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;Institut de Mathématiques de Toulouse, UMR 5219
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Abstract

Consider a finite irreducible Markov chain with invariant probability π. Define its inverse
communication speed as the expectation to go from x to y, when x, y are sampled independently
according to π. In the discrete time setting and when π is the uniform distribution υ, Litvak
and Ejov [10] have shown that the permutation matrices associated to Hamiltonian cycles are the
fastest Markov chains. Here we prove (A) that the above optimality is with respect to all processes
compatible with a fixed graph of permitted transitions (assuming that it does contain a Hamiltonian
cycle), not only the Markov chains, and, (B) that this result admits a natural extension in both
discrete and continuous time when π is close to υ: the fastest Markov chains/processes are those
moving successively on the points of a Hamiltonian cycle, with transition probabilities/jump rates
dictated by π. Nevertheless, the claim is no longer true when π is significantly different from υ.
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1 Introduction

Given a finite oriented (strongly) connected graph G “ pV,Eq and a positive probability measure
π on V , it is natural to wonder what is the fastest Markov chain leaving π invariant and whose
permitted transitions are included in E. This depends on the way the speed is measured. In this
paper the goal is to minimize the expectation F of the time needed to go from x to y, when x
and y are independently sampled according to π. Litvak and Ejov [10] have shown that if π is the
uniform distribution υ and if G contains a Hamiltonian cycle, then the fastest Markov chains are
exactly those following deterministically the succession of the states given by a Hamiltonian cycle
when one exists (the corresponding quantity F does not depend on the choice of the admissible
Hamiltonian cycle). Our objectives in this paper are: (A) to extend this result to the continuous
time framework (under an appropriate renormalization of the jump rates), (B) to establish the
above optimality over a larger class of processes, and to begin an investigation of the situation
where π is not the uniform distribution by showing, (C) that when G contains a Hamiltonian cycle
and that π is close to υ, the fastest Markov chains/processes are still those appropriately associated
to Hamiltonian cycles, and (D) that this is no longer true when π is ‘far away’ from υ.

The plan of the paper is as follows. The above results (A) and (B) are proved in the next section
via a dynamic programming approach, which also provides an alternative proof of the discrete time
result of Litvak and Ejov [10]. In Section 3, we decompose the generators leaving π invariant into
convex sums of generators associated to (not necessarily Hamiltonian) cycles and we differentiate
the expectations of hitting times with respect to the generators. This is the basic tool for the proof
of (C) (see Theorem 5 in Section 3) in Section 4 , through small perturbations of the uniform prob-
ability measure. At the other extreme, large perturbations lead to the proof of (D) (cf. Theorem 6
in Section 3) at the end of the same section. Section 5 contains some observations about the links
between continuous time and discrete time. In the appendix, we compute the fastest normalized
birth and death generators leaving invariant any fixed positive probability measure π on t0, 1, 2u.
The underlying graph is the segment graph of length 2, i.e. the simplest example not containing a
Hamiltonian cycle.

2 The dynamic programming approach

2.1 Introduction

The aim of this section is to show that the Hamiltonian cycles, when one exists, are the fastest
in the sense we have defined among all processes compatible with the given graph, not just the
Markov chains. The proof uses dynamic programming. We first recall the eigentime identity in
the next subsection and then establish the desired result for resp. discrete and continuous time in
the subsections that follow.

2.2 The eigentime identity

We shall use the notation LpXq to denote the law of a random variable X and |A| for the cardinality
of a finite set A. Consider a discrete time Markov chain pXnqnPZ` on a finite state space V with
transition matrix P “ pppi, jqqi,jPV . We assume it to be irreducible, i.e., for any i, j P V ,
there exists a path i0 “ i, i1, ¨ ¨ ¨ , in´1, in “ j such that ppik, ik`1q ą 0 , for k P J0, n ´ 1K B
t0, 1, ..., n ´ 1u. Let π B pπpiqqiPV denote its unique stationary distribution, which is its left
eigenvector corresponding to the Perron-Frobenius eigenvalue θ1 “ 1. In particular, if LpX0q “ π,
then for any n P Z`, we have LpXnq “ π. This justifies the term ‘stationary’, its uniqueness being
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a well-known consequence of the irreducibility hypothesis. Denote by θ2, ¨ ¨ ¨ , θ|V | the remaining
eigenvalues of P . Also define the hitting times

@ i P V, τi B mintn P Z` : Xn “ iu. (1)

The eigentime identity states that

@ i P V,
ÿ

j

πpjqEirτjs “

|V |
ÿ

m“2

1

1´ θm
. (2)

Here each eigenvalue is counted as many times as its (algebraic) multiplicity. For reversible chains,
this is Proposition 3.13, p. 75, of Aldous and Fill [1]. It was extended to the general case in Cui
and Mao [2], see also [11] for a simple proof and further extensions. The left hand side gives the
mean hitting time of a target state picked randomly with distribution π. A minor modification is
to consider instead the stopping times

@ i P V, Ti B mintn P N : Xn “ iu,

where N B Z`zt0u, the set of positive integers. Since πpiqEirTis “ 1, we can replace (2) by

@ i P V,
ÿ

j

πpjqEirTjs “ 1`

|V |
ÿ

m“2

1

1´ θm
. (3)

This variant is essentially contained in Theorem 2.4 of Hunter [6], which also gives the pre–history
of the problem going back to Kemeny and Snell [9]. An immediate corollary is the ‘symmetrized’
version

ÿ

i,j

πpiqπpjqEirτjs “

|V |
ÿ

m“2

1

1´ θm
, (4)

ÿ

i,j

πpiqπpjqEirTjs “ 1`

|V |
ÿ

m“2

1

1´ θm
. (5)

Let Π be the rank one matrix whose rows are all equal to π. From Theorem 2.4 of Hunter [6],
we have:

(5) equals trpI ´ P `Πq´1, where I is the identity matrix. p˚q

A Hamiltonian cycle A of V is an ordering pa0, a1, ..., aN´1q of the elements of V , where
N B |V |. We will make the convention that aN “ a0, as the indices should be seen as elements
of ZN B Z{pNZq. More precisely, the cycles pa0, a1, ..., aN´1q and pak, ak`1, ..., ak`N´1q should be
identified as the same cycle, for all k P ZN . This will be implicit in the sequel, even though for
notational convenience, we will represent a cycle A as pa0, a1, ..., aN´1q. Consider an irreducible
directed graph G “ pV,Eq where V,E denote respectively its node and edge sets. In the discrete
time setting, such graphs will always be assumed to contain all the self-loops, i.e. pi, iq P E for any
i P V . The Hamiltonian cycle A B pa0, a1, ..., aN´1q is said to be admissible for G if pak, ak`1q P E
for all k P Zn. It means that GA is a subgraph of G, where GA is the oriented graph on V whose
edges are the pak, ak`1q, for k P ZN . The set of all Hamiltonian cycles (respectively, admissible
for G) is denoted H (resp., HpGq) and the graph G is said to be Hamiltonian if HpGq ­“ H.
Obviously, we have H “ HpKV q, where KV is the complete oriented graph on V .

Consider the optimization problem of minimizing (2)/(4), or equivalently, (3)/(5), where π is
equal to υ, over all irreducible P compatible with the given graph G (in the sense that for any
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i ­“ j P V , P pi, jq ą 0 ñ pi, jq P E). Since these quantities will be infinite for reducible P ,
we might as well consider the problem of minimizing it over all stochastic matrices P compatible
with G. Say that P is Hamiltonian if there exists a Hamiltonian cycle pa1, ¨ ¨ ¨ , a|V |q such that
ppak, ak`1q “ 1 “ ppa|V |, a1q for 1 ď k ă |V |. That is, the transitions deterministically trace a
Hamiltonian cycle. Recall that a Hamiltonian cycle need not exist in general and the problem of
determining whether one does is NP-hard (see, e.g., Garey and Johnson [4]). By Proposition 2.1
of Litvak and Ejov [10] in combination with p˚q above, we have:

Theorem 1 When π “ υ, either of the quantities (2), (3) is minimized by a Hamiltonian P if
there exists one.

In the next subsection, we give an alternative proof, inspired by the Held-Karp algorithm for
scheduling problems [5], which gives a strengthening of this result and has interesting implications
for random search. Specifically, we improve on the cited result of Litvak and Ejov [10], insofar
as the cost is shown to be minimized over all G-compatible random processes and not only the
Markov chains, by tracing the Hamiltonian cycle, when one exists, deterministically.

2.3 A dynamic programming solution

As in Held and Karp [5], a natural state space for the dynamic program is

V ˚ :“ tpi, Aq : i P V, A Ă V ztiuu.

With each pi, Aq P V ˚, we associate an action space Ui :“ the set of probability vectors on the set

Vi :“ tj P V : pi, jq P Eu Ă V

of successors of i in G. Note that this does not depend on A. Suppose Vi is enumerated as
pj1, ¨ ¨ ¨ , jmiq. Given a ‘control’ q “ pqpj1q, ¨ ¨ ¨ , qpjmiqq, the transition probability

p̂ppj, Bq|pi, Aq, qq (6)

of going from pi, Aq P V ˚ to pj, Bq P V ˚ under control q is zero if either j R Vi or B ‰ Aztju.
Otherwise it equals qpjq. Consider an V ˚-valued controlled Markov chain pXn, ZnqnPZ` governed
by a control process pqnqnPZ` with qn P UXn , for all n P Z`, evolving according to the above
controlled transition probability function. That is, for any n P Z`,

P ppXn`1, Zn`1q “ pj, Bq|pXm, Zmq, qm,m ď nq

“ P ppXn`1, Zn`1q “ pj, Bq|pXn, Znq, qnq

“ qnpjqδB,Aztju,

where δ¨,¨ denotes the Kronecker delta. Since we are allowed to choose any past dependent transi-
tion probability compatible with G, this covers all V -valued random processes that are compatible
with G, i.e., that make transitions only along the edges in E.

