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 have shown that the permutation matrices associated to Hamiltonian cycles are the fastest Markov chains. Here we prove (A) that the above optimality is with respect to all processes compatible with a fixed graph of permitted transitions (assuming that it does contain a Hamiltonian cycle), not only the Markov chains, and, (B) that this result admits a natural extension in both discrete and continuous time when π is close to υ: the fastest Markov chains/processes are those moving successively on the points of a Hamiltonian cycle, with transition probabilities/jump rates dictated by π. Nevertheless, the claim is no longer true when π is significantly different from υ.

Introduction

Given a finite oriented (strongly) connected graph G " pV, Eq and a positive probability measure π on V , it is natural to wonder what is the fastest Markov chain leaving π invariant and whose permitted transitions are included in E. This depends on the way the speed is measured. In this paper the goal is to minimize the expectation F of the time needed to go from x to y, when x and y are independently sampled according to π. Litvak and Ejov [START_REF] Litvak | Markov chains and optimality of the Hamiltonian cycle[END_REF] have shown that if π is the uniform distribution υ and if G contains a Hamiltonian cycle, then the fastest Markov chains are exactly those following deterministically the succession of the states given by a Hamiltonian cycle when one exists (the corresponding quantity F does not depend on the choice of the admissible Hamiltonian cycle). Our objectives in this paper are: (A) to extend this result to the continuous time framework (under an appropriate renormalization of the jump rates), (B) to establish the above optimality over a larger class of processes, and to begin an investigation of the situation where π is not the uniform distribution by showing, (C) that when G contains a Hamiltonian cycle and that π is close to υ, the fastest Markov chains/processes are still those appropriately associated to Hamiltonian cycles, and (D) that this is no longer true when π is 'far away' from υ.

The plan of the paper is as follows. The above results (A) and (B) are proved in the next section via a dynamic programming approach, which also provides an alternative proof of the discrete time result of Litvak and Ejov [START_REF] Litvak | Markov chains and optimality of the Hamiltonian cycle[END_REF]. In Section 3, we decompose the generators leaving π invariant into convex sums of generators associated to (not necessarily Hamiltonian) cycles and we differentiate the expectations of hitting times with respect to the generators. This is the basic tool for the proof of (C) (see Theorem 5 in Section 3) in Section 4 , through small perturbations of the uniform probability measure. At the other extreme, large perturbations lead to the proof of (D) (cf. Theorem 6 in Section 3) at the end of the same section. Section 5 contains some observations about the links between continuous time and discrete time. In the appendix, we compute the fastest normalized birth and death generators leaving invariant any fixed positive probability measure π on t0, 1, 2u. The underlying graph is the segment graph of length 2, i.e. the simplest example not containing a Hamiltonian cycle.

The dynamic programming approach 2.1 Introduction

The aim of this section is to show that the Hamiltonian cycles, when one exists, are the fastest in the sense we have defined among all processes compatible with the given graph, not just the Markov chains. The proof uses dynamic programming. We first recall the eigentime identity in the next subsection and then establish the desired result for resp. discrete and continuous time in the subsections that follow.

The eigentime identity

We shall use the notation LpXq to denote the law of a random variable X and |A| for the cardinality of a finite set A. Consider a discrete time Markov chain pX n q nPZ `on a finite state space V with transition matrix P " pppi, jqq i,jPV . We assume it to be irreducible, i.e., for any i, j P V , there exists a path i 0 " i, i 1 , ¨¨¨, i n´1 , i n " j such that ppi k , i k`1 q ą 0 , for k P 0, n ´1 t0, 1, ..., n ´1u. Let π pπpiqq iPV denote its unique stationary distribution, which is its left eigenvector corresponding to the Perron-Frobenius eigenvalue θ 1 " 1. In particular, if LpX 0 q " π, then for any n P Z `, we have LpX n q " π. This justifies the term 'stationary', its uniqueness being a well-known consequence of the irreducibility hypothesis. Denote by θ 2 , ¨¨¨, θ |V | the remaining eigenvalues of P . Also define the hitting times @ i P V, τ i mintn P Z `: X n " iu.

(1)

The eigentime identity states that

@ i P V, ÿ j πpjqE i rτ j s " |V | ÿ m"2 1 1 ´θm . ( 2 
)
Here each eigenvalue is counted as many times as its (algebraic) multiplicity. For reversible chains, this is Proposition 3.13, p. 75, of Aldous and Fill [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]. It was extended to the general case in Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF], see also [START_REF] Miclo | An absorbing eigentime identity[END_REF] for a simple proof and further extensions. The left hand side gives the mean hitting time of a target state picked randomly with distribution π. A minor modification is to consider instead the stopping times

@ i P V, T i mintn P N : X n " iu,
where N Z `zt0u, the set of positive integers. Since πpiqE i rT i s " 1, we can replace (2) by

@ i P V, ÿ j πpjqE i rT j s " 1 `|V | ÿ m"2 1 1 ´θm . ( 3 
)
This variant is essentially contained in Theorem 2.4 of Hunter [START_REF] Hunter | Mixing times with applications to perturbed Markov chains[END_REF], which also gives the pre-history of the problem going back to Kemeny and Snell [START_REF] Kemeny | Finite Markov chains[END_REF]. An immediate corollary is the 'symmetrized' version ÿ i,j πpiqπpjqE i rτ j s "

|V | ÿ m"2 1 1 ´θm , (4) 
ÿ i,j πpiqπpjqE i rT j s " 1 `|V | ÿ m"2 1 1 ´θm . ( 5 
)
Let Π be the rank one matrix whose rows are all equal to π. From Theorem 2.4 of Hunter [START_REF] Hunter | Mixing times with applications to perturbed Markov chains[END_REF], we have:

(5) equals trpI ´P `Πq ´1, where I is the identity matrix. p˚q A Hamiltonian cycle A of V is an ordering pa 0 , a 1 , ..., a N ´1q of the elements of V , where N |V |. We will make the convention that a N " a 0 , as the indices should be seen as elements of Z N Z{pN Zq. More precisely, the cycles pa 0 , a 1 , ..., a N ´1q and pa k , a k`1 , ..., a k`N ´1q should be identified as the same cycle, for all k P Z N . This will be implicit in the sequel, even though for notational convenience, we will represent a cycle A as pa 0 , a 1 , ..., a N ´1q. Consider an irreducible directed graph G " pV, Eq where V, E denote respectively its node and edge sets. In the discrete time setting, such graphs will always be assumed to contain all the self-loops, i.e. pi, iq P E for any i P V . The Hamiltonian cycle A pa 0 , a 1 , ..., a N ´1q is said to be admissible for G if pa k , a k`1 q P E for all k P Z n . It means that G A is a subgraph of G, where G A is the oriented graph on V whose edges are the pa k , a k`1 q, for k P Z N . The set of all Hamiltonian cycles (respectively, admissible for G) is denoted H (resp., HpGq) and the graph G is said to be Hamiltonian if HpGq " H. Obviously, we have H " HpK V q, where K V is the complete oriented graph on V .

Consider the optimization problem of minimizing (2)/(4), or equivalently, (3)/ [START_REF] Held | A dynamic programming approach to sequencing problems[END_REF], where π is equal to υ, over all irreducible P compatible with the given graph G (in the sense that for any i " j P V , P pi, jq ą 0 ñ pi, jq P E). Since these quantities will be infinite for reducible P , we might as well consider the problem of minimizing it over all stochastic matrices P compatible with G. Say that P is Hamiltonian if there exists a Hamiltonian cycle pa 1 , ¨¨¨, a |V | q such that ppa k , a k`1 q " 1 " ppa |V | , a 1 q for 1 ď k ă |V |. That is, the transitions deterministically trace a Hamiltonian cycle. Recall that a Hamiltonian cycle need not exist in general and the problem of determining whether one does is NP-hard (see, e.g., Garey and Johnson [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]). By Proposition 2.1 of Litvak and Ejov [START_REF] Litvak | Markov chains and optimality of the Hamiltonian cycle[END_REF] in combination with p˚q above, we have: Theorem 1 When π " υ, either of the quantities (2), ( 3) is minimized by a Hamiltonian P if there exists one.

In the next subsection, we give an alternative proof, inspired by the Held-Karp algorithm for scheduling problems [START_REF] Held | A dynamic programming approach to sequencing problems[END_REF], which gives a strengthening of this result and has interesting implications for random search. Specifically, we improve on the cited result of Litvak and Ejov [START_REF] Litvak | Markov chains and optimality of the Hamiltonian cycle[END_REF], insofar as the cost is shown to be minimized over all G-compatible random processes and not only the Markov chains, by tracing the Hamiltonian cycle, when one exists, deterministically.

A dynamic programming solution

As in Held and Karp [START_REF] Held | A dynamic programming approach to sequencing problems[END_REF], a natural state space for the dynamic program is

V ˚:" tpi, Aq : i P V, A Ă V ztiuu.
With each pi, Aq P V ˚, we associate an action space U i :" the set of probability vectors on the set V i :" tj P V : pi, jq P Eu Ă V of successors of i in G. Note that this does not depend on A. Suppose V i is enumerated as pj 1 , ¨¨¨, j m i q. Given a 'control' q " pqpj 1 q, ¨¨¨, qpj m i qq, the transition probability pppj, Bq|pi, Aq, qq

of going from pi, Aq P V ˚to pj, Bq P V ˚under control q is zero if either j R V i or B ‰ Aztju.

