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Abstract

Consider a finite irreducible Markov chain with invariant probability w. Define its inverse
communication speed as the expectation to go from z to y, when x,y are sampled independently
according to 7. In the discrete time setting and when 7 is the uniform distribution v, Litvak
and Ejov [10] have shown that the permutation matrices associated to Hamiltonian cycles are the
fastest Markov chains. Here we prove (A) that the above optimality is with respect to all processes
compatible with a fixed graph of permitted transitions (assuming that it does contain a Hamiltonian
cycle), not only the Markov chains, and, (B) that this result admits a natural extension in both
discrete and continuous time when 7 is close to v: the fastest Markov chains/processes are those
moving successively on the points of a Hamiltonian cycle, with transition probabilities/jump rates
dictated by w. Nevertheless, the claim is no longer true when 7 is significantly different from v.
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1 Introduction

Given a finite oriented (strongly) connected graph G = (V, E) and a positive probability measure
m on Vit is natural to wonder what is the fastest Markov chain leaving m invariant and whose
permitted transitions are included in E. This depends on the way the speed is measured. In this
paper the goal is to minimize the expectation § of the time needed to go from x to y, when x
and y are independently sampled according to 7. Litvak and Ejov [10] have shown that if 7 is the
uniform distribution v and if G contains a Hamiltonian cycle, then the fastest Markov chains are
exactly those following deterministically the succession of the states given by a Hamiltonian cycle
when one exists (the corresponding quantity § does not depend on the choice of the admissible
Hamiltonian cycle). Our objectives in this paper are: (A) to extend this result to the continuous
time framework (under an appropriate renormalization of the jump rates), (B) to establish the
above optimality over a larger class of processes, and to begin an investigation of the situation
where 7 is not the uniform distribution by showing, (C) that when G contains a Hamiltonian cycle
and that 7 is close to v, the fastest Markov chains/processes are still those appropriately associated
to Hamiltonian cycles, and (D) that this is no longer true when 7 is ‘far away’ from v.

The plan of the paper is as follows. The above results (A) and (B) are proved in the next section
via a dynamic programming approach, which also provides an alternative proof of the discrete time
result of Litvak and Ejov [10]. In Section 3, we decompose the generators leaving 7 invariant into
convex sums of generators associated to (not necessarily Hamiltonian) cycles and we differentiate
the expectations of hitting times with respect to the generators. This is the basic tool for the proof
of (C) (see Theorem 5 in Section 3) in Section 4 , through small perturbations of the uniform prob-
ability measure. At the other extreme, large perturbations lead to the proof of (D) (cf. Theorem 6
in Section 3) at the end of the same section. Section 5 contains some observations about the links
between continuous time and discrete time. In the appendix, we compute the fastest normalized
birth and death generators leaving invariant any fixed positive probability measure 7 on {0, 1, 2}.
The underlying graph is the segment graph of length 2, i.e. the simplest example not containing a
Hamiltonian cycle.

2 The dynamic programming approach

2.1 Introduction

The aim of this section is to show that the Hamiltonian cycles, when one exists, are the fastest
in the sense we have defined among all processes compatible with the given graph, not just the
Markov chains. The proof uses dynamic programming. We first recall the eigentime identity in
the next subsection and then establish the desired result for resp. discrete and continuous time in
the subsections that follow.

2.2 The eigentime identity

We shall use the notation £(X) to denote the law of a random variable X and | A| for the cardinality
of a finite set A. Consider a discrete time Markov chain (X,,)nez, on a finite state space V with
transition matrix P = (p(7,7))ijev. We assume it to be irreducible, i.e., for any i,j € V,
there exists a path iy = 4,41, ,ip—1,i, = Jj such that p(ig,ig+1) > 0, for k € [0,n — 1] =
{0,1,...,n — 1}. Let m = (7(7));ey denote its unique stationary distribution, which is its left
eigenvector corresponding to the Perron-Frobenius eigenvalue #; = 1. In particular, if £(X() =,
then for any n € Z,, we have £(X,,) = w. This justifies the term ‘stationary’, its uniqueness being



a well-known consequence of the irreducibility hypothesis. Denote by 602, -- 6y the remaining
eigenvalues of P. Also define the hitting times

VieV, T, = min{neZ; : X, =i}. (1)
The eigentime identity states that

\4
VieV, Y a(Ely] = ), 1_19 : (2)
m=2 m

J

Here each eigenvalue is counted as many times as its (algebraic) multiplicity. For reversible chains,
this is Proposition 3.13, p. 75, of Aldous and Fill [1]. It was extended to the general case in Cui
and Mao [2], see also [11] for a simple proof and further extensions. The left hand side gives the
mean hitting time of a target state picked randomly with distribution 7. A minor modification is
to consider instead the stopping times

VieV, T; = min{ne N : X,, =i},

where N := Z\{0}, the set of positive integers. Since m(i)E;[T;] = 1, we can replace (2) by

\4
VieV, Na()BIT] = 1+ Y, (3)
J m=2 m

This variant is essentially contained in Theorem 2.4 of Hunter [6], which also gives the pre-history
of the problem going back to Kemeny and Snell [9]. An immediate corollary is the ‘symmetrized’
version

\4 1
Nr@rDEm] = Y g ()
m=2 m

PARG)EIL] = 1+ Y, 5 )
i,j m=2 m

Let II be the rank one matrix whose rows are all equal to w. From Theorem 2.4 of Hunter [6],
we have:

(5) equals tr(I — P + II)~!, where I is the identity matrix. (%)

A Hamiltonian cycle A of V is an ordering (ag, a1, ...,any—1) of the elements of V, where
N = |V|. We will make the convention that ay = ap, as the indices should be seen as elements
of Zn = Z/(NZ). More precisely, the cycles (ag,a1,...,an—1) and (ag, @x+1, ..., ag+N—1) should be
identified as the same cycle, for all k € Zpy. This will be implicit in the sequel, even though for
notational convenience, we will represent a cycle A as (ag,ay,...,an—1). Consider an irreducible
directed graph G = (V, E) where V, E denote respectively its node and edge sets. In the discrete
time setting, such graphs will always be assumed to contain all the self-loops, i.e. (i,47) € F for any
i € V. The Hamiltonian cycle A = (ag, a1, ...,an—1) is said to be admissible for G if (ax,ax41) € E
for all k € Z,. It means that G4 is a subgraph of G, where G 4 is the oriented graph on V whose
edges are the (ag,ap41), for k € Zn. The set of all Hamiltonian cycles (respectively, admissible
for G) is denoted H (resp., H(G)) and the graph G is said to be Hamiltonian if H(G) + .
Obviously, we have H = H(Ky ), where Ky is the complete oriented graph on V.

Consider the optimization problem of minimizing (2)/(4), or equivalently, (3)/(5), where 7 is
equal to v, over all irreducible P compatible with the given graph G (in the sense that for any
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i+ jeV,P(,j) >0= (i,j) € E). Since these quantities will be infinite for reducible P,
we might as well consider the problem of minimizing it over all stochastic matrices P compatible
with G. Say that P is Hamiltonian if there exists a Hamiltonian cycle (a1,--- ,ajy|) such that
plag,ax+1) = 1 = p(ajy|,a1) for 1 < k < [V]. That is, the transitions deterministically trace a
Hamiltonian cycle. Recall that a Hamiltonian cycle need not exist in general and the problem of
determining whether one does is NP-hard (see, e.g., Garey and Johnson [4]). By Proposition 2.1
of Litvak and Ejov [10] in combination with (x) above, we have:

Theorem 1 When m = v, either of the quantities (2), (3) is minimized by a Hamiltonian P if
there exists one.

In the next subsection, we give an alternative proof, inspired by the Held-Karp algorithm for
scheduling problems [5], which gives a strengthening of this result and has interesting implications
for random search. Specifically, we improve on the cited result of Litvak and Ejov [10], insofar
as the cost is shown to be minimized over all G-compatible random processes and not only the
Markov chains, by tracing the Hamiltonian cycle, when one exists, deterministically.