Our objective is to minimize, for a prescribed initial state i0
1 the quantity

E

«

ÿ

j

τj

ˇ

ˇ

ˇ
X0 “ i0, Z0 “ V zti0u

ff

, (7)

1more generally, for a prescribed initial distribution
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which is proportional to (2) when π “ υ, the uniform distribution (i.e., when P is doubly stochas-
tic). Note, however, that we do not require pXnqnPZ` to be even Markov. Let

ζ :“ mintn ě 0 : Zn “ Hu.

Then (7) can be equivalently written as

E

«

ζ
ÿ

m“0

|Zn|
ˇ

ˇ

ˇ
X0 “ i0, Z0 “ V zti0u

ff

. (8)

This allows us to apply the dynamic programming principle to the ‘value function’ or ‘cost to go
function’

V pi, Aq :“ inf E

«

ζ
ÿ

m“0

|Zn|
ˇ

ˇ

ˇ
X0 “ i, Z0 “ A

ff

,

where the infimum is over all admissible controls. Standard arguments yield the dynamic program-
ming equation

V pi, Aq “ min
qPUi

˜

|A| `
ÿ

jPVi

qpjqV pj, Aztjuq

¸

, A ‰ H, (9)

V p¨,Hq ” 0. (10)

Furthermore, the optimal control in state pi, Aq is any minimizer of the right hand side of (9). Since
the expression being minimized is affine in q, this minimum will be attained at a Dirac measure,
implying that the optimal choice in state pi, Aq is to deterministically move to a certain j P Vi.
In other words, the optimal trajectory is deterministic and perforce visits each node at least once,
otherwise the cost would be infinite. Since at most one new node can be visited each time, the

total cost is at least
ř|V |´1
i“1 i “ |V |p|V |´1q

2 , which equals the cost for tracing a Hamiltonian cycle if
one exists.

A parallel treatment can be given for the cost

E

«

ÿ

j

Tj | X0 “ i0, Z0 “ V

ff

, (11)

which can be equivalently written as

E

«

ζ
ÿ

m“0

|Zn| | X0 “ i0, Z0 “ V

ff

. (12)

The minimum cost for this, again attained by tracing a Hamiltonian cycle deterministically, will
be sps`1q

2 .

We have proved:

Theorem 2 Minimum of either the cost (7) or the cost (11) over all V -valued random processes
compatible with G is attained by tracing a Hamiltonian cycle when one exists.

This has interesting implications to some random search schemes. For example, consider the
problem of searching for an N bit binary password given a device or ‘oracle’ that can verify whether
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a password is correct or not. Random search schemes for this problem have been proposed, involv-
ing Markov chains on the discrete N -cube t0, 1uN , where any two strings differing in one position
are deemed to be neighbors. This undirected graph can be rendered directed by replacing each
undirected edge by two directed edges. A simple induction argument shows that it has a Hamil-
tonian cycle. Then the foregoing leads to the conclusion that no random search scheme can do
better on average than simply listing the N -strings and checking them one by one.

2.4 Continuous time problem

We now consider the continuous time counterparts of the foregoing. Recall that a Markov gen-
erator on V can be represented by a matrix L B pLpx, yqqx,yPV whose off-diagonal entries are
non-negative and whose row sums all vanish. Corresponding Markov processes, defined through
the corresponding martingale problems, will be denoted X B pXtqtě0. The law of X then only
depends on the initial distribution, namely on the law LpX0q of X0. The Markov generator L
is said to be compatible with G, if we have

@ x ­“ y P V, Lpx, yq ą 0 ñ px, yq P E.

The probability measure π, viewed as a row vector, is said to be invariant for the generator
L, if πL “ 0. Its probabilistic interpretation is that if initially LpX0q “ π, then for any t ě 0,
LpXtq “ π, similarly to the discrete time case. The generator L is said to be irreducible if for any
x, y P V , there exists a path x0 “ x, x1, ..., xl “ y, with l P Z` the length of the path, such that
Lpxk, xk`1q ą 0 for all k P J0, l ´ 1K. In our finite setting, a Markov generator L always admits
an invariant probability measure, the irreducibility of L ensures that it is unique. The irreducible
Markov generator L is said to be normalized, if

ÿ

xPV

Lpxqπpxq “ 1, (13)

where µ is the invariant measure of L and where Lpxq B ´Lpx, xq “
ř

y ­“x Lpx, yq for any x P V .
It means that at its equilibrium µ (i.e. for the stationary X starting with LpX0q “ µ), the jump
rate of X is 1. Denote by LpG, πq the convex set of irreducible normalized Markov generators L
compatible with G and admitting π for invariant probability. To simplify notation, we will also
write Lpπq B LpKV , πq, when G is the complete graph KV on V . For y P V , let τy be the hitting
time of y:

τy B inftt ě 0 : Xt “ yu.

We are particularly interested in the functional

F : LpG, πq Q L ÞÑ
ÿ

x,yPV

πpxqπpyqELx rτys, (14)

where the subscript x (respectively the superscript L) in the expectation indicates that X is starting
from x (resp. is generated by L). The probabilistic interpretation of F pLq is the mean time to
go from x to y for the Markov process generated by L, when x and y are sampled independently
according to its invariant probability π.

Remark 3 The smaller the F pLq, the faster the underlying Markov process goes between the
elements of V . It does not necessarily imply that the faster the time-marginal distributions go
to equilibrium in large time (especially in the discrete time analogue). It is more related to the
asymptotic behavior of the variance associated with the convergence of the empirical measures.
This point of view will not be investigated here.

˝
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The quantity F pLq also admits a nice spectral formulation: for any L P LpG, πq, let ΛpLq be the
spectrum of ´L, removing the eigenvalue 0. To take into account the possible multiplicities of the
eigenvalues, ΛpLq should be seen a multiset (i.e. a eigenvalue of ´L of multiplicity m, appears m
times in ΛpLq). By irreducibility of L, ΛpLq is a priori a sub(multi)set of C` B tz P C : <pzq ą 0u
that is invariant under conjugation. The eigentime relation asserts

F pLq “
ÿ

λPΛpLq

1

λ
. (15)

The references Cui and Mao [2] and [11] given in the discrete time setting also deal with the
continuous time case. The quantity F pLq can also be written in terms of return times. Define for
any y P V ,

σ :“ mintt ą 0 : Xt ‰ X0u,

Ty :“ mintt ě σ : Xt “ yu.

By irreducibility of L, we have the following eigentime identities (see Cui and Mao [2]), for any
y P V :

ÿ

xPV

πpxqExrτys “
ÿ

λPΛpLq

1

λ
“

ÿ

x,zPV

πpxqπpzqExrτzs, (16)

ÿ

x

πpxqExrTys “ 1`
ÿ

λPΛpLq

1

λ
“

ÿ

x,zPV

πpxqπpzqExrTzs, (17)

Similarly to Subsection 2.3, our goal is to find the minimizers of F on LpG, πq, or at least to
deduce some information about them, since they correspond to the fastest normalized Markov pro-
cesses compatible with G with invariant distribution π. There is no loss of generality in imposing
that L is irreducible, because the functional F is infinite for non-irreducible Markov generators
admitting π as invariant measure.

Consider next a continuous time V -valued controlled Markov chain, denoted pXtqtě0 again by
abuse of notation, controlled by a control process pZtqtě0. The latter takes values in UXt , where
Ui :“ r0,8q|Vi|, identified with the instantaneous transition rate of Xt. That is, as δ goes to 0`,

P pXt`δ “ j|Xs, Zs, s ď t,Xt “ iq “ P pXt`δ “ j|Xt “ i, Ztq

“

$

&

%

ZtpXt, jqδ ` opδq , if j P VXt ,
´
ř

jPVXt
ZtpXt, jqδ ` opδq , if j “ Xt,

0 , if j R VXt Y tXtu,

where we write Zt “ pZtpXt, j1q, ¨ ¨ ¨ , ZtpXt, jmXt qq for a suitable enumeration pj1, ¨ ¨ ¨ , jmXt q of
VXt .

For the remaining part of this subsection, we consider the case where π “ υ, the uniform
measure on V . The renormalization condition (13) can be written in the form

ÿ

i‰j

Ztpi, jq “ |V |. (18)

If for any t ě 0, Zt is a function of Xt alone, say Zt “ rpXt, ¨q P UXt , then pXtqtě0 is a
time-homogeneous Markov process with rate matrix R “ prpi, jqqi,jPV , where we set rpi, jq “ 0 for
j R Vi. Consider the problem of minimizing (16). As before, we augment the state process to the
V ˚-valued process pX̂tqtě0 “ pXt, Atqtě0, with the understanding that At can change only when
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Xt does and a transition of Xt from i to j leads to a transition of At to Atztju. Consider the
control problem of minimizing the cost

E

„
ż ζ

0
|At|dt

ˇ

ˇ

ˇ
X0 “ i0, A0 “ V zti0u



, (19)

for
ζ :“ tt ě 0 : At “ Hu,

which is equivalent to (16), subject to the normalization constraint (18). The constraint (18)
couples decisions across different states, so dynamic programming arguments cannot be directly
applied. Therefore we modify the formulation for the time being, this modification will be dropped
later. The modification is as follows. Let paiqiPV be scalars in p0, |V |q such that

ř

i ai “ |V |. For
state i, we restrict the rates to be from the set

Ũi :“ trpi, jq : rpi, jq “ 0 @ j R Vi,
ÿ

jPVi

rpi, jq “ aiu.