Otherwise it equals qpjq. Consider an V ˚-valued controlled Markov chain pX n , Z n q nPZ `governed by a control process pq n q nPZ `with q n P U Xn , for all n P Z `, evolving according to the above controlled transition probability function. That is, for any n P Z `,

P ppX n`1 , Z n`1 q " pj, Bq|pX m , Z m q, q m , m ď nq " P ppX n`1 , Z n`1 q " pj, Bq|pX n , Z n q, q n q " q n pjqδ B,Aztju ,
where δ ¨,¨d enotes the Kronecker delta. Since we are allowed to choose any past dependent transition probability compatible with G, this covers all V -valued random processes that are compatible with G, i.e., that make transitions only along the edges in E.

Our objective is to minimize, for a prescribed initial state i 0 1 the quantity

E « ÿ j τ j ˇˇX 0 " i 0 , Z 0 " V zti 0 u ff , (7) 
1 more generally, for a prescribed initial distribution which is proportional to (2) when π " υ, the uniform distribution (i.e., when P is doubly stochastic). Note, however, that we do not require pX n q nPZ `to be even Markov. Let ζ :" mintn ě 0 : Z n " Hu.

Then [START_REF] Kalpazidou | Cycle representations of Markov processes[END_REF] can be equivalently written as

E « ζ ÿ m"0 |Z n | ˇˇX 0 " i 0 , Z 0 " V zti 0 u ff . (8) 
This allows us to apply the dynamic programming principle to the 'value function' or 'cost to go function'

V pi, Aq :" inf E « ζ ÿ m"0 |Z n | ˇˇX 0 " i, Z 0 " A ff ,
where the infimum is over all admissible controls. Standard arguments yield the dynamic programming equation

V pi, Aq " min qPU i ˜|A| `ÿ jPV i qpjqV pj, Aztjuq ¸, A ‰ H, (9) 
V p¨, Hq " 0.

Furthermore, the optimal control in state pi, Aq is any minimizer of the right hand side of [START_REF] Kemeny | Finite Markov chains[END_REF]. Since the expression being minimized is affine in q, this minimum will be attained at a Dirac measure, implying that the optimal choice in state pi, Aq is to deterministically move to a certain j P V i .

In other words, the optimal trajectory is deterministic and perforce visits each node at least once, otherwise the cost would be infinite. Since at most one new node can be visited each time, the total cost is at least

ř |V |´1 i"1 i " |V |p|V |´1q

2

, which equals the cost for tracing a Hamiltonian cycle if one exists.

A parallel treatment can be given for the cost

E « ÿ j T j | X 0 " i 0 , Z 0 " V ff , (11) 
which can be equivalently written as

E « ζ ÿ m"0 |Z n | | X 0 " i 0 , Z 0 " V ff . ( 12 
)
The minimum cost for this, again attained by tracing a Hamiltonian cycle deterministically, will be sps`1q 2 .

We have proved:

Theorem 2 Minimum of either the cost [START_REF] Kalpazidou | Cycle representations of Markov processes[END_REF] or the cost (11) over all V -valued random processes compatible with G is attained by tracing a Hamiltonian cycle when one exists.

This has interesting implications to some random search schemes. For example, consider the problem of searching for an N bit binary password given a device or 'oracle' that can verify whether a password is correct or not. Random search schemes for this problem have been proposed, involving Markov chains on the discrete N -cube t0, 1u N , where any two strings differing in one position are deemed to be neighbors. This undirected graph can be rendered directed by replacing each undirected edge by two directed edges. A simple induction argument shows that it has a Hamiltonian cycle. Then the foregoing leads to the conclusion that no random search scheme can do better on average than simply listing the N -strings and checking them one by one.

Continuous time problem

We now consider the continuous time counterparts of the foregoing. Recall that a Markov generator on V can be represented by a matrix L pLpx, yqq x,yPV whose off-diagonal entries are non-negative and whose row sums all vanish. Corresponding Markov processes, defined through the corresponding martingale problems, will be denoted X pX t q tě0 . The law of X then only depends on the initial distribution, namely on the law LpX 0 q of X 0 . The Markov generator L is said to be compatible with G, if we have @ x " y P V, Lpx, yq ą 0 ñ px, yq P E.

The probability measure π, viewed as a row vector, is said to be invariant for the generator L, if πL " 0. Its probabilistic interpretation is that if initially LpX 0 q " π, then for any t ě 0, LpX t q " π, similarly to the discrete time case. The generator L is said to be irreducible if for any x, y P V , there exists a path x 0 " x, x 1 , ..., x l " y, with l P Z `the length of the path, such that Lpx k , x k`1 q ą 0 for all k P 0, l ´1 . In our finite setting, a Markov generator L always admits an invariant probability measure, the irreducibility of L ensures that it is unique. The irreducible Markov generator L is said to be normalized, if

ÿ xPV Lpxqπpxq " 1, ( 13 
)
where µ is the invariant measure of L and where Lpxq ´Lpx, xq " ř y "x Lpx, yq for any x P V . It means that at its equilibrium µ (i.e. for the stationary X starting with LpX 0 q " µ), the jump rate of X is 1. Denote by LpG, πq the convex set of irreducible normalized Markov generators L compatible with G and admitting π for invariant probability. To simplify notation, we will also write Lpπq LpK V , πq, when G is the complete graph K V on V . For y P V , let τ y be the hitting time of y: τ y inftt ě 0 : X t " yu.

We are particularly interested in the functional

F : LpG, πq Q L Þ Ñ ÿ x,yPV πpxqπpyqE L x rτ y s, (14) 
where the subscript x (respectively the superscript L) in the expectation indicates that X is starting from x (resp. is generated by L). The probabilistic interpretation of F pLq is the mean time to go from x to y for the Markov process generated by L, when x and y are sampled independently according to its invariant probability π.

Remark 3

The smaller the F pLq, the faster the underlying Markov process goes between the elements of V . It does not necessarily imply that the faster the time-marginal distributions go to equilibrium in large time (especially in the discrete time analogue). It is more related to the asymptotic behavior of the variance associated with the convergence of the empirical measures. This point of view will not be investigated here.

The quantity F pLq also admits a nice spectral formulation: for any L P LpG, πq, let ΛpLq be the spectrum of ´L, removing the eigenvalue 0. To take into account the possible multiplicities of the eigenvalues, ΛpLq should be seen a multiset (i.e. a eigenvalue of ´L of multiplicity m, appears m times in ΛpLq). By irreducibility of L, ΛpLq is a priori a sub(multi)set of C ` tz P C : pzq ą 0u that is invariant under conjugation. The eigentime relation asserts

F pLq " ÿ λPΛpLq 1 λ . (15) 
The references Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF] and [START_REF] Miclo | An absorbing eigentime identity[END_REF] given in the discrete time setting also deal with the continuous time case. The quantity F pLq can also be written in terms of return times. Define for any y P V , σ :" mintt ą 0 : X t ‰ X 0 u,

T y :" mintt ě σ : X t " yu.
By irreducibility of L, we have the following eigentime identities (see Cui and Mao [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF]), for any y P V :

ÿ xPV πpxqE x rτ y s " ÿ λPΛpLq 1 λ " ÿ x,zPV πpxqπpzqE x rτ z s, (16) 
ÿ x πpxqE x rT y s " 1 `ÿ λPΛpLq 1 λ " ÿ x,zPV πpxqπpzqE x rT z s, (17) 
Similarly to Subsection 2.3, our goal is to find the minimizers of F on LpG, πq, or at least to deduce some information about them, since they correspond to the fastest normalized Markov processes compatible with G with invariant distribution π. There is no loss of generality in imposing that L is irreducible, because the functional F is infinite for non-irreducible Markov generators admitting π as invariant measure.

Consider next a continuous time V -valued controlled Markov chain, denoted pX t q tě0 again by abuse of notation, controlled by a control process pZ t q tě0 . The latter takes values in U Xt , where U i :" r0, 8q |V i | , identified with the instantaneous transition rate of X t . That is, as δ goes to 0

`, P pX t`δ " j|X s , Z s , s ď t, X t " iq " P pX t`δ " j|X t " i, Z t q " $ & % Z t pX t , jqδ `opδq , if j P V Xt , ´řjPV X t Z t pX t , jqδ `opδq , if j " X t , 0 , if j R V Xt Y tX t u,
where we write Z t " pZ t pX t , j 1 q, ¨¨¨, Z t pX t , j m X t qq for a suitable enumeration pj 1 , ¨¨¨, j m X t q of V Xt .