2.3 A dynamic programming solution
As in Held and Karp [5], a natural state space for the dynamic program is
V*i={(@l,A):ieV, Ac V\{i}}.
With each (i, A) € V*, we associate an action space U; := the set of probability vectors on the set
Vii={jeV:(ij)eE)cV

of successors of i in G. Note that this does not depend on A. Suppose V; is enumerated as
(J1,- -+ Jm,)- Given a ‘control’ ¢ = (¢(j1),- - ,q(Jm,)), the transition probability

p((, B)I(i, A), q) (6)

of going from (i, A) € V* to (j,B) € V* under control ¢ is zero if either j ¢ V; or B # A\{j}.
Otherwise it equals ¢(j). Consider an V*-valued controlled Markov chain (X,,, Z,)nez, governed
by a control process (¢n)nez, with ¢, € Ux,, for all n € Z,, evolving according to the above
controlled transition probability function. That is, for any n € Z,

P((Xn+lazn+1) = (37 B)|(Xm7 Zm)anvm < n)
= P((XTL+1>Zn+1> = (j?Bﬂ(XmZn):(hL)
= qn(J)0B,A\(j}>

where J.. denotes the Kronecker delta. Since we are allowed to choose any past dependent transi-
tion probability compatible with G, this covers all V-valued random processes that are compatible
with G, i.e., that make transitions only along the edges in E.

Our objective is to minimize, for a prescribed initial state ig' the quantity

E

ZTj ’ X() = io,Zo = V\{Zo} s (7)

1

more generally, for a prescribed initial distribution



which is proportional to (2) when 7 = v, the uniform distribution (i.e., when P is doubly stochas-
tic). Note, however, that we do not require (X, )nez, to be even Markov. Let

¢:=min{n >0: Z, = J}.
Then (7) can be equivalently written as

¢

. 124l

m=0

E

Xo =10,%0 = V\{io}] . (8)

This allows us to apply the dynamic programming principle to the ‘value function’ or ‘cost to go

function’
¢

> 12|
m=0

where the infimum is over all admissible controls. Standard arguments yield the dynamic program-
ming equation

V(’L,A) =inf & Xo Zi,Zo =A

)

V(i,4) = min (IAI + >, 4V, A\{j})> , A+, (9)
' JEV:
V(,g) = 0. (10)

Furthermore, the optimal control in state (i, A) is any minimizer of the right hand side of (9). Since
the expression being minimized is affine in ¢, this minimum will be attained at a Dirac measure,
implying that the optimal choice in state (i, A) is to deterministically move to a certain j € Vj.
In other words, the optimal trajectory is deterministic and perforce visits each node at least once,
otherwise the cost would be infinite. Since at most one new node can be visited each time, the
total cost is at least Z'z‘jl—lz = w
one exists.

, which equals the cost for tracing a Hamiltonian cycle if

A parallel treatment can be given for the cost

E

ZijXOZiO,ZOZV], (11)
J

which can be equivalently written as

¢
E[E\Zn\\XO:z‘O,ZO:V . (12)

m=0

The (miI;imum cost for this, again attained by tracing a Hamiltonian cycle deterministically, will
be S+t
2

We have proved:

Theorem 2 Minimum of either the cost (7) or the cost (11) over all V -valued random processes
compatible with G is attained by tracing a Hamiltonian cycle when one exists.

This has interesting implications to some random search schemes. For example, consider the
problem of searching for an N bit binary password given a device or ‘oracle’ that can verify whether



a password is correct or not. Random search schemes for this problem have been proposed, involv-
ing Markov chains on the discrete N-cube {0, 1}, where any two strings differing in one position
are deemed to be neighbors. This undirected graph can be rendered directed by replacing each
undirected edge by two directed edges. A simple induction argument shows that it has a Hamil-
tonian cycle. Then the foregoing leads to the conclusion that no random search scheme can do
better on average than simply listing the N-strings and checking them one by one.

2.4 Continuous time problem

We now consider the continuous time counterparts of the foregoing. Recall that a Markov gen-
erator on V can be represented by a matrix L = (L(z,y))syev whose off-diagonal entries are
non-negative and whose row sums all vanish. Corresponding Markov processes, defined through
the corresponding martingale problems, will be denoted X = (X;);>0. The law of X then only
depends on the initial distribution, namely on the law £(X() of Xy. The Markov generator L
is said to be compatible with G, if we have

Ve+yelV, L(z,y) >0 = (z,y)€E.

The probability measure 7, viewed as a row vector, is said to be invariant for the generator
L, if 7L = 0. Its probabilistic interpretation is that if initially £(Xy) = , then for any t > 0,
L(X;) = 7, similarly to the discrete time case. The generator L is said to be irreducible if for any
x,y € V, there exists a path zg = x,x1,...,x; = y, with | € Z, the length of the path, such that
L(zg,xk+1) > 0 for all k € [0,/ —1]. In our finite setting, a Markov generator L always admits
an invariant probability measure, the irreducibility of L ensures that it is unique. The irreducible
Markov generator L is said to be normalized, if

Y L@)w(x) = 1, (13)

zeV

where p is the invariant measure of L and where L(z) = —L(z,z) = >} ., L(z,y) for any z € V.
It means that at its equilibrium g (i.e. for the stationary X starting with £(Xy) = p), the jump
rate of X is 1. Denote by L£(G, ) the convex set of irreducible normalized Markov generators L
compatible with G' and admitting 7 for invariant probability. To simplify notation, we will also
write L(m) := L(Ky,m), when G is the complete graph Ky on V. For y € V, let 7, be the hitting
time of y:

7, = inf{t>0: X, =y}
We are particularly interested in the functional

F:L(Gm)sL — > w(a)r(y)ELln], (14)
z,yeV

where the subscript « (respectively the superscript L) in the expectation indicates that X is starting
from x (resp. is generated by L). The probabilistic interpretation of F(L) is the mean time to
go from x to y for the Markov process generated by L, when x and y are sampled independently
according to its invariant probability 7.

Remark 3 The smaller the F/(L), the faster the underlying Markov process goes between the
elements of V. It does not necessarily imply that the faster the time-marginal distributions go
to equilibrium in large time (especially in the discrete time analogue). It is more related to the
asymptotic behavior of the variance associated with the convergence of the empirical measures.
This point of view will not be investigated here.



The quantity F'(L) also admits a nice spectral formulation: for any L € L(G,r), let A(L) be the
spectrum of —L, removing the eigenvalue 0. To take into account the possible multiplicities of the
eigenvalues, A(L) should be seen a multiset (i.e. a eigenvalue of —L of multiplicity m, appears m
times in A(L)). By irreducibility of L, A(L) is a priori a sub(multi)set of C4 = {z € C : R(z) > 0}
that is invariant under conjugation. The eigentime relation asserts

F(L) = ) % (15)

AeA(L)

The references Cui and Mao [2] and [11] given in the discrete time setting also deal with the
continuous time case. The quantity F'(L) can also be written in terms of return times. Define for
any y e V,

g
Ty

min{t > 0: X; # Xo},
min{t > o : X; = y}.

By irreducibility of L, we have the following eigentime identities (see Cui and Mao [2]), for any
yeV:

S r@Eln) = Y % = S w(@)n(s)Ealrl, (16)
zeV AeA(L) x,2eV
Sr@Blf] = 1+ Y % = Y @) BT, (17)
T AeA(L) z,zeV

Similarly to Subsection 2.3, our goal is to find the minimizers of F' on L(G, ), or at least to
deduce some information about them, since they correspond to the fastest normalized Markov pro-
cesses compatible with G with invariant distribution 7. There is no loss of generality in imposing
that L is irreducible, because the functional F' is infinite for non-irreducible Markov generators
admitting 7 as invariant measure.

Consider next a continuous time V-valued controlled Markov chain, denoted (X;);>0 again by
abuse of notation, controlled by a control process (Z;);>0. The latter takes values in Ux,, where
U; := [0,0)V4, identified with the instantaneous transition rate of X;. That is, as & goes to 0.,

P(Xt+5 = j|Xsa ZsaS < t,Xt = Z) = P(Xt+§ _ ]|Xt _ i,Zt)
Zt<Xt7j)5 + O((S) , lf] c VX“
- *Zjevxt Zi(X4,5)0 +0(0) ,if j =Xy,
! i j ¢ Vi, U (X0,
where we write Z; = (Zy(X¢,71), - ,Zt(Xt,ijt)) for a suitable enumeration (j1,--- ’ijt) of
Vx,.