Consider the value function

V pi, Aq :“ inf E

„
ż ζ

0
|At|dt

ˇ

ˇ

ˇ
X0 “ i, A0 “ A



,

where the infimum is over all admissible controls. The dynamic programming equation then is

min
rpi,¨qPŨi

˜

|A| `
ÿ

jPVi,A

rpi, jqpV pj, Aztjuq ´ V pi, Aqq

¸

“ 0, V p¨,Hq ” 0. (20)

Once again it is clear that the quantity being minimized is affine in the variables it is being
minimized over and hence the optimum is attained for a deterministic choice of rpi, ¨q in the sense
that rpi, jq can be non-zero for at most one j P Vi. Thus the optimal path traces the nodes of G
in a deterministic manner, visiting each of them at least once. This is true for any choice of taiu
and therefore true in general for the constraint p18q. Unlike the discrete time case, this does not,
however, mean that the trajectory is deterministic, because the sojourn time in each node is still
random. It is clear that the cost for any such trajectory will be

E

«

ÿ

iPV

a´1
i Ni

ff

,

where Ni is the number of times the trajectory passed through i. For a given choice of paiqiPV , this
is clearly minimized if Ni “ 1 for all i P V , which can be achieved by tracing a Hamiltonian cycle
if one exists. Optimizing next over the choice of paiqiPV subject to (18), namely

ř

iPV ai “ |V |, a
simple induction argument shows that the choice ai “ 1, for all i P V , is optimal.

As in the discrete case, a similar treatment is possible for the cost (17) or its equivalent

E

„
ż ζ

0
|At|dt

ˇ

ˇ

ˇ
X0 “ i0, A0 “ V



, (21)

with the constraint (18).

We have proved:

Theorem 4 Minimum of either the cost (19) or the cost (21) over all V -valued random processes
compatible with G is attained by tracing a Hamiltonian cycle when one exists.
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3 Perturbation of Markov generators

3.1 Introduction

We can expect the optimality of Hamiltonian cycle to persist under small perturbations of the
Markov chains considered above. For specific classes of perturbations, such results were estab-
lished in Ejov et al [3]. Here we establish a vastly more general result, first for the continuous
time framework (which turns out to be more natural in some sense for the kind of techniques we
employ) and then for the discrete case.

When A B pa0, a1, ..., aN´1q P H and a positive probability measure π on V are fixed, the set
LpGA, πq is reduced to a singleton, its element will be denoted LA. It is indeed given by

@ x, y P V, LApx, yq “

$

’

&

’

%

1
Nπpxq , if x “ ak and y “ ak`1 for some k P Zn
´ 1
Nπpxq , if x “ y

0 , otherwise

Theorem 4 may seem a little deceptive: the fastest normalized Markov processes X leaving
invariant υ, the uniform probability measure on V , follow a prescribed cyclic ordering of the
states of V , their randomness comes only from their waiting times, distributed according to the
exponential law of intensity 1. Such a derandomization of the successive points visited by X is
also valid for probability measures π close to υ:

Theorem 5 Assume that the graph G is Hamiltonian. Then there exists a neighborhood N of
υ in the set P`pV q of positive probability measures on V (endowed with the topology inherited
from that of p0, 1sV ) such that for any π P N , the set of minimizers of F on LpG, πq is exactly
tLA : A P HpGqu.

Nevertheless, this result cannot be extended to all positive probability measures π, at least
for the graphs which are not a Hamiltonian cycle, a situation where LpG, πq is not reduced to a
singleton, in particular, this requires N ě 3.

Theorem 6 Assume that G is not a Hamiltonian cycle. Then there exist positive probability
measures π on V such that none of the elements of tLA : A P HpGqu is a minimizer of F on
LpG, πq.

Thus for some pG, πq, the minimizers of F on LpG, πq are (spatially) hesitating Markov pro-
cesses: at some vertex, the next visited point is not chosen deterministically. For a given Hamilto-
nian graph G which is not reduced to a Hamiltonian cycle, it would be interesting to describe the
probability measures π leading to a transition between non-hesitating and hesitating minimizers.
This issue remains open at present.

3.2 Differentiation on Lpπq

This section introduces some elements of differential calculus on Lpπq, which will be helpful in the
proof of Theorem 5. Here we will be working mainly with the complete graph KV .

We begin by presenting a more analytical expression for the functional F . For y P V , consider
the function

fy : V Q x ÞÑ
1tyupxq

πpyq
´ 1.

9



Note that πrfys “ 0, so for any L P Lpπq, by irreducibility, there exists a unique function ϕLy on V
satisfying the Poisson equation

"

LrϕLy s “ fy,

ϕLy pyq “ 0.
(22)

The following relation with the functional F is well-known:

Lemma 7 For any L P Lpπq and any x, y P V , we have

ϕLy pxq “ ELx rτys,

so that

F pLq “
ÿ

yPV

πpyqπrϕLy s.

To simplify notation, from now on, we will remove the L in the exponent of ELx and ϕLy , when the
underlying generator L is clear from the context.

Proof

Let us recall a simple argument, which will be used again in the sequel. Through the martingale
problem characterization of X, we have that for any given function ϕ on V , the process pMtqtě0

defined by

@ t ě 0, Mt B ϕpXtq ´ ϕpX0q ´

ż t

0
LrϕspXsq ds

is a martingale. In particular, for any stopping time τ , the process pMτ^tqtě0 is also a martingale.
Thus, starting from x P V , we get,

ExrMτy^ts “ 0

“ Ex
„

ϕpXτ^tq ´ ϕpX0q ´

ż τ^t

0
LrϕspXsq ds



“ Ex rϕpXτ^tqs ´ ϕpxq ´ Ex
„
ż τ^t

0
LrϕspXsq ds



.

Since τ is a.s. finite and ϕpXτ^tq, t ě 0, uniformly integrable, we obtain, by letting t go to infinity

Ex rϕpXτ qs ´ ϕpxq ´ Ex
„
ż τ

0
LrϕspXsq ds



“ 0.

For any y P V , consider ϕ B ϕy and τ B τy. From (22) and from the fact that fypzq “ ´1 for any
z P V ztyu, we deduce

ϕypxq “ Exrτys.

The last identity of the lemma comes from
ÿ

xPV

πpxqExrτys “
ÿ

xPV

πpxqϕypxq

“ πrϕys.

�

Since we are looking for minimizers of F on Lpπq, it is natural to differentiate this functional. Let
L̄pπq be the convex set of normalized Markov generators L admitting π for invariant probability.
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The difference with Lpπq is that the elements of L̄pπq are not required to be irreducible. For
L P Lpπq, rL P L̄pπq and ε P r0, 1q, let Lε B p1´ εqL` εrL P Lpπq. Define

D
rL
F pLq B lim

εÑ0`

F pLεq ´ F pLq

ε
.

In the proof of the following result, it will be shown that this limit exists.

Lemma 8 With the above notation, we have

D
rL
F pLq “

ÿ

yPV

πpyqpπrϕys ´ πrψysq

“ F pLq ´
ÿ

yPV

πpyqπrψys.

where ψy is the unique solution of another Poisson equation
"

Lrψys “ rLrϕys,
ψypyq “ 0

. (23)

Proof

Let Fπ stand for the space of functions f on V whose mean with respect to π vanishes. By
restriction to Fπ, L P Lpπq can be seen as an invertible endomorphism of Fπ, denote by L´1

|Fπ its

inverse. Similarly, for ε P r0, 1q, let L´1
ε,|Fπ be the inverse of Lε on Fπ. The mapping r0, 1q Q ε ÞÑ Lε

being analytical, the same is true for r0, 1q Q ε ÞÑ L´1
ε,|Fπ . Since we have

@ ε P r0, 1q, @ y P V, ϕLεy “ L´1
ε,|Fπ rfys ´ L

´1
ε,|Fπ rfyspyq,

we deduce that the mapping

r0, 1q Q ε ÞÑ ϕLεy

is analytical. The same is true for r0, 1q Q ε ÞÑ F pLεq, due to the equality

@ ε P r0, 1q, F pLεq “
ÿ

yPV

πpyqπrϕLεy s.

In particular its derivative D
rL
F pLq exists and is equal to

ř

yPV πpyqπrϕ
1
ys, where ϕ1y is the derivative

of ϕLεy at ε “ 0. Differentiating the relation Lεrϕ
Lε
y s “ fy, we get

prL´ Lqrϕys ` Lrϕ
1
ys “ 0.

Furthermore, we have that ϕ1ypyq “ Bεϕ
Lε
y pyq|ε“0 “ 0, so that ϕy ´ ϕ1y satisfies the equation (23)

and must be equal to ψy. The claim then follows from the equality ϕ1y “ ϕy ´ ψy, for all y P V .
�

In the above proof, we have seen that r0, 1q Q ε ÞÑ F pLεq is analytic, so we can differentiate it
a second time at ε “ 0. Denote D2

rL
F pLq “ B2

εF pLεq|ε“0.

Lemma 9 For L P Lpπq, rL P L̄pπq, we have

D2
rL
F pLq “

ÿ

yPV

πpyqp2πrϕys ´ 4πrψys ` 2πrψ1ysq

“ 4D
rL
F pLq ´ 2F pLq ` 2

ÿ

yPV

πpyqπrψ1ys,

where ψ1y is the unique solution of
"

Lrψ1ys “ rLrψys,

ψ1ypyq “ 0
. (24)
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Proof

For any y P V , denote ϕ2y the second derivative of ϕLεy at ε “ 0. By differentiating twice the relation

Lεrϕ
Lε
y s “ fy at ε “ 0, we get

pB2
εLεqrϕys ` 2pBεLεqrϕ

1
ys ` Lrϕ

2
ys “ 0.

namely, since B2
εLε “ 0,

Lrϕ2ys “ 2pL´ rLqrϕ1ys

“ 2pL´ rLqrϕy ´ ψys

“ 2Lrϕy ´ ψys ´ 2rLrϕy ´ ψys

“ 2Lrϕy ´ ψys ´ 2rLrϕys ` 2rLrψys

“ 2Lrϕy ´ ψys ´ 2Lrψys ` 2rLrψys

“ Lr2ϕy ´ 4ψys ` 2rLrψys.

It follows that ϕ2y{2´ ϕy ` 2ψy satisfies the first condition of equation (24). It also vanishes at y,
since ϕ2ypyq “ 0 “ ϕypyq “ ψypyq. Thus we get that ϕ2y “ 2ϕy ´ 4ψy ` 2ψ1y. The announced result
is now a consequence of the equality

D2
rL
F pLq “

ÿ

yPV

πpyqπrϕ2ys.