For the remaining part of this subsection, we consider the case where π " υ, the uniform measure on V . The renormalization condition (13) can be written in the form

ÿ i‰j Z t pi, jq " |V |. ( 18 
)
If for any t ě 0, Z t is a function of X t alone, say Z t " rpX t , ¨q P U Xt , then pX t q tě0 is a time-homogeneous Markov process with rate matrix R " prpi, jqq i,jPV , where we set rpi, jq " 0 for j R V i . Consider the problem of minimizing (16). As before, we augment the state process to the V ˚-valued process p Xt q tě0 " pX t , A t q tě0 , with the understanding that A t can change only when X t does and a transition of X t from i to j leads to a transition of A t to A t ztju. Consider the control problem of minimizing the cost

E "ż ζ 0 |A t |dt ˇˇX 0 " i 0 , A 0 " V zti 0 u  , (19) 
for ζ :" tt ě 0 : A t " Hu, which is equivalent to (16), subject to the normalization constraint (18). The constraint (18) couples decisions across different states, so dynamic programming arguments cannot be directly applied. Therefore we modify the formulation for the time being, this modification will be dropped later. The modification is as follows. Let pa i q iPV be scalars in p0, |V |q such that ř i a i " |V |. For state i, we restrict the rates to be from the set Ũi :" trpi, jq : rpi, jq " 0 @ j R V i , ÿ

jPV i rpi, jq " a i u.
Consider the value function

V pi, Aq :" inf E "ż ζ 0 |A t |dt ˇˇX 0 " i, A 0 " A  ,
where the infimum is over all admissible controls. The dynamic programming equation then is

min rpi,¨qP Ũi ˜|A| `ÿ jPV i ,A rpi, jqpV pj, Aztjuq ´V pi, Aqq ¸" 0, V p¨, Hq " 0. ( 20 
)
Once again it is clear that the quantity being minimized is affine in the variables it is being minimized over and hence the optimum is attained for a deterministic choice of rpi, ¨q in the sense that rpi, jq can be non-zero for at most one j P V i . Thus the optimal path traces the nodes of G in a deterministic manner, visiting each of them at least once. This is true for any choice of ta i u and therefore true in general for the constraint p18q. Unlike the discrete time case, this does not, however, mean that the trajectory is deterministic, because the sojourn time in each node is still random. It is clear that the cost for any such trajectory will be

E « ÿ iPV a ´1 i N i ff ,
where N i is the number of times the trajectory passed through i. For a given choice of pa i q iPV , this is clearly minimized if N i " 1 for all i P V , which can be achieved by tracing a Hamiltonian cycle if one exists. Optimizing next over the choice of pa i q iPV subject to (18), namely ř iPV a i " |V |, a simple induction argument shows that the choice a i " 1, for all i P V , is optimal.

As in the discrete case, a similar treatment is possible for the cost (17) or its equivalent

E "ż ζ 0 |A t |dt ˇˇX 0 " i 0 , A 0 " V  , (21) 
with the constraint (18).

We have proved:

Theorem 4 Minimum of either the cost (19) or the cost (21) over all V -valued random processes compatible with G is attained by tracing a Hamiltonian cycle when one exists.

3 Perturbation of Markov generators

Introduction

We can expect the optimality of Hamiltonian cycle to persist under small perturbations of the Markov chains considered above. For specific classes of perturbations, such results were established in Ejov et al [START_REF] Ejov | Proof of the Hamiltonicity-trace conjecture for singularly perturbed Markov chains[END_REF]. Here we establish a vastly more general result, first for the continuous time framework (which turns out to be more natural in some sense for the kind of techniques we employ) and then for the discrete case.

When A pa 0 , a 1 , ..., a N ´1q P H and a positive probability measure π on V are fixed, the set LpG A , πq is reduced to a singleton, its element will be denoted L A . It is indeed given by @ x, y P V, L A px, yq "

$ ' & ' % 1 N πpxq , if x " a k and y " a k`1 for some k P Z n ´1 N πpxq , if x " y 0 , otherwise
Theorem 4 may seem a little deceptive: the fastest normalized Markov processes X leaving invariant υ, the uniform probability measure on V , follow a prescribed cyclic ordering of the states of V , their randomness comes only from their waiting times, distributed according to the exponential law of intensity 1. Such a derandomization of the successive points visited by X is also valid for probability measures π close to υ: Theorem 5 Assume that the graph G is Hamiltonian. Then there exists a neighborhood N of υ in the set P `pV q of positive probability measures on V (endowed with the topology inherited from that of p0, 1s V ) such that for any π P N , the set of minimizers of F on LpG, πq is exactly tL A : A P HpGqu.

Nevertheless, this result cannot be extended to all positive probability measures π, at least for the graphs which are not a Hamiltonian cycle, a situation where LpG, πq is not reduced to a singleton, in particular, this requires N ě 3.

Theorem 6 Assume that G is not a Hamiltonian cycle. Then there exist positive probability measures π on V such that none of the elements of tL A : A P HpGqu is a minimizer of F on LpG, πq.

Thus for some pG, πq, the minimizers of F on LpG, πq are (spatially) hesitating Markov processes: at some vertex, the next visited point is not chosen deterministically. For a given Hamiltonian graph G which is not reduced to a Hamiltonian cycle, it would be interesting to describe the probability measures π leading to a transition between non-hesitating and hesitating minimizers.

This issue remains open at present.

Differentiation on Lpπq

This section introduces some elements of differential calculus on Lpπq, which will be helpful in the proof of Theorem 5. Here we will be working mainly with the complete graph K V .

We begin by presenting a more analytical expression for the functional F . For y P V , consider the function

f y : V Q x Þ Ñ 1 tyu pxq πpyq ´1.
Note that πrf y s " 0, so for any L P Lpπq, by irreducibility, there exists a unique function ϕ L y on V satisfying the Poisson equation

" Lrϕ L y s " f y , ϕ L y pyq " 0. ( 22 
)
The following relation with the functional F is well-known:

Lemma 7 For any L P Lpπq and any x, y P V , we have

ϕ L y pxq " E L x rτ y s, so that F pLq " ÿ yPV πpyqπrϕ L y s.
To simplify notation, from now on, we will remove the L in the exponent of E L x and ϕ L y , when the underlying generator L is clear from the context.

Proof

Let us recall a simple argument, which will be used again in the sequel. Through the martingale problem characterization of X, we have that for any given function ϕ on V , the process pM t q tě0 defined by @ t ě 0, M t ϕpX t q ´ϕpX 0 q ´ż t 0 LrϕspX s q ds is a martingale. In particular, for any stopping time τ , the process pM τ ^tq tě0 is also a martingale. Thus, starting from x P V , we get,

E x rM τy^t s " 0 " E x " ϕpX τ ^tq ´ϕpX 0 q ´ż τ ^t 0 LrϕspX s q ds  " E x rϕpX τ ^tqs ´ϕpxq ´Ex "ż τ ^t 0 LrϕspX s q ds  .
Since τ is a.s. finite and ϕpX τ ^tq, t ě 0, uniformly integrable, we obtain, by letting t go to infinity

E x rϕpX τ qs ´ϕpxq ´Ex "ż τ 0 LrϕspX s q ds  " 0.
For any y P V , consider ϕ ϕ y and τ τ y . From ( 22) and from the fact that f y pzq " ´1 for any z P V ztyu, we deduce ϕ y pxq " E x rτ y s.

The last identity of the lemma comes from Since we are looking for minimizers of F on Lpπq, it is natural to differentiate this functional. Let Lpπq be the convex set of normalized Markov generators L admitting π for invariant probability.

The difference with Lpπq is that the elements of Lpπq are not required to be irreducible. For L P Lpπq, r L P Lpπq and P r0, 1q, let L p1 ´ qL ` r L P Lpπq. Define D r L F pLq lim Ñ0 `F pL q ´F pLq . In the proof of the following result, it will be shown that this limit exists. where ψ y is the unique solution of another Poisson equation

" Lrψ y s " r Lrϕ y s, ψ y pyq " 0 . ( 23 
)
Proof Let F π stand for the space of functions f on V whose mean with respect to π vanishes. By restriction to F π , L P Lpπq can be seen as an invertible endomorphism of F π , denote by L ´1 |Fπ its inverse. Similarly, for P r0, 1q, let L ´1 ,|Fπ be the inverse of L on F π . The mapping r0,

1q Q Þ Ñ L being analytical, the same is true for r0, 1q Q Þ Ñ L ´1
,|Fπ . Since we have

@ P r0, 1q, @ y P V, ϕ L y " L ´1 ,|Fπ rf y s ´L´1
,|Fπ rf y spyq, we deduce that the mapping

r0, 1q Q Þ Ñ ϕ L y
is analytical. The same is true for r0, 1q Q Þ Ñ F pL q, due to the equality @ P r0, 1q, F pL q " ÿ yPV πpyqπrϕ L y s.

In particular its derivative D r L F pLq exists and is equal to ř yPV πpyqπrϕ 1 y s, where ϕ 1 y is the derivative of ϕ L y at " 0. Differentiating the relation L rϕ L y s " f y , we get p r L ´Lqrϕ y s `Lrϕ 1 y s " 0.

Furthermore, we have that ϕ 1 y pyq " B ϕ L y pyq| "0 " 0, so that ϕ y ´ϕ1 y satisfies the equation (23) and must be equal to ψ y . The claim then follows from the equality ϕ 1 y " ϕ y ´ψy , for all y P V .

In the above proof, we have seen that r0, 1q Q Þ Ñ F pL q is analytic, so we can differentiate it a second time at " 0. Denote D 2 r L F pLq " B 2 F pL q| "0 .

Lemma 9 For L P Lpπq, r L P Lpπq, we have 

D 2 r L F pLq " ÿ yPV πpyqp2πrϕ y s ´4πrψ y s `2πrψ
D 2 r L F pLq " ÿ yPV πpyqπrϕ 2 y s.
It will be convenient to use these differentiations with respect to particular generators r L P Lpπq. A cycle A in V is a finite sequence pa 0 , a 1 , ..., a n´1 q of distinct elements of V , with n P Nzt1u (up to the identification with pa k , a k`1 , ..., a k`n´1 q, for all k P Z n ). As with Hamiltonian cycles (corresponding to n " N ), we will make the convention that a n " a 0 , as the indices should be seen as elements of Z n . The set of all cycles is denoted by A. For any A P A, there is a unique element L P Lpπq such that @ x, y P V, Lpx, yq ą 0 ô D l P Z n : x " a l and y " a l`1 .

It is indeed the generator, denoted L A in the sequel, given by @ x, y P V, L A px, yq "

$ ' & ' % 1 nπpxq
, if x " a l and y " a l`1 for some l P Z n , ´1 nπpxq , if x " y, 0 , otherwise.