For the remaining part of this subsection, we consider the case where m# = v, the uniform
measure on V. The renormalization condition (13) can be written in the form

N Zi(id) = VI (1)

i#]

If for any t > 0, Z; is a function of X; alone, say Z; = r(X,-) € Ux,, then (X;)i=0 is a
time-homogeneous Markov process with rate matrix R = (r(4, j)); jev, where we set (i, j) = 0 for
j ¢ V;. Consider the problem of minimizing (16). As before, we augment the state process to the
V*-valued process (Xt)t>0 = (X4, At)t>0, with the understanding that A; can change only when



X; does and a transition of X; from i to j leads to a transition of A; to A;\{j}. Consider the
control problem of minimizing the cost

E UOC | Ay|dt ‘ Xo = io, Ao = V\{io}} , (19)

for
C:={t=0: A4 =T},

which is equivalent to (16), subject to the normalization constraint (18). The constraint (18)
couples decisions across different states, so dynamic programming arguments cannot be directly
applied. Therefore we modify the formulation for the time being, this modification will be dropped
later. The modification is as follows. Let (a;)icy be scalars in (0,|V|) such that ) . a; = |V|. For
state 7, we restrict the rates to be from the set

Ui = {r(i,j) :r(i,j) =0V j ¢ Vi, > r(i, ) = a;}.
JEV;

Consider the value function
¢
V(Z,A) =inf F |:J ‘At|dt ‘ XO = iaAO = A] s
0

where the infimum is over all admissible controls. The dynamic programming equation then is

min (!A\ + >, (@G NVG ALY —V(i,A))> =0, V(,g)=0. (20)

7’(7;,')601' jew7A

Once again it is clear that the quantity being minimized is affine in the variables it is being
minimized over and hence the optimum is attained for a deterministic choice of r(i,-) in the sense
that (¢, j) can be non-zero for at most one j € V;. Thus the optimal path traces the nodes of G
in a deterministic manner, visiting each of them at least once. This is true for any choice of {a;}
and therefore true in general for the constraint (18). Unlike the discrete time case, this does not,
however, mean that the trajectory is deterministic, because the sojourn time in each node is still
random. It is clear that the cost for any such trajectory will be

Z ailNi] )

eV

E

where N; is the number of times the trajectory passed through i. For a given choice of (a;);cv, this
is clearly minimized if N; = 1 for all ¢ € V', which can be achieved by tracing a Hamiltonian cycle
if one exists. Optimizing next over the choice of (a;)iev subject to (18), namely >, .\ a; = |V, a
simple induction argument shows that the choice a; = 1, for all ¢ € V, is optimal.
As in the discrete case, a similar treatment is possible for the cost (17) or its equivalent
¢
E U | Ay|dt ‘ Xo = ig, Ag = V] , (21)
0

with the constraint (18).

We have proved:

Theorem 4 Minimum of either the cost (19) or the cost (21) over all V -valued random processes
compatible with G is attained by tracing a Hamiltonian cycle when one exists.



3 Perturbation of Markov generators

3.1 Introduction

We can expect the optimality of Hamiltonian cycle to persist under small perturbations of the
Markov chains considered above. For specific classes of perturbations, such results were estab-
lished in Ejov et al [3]. Here we establish a vastly more general result, first for the continuous
time framework (which turns out to be more natural in some sense for the kind of techniques we
employ) and then for the discrete case.

When A = (ag,a1,...,an—1) € H and a positive probability measure 7 on V' are fixed, the set
L(G 4, ) is reduced to a singleton, its element will be denoted L 4. It is indeed given by
1
N7 (x)
VayeV,  Lalwy) = { —xpgm o=y

,if x = a; and y = agy for some k € Z,,

0 , otherwise

Theorem 4 may seem a little deceptive: the fastest normalized Markov processes X leaving
invariant v, the uniform probability measure on V', follow a prescribed cyclic ordering of the
states of V, their randomness comes only from their waiting times, distributed according to the
exponential law of intensity 1. Such a derandomization of the successive points visited by X is
also valid for probability measures 7 close to v:

Theorem 5 Assume that the graph G is Hamiltonian. Then there exists a meighborhood N of
v in the set Py (V) of positive probability measures on V' (endowed with the topology inherited
from that of (0,11 ) such that for any m € N, the set of minimizers of F on L(G,7) is eractly
{LA : Ae H(G)}

Nevertheless, this result cannot be extended to all positive probability measures 7, at least
for the graphs which are not a Hamiltonian cycle, a situation where £(G,7) is not reduced to a
singleton, in particular, this requires N > 3.

Theorem 6 Assume that G is not a Hamiltonian cycle. Then there exist positive probability
measures ™ on V such that none of the elements of {La : A € H(G)} is a minimizer of F' on

L(G, 7).

Thus for some (G, ), the minimizers of F' on £L(G, ) are (spatially) hesitating Markov pro-
cesses: at some vertex, the next visited point is not chosen deterministically. For a given Hamilto-
nian graph G which is not reduced to a Hamiltonian cycle, it would be interesting to describe the
probability measures 7 leading to a transition between non-hesitating and hesitating minimizers.
This issue remains open at present.

3.2 Differentiation on L£(7)

This section introduces some elements of differential calculus on £(7), which will be helpful in the
proof of Theorem 5. Here we will be working mainly with the complete graph Ky .

We begin by presenting a more analytical expression for the functional F'. For y € V', consider
the function

1
fy :Vaox — M—l.

m(y)



Note that 7[f,] = 0, so for any L € L(m), by irreducibility, there exists a unique function goﬁ onV
satisfying the Poisson equation

Lol = fy,
{wﬁ(y) — 22)

The following relation with the functional F' is well-known:

Lemma 7 For any L € L(7) and any x,y €V, we have
‘Pé (:l',') = E:Lc/ [Ty]7
so that

F(L) = > w(y)rlef]

yeV
To simplify notation, from now on, we will remove the L in the exponent of EX and cpgjl; , when the
underlying generator L is clear from the context.

Proof

Let us recall a simple argument, which will be used again in the sequel. Through the martingale
problem characterization of X, we have that for any given function ¢ on V', the process (M;)¢=o
defined by

VEs0, M = o(Xy)—p(Xo) - fo Llg](X.) ds

is a martingale. In particular, for any stopping time 7, the process (M A¢)¢>0 is also a martingale.
Thus, starting from x € V', we get,

Ea:[MT /\t] = 0

o E. [¢<Xm>—so<xo>— fomf:[so](XS)ds]

— B fp(Xen)] (o) - B | [ " L is|.

Since 7 is a.s. finite and ¢(X;A¢),t = 0, uniformly integrable, we obtain, by letting ¢ go to infinity
B, [o60)] - o)~ B, | [ LidlX)as| = o
For any y € V, consider ¢ = ¢, and 7 := 7,. From (22) and from the fact that f,(z) = —1 for any
z € V\{y}, we deduce
py() = Ealry].

The last identity of the lemma comes from

D, m(@)Ea[ry] >, @)y (@)

eV eV
[y

Since we are looking for minimizers of F' on L£(7), it is natural to differentiate this functional. Let
L(7) be the convex set of normalized Markov generators L admitting 7 for invariant probability.

10



The difference with L£(7) is that the elements of E_(wl are not required to be irreducible. For
Le L(r), Le L(r) and € € [0,1), let L := (1 — €)L + €L € L(r). Define

F(L)— F(L
D;F(L) = lim —( ) ( )
e—04 €
In the proof of the following result, it will be shown that this limit exists.
Lemma 8 With the above notation, we have

D;F(L) = Y w(y)(xley] - nley])

yeV

F(L) = Y} w(y)nlvy].

yeV

where 1, is the unique solution of another Poisson equation

Ly, = E[@yL
{wy(y) = 0 ' (23)

Proof

Let Fr stand for the space of functions f on V whose mean with respect to m vanishes. By
restriction to F, L € L(m) can be seen as an invertible endomorphism of F,, denote by LI_FlTr its

-1
E?lfﬂ"

being analytical, the same is true for [0,1) 3 € — L6_|1]_.ﬂ. Since we have

V5€[071)7Vyev7 (pg,Lle = L;ﬂ}‘ﬁ[fy]_[’;ﬁfﬁ[fy](y)?

we deduce that the mapping

inverse. Similarly, for € € [0,1), let L be the inverse of L, on F,. The mapping [0,1) 3 € — L,

[0,1)3€e — of
is analytical. The same is true for [0,1) 3 € — F(L,), due to the equality

Veel0,1), F(L) = Y. aly)rlel].
yeV

In particular its derivative D; F'(L) exists and is equal to 3}, oy, m(y) [, ], where ¢y is the derivative
of gpje at € = 0. Differentiating the relation L [@55] = fy, we get

(L - L)lgy] + Llg,] = o.