�

It will be convenient to use these differentiations with respect to particular generators rL P L̄pπq.
A cycle A in V is a finite sequence pa0, a1, ..., an´1q of distinct elements of V , with n P Nzt1u
(up to the identification with pak, ak`1, ..., ak`n´1q, for all k P Zn). As with Hamiltonian cycles
(corresponding to n “ N), we will make the convention that an “ a0, as the indices should be seen
as elements of Zn. The set of all cycles is denoted by A. For any A P A, there is a unique element
L P L̄pπq such that

@ x, y P V, Lpx, yq ą 0 ô D l P Zn : x “ al and y “ al`1.

It is indeed the generator, denoted LA in the sequel, given by

@ x, y P V, LApx, yq “

$

’

&

’

%

1
nπpxq , if x “ al and y “ al`1 for some l P Zn,
´ 1
nπpxq , if x “ y,

0 , otherwise.

(25)

Lemma 10 Let A “ palqlPZn P A be given and for y P V , consider the function ψy defined by (23)

with rL “ LA. Then we have

@ x P V, ψypxq “
1

n

ÿ

lPZn

pϕypal`1q ´ ϕypalqqpϕalpxq ´ ϕalpyqq. (26)

Furthermore, we get that

ÿ

yPV

πpyqπrψys “ ´
1

n

ÿ

lPZn

ÿ

yPV

πpyqpϕypal`1q ´ ϕypalqqϕalpyq

“
1

n

˜

ÿ

lPZn

1

2
Eal`1

rτ2
al
s ´ EπrτalsEal`1

rτals

¸

,

where Eπ stands for the expectation relative to the initial distribution π for X.
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Proof

For any function ϕ on V , we have

LArϕs “
ÿ

lPZn

ϕpal`1q ´ ϕpalq

nπpalq
1talu.

Let ψ be a function such that Lrψs “ LArϕs. Using the martingale problem as in the proof of
Lemma 8, we get for any x, y P V ,

ψpyq ´ ψpxq “ Ex
„
ż τy

0
LrψspXsq ds



“ Ex
„
ż τy

0
LArϕspXsq ds



“
ÿ

lPZn

ϕpal`1q ´ ϕpalq

n
Ex

„
ż τy

0

1talu

πpalq
pXsq ds



“
ÿ

lPZn

ϕpal`1q ´ ϕpalq

n
Ex

„
ż τy

0
1` falpXsq ds



“
ÿ

lPZn

ϕpal`1q ´ ϕpalq

n

ˆ

ϕypxq ` Ex
„
ż τy

0
falpXsq ds

˙

.

Taking into account that Lrϕals “ fal , we deduce that

Ex
„
ż τy

0
falpXsq ds



“ ϕalpyq ´ ϕalpxq,

so that

ψpyq ´ ψpxq “
ÿ

lPZn

ϕpal`1q ´ ϕpalq

n
pϕypxq ` ϕalpyq ´ ϕalpxqq .

Note that

ÿ

lPZn

ϕpal`1q ´ ϕpalq

n
ϕypxq “

ϕypxq

n

ÿ

lPZn

ϕpal`1q ´ ϕpalq

“ 0.

Thus

ψpyq ´ ψpxq “
1

n

ÿ

lPZn

pϕpal`1q ´ ϕpalqq pϕalpyq ´ ϕalpxqq .

Considering for y P V the functions ϕ “ ϕy and ψ “ ψy and recalling that ψypyq “ 0, gives the
first relation of the lemma. Integrating this relation with respect to π in x, we get

πrψys “
1

n

ÿ

lPZn

pϕypal`1q ´ ϕypalqqpπrϕals ´ ϕalpyqq.

A well-known result (recall (2) or see e.g. the book of Aldous and Fill [1]) asserts that the quantity
ř

yPV πpyqϕypxq does not depend on x P V . It follows that

ÿ

yPV

πpyqpϕypal`1q ´ ϕypalqqπrϕals “ 0 (27)
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and hence
ÿ

yPV

πpyqπrψys “ ´
1

n

ÿ

yPV

πpyq
ÿ

lPZn

pϕypal`1q ´ ϕypalqqϕalpyq,

which is the second equality of the lemma. For any l P Zn, let φal be the function defined by:

@ x P V, φalpxq “
ÿ

yPV

πpyqϕalpyqpϕypxq ´ ϕypalqq. (28)

We have
ř

yPV πpyqπrψys “ ´
1
n

ř

lPZn φalpal`1q. To compute φal , note that φalpalq “ 0 and that

Lrφals “
ÿ

yPV

πpyqϕalpyqLrϕys

“
ÿ

yPV

πpyqϕalpyqfy

“
ÿ

yPV

πpyqϕalpyq

ˆ

1tyu

πpyq
´ 1

˙

“ ϕal ´ πrϕals.

This observation leads us to resort once again to the martingale problem, to get for any x P V ,

φalpalq “ φalpxq ` Ex
„
ż τal

0
ϕalpXsq ´ πrϕals ds



“ φalpxq ` Ex
„
ż τal

0
ϕalpXsq ds



´ πrϕalsExrτals

“ φalpxq ´ πrϕalsϕalpxq ` Ex
„
ż τal

0
ϕalpXsq ds



“ φalpxq ´ πrϕalsϕalpxq `
1

2
Exrτ2

al
s

according to Lemma 11 below. Recalling that φalpalq “ 0, we get

φalpxq “ πrϕalsϕalpxq ´
1

2
Exrτ2

al
s (29)

and this leads immediately to the last equality of the lemma.
�

In the previous proof, we needed the following result.

Lemma 11 For any x, y P V , we have

Ex
„
ż τy

0
ϕypXsq ds



“
1

2
Exrτ2

y s.

Proof

Coming back to the probabilistic interpretation of ϕy, we get

Ex
„
ż τy

0
ϕypXsq ds



“

ż `8

0
Ex

“

1tsďτyuEXsrτys
‰

ds

“

ż `8

0

ż `8

0
Ex

“

1tsďτyuEXsr1ttďτyus
‰

ds dt

“

ż `8

0

ż `8

0
Ex

“

1tsďτyuEr1ttďτy˝θsu|σpXu : u P r0, ssqs
‰

ds dt

“

ż `8

0

ż `8

0
Ex

“

1tsďτyu1ttďτy˝θsu
‰

ds dt

“

ż `8

0

ż `8

0
Ex

“

1ts`tďτyu
‰

ds dt,
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where we used the Markov property and where θs is the shift by time s of the trajectories of X.
Using the Fubini theorem, we get

ż `8

0

ż `8

0
Ex

“

1ts`tďτyu
‰

ds dt “ Ex
„
ż `8

0

ż `8

0
1ts`tďτyu ds dt



“
1

2
Ex

„
ż `8

0

ż `8

0
1tsďτyu1ttďτyu ds dt



“
1

2
Ex

«

ˆ
ż τy

0
ds

˙2
ff

“
1

2
Exrτ2

y s

�

Before treating the second derivative in a similar way, let us present two remarks about the
quantities entering Lemma 10. We believe they will be relevant for further study of the minimizers
of the mapping F on Lpπq.

Define the following quantities, associated with a given L P Lpπq:

@ x, y P V, hLpx, yq B
1

2
Eyrτ2

x s ´ EπrτxsEyrτxs

@ A “ pa1, ..., anq P A, HApLq “
1

n

ÿ

lPZn

hLpal, al`1q (30)

Lemma 10 can be rewritten under the form

@ A “ pa1, ..., anq P A, DAF pLq “ F pLq ´HApLq (31)

where DAF pLq is a short hand for DLAF pLq.
Let us say that a cycle A “ pa1, ..., anq P A is below the generator L, if

@ l P Zn, Lpal, al`1q ą 0

and denote by ApLq the set of cycles below L. Then we have:

Lemma 12 Assume that L P Lpπq is a minimizer of F on Lpπq. Then,

@ A P ApLq, HApLq “ F pLq,

@ A P AzApLq, HApLq ď F pLq.

In particular, we get

F pLq “ max
APA

HApLq.

Proof

Consider a minimizer L P Lpπq of F on Lpπq and A P ApLq. Then for ε P R small enough,
p1´ εqL` εLA remains a Markov generator and belongs to Lpπq. Differentiating F pLεq at ε “ 0,
we thus get that DAF pLq “ 0, which implies HApLq “ F pLq. For A P AzApLq, the operator
p1´ εqL` εLA is not Markovian for ε ă 0. So DAF pLq only corresponds to the right derivative of
F pLεq at ε “ 0`. The minimizing assumption on L implies that DAF pLq ě 0, namely HApLq ď
F pLq. The last identity of the lemma is an immediate consequence of the previous observations
and of the fact that there exists at least one cycle below L, by irreducibility.

�

Next we mention a spectral relation satisfied by the quantities phLpx, yqqx,yPV , reminiscent of
(15). Indeed, it is proved in a similar way, as will become clear from the following proof where the
arguments for (15) will be recalled.
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Lemma 13 For any L P Lpπq, he have

ÿ

x,yPV

πpxqπpyqhLpx, yq “
ÿ

λPΛpLq

1

λ2
. (32)

Proof

As in the proof of Lemma 7, let Fπ stand for the space of functions f on V whose mean with
respect to π vanishes and denote by Π the orthogonal projection from L2pπq to Fπ:

@ f P L2pπq, Πrf s “ f ´ πrf s.

Let pgyqyPV be an orthonormal basis of L2pπq and R be any endomorphism of Fπ. We have seen
in Lemma 6 of [11] that

trpRq “
ÿ

yPV

πrΠrgysRrΠrgysss.

In [11], we considered the orthonormal basis given by

@ y P V, gy B
1tyu

a

πpyq

and the operator L´1
|Fπ defined in Lemma 7, in order to conclude (15), taking into account the fact

that Πrgys “
a

πpyqfy, for all y P V , and that trpL´1
|Fπq “

ř

λPΛpLq
1
λ .