(25)

Lemma 10 Let A " pa l q lPZn P A be given and for y P V , consider the function ψ y defined by (23) with r L " L A . Then we have @ x P V, ψ y pxq " 1 n ÿ lPZn pϕ y pa l`1 q ´ϕy pa l qqpϕ a l pxq ´ϕa l pyqq.

Furthermore, we get that

ÿ yPV πpyqπrψ y s " ´1 n ÿ lPZn ÿ yPV πpyqpϕ y pa l`1 q ´ϕy pa l qqϕ a l pyq " 1 n ˜ÿ lPZn 1 2 E a l`1 rτ 2 a l s ´Eπ rτ a l sE a l`1 rτ a l s ¸,
where E π stands for the expectation relative to the initial distribution π for X.

Proof

For any function ϕ on V , we have L A rϕs " ÿ lPZn ϕpa l`1 q ´ϕpa l q nπpa l q 1 ta l u .

Let ψ be a function such that Lrψs " L A rϕs. Using the martingale problem as in the proof of Lemma 8, we get for any x, y P V ,

ψpyq ´ψpxq " E x "ż τy 0 LrψspX s q ds  " E x "ż τy 0 L A rϕspX s q ds  " ÿ lPZn ϕpa l`1 q ´ϕpa l q n E x "ż τy 0 1 ta l u πpa l q pX s q ds  " ÿ lPZn ϕpa l`1 q ´ϕpa l q n E x "ż τy 0 1 `fa l pX s q ds  " ÿ lPZn ϕpa l`1 q ´ϕpa l q n ˆϕy pxq `Ex "ż τy 0 f a l pX s q ds ˙.
Taking into account that Lrϕ a l s " f a l , we deduce that

E x "ż τy 0 f a l pX s q ds
 " ϕ a l pyq ´ϕa l pxq, so that ψpyq ´ψpxq " ÿ lPZn ϕpa l`1 q ´ϕpa l q n pϕ y pxq `ϕa l pyq ´ϕa l pxqq .

Note that ÿ lPZn ϕpa l`1 q ´ϕpa l q n ϕ y pxq " ϕ y pxq n ÿ lPZn ϕpa l`1 q ´ϕpa l q " 0.

Thus ψpyq ´ψpxq " 1 n ÿ lPZn pϕpa l`1 q ´ϕpa l qq pϕ a l pyq ´ϕa l pxqq .

Considering for y P V the functions ϕ " ϕ y and ψ " ψ y and recalling that ψ y pyq " 0, gives the first relation of the lemma. Integrating this relation with respect to π in x, we get πrψ y s " 1 n ÿ lPZn pϕ y pa l`1 q ´ϕy pa l qqpπrϕ a l s ´ϕa l pyqq.

A well-known result (recall [START_REF] Cui | Eigentime identity for asymmetric finite Markov chains[END_REF] or see e.g. the book of Aldous and Fill [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]) asserts that the quantity ř yPV πpyqϕ y pxq does not depend on x P V . It follows that ÿ yPV πpyqpϕ y pa l`1 q ´ϕy pa l qqπrϕ a l s " 0

and hence ÿ yPV πpyqπrψ y s " ´1 n ÿ yPV πpyq ÿ lPZn pϕ y pa l`1 q ´ϕy pa l qqϕ a l pyq, which is the second equality of the lemma. For any l P Z n , let φ a l be the function defined by: @ x P V, φ a l pxq " ÿ yPV πpyqϕ a l pyqpϕ y pxq ´ϕy pa l qq.

We have ř yPV πpyqπrψ y s " ´1 n ř lPZn φ a l pa l`1 q. To compute φ a l , note that φ a l pa l q " 0 and that Lrφ a l s "

ÿ yPV πpyqϕ a l pyqLrϕ y s " ÿ yPV πpyqϕ a l pyqf y " ÿ yPV πpyqϕ a l pyq ˆ1tyu πpyq ´1" ϕ a l ´πrϕ a l s.
This observation leads us to resort once again to the martingale problem, to get for any x P V , φ a l pa l q " φ a l pxq `Ex "ż τa l 0 ϕ a l pX s q ´πrϕ a l s ds

 " φ a l pxq `Ex "ż τa l 0 ϕ a l pX s q ds  ´πrϕ a l sE x rτ a l s " φ a l pxq ´πrϕ a l sϕ a l pxq `Ex "ż τa l 0 ϕ a l pX s q ds  " φ a l pxq ´πrϕ a l sϕ a l pxq `1 2 E x rτ 2 a l s
according to Lemma 11 below. Recalling that φ a l pa l q " 0, we get

φ a l pxq " πrϕ a l sϕ a l pxq ´1 2 E x rτ 2 a l s (29) 
and this leads immediately to the last equality of the lemma.

In the previous proof, we needed the following result.

Lemma 11 For any x, y P V , we have

E x "ż τy 0 ϕ y pX s q ds  " 1 2 E x rτ 2 y s.

Proof

Coming back to the probabilistic interpretation of ϕ y , we get

E x "ż τy 0 ϕ y pX s q ds  " ż `8 0 E x " 1 tsďτyu E Xs rτ y s ‰ ds " ż `8 0 ż `8 0 E x " 1 tsďτyu E Xs r1 ttďτyu s ‰ ds dt " ż `8 0 ż `8 0 E x " 1 tsďτyu Er1 ttďτy˝θsu |σpX u : u P r0, ssqs ‰ ds dt " ż `8 0 ż `8 0 E x " 1 tsďτyu 1 ttďτy˝θsu ‰ ds dt " ż `8 0 ż `8 0 E x " 1 ts`tďτyu ‰ ds dt,
where we used the Markov property and where θ s is the shift by time s of the trajectories of X.

Using the Fubini theorem, we get

ż `8 0 ż `8 0 E x " 1 ts`tďτyu ‰ ds dt " E x "ż `8 0 ż `8 0 1 ts`tďτyu ds dt  " 1 2 E x "ż `8 0 ż `8 0 1 tsďτyu 1 ttďτyu ds dt  " 1 2 E x « ˆż τy 0 ds ˙2ff " 1 2 E x rτ 2 y s
Before treating the second derivative in a similar way, let us present two remarks about the quantities entering Lemma 10. We believe they will be relevant for further study of the minimizers of the mapping F on Lpπq.

Define the following quantities, associated with a given L P Lpπq:

@ x, y P V, h L px, yq 1 2 E y rτ 2
x s ´Eπ rτ x sE y rτ x s @ A " pa 1 , ..., a n q P A,

H A pLq " 1 n ÿ lPZn h L pa l , a l`1 q (30)
Lemma 10 can be rewritten under the form @ A " pa 1 , ..., a n q P A,

D A F pLq " F pLq ´HA pLq (31) 
where D A F pLq is a short hand for D L A F pLq.

Let us say that a cycle A " pa 1 , ..., a n q P A is below the generator L, if @ l P Z n , Lpa l , a l`1 q ą 0 and denote by ApLq the set of cycles below L. Then we have:

Lemma 12 Assume that L P Lpπq is a minimizer of F on Lpπq. Then, @ A P ApLq, H A pLq " F pLq, @ A P AzApLq, H A pLq ď F pLq.

In particular, we get

F pLq " max APA H A pLq.

Proof

Consider a minimizer L P Lpπq of F on Lpπq and A P ApLq. Then for P R small enough, p1 ´ qL ` L A remains a Markov generator and belongs to Lpπq. Differentiating F pL q at " 0, we thus get that D A F pLq " 0, which implies H A pLq " F pLq. For A P AzApLq, the operator p1 ´ qL ` L A is not Markovian for ă 0. So D A F pLq only corresponds to the right derivative of F pL q at " 0 `. The minimizing assumption on L implies that D A F pLq ě 0, namely H A pLq ď F pLq. The last identity of the lemma is an immediate consequence of the previous observations and of the fact that there exists at least one cycle below L, by irreducibility.

Next we mention a spectral relation satisfied by the quantities ph L px, yqq x,yPV , reminiscent of (15). Indeed, it is proved in a similar way, as will become clear from the following proof where the arguments for (15) will be recalled.

Lemma 13 For any L P Lpπq, he have

ÿ x,yPV πpxqπpyqh L px, yq " ÿ λPΛpLq 1 λ 2 .
(32)

Proof

As in the proof of Lemma 7, let F π stand for the space of functions f on V whose mean with respect to π vanishes and denote by Π the orthogonal projection from L 2 pπq to F π :

@ f P L 2 pπq, Πrf s " f ´πrf s.
Let pg y q yPV be an orthonormal basis of L 2 pπq and R be any endomorphism of F π . We have seen in Lemma 6 of [START_REF] Miclo | An absorbing eigentime identity[END_REF] that trpRq " ÿ yPV πrΠrg y sRrΠrg y sss.

In [START_REF] Miclo | An absorbing eigentime identity[END_REF], we considered the orthonormal basis given by @ y P V, g y 1 tyu a πpyq and the operator L ´1 |Fπ defined in Lemma 7, in order to conclude (15), taking into account the fact that Πrg y s " a πpyqf y , for all y P V , and that trpL ´1 |Fπ q " ř λPΛpLq 1 λ . To prove (32), we use R " pL ´1 |Fπ q 2 . Remark that for any y P V , pL ´1 |Fπ q 2 rf y s " L ´1 |Fπ rϕ y ´πrϕ y ss " φ y ´πrφ y s where φ y is the unique solution of

"

Lrφ y s " ϕ y ´πrϕ y s φ y pyq " 0.