Furthermore, we have that ¢ (y) = 56905‘ (Y)le=o = 0, so that ¢, — ¢ satisfies the equation (23)
and must be equal to 1),. The claim then follows from the equality gpg =y — Yy, forallye V.
[

In the above proof, we have seen that [0,1) 3 € — F(L,) is analytic, so we can differentiate it
a second time at € = 0. Denote D%F(L) = 02F(Le)|e=o0-

Lemma 9 For L e L(r), L € L(x), we have

DIF(L) = Y w(y)(2rlp,] - 4n[ey] + 2n[v)])

yeV
= 4D;F(L) —2F(L) +2 ). w(y)m[yy],
yeV
where 1/1; is the unique solution of
L[yl = Llwy,
{ U = 0 24

11



Proof

For any y € V', denote gog the second derivative of go?’;e at e = 0. By differentiating twice the relation
Lg[goﬁf] = fy at € = 0, we get

(02Le)[wy] +2(0 L)yl + Llwy]l = 0.

namely, since 0?L, = 0,

Lyl = 2(L-L)g,]
= 2(L—L)[g, — vy
= 2L[py —y] —2L
= 2L[p, — ] — 2E
= 2L[py —thy] - ]
= L[2py — 4] + Wy]
It follows that y /2 — ¢, + 29, satisfies the first condition of equation (24). It also vanishes at y,

since ¢y (y) = 0 = ¢, (y) = 1y(y). Thus we get that vy = 2¢, — 4t + 21, The announced result
is now a consequence of the equality

DiF(L) = ) w(y)rle).

yeV
|

It will be convenient to use these differentiations with respect to particular generators Le L(7).
A cycle A in V is a finite sequence (ag,aq,...,a,—1) of distinct elements of V, with n € N\{1}
(up to the identification with (ag,aki1, ..., ag+n—1), for all k € Z,). As with Hamiltonian cycles
(corresponding to n = N), we will make the convention that a,, = ag, as the indices should be seen
as elements of Z,,. The set of all cycles is denoted by A. For any A € A, there is a unique element
L € L(r) such that

Va,yeV, L(z,y) >0 < 3Jl€Zy:z=qa and y = a;.

It is indeed the generator, denoted L 4 in the sequel, given by

mrl(m% ,if x = a; and y = a4 for some [ € Zj,
v l',y € ‘/’ LA(:E’ y) = 7n7r(a:) 5 lf xr = y, (25)
0 , otherwise.

Lemma 10 Let A = (a;)ez, € A be given and for y € V, consider the function 1, defined by (23)
with L = L. Then we have

VazeV, — Z (ey(air1) = @yla))(pa (2) = a, (¥))- (26)
leZn

Furthermore, we get that

din)nle,] = () (y(ae1) — ylar))pa, (y)

a1

<
m
<

S|
l\')\v—l

(3

where B stands for the expectation relative to the initial distribution w for X.

al+1 ] - EW[Tal]Eal+l [Taz]> )

12



Proof

For any function ¢ on V', we have

Lalg] = Z @(al-:zl)

— (ay)
1€, W(al

) Ta,y-

Let 1 be a function such that L[] = La[¢]. Using the martingale problem as in the proof of
Lemma 8, we get for any x,y e V,

bly) - () = E, [ [’ Lm(xs)ds]

- E U: Lalg)(X,) ds]

_ l;ﬂ @(al+1)n— @(al)Ew [JOH’ 7]71({22})()(‘9) ds]

_ ZGZZ:n 90((11+1)n— ‘P(al>]Ex UOT” 1+ fu(X,) ds}

- éﬂ so(am)n— e(ar) (mx) +E, [ L " far(Xs) dsD :

Taking into account that Ly, | = fq,, we deduce that

B | [ X0 ds| = puls) = ulo)

so that
vly) i) = 3 PO RO ) )~ ()
€l

Note that

5 Aan) Ze@ 0y = 8D 5 a0 - e

lelm l€Zn

= 0.

Thus

W) @) = = Y (plar) — plan) (P ) — gu ).

€7

Considering for y € V' the functions ¢ = ¢, and ¢ = 1, and recalling that 1,(y) = 0, gives the
first relation of the lemma. Integrating this relation with respect to 7 in x, we get

7oy = o 3 (ylo) — pylon) (rlga] — urly).

1€ln

A well-known result (recall (2) or see e.g. the book of Aldous and Fill [1]) asserts that the quantity
v T(y)py(x) does not depend on z € V. It follows that

2 W) py(a) — pyla))rlpa] = 0 (27)
yeVv

13



and hence
dirnle,] = —= Z ) Y. (ylarir) — y(ar)ea (),
yeV yEV l€Zn
which is the second equality of the lemma. For any [ € Zj,, let ¢,, be the function defined by:
VaeV,  ¢u) = ) m1)ea®)(ey(@) — pyla)). (28)
yeV
We have >3y, m(y)m[hy] = — L ez, bay(ai41). To compute ¢q,, note that ¢q,(a;) = 0 and that

L[¢al] = Z W(y)QOm (y)L[SDy]

yeV
= Zﬂ(y)Wal(y)fy

yeV
- Y Lw
-3 Weal) (22 1)
= Wal*W[SDaz]-

This observation leads us to resort once again to the martingale problem, to get for any x € V,

buta) = o) + x| [ () — el ]
= o) 4 B | [ g (X | = il
= ) = 7lnln ) + B | [ pu2) 0]

1
Qsaz (x) - W[Waz](paz (x) + §Ex[7—3l]
according to Lemma 11 below. Recalling that ¢, (a;) = 0, we get

bur(®) = lpalpn(®) = SElT2] (29)

a
and this leads immediately to the last equality of the lemma.

In the previous proof, we needed the following result.

Lemma 11 For any x,y €V, we have

B | [Tty ds| = SR

0

Proof
Coming back to the probabilistic interpretation of ¢,, we get

E, Mw%(xs)ds} _ JMEJ; [1ser Ex, [7,]] ds

+00 400
= f f Eo [1gs<r }Ex, [Lir<r,]] dsdt

[e=]

+00 pr+00
= J f Ez ]l{s<.,. }E[]l{t<7y09 }‘0’( LU e [0,8])]] dsdt

[e=]

+00 e+
= f f Eo [Lis<r,) Lit<r,00.)] dsdt
40 p+oo
= J J E.’L’ ]]‘{S+t<7'y}:| ds dt,

14
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where we used the Markov property and where 65 is the shift by time s of the trajectories of X.

Using the Fubini theorem, we get
+00 400
T [J f ]1{S+t<7y} ds dt]
0 0

00 oo
J j E, [ﬂ{s+t<7'y}] dsdt =
0 0
+0 4o
Ex |:J f ]l{séﬂry}]].{tgq—y} dS dt:|
0 0

(")

E. [T;]

&=

N = N —= N -

Before treating the second derivative in a similar way, let us present two remarks about the
quantities entering Lemma 10. We believe they will be relevant for further study of the minimizers
of the mapping F' on L(7).

Define the following quantities, associated with a given L € L():

1
Va,yeV, hp(z,y) = §Ey[7§] — Er[72]Ey[72]
1
VA= (a17 "'7an) € 'A> HA(L> = - Z hL(alaaH-l) (30)
n €7,
Lemma 10 can be rewritten under the form
VA= (ay,..,a) €A, DsF(L) = F(L)—Ha(L) (31)

where D4 F'(L) is a short hand for Dy, , F'(L).
Let us say that a cycle A = (aq,...,a,) € A is below the generator L, if

Vie Zn, L(al,alﬂ) >0
and denote by A(L) the set of cycles below L. Then we have:

Lemma 12 Assume that L € L() is a minimizer of F on L(m). Then,

V Ae A(L),  Ha(L) = F(L),
¥V Ae AAL), Ha(l) < F(L).

In particular, we get

F(L) = IESXHA(L)'

Proof

Consider a minimizer L € L(m) of F on L£(7) and A € A(L). Then for ¢ € R small enough,
(1 —€)L + eL 4 remains a Markov generator and belongs to £(w). Differentiating F(L¢) at € = 0,
we thus get that DoF(L) = 0, which implies Ha(L) = F(L). For A € A\A(L), the operator
(1 —€)L + €Ly is not Markovian for € < 0. So D4 F (L) only corresponds to the right derivative of
F(L¢) at € = 04. The minimizing assumption on L implies that DoF (L) > 0, namely H4(L) <
F(L). The last identity of the lemma is an immediate consequence of the previous observations
and of the fact that there exists at least one cycle below L, by irreducibility.

|

Next we mention a spectral relation satisfied by the quantities (hr(z,y))syev, reminiscent of
(15). Indeed, it is proved in a similar way, as will become clear from the following proof where the
arguments for (15) will be recalled.