To prove (32), we use R “ pL´1
|Fπq

2. Remark that for any y P V ,

pL´1
|Fπq

2rfys “ L´1
|Fπ rϕy ´ πrϕyss

“ φy ´ πrφys

where φy is the unique solution of

"

Lrφys “ ϕy ´ πrϕys
φypyq “ 0.

(33)

(This notation agrees with that introduced in (28)). Thus we get

ÿ

λPΛpLq

1

λ2
“ trppL´1

|Fπq
2q

“
ÿ

yPV

πrΠrgyspL
´1
|Fπq

2rΠrgysss

“
ÿ

yPV

πpyqπrfypL
´1
|Fπq

2rfyss

“
ÿ

yPV

πpyqπrfypφy ´ πrφysqs

“
ÿ

yPV

πpyqπrfyφys

“
ÿ

yPV

πpyqφypyq ´ πpyqπrφys

“ ´
ÿ

yPV

πpyqπrφys

“ ´
ÿ

x,yPV

πrxsπrysφypxq.
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In the proof of Lemma 10 (see (29)), it was shown that

@ x, y P V, φxpyq “ ´hLpx, yq,

which leads immediately to (32).
�

Lemma 10 can be extended to the second derivative presented in Lemma 9, by computing
similarly the function ψ1y defined by (24) with rL “ LA, for fixed A “ palqlPZn P A and y P V . For
our purposes, it is convenient to consider a generalization of this situation. Given another cycle
A1 “ pa1lqlPZn1 P A, consider the equation in the function Ψy:

"

LrΨys “ LA1rψys,
Ψypyq “ 0,

(34)

where ψy is still associated to L, A and y as in Lemma 10. Of course, when A1 “ A, we recover
Ψy “ ψ1y.

Lemma 14 For A “ palqlPZn P A, A1 “ pa1lqlPZn1 P A and y P V given as above, consider the
function Ψy defined by (34). Then we have, for any x P V ,

Ψypxq “
1

nn1

ÿ

lPZn,kPZn1

pϕypal`1q ´ ϕypalqqpϕalpa
1
k`1q ´ ϕalpa

1
kqqpϕa1kpxq ´ ϕa

1
k
pyqq. (35)

Furthermore, we get that
ÿ

yPV

πpyqπrΨys

“
1

nn1

ÿ

lPZn,kPZn1

phLpa
1
k, al`1q ´ hLpa

1
k, alqqpϕalpa

1
k`1q ´ ϕalpa

1
kqq (36)

“
1

nn1

ÿ

lPZn,kPZn1

ˆ

1

2
pEal`1

rτ2
a1k
s ´ Ealrτ

2
a1k
sq ´ Eπrτa1kspEal`1

rτa1ks ´ Ealrτa1ksq.
˙

´

Ea1k`1
rτals ´ Ea1krτals

¯

Proof

From Lemma 10, we have

LA1rψys “
1

n

ÿ

lPZn

pϕypal`1q ´ ϕypalqqLA1rϕals

“
1

n

ÿ

lPZn

pϕypal`1q ´ ϕypalqq
ÿ

kPZn1

ϕalpa
1
k`1q ´ ϕalpa

1
kq

n1πpa1kq
1ta1ku

“
1

nn1

ÿ

lPZn

pϕypal`1q ´ ϕypalqq
ÿ

kPZn1

pϕalpa
1
k`1q ´ ϕalpa

1
kqq

1ta1ku

πpa1kq

“
1

nn1

ÿ

lPZn

pϕypal`1q ´ ϕypalqq
ÿ

kPZn1

pϕalpa
1
k`1q ´ ϕalpa

1
kqqfa1k ,

where we used that for any l P Zn,
ÿ

kPZn1

ϕalpa
1
k`1q ´ ϕalpa

1
kq “ 0.

Thus, denoting

ξy B
1

nn1

ÿ

lPZn

pϕypal`1q ´ ϕypalqq
ÿ

kPZn1

pϕalpa
1
k`1q ´ ϕalpa

1
kqqpϕa1k ´ ϕa

1
k
pyqq,
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we get that Lrξys “ LA1rψys and ξypyq “ 0. It follows that Ψy “ ξy, as announced.
We deduce that

πrψ1ys “
1

nn1

ÿ

lPZn

pϕypal`1q ´ ϕypalqq
ÿ

kPZn1

pϕalpa
1
k`1q ´ ϕalpa

1
kqqpπrϕa1ks ´ ϕa

1
k
pyqq

and
ÿ

yPV

πpyqπrψ1ys “
1

nn1

ÿ

yPV

πpyq
ÿ

lPZn,kPZn1

pϕypal`1q ´ ϕypalqqpϕalpa
1
k`1q ´ ϕalpa

1
kqqpπrϕa1ks ´ ϕa

1
k
pyqq

“ ´
1

nn1

ÿ

yPV

ÿ

lPZn,kPZn1

πpyqpϕypal`1q ´ ϕypalqqpϕalpa
1
k`1q ´ ϕalpa

1
kqqϕa1kpyq, (37)

where we used again (recall (27)) that
ÿ

yPV

πpyqpϕypal`1q ´ ϕypalqq “ 0.

Remember also (cf. (28)) that

@ x P V,
ÿ

yPV

πpyqpϕypxq ´ ϕypa
1
kqqϕa1kpyq “ φa1kpxq

“ ´hLpa
1
k, xq.

Thus substituting in (37)

ϕypal`1q ´ ϕypalq “ ϕypal`1q ´ ϕypa
1
kq ´ pϕypalq ´ ϕypa

1
kqq

we deduce (36). The last equality of the lemma is obtained by expressing hL and ϕx, for x P V , in
terms of expectation of hitting times.

�

Denote by HA1,ApLq the expression given by (36). Considering the case A1 “ A, Lemma 9 leads
to

DA,AF pLq “ 2F pLq ` 4HApLq ` 2HA,ApLq

where DA,AF pLq is a shorthand for D2
LA
F pLq. But the importance of Lemma 14, is because, if we

define for any A,A1 P A, DA1,AF pLq B DA1pDAF pLqq, then we get

DA1,AF pLq “ 2pF pLq `HApLq `HA1pLq `HA1,ApLqq.

The previous expressions for the differentiations up to order 2 with respect to Markov generators
associated to cycles can be extended to general Markov generators from L̄pπq. To go in this
direction, we need to recall a simple result:

Lemma 15 The extremal points of the convex set L̄pπq are exactly the generators LA for A P A.

As a consequence, any L P L̄pπq can be decomposed into a barycentric sum

L “
ÿ

APA
ppAqLA,

where p is a probability measure on A. For an extensive discussion of such decompositions, see the
book of Kalpazidou [7]. Note that the above decomposition is not unique in general, because L̄pπq
is not a simplex for N ě 3. For instance, the generator

L B
1

2

¨

˝

´2 1 1
1 ´2 1
1 1 ´2

˛

‚
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of the simple random walk on Z3 can be written in the form L “ 1
2Lp0,1,2q `

1
2Lp0,2,1q and L “

1
3Lp0,1q `

1
3Lp1,2q `

1
3Lp2,0q.

Nevertheless, given rL, pL P L̄pπq, decompose them into

rL “
ÿ

APA
rppAqLA,

pL “
ÿ

APA
pppAqLA,

where rp, pp are probability measures on A. Then we get for any L P Lpπq.

D
rL
F pLq “

ÿ

APA
rppAqDAF pLq,

D
pL
D

rL
F pLq “

ÿ

A,A1PA
rppAqpppA1qDA,A1F pLq.

It follows that we can write

D
rL
F pLq “ F pLq ´H

rL
pLq,

D
pL
D

rL
F pLq “ 2pF pLq `H

rL
pLq `H

pL
pLq `H

rL,pL
pLqq,

where

H
rL
pLq “

ÿ

x ­“y

πpxqLpx, yqhLpx, yq

H
pL,rL
pLq “

ÿ

x ­“y, x1 ­“y1

πpx1qpLpx1, y1qπpxqrLpx, yqphpx1, yq ´ hpx1, xqqpϕxpy
1q ´ ϕxpx

1qq

(definitions which conform to (30) and (36) when rL “ LA and pL “ LA1).

In view of (26) and (35), the following quantity seems to play an important role in bounding
the derivatives:

MpLq B max
y,x,x1PV

ˇ

ˇϕypxq ´ ϕypx
1q
ˇ

ˇ

“ max
y,xPV

ϕypxq.

Proposition 16 We have for any L P Lpπq and rL, pL P L̄pπq,

F pLq ď MpLq,
ˇ

ˇD
rL
F pLq

ˇ

ˇ ď MpLq `MpLq2,
ˇ

ˇD
pL
D

rL
F pLq

ˇ

ˇ ď 2pMpLq `MpLq2 `MpLq3q.

Proof

The first bound is obvious. For the second, note that (26) can be extended to the solution of (23)
for general rL P L̄pπq: we get

@ y, x P V, ψypxq “
ÿ

z ­“z1PV

πpzqrLpz, z1qpϕypz
1q ´ ϕypzqqpϕzpxq ´ ϕzpyqq.

Taking into account the renormalization of rL, it follows that for any y P V , we have for the
supremum norm:

}ψy}8 ď MpLq2
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For the third bound of the lemma, note that (35) can also be extended to Ψy for given y P V ,
which is the solution of

"

LrΨys “ pLrψys
Ψypyq “ 0,

where ψy is the solution of (23). It follows that for any x, y P V ,

Ψypxq “
ÿ

u­“v, u1 ­“v1

πpu1qpLpu1, v1qπpuqrLpu, vqpϕypvq ´ ϕypuqqpϕupv
1q ´ ϕupu

1qqpϕu1pxq ´ ϕu1pyqq.

Thus

}Ψy}8 ď MpLq3.