(This notation agrees with that introduced in (28)). Thus we get pϕ y pa l`1 q ´ϕy pa l qqpϕ a l pa 1 k`1 q ´ϕa l pa 1 k qqpπrϕ a 1 k s ´ϕa 1 k pyqq " ´1 nn 1 ÿ yPV ÿ lPZn,kPZ n 1 πpyqpϕ y pa l`1 q ´ϕy pa l qqpϕ a l pa 1 k`1 q ´ϕa l pa 1 k qqϕ a 1 k pyq,

ÿ λPΛpLq 1 λ 2 " trppL ´1 |Fπ q 2 q " ÿ yPV πrΠrg y spL ´1 |Fπ q 2 rΠrg
where we used again (recall ( 27)) that ÿ yPV πpyqpϕ y pa l`1 q ´ϕy pa l qq " 0.

Remember also (cf. (28)) that

@ x P V, ÿ yPV πpyqpϕ y pxq ´ϕy pa 1 k qqϕ a 1 k pyq " φ a 1 k pxq " ´hL pa 1 k , xq.
Thus substituting in (37) ϕ y pa l`1 q ´ϕy pa l q " ϕ y pa l`1 q ´ϕy pa 1 k q ´pϕ y pa l q ´ϕy pa 1 k qq we deduce (36). The last equality of the lemma is obtained by expressing h L and ϕ x , for x P V , in terms of expectation of hitting times.

Denote by H A 1 ,A pLq the expression given by (36). Considering the case A 1 " A, Lemma 9 leads to D A,A F pLq " 2F pLq `4H A pLq `2H A,A pLq where D A,A F pLq is a shorthand for D 2 L A F pLq. But the importance of Lemma 14, is because, if we define for any A, A 1 P A, D A 1 ,A F pLq D A 1 pD A F pLqq, then we get D A 1 ,A F pLq " 2pF pLq `HA pLq `HA 1 pLq `HA 1 ,A pLqq.

The previous expressions for the differentiations up to order 2 with respect to Markov generators associated to cycles can be extended to general Markov generators from Lpπq. To go in this direction, we need to recall a simple result:

Lemma 15 The extremal points of the convex set Lpπq are exactly the generators L A for A P A.

As a consequence, any L P Lpπq can be decomposed into a barycentric sum

L " ÿ APA ppAqL A ,
where p is a probability measure on A. For an extensive discussion of such decompositions, see the book of Kalpazidou [START_REF] Kalpazidou | Cycle representations of Markov processes[END_REF]. Note that the above decomposition is not unique in general, because Lpπq is not a simplex for N ě 3. For instance, the generator

L 1 2 ¨´2 1 1 1 ´2 1 1 1 ´2 '
of the simple random walk on Z 3 can be written in the form L " 1 2 L p0,1,2q `1 2 L p0,2,1q and L "

1 3 L p0,1q `1 3 L p1,2q `1 3 L p2,0q . Nevertheless, given r L, p L P Lpπq, decompose them into r L " ÿ APA r ppAqL A , p L " ÿ APA p ppAqL A ,
where r p, p p are probability measures on A. Then we get for any L P Lpπq.

D r L F pLq " ÿ APA r ppAqD A F pLq, D p L D r L F pLq " ÿ A,A 1 PA r ppAqp ppA 1 qD A,A 1 F pLq.
It follows that we can write

D r L F pLq " F pLq ´Hr L pLq, D p L D r L F pLq " 2pF pLq `Hr L pLq `Hp L pLq `Hr L, p L pLqq, where H r L pLq " ÿ x "y πpxqLpx, yqh L px, yq H p L, r L pLq " ÿ x "y, x 1 "y 1 πpx 1 q p Lpx 1 , y 1 qπpxq r Lpx, yqphpx 1 , yq ´hpx 1 , xqqpϕ x py 1 q ´ϕx px 1 qq
(definitions which conform to (30) and (36) when r L " L A and p L " L A 1 ).

In view of ( 26) and (35), the following quantity seems to play an important role in bounding the derivatives:

M pLq max y,x,x 1 PV
ˇˇϕ y pxq ´ϕy px 1 q ˇ" max y,xPV ϕ y pxq.

Proposition 16 We have for any L P Lpπq and r L, p L P Lpπq,

F pLq ď M pLq, ˇˇD r L F pLq ˇˇď M pLq `M pLq 2 , ˇˇD p L D r L F pLq ˇˇď 2pM pLq `M pLq 2 `M pLq 3 q.

Proof

The first bound is obvious. For the second, note that (26) can be extended to the solution of (23) for general r L P Lpπq: we get @ y, x P V, ψ y pxq "

ÿ z "z 1 PV
πpzq r Lpz, z 1 qpϕ y pz 1 q ´ϕy pzqqpϕ z pxq ´ϕz pyqq.

Taking into account the renormalization of r L, it follows that for any y P V , we have for the supremum norm:

}ψ y } 8 ď M pLq 2
For the third bound of the lemma, note that (35) can also be extended to Ψ y for given y P V , which is the solution of

"

LrΨ y s " p Lrψ y s Ψ y pyq " 0, where ψ y is the solution of (23). It follows that for any x, y P V , Ψ y pxq "

ÿ u "v, u 1 "v 1 πpu 1 q p Lpu 1 , v 1 qπpuq r
Lpu, vqpϕ y pvq ´ϕy puqqpϕ u pv 1 q ´ϕu pu 1 qqpϕ u 1 pxq ´ϕu 1 pyqq. But the norm |||L ´1 |Fπ ||| 8Ñ8 does not seem so easy to evaluate. One can instead resort to the operator norm from L 2 pπq to L 2 pπq as follows. Denoting I the identity operator on F π , we have as above

Thus

M pLq ď |||I||| 2Ñ8 |||L ´1 |Fπ ||| 2Ñ2 max yPV }f y } 2 `p1 ´π^q M pLq ď 1 ? π ^|||L ´1 |Fπ ||| 2Ñ2 max yPV d 1 πpyq `1 ´πpyq `p1 ´π^q M pLq ď 1 ? π ^|||L ´1 |Fπ ||| 2Ñ2 c 1 `1 π ^`p1 ´π^q M pLq ď |||L ´1 |Fπ ||| 2Ñ2 ? 2 π ^`p1 ´π^q M pLq.
As a consequence, we get

M pLq ď ? 2|||L ´1 |Fπ ||| 2Ñ2 π 2 ^.
This expression is advantageous when L is reversible with respect to π, since in this situation, |||L ´1 |Fπ ||| 2Ñ2 " 1{λ, where λ is the spectral gap of L, namely the smallest element of ΛpLq (which is then in p0, `8q). Nevertheless, since we are interested in F pLq, note there is a simple comparison:

M pLq ď F pLq π 2 ^. ( 38 
)
20

We now concentrate on the case π " υ, the uniform measure and L " L A , with A a Hamiltonian cycle. The following result will be crucial in the proof of Theorem 5.

Proposition 17 For any A P H and r

A P AztAu, we have on Lpυq,

D r A F pL A q ě N ´1 2N .

Proof

There is no loss of generality in assuming that V " Z N and that A " p0, 1, 2, ..., N ´1q. To simplify the notation, let us write L " L A . By invariance of L and υ through the rotations 

Z N Q x Þ Ñ x
h N : r0, N ´1s Q r Þ Ñ 1 2 `r2 ´pN ´2qr ˘.
This function h N is decreasing on r0, pN ´2q{2s, increasing on rpN ´2q{2, N ´1s and we have h N p0q " 0 ă pN ´1q{2 " h N pN ´1q . Thus from the definition (30), we get that

@ r A P A, H r A pLq ď h N pN ´1q " H A pLq.
More precisely, with r A pa 0 , a 1 , ..., a n q P A, we get, except if for any l P Z n , h N pρpa l , a l`1 qq "

h N pN ´1q, H r A pLq ď n ´1 n h N pN ´1q `1 n maxth N p0q, h N pN ´2qu " n ´1 n H A pLq ď N ´1 N H A pLq,
where in the equality, we used that h N p0q " h N pN ´2q " 0 and that h N pN ´1q " H A pLq, according to (30). But if for any l P Z n , we have h N pρpa l , a l`1 qq " h N pN ´1q, it means that a l`1 " a l `1. Since this must be true for all l P Z n , it follows that n " N and that r A must be of the form pk, k `1, ..., k `N ´1q, for some k P Z N , namely, it is Hamiltonian.

From (31), we obtain,

@ r A P AztAu, D r A F pLq " F pLq ´H r A pLq ě F pLq ´N ´1 N H r A pLq " D A F pLq `1 N H A pLq " N ´1 2N
due to D A F pLq " 0, because L is not modified by modifying it in the direction of the cycle A.

Above we worked with the complete graph K V and the associated set of Markov generators Lpπq. But all the previous considerations can be extended to the case of LpG, πq, where the graph G is as in the introduction. The only difference is that A has to be replaced by ApGq, the set of cycles using only edges from E. For instance, Lemma 15 has to be replaced by Lemma 18 The extremal points of the convex set LpG, πq (the set of normalized Markov generators L, compatible with G and admitting π for invariant probability) are exactly the generators L A for A P ApGq.

Perturbations of the uniform probability measure

Our main goal here is to show Theorems 5 and 6. Their proofs are respectively based on small and large perturbations of the uniform probability measure υ.

First we check that all Hamiltonian cycles have the same speed in Lpπq, as was announced in the introduction in the discrete time setting and for the uniform distribution υ, but this is true more generally.

Lemma 19 Let A " pa 0 , ..., a N ´1q P H be a Hamiltonian cycle, we have

F pL A q " N 2 ÿ
x "y πpxqπpyq.