15



Lemma 13 For any L € L(m), he have

Proof

As in the proof of Lemma 7, let F, stand for the space of functions f on V whose mean with
respect to 7 vanishes and denote by IT the orthogonal projection from L2(7) to Fy:

v fel(n), U[f] = f-nlf]

Let (gy)yev be an orthonormal basis of L?(7) and R be any endomorphism of F,. We have seen
in Lemma 6 of [11] that

tr(R) = ) w[lg,]R[I[g,]]].

yeV

In [11], we considered the orthonormal basis given by

1
VyelV, gy = 7{ry(;)

-1
|

that II[g,] = \/7(y) fy, for all y € V, and that tr(L|_]_.17T) = 2 AeA(D) 3.
To prove (32), we use R = (L )?. Remark that for any y € V,

and the operator L - defined in Lemma 7, in order to conclude (15), taking into account the fact

|
(Lf]}ﬁ)g[fy] = L|_]-'1ﬂ. [oy — mley]]
= ¢y —7(oy]
where ¢, is the unique solution of
L{gy] = oy —mlpyl
\ o — 0 (%)

(This notation agrees with that introduced in (28)). Thus we get

1 _
Yo = (R
AeA(L)

- Z 7] gy] (L|_]E17r )*[M[gy 1]

yeV

= 3wl (LG P

yeV

= > r)rlfy(by — 7loy])]

yeV

= 2 W(y)ﬂ[fy@;]

yeV

= Z T(y) Py (y) — m(y)T[dy]

yeV

= - Z W(:‘/)ﬂ[(by]

yeV

= = X wlelnlylo ()

z,yeV

16



In the proof of Lemma 10 (see (29)), it was shown that

Vaz,yeV, ¢x(y) = _hL(x7y)a

which leads immediately to (32).
[

Lemma 10 can be extended to the second derivative presented in Lemma 9, by computing
similarly the function v defined by (24) with L = Ly, for fixed A = (a;)jez, € Aand y € V. For
our purposes, it is convenient to consider a generalization of this situation. Given another cycle
A" = (a})iez,, € A, consider the equation in the function W,:

L[\Ily] = LA’[¢Z/]7

34

where 1), is still associated to L, A and y as in Lemma 10. Of course, when A’ = A, we recover
— .

Lemma 14 For A = (a;)iez, € A, A" = (a))icz,, € A and y € V given as above, consider the

function U, defined by (34). Then we have, for any x € V,

Tylz) = — Y (pylarsn) = oy(a) (@a(@hrr) = Pa (i) (0o (@) = 0ar (). (35)
1€l kL,

Furthermore, we get that

>, m(y)w[P,]

(36)

yeV
1 / / / /
= S (leg o) — Aol ) (pa (0hsr) — ga(al))
(€L, ,kE Ly
1 1
= nn! e Zk . (2(Eaz+1 [ngg] — Eq, [Tai]) - EW[Ta;](EazH [Tak] — Eq, [Ta;])) (Etz;CJrl [Taz] - Ea; [Taz])
Elin,RE n!
Proof

From Lemma 10, we have

LA’ [wy] = QOy al+1 @y(al))LA’ [(Pal]

S|~
NM

1 Pa (a;§+1) — Pay (a‘;c)
= = I
- ZZ] Py(aisr) wy(al))ke;n, n'm(al) {a)
= T 2 Py al+1) @y(al)) Z (@az(a;c+1) - @az(a;c)) ]1({(1%)
" L keZ,, g,
= % 2 pylair1) — ey(@)) Z (a, (@h41) _Qpal(a;c))fa;ca
l€ln keZ,,
where we used that for any [ € Z,,,
Z @az(a;cﬂ) — g lap) = 0.
kEZn/
Thus, denoting
1
& = o D eyla) —ey(@) Y (palahi) — e e (ou, — o),
€l keZ._ 1

n

17



we get that L[&,] = La[¢y] and &,(y) = 0. It follows that ¥, = &,, as announced.
We deduce that

AUl = o 3 eyla) — ola) ) (Palahn) — ga(a)) (o] — o, ()
l€Zin keZ,,
and

D Waly,] = % 21w > (eylan) = eya)(@a (ki) = a (@) (rlea,] = ea, (v)

yeV yeV 1€lim kEL s

_ _%Z D w1 eylasr) — oy(a)(a (ah1) = a,(a))pa (v),  (37)
yeV leln ke,

where we used again (recall (27)) that
D) (eylair) — eylar) = 0.
yeV

Remember also (cf. (28)) that

VaeV, Y 7)(ey(@) —ey(a)pa () = ¢a (@)
yeVv

= —hg(ay,z).

Thus substituting in (37)

oylair1) —oylar) = @ylapr) — eylay) — (py(ar) — @ylay))

we deduce (36). The last equality of the lemma is obtained by expressing hy, and ¢, for z € V, in
terms of expectation of hitting times.
|

Denote by H4s 4(L) the expression given by (36). Considering the case A’ = A, Lemma 9 leads
to

DA7AF(L) = 2F(L)+4HA(L>+2HA,A(L)

where Dy 4F(L) is a shorthand for D%AF (L). But the importance of Lemma 14, is because, if we
define for any A, A" € A, Dy aF(L) := Dy(DaF(L)), then we get
DA/’AF(L) = 2(F(L) + HA(L) + HA/(L) + HA’,A(L))-

The previous expressions for the differentiations up to order 2 with respect to Markov generators
associated to cycles can be extended to general Markov generators from L(w). To go in this
direction, we need to recall a simple result:

Lemma 15 The extremal points of the conver set L(m) are exactly the generators L for A e A.
As a consequence, any L € £() can be decomposed into a barycentric sum

L = > p(A)La,
AeA

where p is a probability measure on A. For an extensive discussion of such decompositions, see the
book of Kalpazidou [7]. Note that the above decomposition is not unique in general, because £(7)
is not a simplex for N > 3. For instance, the generator

-2 1 1



of the simple random walk on Zs can be written in the form L = %L(O’Lg) + %L(0,2,1) and L =

1 1 1
3Ly T 3La2) +3lep)-
s

, L € L(7), decompose them into

L = > p(A)La,
Ae A

Z ﬁ(A)LAv

AeA

Nevertheless, given

&~
[

where D, p are probability measures on A. Then we get for any L € L(m).

D;F(L) = ). P(A)DAF(L),
AeA
D:D;F(L) = > pAPA)DsnF(L).
A AeA

It follows that we can write

D;F(L) = F(L)— H;(L),

DypDpF(L) = 2(F(L)+ Hp(L) + Hi(L) + H, ;(L)),
where
Hy(L) = ) w(@)L(x,y)he(z,y)
TFY
Hp (L) = Y @)L, y)m(@) L, y)(h(z',y) = h@',2) (e (y)) = ¢u(2))
z+y, 'y’

(definitions which conform to (30) and (36) when L = L4 and L=1L A7)

In view of (26) and (35), the following quantity seems to play an important role in bounding
the derivatives:

M(L) = max |py(2) = py(@)
= max g (z).

)

Proposition 16 We have for any L € L(r) and L, Le L(r),

F(L) < M(L),
ID;F(L)| < M(L)+ M(L)*,
|D;D;F(L)| < 2(M(L)+ M(L)* + M(L)%)

Proof

The first bound is obvious. For the second, note that (26) can be extended to the solution of (23)
for general L € L(7): we get

VygoeV, @) = ) 7)1z (0(F) — 0y(2)(ex(@) — 0:(v))-
zF2'eV

Taking into account the renormalization of f/, it follows that for any y € V, we have for the
supremum norm:

[yl, < M(L)?
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For the third bound of the lemma, note that (35) can also be extended to ¥, for given y € V,
which is the solution of

{ L[\I/y] = E[wy]

Uy(y) = 0,

where 1, is the solution of (23). It follows that for any z,y € V,

Uy(z) = Y w)L0)m(w) L, v)(ey(v) — 0y (W) (eu(v)) = eu(t)) (u (@) — u (1))

uFv, u' Fv’

1Tyl < M(L).
|

A natural question is how to upper bound M(L). A first answer is to use the operator norm
I loo—oo from L*(7) to L™ (7) with the operator Ll_}'lﬂ introduced in Lemma 7:

M(L) = max|eyle,
< max loy = mleylll, + r;leavm[%]

-1
< Lz o max 1 fylloo + 1;133;(1 —m(y))M(L)
_ 1
< L E loomsoo— + (1 = 7)) M(L)
T A
where 7, = mingey w(z). It follows that

[ -

ML) < .