�

A natural question is how to upper bound MpLq. A first answer is to use the operator norm
||| ¨ |||8Ñ8 from L8pπq to L8pπq with the operator L´1

|Fπ introduced in Lemma 7:

MpLq “ max
yPV

}ϕy}8

ď max
yPV

}ϕy ´ πrϕys}8 `max
yPV

πrϕys

ď |||L´1
|Fπ |||8Ñ8max

yPV
}fy}8 `max

yPV
p1´ πpyqqMpLq

ď |||L´1
|Fπ |||8Ñ8

1

π^
` p1´ π^qMpLq

where π^ B minxPV πpxq. It follows that

MpLq ď
|||L´1
|Fπ |||8Ñ8

π2
^

.

But the norm |||L´1
|Fπ |||8Ñ8 does not seem so easy to evaluate. One can instead resort to the

operator norm from L2pπq to L2pπq as follows. Denoting I the identity operator on Fπ, we have
as above

MpLq ď |||I|||2Ñ8|||L
´1
|Fπ |||2Ñ2 max

yPV
}fy}2 ` p1´ π^qMpLq

ď
1
?
π^
|||L´1
|Fπ |||2Ñ2 max

yPV

d

1

πpyq
` 1´ πpyq ` p1´ π^qMpLq

ď
1
?
π^
|||L´1
|Fπ |||2Ñ2

c

1`
1

π^
` p1´ π^qMpLq

ď |||L´1
|Fπ |||2Ñ2

?
2

π^
` p1´ π^qMpLq.

As a consequence, we get

MpLq ď

?
2|||L´1

|Fπ |||2Ñ2

π2
^

.

This expression is advantageous when L is reversible with respect to π, since in this situation,
|||L´1
|Fπ |||2Ñ2 “ 1{λ, where λ is the spectral gap of L, namely the smallest element of ΛpLq (which is

then in p0,`8q). Nevertheless, since we are interested in F pLq, note there is a simple comparison:

MpLq ď
F pLq

π2
^

. (38)
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We now concentrate on the case π “ υ, the uniform measure and L “ LA, with A a Hamiltonian
cycle. The following result will be crucial in the proof of Theorem 5.

Proposition 17 For any A P H and rA P AztAu, we have on Lpυq,

D
rA
F pLAq ě

N ´ 1

2N
.

Proof

There is no loss of generality in assuming that V “ ZN and that A “ p0, 1, 2, ..., N ´ 1q. To
simplify the notation, let us write L “ LA. By invariance of L and υ through the rotations
ZN Q x ÞÑ x ` y P ZN for any fixed y P ZN , it follows that the quantity Eυrτxs does not depend
on the choice of x P ZN . It is then necessarily equal to F pLq. Furthermore, since under L, the
Markov process waits an exponential time before adding 1 to the current state, we get that for any
x, y P ZN , Exrτys “ ρpx, yq, where

@ x, y P ZN , ρpx, yq B mintn P Z` : y “ x` nu.

It follows easily that F pLq “ pN ´ 1q{2 (for an alternative proof, see Corollary 20 in the next
section). Thus we get that

@ x, y P ZN , hLpx, yq “
1

2

`

Eyrτ2
x s ´ pN ´ 1qEyrτxs

˘

“
1

2

`

Eyrτ2
x s ´ pN ´ 1qρpy, xq

˘

.

Since under Py, τx is a sum of ρpy, xq independent exponential random variables of parameter 1,
we compute that

Eyrτ2
x s “ Eyrτxs2 ` ρpy, xq

(because for any exponential random variable E , we have ErE2s “ 2ErEs2). Thus we get that for
any x, y P ZN , hLpx, yq “ hN pρpy, xqq, where

hN : r0, N ´ 1s Q r ÞÑ
1

2

`

r2 ´ pN ´ 2qr
˘

.

This function hN is decreasing on r0, pN ´ 2q{2s, increasing on rpN ´ 2q{2, N ´ 1s and we have
hN p0q “ 0 ă pN ´ 1q{2 “ hN pN ´ 1q .

Thus from the definition (30), we get that

@ rA P A, H
rA
pLq ď hN pN ´ 1q

“ HApLq.

More precisely, with rA B pa0, a1, ..., anq P A, we get, except if for any l P Zn, hN pρpal, al`1qq “

hN pN ´ 1q,

H
rA
pLq ď

n´ 1

n
hN pN ´ 1q `

1

n
maxthN p0q, hN pN ´ 2qu

“
n´ 1

n
HApLq

ď
N ´ 1

N
HApLq,

where in the equality, we used that hN p0q “ hN pN ´ 2q “ 0 and that hN pN ´ 1q “ HApLq,
according to (30). But if for any l P Zn, we have hN pρpal, al`1qq “ hN pN ´ 1q, it means that
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al`1 “ al ` 1. Since this must be true for all l P Zn, it follows that n “ N and that rA must be of
the form pk, k ` 1, ..., k `N ´ 1q, for some k P ZN , namely, it is Hamiltonian.

From (31), we obtain,

@ rA P AztAu, D
rA
F pLq “ F pLq ´H

rA
pLq

ě F pLq ´
N ´ 1

N
H

rA
pLq

“ DAF pLq `
1

N
HApLq

“
N ´ 1

2N

due to DAF pLq “ 0, because L is not modified by modifying it in the direction of the cycle A.
�

Above we worked with the complete graph KV and the associated set of Markov generators
Lpπq. But all the previous considerations can be extended to the case of LpG, πq, where the graph
G is as in the introduction. The only difference is that A has to be replaced by ApGq, the set of
cycles using only edges from E. For instance, Lemma 15 has to be replaced by

Lemma 18 The extremal points of the convex set L̄pG, πq (the set of normalized Markov genera-
tors L, compatible with G and admitting π for invariant probability) are exactly the generators LA
for A P ApGq.

3.3 Perturbations of the uniform probability measure

Our main goal here is to show Theorems 5 and 6. Their proofs are respectively based on small and
large perturbations of the uniform probability measure υ.

First we check that all Hamiltonian cycles have the same speed in Lpπq, as was announced in
the introduction in the discrete time setting and for the uniform distribution υ, but this is true
more generally.

Lemma 19 Let A “ pa0, ..., aN´1q P H be a Hamiltonian cycle, we have

F pLAq “
N

2

ÿ

x ­“y

πpxqπpyq.

In particular this quantity does not depend on the choice of the Hamiltonian cycle A.

Proof

The generator LA can be represented by the matrix

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ 1
Nπpa0q

1
Nπpa0q

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 ´ 1
Nπpa1q

1
Nπpa1q

0 ¨ ¨ ¨ 0

¨ ¨ ¨ ¨ ¨ ¨

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´ 1
NπpaN´2q

1
NπpaN´2q

1
NπpaN´1q

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´ 1
NπpaN´1q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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It follows that the polynomial in X given by

P pXq B det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

X ´ 1
Nπpa0q

1
Nπpa0q

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 X ´ 1
Nπpa1q

1
Nπpa1q

0 ¨ ¨ ¨ 0

¨ ¨ ¨ ¨ ¨ ¨

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 X ´ 1
NπpaN´2q

1
NπpaN´2q

1
NπpaN´1q

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 X ´ 1
NπpaN´1q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

is equal to X
ś

λPΛpLAq
pX ´ λq. Expanding the latter expression into Xpα0 ` α1X ` ¨ ¨ ¨ `

αN´1X
N´1q, we get that

ÿ

λPΛpLAq

1

λ
“ ´

α1

α0

This is indeed a consequence of

α0 “ p´1qN´1
ź

mPJN´1K

θm

α1 “ p´1qN´2
ÿ

kPJN´1K

ź

mPJN´1Kztku

θm

where ΛpLAq is parametrized as the multiset consisting of the θm, for m P JN´1K B t1, 2, ..., N´1u.
On another hand, we compute directly from the definition of P pXq, by expanding the determi-

nant, that

P pXq “
ź

lPZN

ˆ

X ´
1

Nπpalq

˙

´
ź

lPZN

ˆ

´
1

Nπpalq

˙

It follows that

α0 “
ÿ

kPZN

ź

mPZN ztku

ˆ

´
1

Nπpamq

˙

α1 “
1

2

ÿ

k ­“lPZN

ź

mPZN ztk,lu

ˆ

´
1

Nπpamq

˙

(the factor 1{2 is due to the fact that the couple pk, lq also appears as pl, kq). Multiplying the
numerator and the denominator by

ś

mPZN p´Nπpamqq, we get that

´
α1

α0
“

N2

2

ř

k ­“lPZN πpakqπpalq

N
ř

mPZN πpamq

and this leads to the announced result.
�

In particular, for π “ υ, the uniform probability measure on V , we get:

Corollary 20 For π “ υ, we have for any Hamiltonian cycle A,

F pLAq “
N ´ 1

2
.

23



The next result is the crucial step in the proof of Theorem 5. For its statement, introduce for
any A P H and ε P p0, 1q,

NA,ε B tL “ p1´ tqLA ` trL : t P r0, εq and rL P L̄pπqu (39)

This set is a neighborhood of LA in Lpπq and observe that we would have ended with the same
set if we had required in this definition that rL belong to the convex hull generated by the L

rA
, for

rA P AztAu.
Define

ε1pN, π^q B π4
^ ln

ˆ

1`
1

Nπ2
^

˙

,

ε2pπ^q B
1

56
π12
^ ,

εpN, π^q B ε1pN, π^q ^ ε2pπ^q.

Lemma 21 For N ě 2 and any A P H, LA is the unique minimizer of F over NA,εpN,π^q.

Proof

Assume that for some given A P H, LA is not the unique minimizer of F over NA,εpN,π^q. Then we
can find t P p0, εpN, π^qq and a probability p on AztAu, such that F pLtq ď F pLAq, with

Lt B p1´ tqLA ` trL,

rL B
ÿ

rAPAztAu

pp rAqL
rA
.

Applying Taylor-Lagrange formula to the function r0, ts Q s ÞÑ F pLsq, we get there exists s P r0, ts
such that

F pLtq “ F pLAq ` tD
rL
F pLAq `

t2

2
D2

rL
F pLsq.

