

2 2\42
(A.6) / / F(o +w) dw do = Wdfzrd_l/ F(z)% dz,
0B, {w:wlo} ]Rd\Br |Z|
2 _ 2\453
(A7) / / oF (0 +w) dw do = wyq_ortt? / ZF(Z)M da.
0B, J{w:wlo} R4\ B, |Z‘

Here the constant wy_o stands for the surface area of S“=2. Note that the integrals on the left hand side are
on spheres and hyperplanes, thus dw and do stand for differential of surface.

A.2.2. Positive part of subsolutions.

Lemma A.11 (Positive part of subsolutions). Let f be a subsolution of (1.2) in a cylinder Q. Then
f+ =max(f,0) is still a subsolution of (1.2) (where h is replaced with hlsso) in Q.

Proof. Since we assume that f; + v -V, f € L2, then

fe+v-Vif where f >0,
0 elsewhere.

(A8) atf+ +uv- me+ = {

The equality holds in the sense of distributions.
In order to conclude that f, is a subsolution of (1.2), we need to prove the following inequality in the
sense of distributions.

L, h >0,
(A.9) Lof, > f where f
0 elsewhere.
Let v(r) = r4 and let {v5}s be a smooth approximation of -y such that || < 1 and 5 is convex. Let p.
be an even mollifier and f. = p. * f. Here the mollification is done with respect to the variable v only.

Since f e L%([0,T],R%, H*(R%)), it is not hard to see that
lim lim y5(f2) — f+ weakly in L2([0,T],R?, H*(R?)).
—0e—>
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Therefore, because of Theorem 4.1, for any smooth test function ¢, we have

%IH}) hm/// o[Vs(fe)]p dv dx dt = hm hm// (v5(fs), ) dz dt
:/ E(f-‘ra(p) dz dt,
= ///Lv[er]@ dv dz dt.

This proves that L,[vs(f:)] converges to L,[f+] in the sense of distributions.
Thus, in order to obtain (A.9) and finish the proof, we need to prove that for all § > 0 and € > 0,

(A.10) Lo[ys(fo)] = v5(fe) Lol fe]-

In fact, we can check by a direct computation that the inequality holds pointwise. Indeed,

1%%%W@=/WUMW*%%WWKWWN%

>/%mwmmm f-(v))K(v,o') &' using the convexity of 7z,

= 'V:S(fs(v))vas(v)'

Taking the limit as § — 0 and € — 0 in (A.10) we obtain (A.9). Combining it with (A.8) we finish the
proof. |

Lemma A.12 (Maximum principle). If f is a weak subsolution of (1.2), with h =0, in Q = (a,b] X Qy x Oy,
then
esssup f < esssup {f(t,x,v) te ([a,b] x Q x RY)\(a,b] x Q, x QU}.
Q

Proof. Let m = esssup{f(t,x,v) : t € ([a,b] x Q, x R¥)\(a,b] x Q, x Q,}. The proof follows using (f —m)
as a test function in (5.5). O
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