A

But the norm |||L‘*]_.1 lloo—so0 does not seem so easy to evaluate. One can instead resort to the

operator norm from L2?(7) to L?(7) as follows. Denoting I the identity operator on Fy, we have
as above

M(L) < IHI\H%ooIIILf},rlll%zr;leaVXnyHQ+(1—7TA)M(L)

1 1
< ——|IL3 [l 1— 1— 7 )M(L
N Zr;éavx\/ﬁ(yﬁ w(y) + (1 — 7\ )M(L)

1 1
< ——|IL lomon /1 + — + (1 — 7, ) M(L
= L7 lla—24/ o +(L—=ma)M(L)

V2

< MLE a2+ (L—ma) M(L).
AN

As a consequence, we get

V2| L2 [l22
~ 2 .

A

This expression is advantageous when L is reversible with respect to =, since in this situation,
|||L‘*}.1 a2 = 1/A, where A is the spectral gap of L, namely the smallest element of A(L) (which is
then in (0, +00)). Nevertheless, since we are interested in F'(L), note there is a simple comparison:

(38)



We now concentrate on the case m = v, the uniform measure and L = L4, with A a Hamiltonian
cycle. The following result will be crucial in the proof of Theorem 5.

Proposition 17 For any A€ H and A € A\{A}, we have on L(v),

N—1
D:F(L,) > ——.
AF(La) IN

Proof

There is no loss of generality in assuming that V' = Zy and that A = (0,1,2,...., N —1). To
simplify the notation, let us write L = L4. By invariance of L and v through the rotations
Zn 3 x — x +y € Zy for any fixed y € Zy, it follows that the quantity E,[7;] does not depend
on the choice of x € Zy. It is then necessarily equal to F'(L). Furthermore, since under L, the
Markov process waits an exponential time before adding 1 to the current state, we get that for any
x,y € Zn, Ez[ry] = p(z,y), where

Vx,y€Zn, plx,y) = min{neZy : y=2x+n}.

It follows easily that F(L) = (N — 1)/2 (for an alternative proof, see Corollary 20 in the next
section). Thus we get that

(Ey[Tg] - (N - 1)Ey[79&])

(Ey[72] — (N = 1)p(y, x)) -

vx7yEZN7 hL(x7y)

Since under P,, 7, is a sum of p(y,x) independent exponential random variables of parameter 1,
we compute that

Ey[Tz] = Ey[Tw]Z+P(y7$>

(because for any exponential random variable £, we have E[£?] = 2E[£]?). Thus we get that for
any z,y € Zn, hr(z,y) = hy(p(y, z)), where

hy : [O,N —1]3r (TQ—(N—Q)’I“).

DN |

This function hy is decreasing on [0, (N — 2)/2], increasing on [(N — 2)/2, N — 1] and we have
hn(0) =0< (N —1)/2=hy(N —1).
Thus from the definition (30), we get that

VAeA,  HzL) < hy(N-1)

More precisely, with A= (ap,ai,...,a,) € A, we get, except if for any | € Z,, hn(p(a, a;11)) =
hn(N —1),

Hy(L) < "= Ln (N = 1) + %max{hN(O), ha(N —2)}
_ nngA(L)
< SlHAD),

where in the equality, we used that hy(0) = hy(N —2) = 0 and that hy(N — 1) = Ha(L),
according to (30). But if for any [ € Z,, we have hy(p(a;,a;41)) = hy(N — 1), it means that
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aj+1 = a; + 1. Since this must be true for all [ € Z,,, it follows that n = N and that A must be of
the form (k,k+ 1,...,k + N — 1), for some k € Zy, namely, it is Hamiltonian.
From (31), we obtain,

v Ae A{A}, D;F(L) = F(L)-HzL)

N -1
> F(L)— ——H;(L)
1
= DaF(L)+ NHA(L)
N1
92N

due to D4 F (L) = 0, because L is not modified by modifying it in the direction of the cycle A.
|

Above we worked with the complete graph Ky and the associated set of Markov generators
L(7). But all the previous considerations can be extended to the case of L(G,7), where the graph
G is as in the introduction. The only difference is that A has to be replaced by A(G), the set of
cycles using only edges from FE. For instance, Lemma 15 has to be replaced by

Lemma 18 The extremal points of the convex set L(G, ) (the set of normalized Markov genera-
tors L, compatible with G and admitting 7 for invariant probability) are exactly the generators L 4

for Ae A(G).

3.3 Perturbations of the uniform probability measure

Our main goal here is to show Theorems 5 and 6. Their proofs are respectively based on small and
large perturbations of the uniform probability measure v.

First we check that all Hamiltonian cycles have the same speed in £(7), as was announced in
the introduction in the discrete time setting and for the uniform distribution v, but this is true
more generally.

Lemma 19 Let A = (ag, ...,an—1) € H be a Hamiltonian cycle, we have
N
FLa) = 5 3 w@).

In particular this quantity does not depend on the choice of the Hamiltonian cycle A.

Proof

The generator L 4 can be represented by the matrix

1 1
~ Nr(ao) N7r(c1m) (1) . .. 0
0 e e 0 0
1 1
(1) e 0 _NT('(CLN72) Nﬂ'(aliffZ)
Nean ) 0 0 ~ Nr(an-1)
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It follows that the polynomial in X given by

1 1
X — N7r(a0) N’]'I'(G,O:E ? e e 0
0 X—w@ w@ O ’
P(X) = det ’
1 1
(1) ... e 0 X-— Nr(an_2) Nw(aN_lz)
B 0 0 X—m

is equal to X [[\epz,)(X —A). Expanding the latter expression into X(ao + an X + -+ +
any_1 XV 1), we get that

This is indeed a consequence of
a = DV ] Om
me[N—1]
a = (¥ [T Om

ke[N—1] me[N—1]\{k}

where A(L 4) is parametrized as the multiset consisting of the 6,,, form € [N—1] == {1,2,..., N—1}.
On another hand, we compute directly from the definition of P(X), by expanding the determi-
nant, that

0 = I (<)~ 11 ()
It follows that

v = 2 I Cr)

keZn meZn\{k}

SRR =)

k+leZ Ny meZn\{k,l}

(the factor 1/2 is due to the fact that the couple (k,l) also appears as (I,k)). Multiplying the
numerator and the denominator by [ | (—=Nm7(an)), we get that

mEZN

2
ar NT Zk:{:leZN m(ag)m(ar)
o NZmEZN ()

and this leads to the announced result.

In particular, for 7 = v, the uniform probability measure on V', we get:

Corollary 20 For m = v, we have for any Hamiltonian cycle A,

N -1
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The next result is the crucial step in the proof of Theorem 5. For its statement, introduce for
any A€ H and e € (0,1),

Nie = {L=Q—t)La+tL : te[0,e) and L € L(n)} (39)

This set is a neighborhood of L4 in £(7) and observe that we would have ended with the same
set if we had required in this definition that L belong to the convex hull generated by the L 3, for
Ae A\{4}.

Define

1
61(N,7T,\) = 7Tj1\1n<1+]\],ﬂ_2>,

A

1
ea(ma) = %Wlf,
e(N,mr) = € (N,mx) A ea(mp).

Lemma 21 For N > 2 and any A€ H, L4 is the unique minimizer of F' over NA,e(N,ﬂ'A)'

Proof

Assume that for some given A € H, L4 is not the unique minimizer of F' over N, Ae(N,n)- Then we
can find t € (0,€e(N,7,)) and a probability p on A\{A}, such that F(L;) < F(L4), with
Lt = (1 — t)LA + tf/,

L > pA)Ly.
AcA\{A}

Applying Taylor-Lagrange formula to the function [0,t] 3 s — F(Ls), we get there exists s € [0, t]
such that

F(L;) = F(LA)+tDzF(LA)+t22D%F(LS).

Taking into account Propositions 16 and 17 and (38), we obtain

N-1 2 F(Ly) N F(L)? N F(Ly)? .
2N 2 N 70

A

F(L)) > F(Ly)+t (40)

To evaluate F'(Ls), note that for s € (0,¢),

OsF(Ly) = D;F(Ly)
L

N
=
+

=
3
e

N

Classical computations show that if a C! function f : [0,¢] — (0, +00) satisfies s f(s) < af(s) +
bf?(s) for all s € [0,t], where a,b > 0, then assuming f(0) exp(bt) < f(0) + b/a, we get

bf(0)exp(bt)

Vel S S T ) T = exp (D)

In particular, if

exp(bt) < 1+40b/(2af(0)), (41)
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then
V s € 0,t], f(s) < 2<f(0)+2ba>.