Taking into account Propositions 16 and 17 and (38), we obtain

F pLtq ě F pLAq ` t
N ´ 1

2N
´ t2

ˆ

F pLsq

π2
^

`
F pLsq

2

π4
^

`
F pLsq

3

π6
^

˙

. (40)

To evaluate F pLsq, note that for s P p0, tq,

BsF pLsq “ D
rL
F pLsq

ď MpLsq `MpLsq
2

ď
F pLsq

π2
^

`
F pLsq

2

π4
^

.

Classical computations show that if a C1 function f : r0, ts Ñ p0,`8q satisfies Bsfpsq ď afpsq `
bf2psq for all s P r0, ts, where a, b ą 0, then assuming fp0q exppbtq ă fp0q ` b{a, we get

@ s P r0, ts, fpsq ď
bfp0q exppbtq

b` afp0qp1´ exppbtqq
.

In particular, if

exppbtq ă 1` b{p2afp0qq, (41)
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then

@ s P r0, ts, fpsq ď 2

ˆ

fp0q `
b

2a

˙

.

Let us apply this observation with the mapping r0, ts Q s ÞÑ F pLsq and a B 1{π2
^, b “ 1{π4

^. Since

F pL0q “ F pLAq

“
N

2

ÿ

x ­“yPV

πpxqπpyq

ď
N

2
,

we get that condition (41) is satisfied, due to the definition of ε1pN, π^q and to the fact that
t P p0, ε1pN, π^qq. It follows that,

@ s P r0, ts, F pLsq ď N `
1

π2
^

ď
2

π2
^

.

since π^ ď 1{N . Substituting this bound in (40), we deduce that

F pLtq ě F pLAq ` t
N ´ 1

2N
´ t2

ˆ

2

π4
^

`
4

π8
^

`
8

π12
^

˙

ě F pLAq ` t
1

4
´

14

π12
^

t2

The r.h.s. is strictly larger than F pLAq if t ă ε2pπ^q and this is in contradiction with our initial
assumption.

�

Denote for any π P P`pV q,

F^pπq B inftF pLq : L P Lpπqu. (42)

Another ingredient in the proof of Theorem 5 is:

Lemma 22 The mapping P`pV q Q π ÞÑ F^pπq is continuous.

Proof

Let L be the set of irreducible and normalized Markov generators (so that L “ \πPP`pV qLpπq),
endowed with the topology inherited from RV 2

. The functional F is defined on L and (15) is
valid on L. As a consequence, F is continuous on L. Indeed, if pLnqnPN is a sequence of elements
of L converging to L P L, then according to Paragraph 5 of Chapter 2 of Kato [8], we have
limnÑ8 ΛpLnq “ ΛpLq and so limnÑ8 F pLnq “ F pLq. Next consider a sequence pπnqnPN of elements
from P`pV q converging to π P P`pV q and such that the sequence pF^pπnqqnPN admits a limit. For
all n P N, let Ln be an element from Lpπnq such that

F^pπnq ď F pLnq ď F^pπnq `
1

n

Due to the normalization condition and to the belonging of π to P`pV q, we can extract a sub-
sequence (still denoted pLnqnPN below) from pLnqnPN converging to some generator L. It is clear
that L is normalized and that π is invariant for L. Let us check that L is irreducible. Fix x P V .
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For any n P N, let Xpnq B pX
pnq
t qtě0 be a Markov process starting from x and whose generator is

Ln. It is not difficult to deduce from the corresponding martingale problems, that Xpnq converges
in law (with respect to the Skorokhod topology) to a Markov process starting from x and whose
generator is L. Thus for any y P V and T ě 0,

lim
nÑ8

ExrT ^ τ pnqy s “ ExrT ^ τys

(with an obvious notation). It follows that

ExrT ^ τys ď lim inf
nÑ8

Exrτ pnqy s

ď lim inf
nÑ8

1

πnpxqπnpyq
F pLnq

“
1

πpxqπpyq
lim inf
nÑ8

F^pπnq

ď
N

2πpxqπpyq

according to Lemma 19. Letting T go to infinity, we get Exrτys ď N{p2π2
^q. This bound, valid for

all x, y P V , implies that L is irreducible and thus L P Lpπq. Furthermore, the above arguments
show that

lim
nÑ8

F^pπnq “ lim
nÑ8

F pLnq

“ F pLq

ě F^pπq.

So F^ is lower continuous on P`pV q. By considering the sequence pπnqnPN identically equal to π,
we also get that the infimum defining F^pπq is attained.

To show that F^ is upper continuous on P`pV q, let again pπnqnPN be a sequence of elements
from P`pV q converging to some π P P`pV q and such that the sequence pF^pπnqqnPN admits a
limit. According to the previous remark, there exists L P Lpπq such that F pLq “ F^pπq. For any
n P N, consider the matrix rLn given by

@ x, y P V, rLnpx, yq B
πpxq

πnpxq
Lpx, yq.

It is immediate to prove that rLn is an irreducible Markov generator leaving πn invariant. But it
may not be normalized, so let κn ą 0 be such that Ln B κnrLn belongs to Lpπnq. There is no
difficulty in checking that Ln converges to L and thus that limnÑ8 F pLnq “ F pLq “ F^pπq. Thus
passing into the limit in F pLnq ě F^pπnq, we deduce that

F^pπq ě lim
nÑ8

F^pπnq

as desired.
�

With all these ingredients, we can now come to the

Proof of Theorem 5

Note that it is sufficient to consider the case where G is the complete graph over V , since F^pπq ď
mintF pLq : L P LpG, πqu, for any graph G and positive probability measure π on V .

The main argument is by contradiction. Assuming that the statement of Theorem 5 is not
true, we can find a sequence pπnqnPN converging to υ, such that for all n P N, there exists Ln P
LpπnqztLπn,A : A P Hu with F pLnq “ F^pπnq. (Here we have included πn in the index of Lπn,A

26



to underscore the fact that this generator, associated to a Hamiltonian cycle A, also depends
on the underlying invariant probability πn.) As seen in the proof of Lemma 22, a subsequence
(still denoted pLnqnPN) converging toward some L P Lpυq can be extracted from pLnqnPN. We
furthermore have

lim
nÑ8

F pLnq “ F pLq

and by Lemma 22

lim
nÑ8

F^pπnq “ F^pυq.

It follows that F pLq “ F^pυq. From Theorem 4, we deduce that there exists A P H such that
L “ Lυ,A. Using again the fact that

lim
nÑ8

πn “ υ, (43)

we get that limnÑ8 Lπn,A “ Lυ,A and thus

lim
nÑ8

pLn ´ Lπn,Aq “ 0. (44)

Consider r B minnPN πn,^, which is positive due to (43), and let ε B εpN, rq, with the notation
introduced before Lemma 21. From (44), we deduce that for n P N large enough, Ln belongs to
N pπn, A, εq, defined as in (39), with π replaced by πn. Then Lemma 21 asserts that Ln “ Lπn,A,
because Ln is a minimizer of L over Lpπnq. This is in contradiction with our initial assumption.

�

To finish this section, we consider large perturbations of the uniform probability measure υ.

Proof of Theorem 6

Let G “ pV,Eq be a finite oriented connected graph which is not a Hamiltonian cycle. Then we
can find a cycle A B pa0, a1, ..., an´1q P ApGq with n ă cardpV q. Denote rV B ta0, a1, ..., an´1u and
pV B V zrV . By the strong connectivity of G, we can find a subset pE of oriented edges from E, such
that cardp pEq “ cardppV q and for any x P pV we can find exactly one y P V with px, yq P pE. Putting
together the edges from A and those from pE, we get a graph Ğ on V looking like the following
picture, where the cycle is oriented clockwise and the trees are oriented toward the cycle.

Figure 1: the graph Ğ

For r ą 0, consider the Markov generator Lr defined by

@ x ­“ y P V, Lrpx, yq B

$

&

%

1 , if there exists l P J0, n´ 1K such that x “ al and y “ al`1

r , if px, yq P pE
0 , otherwise.
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This generator is not irreducible, since it does not allow the chain to go from the cycle A to pV .
Nevertheless, its unique invariant probability measure π is the uniform probability measure on rV .
The generator Lr then satisfies an extended normalization condition, in the sense that

ÿ

x ­“yPV

πpxqLrpx, yq “ 1

The interest in Lr is because it is easy to find its eigenvalues:

ΛpLrq “ ΛprLAq \ trr|pV |su

where rLA is the generator corresponding to the Hamiltonian cycle given by A on rV and trr|pV |su
is the multiset consisting of the value r with the multiplicity |pV |. This identity is an immediate
consequence of following decomposition of Lr, where all the elements of rV have been put before
those of pV and where the elements of pV have been ordered so that the (oriented) distance to rV is
non-decreasing (in particular the last element corresponds to a leaf of Ğ):

Lr “

ˆ

rLA 0
C D

˙

.

In the r.h.s., the pV ˆ pV matrix D is sub-diagonal and its diagonal consists only of ´r. Formula (15)
enables to extend the functional F to Lr and we get

F pLrq “ F prLAq `
|V |

r
.

In particular, it follows that

lim
rÑ`8

F pLrq “ F prLAq “
n´ 1

2
ă F pLHq

for any Hamiltonian cycle H P HpGq, where we used twice Corollary 20. From now on, we fix
r ą 0 large enough, so that

F pLrq ă F pLHq (45)

for any Hamiltonian cycle H P HpGq.
For any ε ą 0, consider the Markov generator

Lr,ε B Z´1
r,ε pLr ` εLGq

where
‚ the Markov generator LG is defined by

@ x ­“ y P V, LGpx, yq B

"

1 , if px, yq P E
0 , otherwise

‚ the constant Zr,ε ą 0 is such that Lr,ε is normalized (this is possible because Lr`εLG is irreducible
on V ).

For r, ε ą 0, denote πr,ε the invariant probability measure of Lr,ε. It is clear that as ε goes to
0`, πr,ε converges toward π. It follows that

lim
εÑ0`

Zr,ε “ 1

lim
εÑ0`

Lr,ε “ Lr

28



From the general theory of perturbation of spectra of finite operators (see e.g. the beginning of the
second chapter of the book of Kato [8]), we have

lim
εÑ0`

F pLr,εq “ F pLrq.