In particular this quantity does not depend on the choice of the Hamiltonian cycle A.

Proof

The generator L A can be represented by the matrix

¨´1 N πpa 0 q 1 N πpa 0 q 0 ¨¨¨¨¨¨0 0 ´1 N πpa 1 q 1 N πpa 1 q 0 ¨¨¨0 ¨¨¨¨¨0 ¨¨¨¨¨¨0 ´1 N πpa N ´2q 1 N πpa N ´2q 1 N πpa N ´1q 0 ¨¨¨¨¨¨0 ´1 N πpa N ´1q ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
It follows that the polynomial in X given by

P pXq det ¨X ´1 N πpa 0 q 1 N πpa 0 q 0 ¨¨¨¨¨¨0 0 X ´1 N πpa 1 q 1 N πpa 1 q 0 ¨¨¨0 ¨¨¨¨¨0 ¨¨¨¨¨¨0 X ´1 N πpa N ´2q 1 N πpa N ´2q 1 N πpa N ´1q 0 ¨¨¨¨¨¨0 X ´1 N πpa N ´1q ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, is equal to X ś λPΛpL A q pX ´λq. Expanding the latter expression into Xpα 0 `α1 X `¨¨¨ὰ N ´1X N ´1q, we get that

ÿ λPΛpL A q 1 λ " ´α1 α 0
This is indeed a consequence of

α 0 " p´1q N ´1 ź mP N ´1 θ m α 1 " p´1q N ´2 ÿ kP N ´1 ź mP N ´1 ztku θ m
where ΛpL A q is parametrized as the multiset consisting of the θ m , for m P N ´1 t1, 2, ..., N ´1u. On another hand, we compute directly from the definition of P pXq, by expanding the determinant, that P pXq "

ź lPZ N ˆX ´1 N πpa l q ˙´ź lPZ N ˆ´1 N πpa l q İt follows that α 0 " ÿ kPZ N ź mPZ N ztku ˆ´1 N πpa m q α1 " 1 2 ÿ k "lPZ N ź mPZ N ztk,lu ˆ´1 N πpa m q
(the factor 1{2 is due to the fact that the couple pk, lq also appears as pl, kq). Multiplying the numerator and the denominator by ś mPZ N p´N πpa m qq, we get that

´α1 α 0 " N 2 2 ř k "lPZ N πpa k qπpa l q N ř mPZ N πpa m q
and this leads to the announced result.

In particular, for π " υ, the uniform probability measure on V , we get:

Corollary 20 For π " υ, we have for any Hamiltonian cycle A,

F pL A q " N ´1 2 .
The next result is the crucial step in the proof of Theorem 5. For its statement, introduce for any A P H and P p0, 1q, N A, tL " p1 ´tqL A `tr L : t P r0, q and r L P Lpπqu (39)

This set is a neighborhood of L A in Lpπq and observe that we would have ended with the same set if we had required in this definition that r L belong to the convex hull generated by the L r A , for r A P AztAu. Define

1 pN, π ^q π 4 ^ln ˆ1 `1 N π 2 ^˙, 2 pπ ^q 1 56 π 12 ^, pN, π ^q 1 pN, π ^q ^ 2 pπ ^q.
Lemma 21 For N ě 2 and any A P H, L A is the unique minimizer of F over N A, pN,π^q .

Proof

Assume that for some given A P H, L A is not the unique minimizer of F over N A, pN,π^q . Then we can find t P p0, pN, π ^qq and a probability p on AztAu, such that F pL t q ď F pL A q, with

L t p1 ´tqL A `tr L, r L ÿ r APAztAu pp r AqL r A .
Applying Taylor-Lagrange formula to the function r0, ts Q s Þ Ñ F pL s q, we get there exists s P r0, ts such that

F pL t q " F pL A q `tD r L F pL A q `t2 2 D 2 r L F pL s q.
Taking into account Propositions 16 and 17 and (38), we obtain

F pL t q ě F pL A q `t N ´1 2N ´t2 ˆF pL s q π 2 ^`F pL s q 2 π 4 ^`F pL s q 3 π 6 ^˙. (40) 
To evaluate F pL s q, note that for s P p0, tq,

B s F pL s q " D r L F pL s q ď M pL s q `M pL s q 2 ď F pL s q π 2 ^`F pL s q 2 π 4 ^.
Classical computations show that if a C 1 function f : r0, ts Ñ p0, `8q satisfies B s f psq ď af psq bf 2 psq for all s P r0, ts, where a, b ą 0, then assuming f p0q exppbtq ă f p0q `b{a, we get @ s P r0, ts, f psq ď bf p0q exppbtq b `af p0qp1 ´exppbtqq .

In particular, if

exppbtq ă 1 `b{p2af p0qq, (41) 
then

@ s P r0, ts, f psq ď 2 ˆf p0q `b 2a ˙.
Let us apply this observation with the mapping r0, ts Q s Þ Ñ F pL s q and a 1{π 2 ^, b " 1{π 4 ^. Since

F pL 0 q " F pL A q " N 2 ÿ x "yPV πpxqπpyq ď N 2 ,
we get that condition (41) is satisfied, due to the definition of 1 pN, π ^q and to the fact that t P p0, 1 pN, π ^qq. It follows that,

@ s P r0, ts, F pL s q ď N `1 π 2 ď 2 π 2 ^.
since π ^ď 1{N . Substituting this bound in (40), we deduce that

F pL t q ě F pL A q `t N ´1 2N ´t2 ˆ2 π 4 ^`4 π 8 ^`8 π 12 ^ě F pL A q `t 1 4 ´14 π 12 ^t2
The r.h.s. is strictly larger than F pL A q if t ă 2 pπ ^q and this is in contradiction with our initial assumption.

Denote for any π P P `pV q, F ^pπq inftF pLq : L P Lpπqu.

Another ingredient in the proof of Theorem 5 is:

Lemma 22 The mapping P `pV q Q π Þ Ñ F ^pπq is continuous.

Proof

Let L be the set of irreducible and normalized Markov generators (so that L " \ πPP `pV q Lpπq), endowed with the topology inherited from R V 2 . The functional F is defined on L and (15) is valid on L. As a consequence, F is continuous on L. Indeed, if pL n q nPN is a sequence of elements of L converging to L P L, then according to Paragraph 5 of Chapter 2 of Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF], we have lim nÑ8 ΛpL n q " ΛpLq and so lim nÑ8 F pL n q " F pLq. Next consider a sequence pπ n q nPN of elements from P `pV q converging to π P P `pV q and such that the sequence pF ^pπ n qq nPN admits a limit. For all n P N, let L n be an element from Lpπ n q such that F ^pπ n q ď F pL n q ď F ^pπ n q `1 n

Due to the normalization condition and to the belonging of π to P `pV q, we can extract a subsequence (still denoted pL n q nPN below) from pL n q nPN converging to some generator L. It is clear that L is normalized and that π is invariant for L. Let us check that L is irreducible. Fix x P V .

For any n P N, let X pnq pX pnq t q tě0 be a Markov process starting from x and whose generator is L n . It is not difficult to deduce from the corresponding martingale problems, that X pnq converges in law (with respect to the Skorokhod topology) to a Markov process starting from x and whose generator is L. Thus for any y P V and T ě 0, lim nÑ8 E x rT ^τ pnq y s " E x rT ^τy s (with an obvious notation). It follows that

E x rT ^τy s ď lim inf nÑ8 E x rτ pnq y s ď lim inf nÑ8 1 π n pxqπ n pyq F pL n q " 1 πpxqπpyq lim inf nÑ8 F ^pπ n q ď N 2πpxqπpyq
according to Lemma 19. Letting T go to infinity, we get E x rτ y s ď N {p2π 2 ^q. This bound, valid for all x, y P V , implies that L is irreducible and thus L P Lpπq. Furthermore, the above arguments show that lim nÑ8

F ^pπ n q " lim nÑ8 F pL n q " F pLq ě F ^pπq.
So F ^is lower continuous on P `pV q. By considering the sequence pπ n q nPN identically equal to π, we also get that the infimum defining F ^pπq is attained.

To show that F ^is upper continuous on P `pV q, let again pπ n q nPN be a sequence of elements from P `pV q converging to some π P P `pV q and such that the sequence pF ^pπ n qq nPN admits a limit. According to the previous remark, there exists L P Lpπq such that F pLq " F ^pπq. For any n P N, consider the matrix r L n given by @ x, y P V, r L n px, yq πpxq π n pxq Lpx, yq.

It is immediate to prove that r L n is an irreducible Markov generator leaving π n invariant. But it may not be normalized, so let κ n ą 0 be such that L n κ n r L n belongs to Lpπ n q. There is no difficulty in checking that L n converges to L and thus that lim nÑ8 F pL n q " F pLq " F ^pπq. Thus passing into the limit in F pL n q ě F ^pπ n q, we deduce that

F ^pπq ě lim nÑ8 F ^pπ n q as desired.
With all these ingredients, we can now come to the

Proof of Theorem 5

Note that it is sufficient to consider the case where G is the complete graph over V , since F ^pπq ď mintF pLq : L P LpG, πqu, for any graph G and positive probability measure π on V .

The main argument is by contradiction. Assuming that the statement of Theorem 5 is not true, we can find a sequence pπ n q nPN converging to υ, such that for all n P N, there exists L n P Lpπ n qztL πn,A : A P Hu with F pL n q " F ^pπ n q. (Here we have included π n in the index of L πn,A to underscore the fact that this generator, associated to a Hamiltonian cycle A, also depends on the underlying invariant probability π n .) As seen in the proof of Lemma 22, a subsequence (still denoted pL n q nPN ) converging toward some L P Lpυq can be extracted from pL n q nPN . We furthermore have lim nÑ8 F pL n q " F pLq and by Lemma 22 lim nÑ8 F ^pπ n q " F ^pυq.