Let us apply this observation with the mapping [0,t] 3 s — F(Ls) and a == 1/72, b = 1/7%. Since
F(Lo) = F(La)
>, wl@)m(y)
xz+yeV

< )

vz o)z 3

we get that condition (41) is satisfied, due to the definition of €;(N,7,) and to the fact that
te (0,e1(N,7m,)). It follows that,

Vsel0,t], F(L) < N+ —

The r.h.s. is strictly larger than F(L4) if t < ea(m,) and this is in contradiction with our initial
assumption.

Denote for any 7 € P4 (V),
F,(r) = inf{F(L) : Le L(m)}. (42)
Another ingredient in the proof of Theorem 5 is:

Lemma 22 The mapping P+(V) 37 — F,(7) is continuous.

Proof
Let £ be the set of irreducible and normalized Markov generators (so that £ = Lzep, (1) L(T)),

endowed with the topology inherited from RY”. The functional F is defined on £ and (15) is
valid on L. As a consequence, F' is continuous on L. Indeed, if (L;,),en is a sequence of elements
of £ converging to L € L, then according to Paragraph 5 of Chapter 2 of Kato [8], we have
limy, o0 A(Ly) = A(L) and so lim,,_,o, F'(Ly,) = F(L). Next consider a sequence (7, )nen of elements
from P (V) converging to m € P (V) and such that the sequence (F, (7,,))nen admits a limit. For
all n e N, let L,, be an element from £(m,) such that

1
F/\(Tfn) < F(Ln) < F/\(7rn)+g

Due to the normalization condition and to the belonging of 7 to Py(V'), we can extract a sub-

sequence (still denoted (Ly)neny below) from (Lj,)nen converging to some generator L. It is clear
that L is normalized and that 7 is invariant for L. Let us check that L is irreducible. Fix x € V.
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For any n € N, let X := (Xt(n))t;g be a Markov process starting from x and whose generator is
L,. It is not difficult to deduce from the corresponding martingale problems, that X (™ converges
in law (with respect to the Skorokhod topology) to a Markov process starting from = and whose
generator is L. Thus for any y € V and T = 0,

Ji_r)rgo E.[T A ngn)] = E.[T A7y
(with an obvious notation). It follows that

E[T A 1y] < liminfE, [Tg(,")]

n—>00
1

< liminf ——F(L,
e ) )

1 -
- Y h,?i,lorolf F,(m)
N
2m(2)m(y)
according to Lemma 19. Letting T" go to infinity, we get E;[r,] < N/(272). This bound, valid for

all z,y € V, implies that L is irreducible and thus L € £(7). Furthermore, the above arguments
show that

<

lim F,(m,) = lim F(Ly)
n—oo n—oo

= F(L)

> F,(m).

So F, is lower continuous on P4 (V). By considering the sequence (7, )nen identically equal to m,
we also get that the infimum defining F', (7) is attained.

To show that F', is upper continuous on P, (V), let again (m,)nen be a sequence of elements
from P, (V) converging to some m € P4(V) and such that the sequence (F(7y,))nen admits a
limit. According to the previous remark, there exists L € £(7) such that F(L) = F, (). For any
n € N, consider the matrix En given by

¥ m(z)

Va,yeV, Ly(z,y) = Tr(x)L(w,y)-

It is immediate to prove that f/n is an irreducible Markov generator leaving 7, invariant. But it
may not be normalized, so let k, > 0 be such that L, := k,L, belongs to L(m,). There is no

difficulty in checking that L, converges to L and thus that lim,,_,o, F(L,) = F(L) = F, (). Thus
passing into the limit in F(L,) > F,(7,), we deduce that

F,(r) = lim F,.(m)

n—0o0

as desired.

With all these ingredients, we can now come to the

Proof of Theorem 5

Note that it is sufficient to consider the case where G is the complete graph over V|, since F, (1) <
min{F (L) : L e L(G,n)}, for any graph G and positive probability measure 7 on V.

The main argument is by contradiction. Assuming that the statement of Theorem 5 is not
true, we can find a sequence (7, )nen converging to v, such that for all n € N, there exists L, €
L(my)\{Lxr,.4 : A€ H} with F(L,) = F,(m,). (Here we have included 7, in the index of L, 4

26



to underscore the fact that this generator, associated to a Hamiltonian cycle A, also depends
on the underlying invariant probability m,.) As seen in the proof of Lemma 22, a subsequence
(still denoted (Ly)nen) converging toward some L € L(v) can be extracted from (L;)nen. We
furthermore have

lim F(L,) = F(L)

n—0o0

and by Lemma 22
lim F,(m,) = F.(v).

n—ao0

It follows that F(L) = F,.(v). From Theorem 4, we deduce that there exists A € H such that
L = L, 4. Using again the fact that

lim 7, = v, (43)

n—0o0

we get that lim,, .o Ly, 4 = L, 4 and thus

lim (Lp — Ly, 4) = O. (44)

n—a0

Consider r := mingey 7y, o, which is positive due to (43), and let e := €(N,r), with the notation
introduced before Lemma 21. From (44), we deduce that for n € N large enough, L,, belongs to
N (7, A, €), defined as in (39), with 7 replaced by m,. Then Lemma 21 asserts that L, = L, A,
because L, is a minimizer of L over £(my,). This is in contradiction with our initial assumption.

|
To finish this section, we consider large perturbations of the uniform probability measure v.

Proof of Theorem 6

Let G = (V, E) be a finite oriented connected graph which is not a Hamiltonian cycle. Then we
can find a cycle A = (ao, a1, ..., an—1) € A(G) with n < card(V'). Denote V = {ag, a1, ..., an_1} and
Vo= V\V By the strong connectivity of &, we can find a subset E of oriented edges from F, such
that card(E) = card(V) and for any z € V we can find exactly one y € V' with (z,y) € E. Putting
together the edges from A and those from E we get a graph GonV looking like the following
picture, where the cycle is oriented clockwise and the trees are oriented toward the cycle.

Shu!

N
Figure 1: the graph G

For r > 0, consider the Markov generator L, defined by

1, if there exists [ € [0,n — 1] such that z = q; and y = a;41
VefyeV, L(zy) = {r ,if(z,y)ekE
0 , otherwise.

27



This generator is not irreducible, since it does not allow the chain to go from the cycle A to V.
Nevertheless, its unique invariant probability measure 7 is the uniform probability measure on V.
The generator L, then satisfies an extended normalization condition, in the sense that

Z m(x)Lp(z,y) = 1

rFyeV

The interest in L, is because it is easy to find its eigenvalues:
ALy) = A(La)u{r[[V]]}

where L4 is the generator corresponding to the Hamiltonian cycle given by A on V and {r[|V|]}
is the multiset consisting of the value r with the multiplicity |‘A/| This identity is an immediate
consequence of following decomposition of L,, where all the elements of V have been put before
those of V and where the elements of V have been ordered so that the (oriented) distance to Vis
non-decreasing (in particular the last element corresponds to a leaf of é)

([ Ls 0O
Lo (B0,

In the r.h.s., the V x V matrix D is sub-diagonal and its diagonal consists only of —r. Formula (15)
enables to extend the functional F' to L, and we get

~ 1%
F(L,) = F(La) + |r‘
In particular, it follows that
. ~ n—1
lim F(L,) = F(La) = < F(Lg)

r—+00 2

for any Hamiltonian cycle H € H(G), where we used twice Corollary 20. From now on, we fix
r > 0 large enough, so that

F(Ly) < F(Ln) (45)

for any Hamiltonian cycle H € H(G).
For any € > 0, consider the Markov generator

Lre = Z 7ML, +¢Lg)

r,€

where
e the Markov generator L¢ is defined by

Vet+yeV,  Lg(z,y) {1 i (z,9) € B

0 , otherwise

e the constant Z, . > 0 is such that L, ¢ is normalized (this is possible because L, +¢eL is irreducible
on V).

For r,e > 0, denote 7, the invariant probability measure of L, .. It is clear that as e goes to
04, 7 converges toward . It follows that

lim Z.., = 1
6—>0+ ’
lim L,. = L,
e—04 ’
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From the general theory of perturbation of spectra of finite operators (see e.g. the beginning of the
second chapter of the book of Kato [8]), we have

lim F(L..) = F(L).

e—04
Taking into account (45), we can thus find € > 0 small enough so that
F(L..) < F(Ln)

for any Hamiltonian cycle H € H(G). Namely the probability measure m, . satisfies the statement
of Theorem 6. One would have remarked that this probability measure 7, is quite far away from
v, because it gives very small weight to the elements of V.