Taking into account (45), we can thus find ε ą 0 small enough so that

F pLr,εq ă F pLHq

for any Hamiltonian cycle H P HpGq. Namely the probability measure πr,ε satisfies the statement
of Theorem 6. One would have remarked that this probability measure πr,ε is quite far away from

υ, because it gives very small weight to the elements of pV .
�

4 The discrete time framework

Here we discuss the links between the search of the fastest continuous-time Markov processes with
the analogous problem in discrete time.

Let a graph G “ pV,Eq and a positive probability measure π on V be fixed and denote by
KpG, πq the set of irreducible Markov kernels K on V whose permitted transitions are edges from
E (plus self-loops, i.e., the possibility to stay at the same place) and leaving π invariant, namely
satisfying πK “ π. For any K P KpG, πq, let X B pXnqnPZ` be a Markov chain whose transitions
are dictated by K. For any y P V , recall (see (1)) that

τy B inftn P Z` : Xn “ yu.

On KpG, πq, we consider the functional F defined by

@ K P KpG, πq, FpKq B
ÿ

x,yPV

πpxqπpyqExrτys,

where subscript x in the expectation indicates that X is starting from x P V .
To any K P KpG, πq, we associate ΘpKq the multiset consisting of the spectrum of K, removing

the eigenvalue 1 (of multiplicity 1). It is a priori a sub(multi)set of the closed unit disk centered
at 0 of C left invariant by conjugation. Analogously to the continuous-time situation, we have the
eigentime relation

@ K P KpG, πq, FpKq “
ÿ

θPΘpKq

1

1´ θ
.

To any L P LpG, πq, associate

l B maxtLpxq : x P V u,

K B I `
L

l
.

It is immediate to check that K P KpG, πq. Furthermore, we have ΘpKq “ 1´ ΛpLq{l, so that

FpKq “ lF pLq. (46)

Taking into account that

l ě
ÿ

xPV

πpxqLpxq “ 1,
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it follows that FpKq ě F pLq. We will denote Φ : KpG, πq Ñ LpG, πq the mapping LÑ K defined
above.

Conversely, to any K P KpG, πq, associate

k B
1

ř

xPV πpxqp1´Kpx, xqq
,

L “ kpK ´ Iq.

It is immediate to check that L P LpG, πq. Furthermore, we get ΛpLq “ kp1´ΘpKqq and it follows
that

F pLq “ FpKq{k.

Taking into account that

k ě
1

ř

xPV πpxq
“ 1,

we get that F pLq ď FpKq. Denote Ψ : LpG, πq Ñ KpG, πq the mapping LÑ K as above.

Remark 23 The mappings Φ and Ψ are not inverse of each other, because the image of LpG, πq
by Φ is included into K0pG, πq B tK P KpG, πq : D x P V with Kpx, xq “ 0u. Nevertheless, we
have that Φ and Ψ0 are inverse of each other, where Ψ0 is the restriction of Ψ to K0pG, πq.

When one is looking for the minimal value of F on KpG, πq, one can restrict attention to
K0pG, πq, because

mintFpKq : K P KpG, πqu “ mintFpKq : K P K0pG, πqu.

Indeed, for any K P KpG, πq, there exist a unique rK P K0pG, πq and α P r0, 1q such that K “

p1 ´ αq rK ` αI. Then we get ΘpKq “ p1 ´ αqΘp rKq ` α, i.e. Θ ´ 1 “ p1 ´ αqpΘp rKq ´ 1q. This
implies that

Fp rKq “ p1´ αqFpKq

ď FpKq.

˝

As in (42), denote

F^pG, πq B inftF pLq : L P LpG, πqu,
F^pG, πq B inftFpKq : K P KpG, πqu.

From the above considerations, we deduce:

Proposition 24 We always have

F^pG, πq ď F^pG, πq

(in particular, when looking for the fastest Markov chain in the sense we have defined, it is preferable
to resort to continuous time rather than to discrete time).

Furthermore, assume that there is a minimizer L P LpG, πq of F such that Lpxq does not depend
on x P V (it is then equal to 1). Then F^pG, πq “ F^pG, πq.
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Proof

Consider K P KpG, πq. We have seen that

FpKq ě F pΨpKqq

ě F^pG, πq,

so taking the infimum over K P KpG, πq, we get the first bound.
Conversely, if L P LpG, πq is a minimizer of F whose diagonal is constant, then l “ 1 in (46),

namely FpΦpLqq “ F pLq “ F^pG, πq. From the previous inequality, it follows that ΦpLq is indeed
a minimizer of F on KpG, πq and we conclude that F^pG, πq “ F^pG, πq.

�

In association with Theorem 4, the above proposition also enables us to recover the result of
Litvak and Ejov [10] stating that for any Hamiltonian graph G, the permutation matrices associated
to the Hamiltonian cycles of G are the unique minimizers of F on KpG, υq. But Proposition 24 does
not enable us to extend directly Theorem 6 to the discrete time setting, because the diagonal of
the generator associated to a Hamiltonian cycle is constant if and only if the underlying invariant
probability measure is uniform. This extension is nevertheless true. To show it, note that the
differentiation technique of Section 3 can be adapted to KpG, πq in a straightforward manner.

A APPENDIX: Computations on the simplest exam-

ple of non-Hamiltonian connected graph

The length 2 segment S2 B pt0, 1, 2u, tp0, 1q, p1, 0q, p1, 2q, p2, 1quq is the simplest non-Hamiltonian
(strongly) connected graph. We compute here the minimizer of F on LpS2, πq, for any positive
probability measure π on t0, 1, 2u. We hope this example will motivate further investigation of the
minimizers of F in the challenging non-Hamiltonian framework.

To simplify the notation, write x “ πp0q, y “ πp1q and z “ πp2q, by assumption we have
that x, y, z ą 0 and x ` y ` z “ 1. Up to exchanging the vertices 0 and 2, we assume that
|x´ 1{2| ě |z ´ 1{2|.

Any Markov generator L from LpS2, πq has the form

L B

¨

˝

´a a 0
α ´α´ β β
0 b ´b

˛

‚

where the coefficients a, α, β, b ą 0 satisfy,

xa “ yα,

yβ “ zb,

xa` ypα` βq ` zb “ 1.

The first two equalities correspond to the invariance of π for L (here π is even reversible for the
birth and death generator L) and the third one is the normalization condition, it can be rewritten

2xa` 2zb “ 1 (47)

Denote ΛpLq “ tλ1, λ2u, its elements are the non-zero roots in X of the polynomial detpX ` Lq.
We compute that

detpX ` Lq “ XpX2 ´ pa` α` β ` bqX ` ab` aβ ` αbq,
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so that

λ1 ` λ2 “ a` α` β ` b,

λ1λ2 “ ab` aβ ` αb.

From (15), we have

F pLq “
1

λ1
`

1

λ2

“
λ1 ` λ2

λ1λ2

“
a` α` β ` b

ab` aβ ` αb

“
a
´

1` x
y

¯

` b
´

1` z
y

¯

ab
´

1` x
y `

z
y

¯

“
apx` yq ` bpy ` zq

ab

“
x` y

b
`
y ` z

a

“
1´ z

b
`

1´ x

a
.

Taking into account (47), the minimizer of F on LpS2, πq corresponds to the minimizer of

p0, 1{p2xqq Q a ÞÑ 2z
1´ z

1´ 2xa
`

1´ x

a
. (48)

We are thus led to the second order equation in a:

4xpzp1´ zq ´ xp1´ xqqa2 ` 4xp1´ xqa´ p1´ xq “ 0. (49)

Due to the assumption |x´ 1{2| ě |z ´ 1{2|, the first coefficient is non-negative. We consider two
cases.

‚ If |x ´ 1{2| “ |z ´ 1{2|, then (49) degenerates into a first order equation and a B 1{p4xq is
the minimizer of the mapping (48). It follows that the minimizer of F on LpS2, πq is

L^ B

¨

˚

˚

˚

˚

˚

˚

˝

´
1

4x

1

4x
0

1

4y
´

1

2y

1

4y

0
1

4z
´

1

4z

˛

‹

‹

‹

‹

‹

‹

‚

and the minimal value F^pS2, πq of F on LpS2, πq is

F pL^q “ 4p1´ zqz ` 4p1´ xqx “ 8xp1´ xq.

In particular, for π “ υ, the uniform distribution on t0, 1, 2u, we get

L^ B
1

4

¨

˝

´3 3 0
3 ´6 3
0 3 ´3

˛

‚

and F^pS2, υq “ 16{9.
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‚ If |x´ 1{2| ą |z ´ 1{2|, then (49) admits two solutions

a˘ B
´xp1´ xq ˘

a

xp1´ xqzp1´ zq

2xpzp1´ zq ´ xp1´ xqq
,

but only a` belongs to p0, 1{p2xqq and is in fact the minimizer of the mapping (48). This value
can be simplified into

a` “
1

2x

a

xp1´ xq
a

xp1´ xq `
a

zp1´ zq
.

It follows that the minimizer of F on LpS2, πq is

L^ B
1

a

xp1´ xq `
a

zp1´ zq

¨

˚

˚

˚

˚

˚

˚

˚

˝

´

a

xp1´ xq

2x

a

xp1´ xq

2x
0

a

xp1´ xq

2y
´

a

xp1´ xq `
a

zp1´ zq

2y

a

zp1´ zq

2y

0

a

zp1´ zq

2z
´

a

zp1´ zq

2z

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ pLp0,1q ` p1´ pqLp1,2q

with the notation introduced in (25) and

p B

a

xp1´ xq
a

xp1´ xq `
a

zp1´ zq
.

The minimal value F^pS2, πq of F on LpS2, πq is

F pL^q “ 2
´

a

xp1´ xq `
a

zp1´ zq
¯2
.

Letting |x´ 1{2| converge to |z ´ 1{2|, we recover the values of L^ and F pL^q obtained in the
previous case.
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