It follows that F pLq " F ^pυq. From Theorem 4, we deduce that there exists A P H such that L " L υ,A . Using again the fact that

lim nÑ8 π n " υ, (43) 
we get that lim nÑ8 L πn,A " L υ,A and thus lim nÑ8 pL n ´Lπn,A q " 0.

(44)

Consider r min nPN π n,^, which is positive due to (43), and let pN, rq, with the notation introduced before Lemma 21. From (44), we deduce that for n P N large enough, L n belongs to N pπ n , A, q, defined as in (39), with π replaced by π n . Then Lemma 21 asserts that L n " L πn,A , because L n is a minimizer of L over Lpπ n q. This is in contradiction with our initial assumption.

To finish this section, we consider large perturbations of the uniform probability measure υ.

Proof of Theorem 6

Let G " pV, Eq be a finite oriented connected graph which is not a Hamiltonian cycle. Then we can find a cycle A pa 0 , a 1 , ..., a n´1 q P ApGq with n ă cardpV q. Denote r V ta 0 , a 1 , ..., a n´1 u and p V V z r V . By the strong connectivity of G, we can find a subset p E of oriented edges from E, such that cardp p Eq " cardp p V q and for any x P p V we can find exactly one y P V with px, yq P p E. Putting together the edges from A and those from p E, we get a graph G on V looking like the following picture, where the cycle is oriented clockwise and the trees are oriented toward the cycle. This generator is not irreducible, since it does not allow the chain to go from the cycle A to p V . Nevertheless, its unique invariant probability measure π is the uniform probability measure on r V . The generator L r then satisfies an extended normalization condition, in the sense that ÿ

x "yPV πpxqL r px, yq " 1

The interest in L r is because it is easy to find its eigenvalues:

ΛpL r q " Λp r L A q \ trr| p V |su
where r L A is the generator corresponding to the Hamiltonian cycle given by A on r V and trr| p V |su is the multiset consisting of the value r with the multiplicity | p V |. This identity is an immediate consequence of following decomposition of L r , where all the elements of r

V have been put before those of p V and where the elements of p V have been ordered so that the (oriented) distance to r V is non-decreasing (in particular the last element corresponds to a leaf of G):

L r " ˆr L A 0 C D ˙.
In the r.h.s., the p V ˆp V matrix D is sub-diagonal and its diagonal consists only of ´r. Formula (15) enables to extend the functional F to L r and we get

F pL r q " F p r L A q `|V | r .
In particular, it follows that lim rÑ`8

F pL r q " F p r L A q " n ´1 2 ă F pL H q
for any Hamiltonian cycle H P HpGq, where we used twice Corollary 20. From now on, we fix r ą 0 large enough, so that F pL r q ă F pL H q (45) for any Hamiltonian cycle H P HpGq.

For any ą 0, consider the Markov generator

L r, Z ´1 r, pL r ` L G q
where ' the Markov generator L G is defined by

@ x " y P V, L G px, yq " 1 , if px, yq P E 0 , otherwise ' the constant Z r, ą 0 is such that L r, is normalized (this is possible because L r ` L G is irreducible on V ).
For r, ą 0, denote π r, the invariant probability measure of L r, . It is clear that as goes to 0 `, π r, converges toward π. It follows that lim

Ñ0 `Zr, " 1 lim Ñ0 `Lr, " L r
From the general theory of perturbation of spectra of finite operators (see e.g. the beginning of the second chapter of the book of Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF]), we have lim Ñ0 `F pL r, q " F pL r q.

Taking into account (45), we can thus find ą 0 small enough so that F pL r, q ă F pL H q for any Hamiltonian cycle H P HpGq. Namely the probability measure π r, satisfies the statement of Theorem 6. One would have remarked that this probability measure π r, is quite far away from υ, because it gives very small weight to the elements of p V .

The discrete time framework

Here we discuss the links between the search of the fastest continuous-time Markov processes with the analogous problem in discrete time.

Let a graph G " pV, Eq and a positive probability measure π on V be fixed and denote by KpG, πq the set of irreducible Markov kernels K on V whose permitted transitions are edges from E (plus self-loops, i.e., the possibility to stay at the same place) and leaving π invariant, namely satisfying πK " π. For any K P KpG, πq, let X pX n q nPZ `be a Markov chain whose transitions are dictated by K. For any y P V , recall (see [START_REF] Aldous | Reversible Markov Chains and Random Walks on Graphs[END_REF]) that τ y inftn P Z `: X n " yu.

On KpG, πq, we consider the functional F defined by @ K P KpG, πq, FpKq ÿ

x,yPV πpxqπpyqE x rτ y s, where subscript x in the expectation indicates that X is starting from x P V .

To any K P KpG, πq, we associate ΘpKq the multiset consisting of the spectrum of K, removing the eigenvalue 1 (of multiplicity 1). It is a priori a sub(multi)set of the closed unit disk centered at 0 of C left invariant by conjugation. Analogously to the continuous-time situation, we have the eigentime relation

@ K P KpG, πq, FpKq " ÿ θPΘpKq 1 1 ´θ .
To any L P LpG, πq, associate

l maxtLpxq : x P V u, K I `L l .
It is immediate to check that K P KpG, πq. Furthermore, we have ΘpKq " 1 ´ΛpLq{l, so that

FpKq " lF pLq.

Taking into account that

l ě ÿ xPV πpxqLpxq " 1,
it follows that FpKq ě F pLq. We will denote Φ : KpG, πq Ñ LpG, πq the mapping L Ñ K defined above. Conversely, to any K P KpG, πq, associate

k 1 ř xPV πpxqp1 ´Kpx, xqq , L " kpK ´Iq.
It is immediate to check that L P LpG, πq. Furthermore, we get ΛpLq " kp1 ´ΘpKqq and it follows that F pLq " FpKq{k.

Taking into account that

k ě 1 ř xPV πpxq " 1,
we get that F pLq ď FpKq. Denote Ψ : LpG, πq Ñ KpG, πq the mapping L Ñ K as above.

Remark 23 The mappings Φ and Ψ are not inverse of each other, because the image of LpG, πq by Φ is included into K 0 pG, πq tK P KpG, πq : D x P V with Kpx, xq " 0u. Nevertheless, we have that Φ and Ψ 0 are inverse of each other, where Ψ 0 is the restriction of Ψ to K 0 pG, πq.

When one is looking for the minimal value of F on KpG, πq, one can restrict attention to K 0 pG, πq, because mintFpKq : K P KpG, πqu " mintFpKq : K P K 0 pG, πqu. Indeed, for any K P KpG, πq, there exist a unique r K P K 0 pG, πq and α P r0, 1q such that K " p1 ´αq r K `αI. Then we get ΘpKq " p1 ´αqΘp r Kq `α, i.e. Θ ´1 " p1 ´αqpΘp r Kq ´1q. This implies that

Fp r

Kq " p1 ´αqFpKq ď FpKq.

As in (42), denote F ^pG, πq inftF pLq : L P LpG, πqu, F ^pG, πq inftFpKq : K P KpG, πqu.

From the above considerations, we deduce:

Proposition 24 We always have F ^pG, πq ď F ^pG, πq (in particular, when looking for the fastest Markov chain in the sense we have defined, it is preferable to resort to continuous time rather than to discrete time). Furthermore, assume that there is a minimizer L P LpG, πq of F such that Lpxq does not depend on x P V (it is then equal to 1). Then F ^pG, πq " F ^pG, πq.

Proof

Consider K P KpG, πq. We have seen that FpKq ě F pΨpKqq ě F ^pG, πq, so taking the infimum over K P KpG, πq, we get the first bound.

Conversely, if L P LpG, πq is a minimizer of F whose diagonal is constant, then l " 1 in (46), namely FpΦpLqq " F pLq " F ^pG, πq. From the previous inequality, it follows that ΦpLq is indeed a minimizer of F on KpG, πq and we conclude that F ^pG, πq " F ^pG, πq.

In association with Theorem 4, the above proposition also enables us to recover the result of Litvak and Ejov [START_REF] Litvak | Markov chains and optimality of the Hamiltonian cycle[END_REF] stating that for any Hamiltonian graph G, the permutation matrices associated to the Hamiltonian cycles of G are the unique minimizers of F on KpG, υq. But Proposition 24 does not enable us to extend directly Theorem 6 to the discrete time setting, because the diagonal of the generator associated to a Hamiltonian cycle is constant if and only if the underlying invariant probability measure is uniform. This extension is nevertheless true. To show it, note that the differentiation technique of Section 3 can be adapted to KpG, πq in a straightforward manner.

A APPENDIX: Computations on the simplest example of non-Hamiltonian connected graph

The length 2 segment S 2 pt0, 1, 2u, tp0, 1q, p1, 0q, p1, 2q, p2, 1quq is the simplest non-Hamiltonian (strongly) connected graph. We compute here the minimizer of F on LpS 2 , πq, for any positive probability measure π on t0, 1, 2u. We hope this example will motivate further investigation of the minimizers of F in the challenging non-Hamiltonian framework.

To simplify the notation, write x " πp0q, y " πp1q and z " πp2q, by assumption we have that x, y, z ą 0 and x `y `z " 1. Up to exchanging the vertices 0 and 2, we assume that |x ´1{2| ě |z ´1{2|.