4 The discrete time framework

Here we discuss the links between the search of the fastest continuous-time Markov processes with
the analogous problem in discrete time.

Let a graph G = (V, E) and a positive probability measure = on V be fixed and denote by
K(G, ) the set of irreducible Markov kernels K on V' whose permitted transitions are edges from
E (plus self-loops, i.e., the possibility to stay at the same place) and leaving 7 invariant, namely
satisfying 7K = 7. For any K € K(G, ), let X := (X,,)nez, be a Markov chain whose transitions
are dictated by K. For any y € V, recall (see (1)) that

T, = inf{neZ; : X, =y}
On K(G, ), we consider the functional § defined by

V K e K(G,n), S(K) = Z m(z)7(y)Ex[Ty],
z,yeV

where subscript « in the expectation indicates that X is starting from x € V.

To any K € K(G, ), we associate O(K) the multiset consisting of the spectrum of K, removing
the eigenvalue 1 (of multiplicity 1). It is a priori a sub(multi)set of the closed unit disk centered
at 0 of C left invariant by conjugation. Analogously to the continuous-time situation, we have the
eigentime relation

VKeK(Gm), §K) - Y IL

To any L € L(G, ), associate

I = max{L(x) : z €V},
L
K = T+ T

It is immediate to check that K € K(G,w). Furthermore, we have ©(K) = 1 — A(L)/l, so that
S(K) = IF(L). (46)

Taking into account that



it follows that §(K) = F(L). We will denote ® : K(G,7) — L(G, ) the mapping L — K defined
above.
Conversely, to any K € K(G, ), associate

1

Dgev m(@)(1 = K(2,2))’
L = k(K-1I).

k =

It is immediate to check that L € L(G, 7). Furthermore, we get A(L) = k(1 —O(K)) and it follows
that

Taking into account that

we get that F/(L) < §(K). Denote ¥ : L(G,7) — K(G, ) the mapping L — K as above.
Remark 23 The mappings ® and ¥ are not inverse of each other, because the image of £(G,)
by @ is included into Ko(G,7) = {K € K(G,n) : 3 z € V with K(z,z) = 0}. Nevertheless, we
have that ® and ¥ are inverse of each other, where ¥y is the restriction of ¥ to Ko(G, ).

When one is looking for the minimal value of § on (G, 7), one can restrict attention to
Ko(G, ), because

min{g§(K) : K e K(G,m)} = min{§(K) : K € Ko(G,m)}.
Indeed, for any K € K(G,7), there exist a unique K € Ko(G,7) and o € [0,1) such that K =

(1 — @)K + al. Then we get O(K) = (1 — a)O(K) + o, ie. © —1 = (1 — a)(O(K) — 1). This
implies that

As in (42), denote

F.(G,7)
SA(G,7)

inf{F (L) : Le L(G,n)},
inf{§(K) : K € K(G,7)}.

From the above considerations, we deduce:

Proposition 24 We always have
F.(G,m) < §A(G,m)

(in particular, when looking for the fastest Markov chain in the sense we have defined, it is preferable
to resort to continuous time rather than to discrete time).

Furthermore, assume that there is a minimizer L € L(G,m) of F such that L(x) does not depend
on x €V (it is then equal to 1). Then F,(G,7) = FA(G, ).
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Proof
Consider K € K(G, 7). We have seen that

S(K) = F(¥(K))
> F.(G,n),

so taking the infimum over K € K(G,7), we get the first bound.

Conversely, if L € L(G,7) is a minimizer of F' whose diagonal is constant, then [ = 1 in (46),
namely §(®(L)) = F(L) = F.(G, 7). From the previous inequality, it follows that ®(L) is indeed
a minimizer of § on K(G, ) and we conclude that F, (G, 7) = §A (G, 7).

[ ]

In association with Theorem 4, the above proposition also enables us to recover the result of
Litvak and Ejov [10] stating that for any Hamiltonian graph G, the permutation matrices associated
to the Hamiltonian cycles of G are the unique minimizers of § on (G, v). But Proposition 24 does
not enable us to extend directly Theorem 6 to the discrete time setting, because the diagonal of
the generator associated to a Hamiltonian cycle is constant if and only if the underlying invariant
probability measure is uniform. This extension is nevertheless true. To show it, note that the
differentiation technique of Section 3 can be adapted to (G, ) in a straightforward manner.

A APPENDIX: Computations on the simplest exam-
ple of non-Hamiltonian connected graph

The length 2 segment Ss = ({0, 1,2}, {(0,1),(1,0),(1,2),(2,1)}) is the simplest non-Hamiltonian
(strongly) connected graph. We compute here the minimizer of F' on L£(S2,7), for any positive
probability measure 7 on {0, 1,2}. We hope this example will motivate further investigation of the
minimizers of F' in the challenging non-Hamiltonian framework.

To simplify the notation, write x = 7(0),y = 7(1) and z = 7(2), by assumption we have
that z,y,2 > 0 and x + y + z = 1. Up to exchanging the vertices 0 and 2, we assume that
|z —1/2| > |z —1/2|.

Any Markov generator L from £(S2,7) has the form

—a a 0
L = a —a—p p
0 b —b
where the coefficients a, «, 5,b > 0 satisty,
ra = ya,
yﬁ = Zb,
ra+yla+p)+20 = 1.

The first two equalities correspond to the invariance of 7w for L (here 7 is even reversible for the
birth and death generator L) and the third one is the normalization condition, it can be rewritten

20a+220 = 1 (47)

Denote A(L) = {1, A2}, its elements are the non-zero roots in X of the polynomial det(X + L).
We compute that

det(X +L) = X(X*—(a+a+B+bX +ab+aB+ab),

31



so that

M+XA = a+a+5+0b,
Mo = ab+af+ ab.

From (15), we have

1 1
PYRID
A1+ Ao
A1 A2
a+a+pB+0b
ab+ ap + ab

a(1+§>+b(1+§)

ab(1+%+2)
a(z +y) +bly + z)

ab

x+y+y+z

b a
1—z+1—x

b a

Taking into account (47), the minimizer of F' on L£(S2,7) corresponds to the minimizer of

1—2z 1—=x

1/(2 — 2 . 4
0,1/@0) 50 = 2ot 4 (48)
We are thus led to the second order equation in a:

4o(z(1 —2) —2(1 —2))a* + d2(1 —2)a— (1 —2) = O. (49)

Due to the assumption |x — 1/2| > |z — 1/2|, the first coefficient is non-negative. We consider two
cases.

o If |z — 1/2| = |z — 1/2|, then (49) degenerates into a first order equation and a = 1/(4z) is
the minimizer of the mapping (48). It follows that the minimizer of F' on £(S2,7) is

1 1

- — 0
4r  4Ax
L A = i — i i
4y 2y 4y
1 1
4z 4z

and the minimal value F, (S2,7) of F on L(Sa, ) is
F(L,) = 41—-2)z4+4(1 —z)z = 8z(1 —x).

In particular, for 7 = v, the uniform distribution on {0, 1,2}, we get

1 -3 3 0
L, = 1 3 -6 3
0o 3 -3

and F', (S2,v) = 16/9.
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o If [z — 1/2] > |z — 1/2], then (49) admits two solutions

- —z(l—z) £ 4/z(1 —2)z(1 - 2)
- 20(2(1 —2) —z(1—xz))

but only a4 belongs to (0,1/(2z)) and is in fact the minimizer of the mapping (48). This value
can be simplified into

1 z(1l—x)

%\/m(l—x)+\/z(1—z)‘

a+

It follows that the minimizer of F' on L£(S2, ) is

Va(l—z) Va(l—ux) 0
2

2x T
L. = 1 Vr(l—x) _\/x(l—fc)—f-\/z(l—z) v z2(1 = 2)

\/w(l —x) + \/z(l —2) 2y 2y 2y
0 \Vz(1—2) V(1 =2)
2z 2z

= pLoy) + (1 —p)Lay

with the notation introduced in (25) and

b o= z(l—x) .
V(1 —z) +4/2(1 - 2)

The minimal value F, (S2,7) of F on L(S2,7) is

F(L,) = 2 (\/a:(l — ) /21— z))2 .

Letting |x — 1/2| converge to |z — 1/2|, we recover the values of L, and F'(L,) obtained in the

previous case.
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