Any The first two equalities correspond to the invariance of π for L (here π is even reversible for the birth and death generator L) and the third one is the normalization condition, it can be rewritten 2xa `2zb " 1 (47)

Denote ΛpLq " tλ 1 , λ 2 u, its elements are the non-zero roots in X of the polynomial detpX `Lq. We compute that detpX `Lq " XpX 2 ´pa `α `β `bqX `ab `aβ `αbq, so that λ 1 `λ2 " a `α `β `b, λ 1 λ 2 " ab `aβ `αb.

From (15), we have Taking into account (47), the minimizer of F on LpS 2 , πq corresponds to the minimizer of

F
p0, 1{p2xqq Q a Þ Ñ 2z 1 ´z 1 ´2xa `1 ´x a . (48) 
We are thus led to the second order equation in a:

4xpzp1 ´zq ´xp1 ´xqqa 2 `4xp1 ´xqa ´p1 ´xq " 0.

(49)

Due to the assumption |x ´1{2| ě |z ´1{2|, the first coefficient is non-negative. We consider two cases.

' If |x ´1{2| " |z ´1{2|, then (49) degenerates into a first order equation and a 1{p4xq is the minimizer of the mapping (48). It follows that the minimizer of F on LpS 2 , πq is

L ^ ¨´1 4x 1 4x 0 1 4y ´1 2y 1 4y 0 1 4z ´1 4z ‹ ‹ ‹ ‹ ‹ ‹ '
and the minimal value F ^pS 2 , πq of F on LpS 2 , πq is F pL ^q " 4p1 ´zqz `4p1 ´xqx " 8xp1 ´xq.

In particular, for π " υ, the uniform distribution on t0, 1, 2u, we get 

L ^ 1 4 
¨´3

  ÿ xPV πpxqE x rτ y s " ÿ xPV πpxqϕ y pxq " πrϕ y s.

Lemma 8

 8 With the above notation, we have D r L F pLq " ÿ yPV πpyqpπrϕ y s ´πrψ y sq " F pLq ´ÿ yPV πpyqπrψ y s.
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 1 Figure 1: the graph G

  Markov generator L from LpS 2 , πq has the form L ¨´a a 0 α ´α ´β β 0 b ´b ' where the coefficients a, α, β, b ą 0 satisfy, xa " yα, yβ " zb, xa `ypα `βq `zb " 1.

  ProofFor any y P V , denote ϕ 2 y the second derivative of ϕ L y at " 0. By differentiating twice the relation L rϕ L y s " f y at " 0, we getpB 2 L qrϕ y s `2pB L qrϕ 1 y s `Lrϕ2 y s " 0. namely, since B 2 L " 0, Lqrϕ y ´ψy s " 2Lrϕ y ´ψy s ´2r Lrϕ y ´ψy s " 2Lrϕ y ´ψy s ´2r Lrϕ y s `2r Lrψ y s " 2Lrϕ y ´ψy s ´2Lrψ y s `2r Lrψ y s " Lr2ϕ y ´4ψ y s `2r Lrψ y s. It follows that ϕ 2 y {2 ´ϕy `2ψ y satisfies the first condition of equation (24). It also vanishes at y, since ϕ 2 y pyq " 0 " ϕ y pyq " ψ y pyq. Thus we get that ϕ 2 y " 2ϕ y ´4ψ y `2ψ 1 y . The announced result is now a consequence of the equality

	Lrϕ 2 y s " 2pL ´r Lqrϕ 1 y s	
	" 2pL ´r	
					1 y sq
	" 4D	r L F pLq ´2F pLq	`2 ÿ	πpyqπrψ 1 y s,
				yPV
	where ψ 1 y is the unique solution of			
	"	Lrψ 1 y s " r Lrψ y s, ψ 1 y pyq " 0	.	(24)

  Lrξ y s " L A 1 rψ y s and ξ y pyq " 0. It follows that Ψ y " ξ y , as announced.

	we get that We deduce that				
		πrψ 1 y s "	1 nn 1	lPZn ÿ	pϕ y pa l`1 q ´ϕy pa l qq	kPZ n 1 ÿ	pϕ a l pa 1 k`1 q ´ϕa l pa 1 k qqpπrϕ a 1 k s ´ϕa 1 k pyqq
	and				
	ÿ yPV	πpyqπrψ 1 y s "	1 nn 1	ÿ yPV	πpyq	ÿ lPZn,kPZ n 1
							y sss
						"	ÿ	πpyqπrf y pL ´1 |Fπ q 2 rf y ss
							yPV
							ÿ
						"	πpyqπrf y pφ y ´πrφ y sqs
							yPV
							ÿ
						"	πpyqπrf y φ y s
							yPV
							ÿ
						"	πpyqφ y pyq ´πpyqπrφ y s
							yPV
						"	´ÿ yPV	πpyqπrφ y s
						"	´ÿ x,yPV	πrxsπrysφ y pxq.

  }Ψ y } 8 ď M pLq3 .A natural question is how to upper bound M pLq. A first answer is to use the operator norm ||| ¨||| 8Ñ8 from L 8 pπq to L 8 pπq with the operator L ´1 |Fπ introduced in Lemma 7:

	M pLq " max yPV	}ϕ y } 8	
	ď max yPV	}ϕ y ´πrϕ y s} 8 `max yPV	πrϕ y s
	ď |||L ´1 |Fπ ||| 8Ñ8 max yPV	}f y } 8 `max yPV	p1 ´πpyqqM pLq
	1 π M pLq ď ď |||L ´1 |Fπ ||| 8Ñ8	|||L ´1 |Fπ ||| 8Ñ8 π 2 ^.

^`p1 ´π^q M pLq where π ^ min xPV πpxq. It follows that

  `y P Z N for any fixed y P Z N , it follows that the quantity E υ rτ x s does not depend on the choice of x P Z N . It is then necessarily equal to F pLq. Furthermore, since under L, the Markov process waits an exponential time before adding 1 to the current state, we get that for any x, y P Z N , E x rτ y s " ρpx, yq, where @ x, y P Z N , ρpx, yq mintn P Z `: y " x `nu.

	It follows easily that F pLq " pN ´1q{2 (for an alternative proof, see Corollary 20 in the next
	section). Thus we get that			
	@ x, y P Z N ,	h L px, yq "	1 2	`Ey rτ 2 x s ´pN ´1qE y rτ x s "
			1 2	`Ey rτ 2 x s ´pN ´1qρpy, xq	˘.

Since under P y , τ x is a sum of ρpy, xq independent exponential random variables of parameter 1, we compute that E y rτ 2

x s " E y rτ x s 2 `ρpy, xq (because for any exponential random variable E, we have ErE 2 s " 2ErEs 2 ). Thus we get that for any x, y P Z N , h L px, yq " h N pρpy, xqq, where

  but only a `belongs to p0, 1{p2xqq and is in fact the minimizer of the mapping (48). This value can be simplified into It follows that the minimizer of F on LpS 2 , πq is The minimal value F ^pS 2 , πq of F on LpS 2 , πq is F pL ^q " 2 ´axp1 ´xq `azp1 ´zq ¯2 .Letting |x ´1{2| converge to |z ´1{2|, we recover the values of L ^and F pL ^q obtained in the previous case.

	' If |x ´1{2| ą |z ´1{2|, then (49) admits two solutions	
		a ˘	´xp1 ´xq ˘axp1 ´xqzp1 ´zq 2xpzp1 ´zq ´xp1 ´xqq	,
		a `" 1 2x	a xp1 ´xq xp1 ´xq `azp1 ´zq a	.
			¨´a xp1 ´xq 2x	a xp1 ´xq 2x	0	‹ ‹
	L ^	1 xp1 ´xq `azp1 ´zq a	a	xp1 ´xq 2y	´axp1 ´xq `azp1 ´zq 2y	a zp1 ´zq 2y	‹ ‹ ‹ ‹
								‹
					0	a	zp1 ´zq 2z	2z ´azp1 ´zq	'
		" pL p0,1q `p1 ´pqL p1,2q					
	with the notation introduced in (25) and				
		p	a xp1 ´xq xp1 ´xq `azp1 ´zq a	.
					3 3 ´6 3 0 0 3 ´3 '

and F ^pS 2 , υq " 16{9.
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In the proof of Lemma 10 (see (29)), it was shown that @ x, y P V, φ x pyq " ´hL px, yq, which leads immediately to (32).

Lemma 10 can be extended to the second derivative presented in Lemma 9, by computing similarly the function ψ 1 y defined by (24) with r L " L A , for fixed A " pa l q lPZn P A and y P V . For our purposes, it is convenient to consider a generalization of this situation. Given another cycle A 1 " pa 1 l q lPZ n 1 P A, consider the equation in the function Ψ y :

where ψ y is still associated to L, A and y as in Lemma 10. Of course, when A 1 " A, we recover Ψ y " ψ 1 y . Lemma 14 For A " pa l q lPZn P A, A 1 " pa 1 l q lPZ n 1 P A and y P V given as above, consider the function Ψ y defined by (34). Then we have, for any x P V ,

Furthermore, we get that

Proof

From Lemma 10, we have

where we used that for any l P Z n , ÿ kPZ n 1 ϕ a l pa 1 k`1 q ´ϕa l pa 1 k q " 0.

Thus, denoting ξ y 1 nn 1 ÿ lPZn pϕ y pa l`1 q ´ϕy pa l qq ÿ kPZ n 1 pϕ a l pa 1 k`1 q ´ϕa l pa 1 k qqpϕ a 1 k ´ϕa 1 k pyqq,