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Regularized Hierarchical
Differential Dynamic Programming

Mathieu Geisert, Andrea Del Prete, Nicolas Mansard, Francesco Romano, and Francesco Nori

Abstract—This paper presents a new algorithm for optimal
control (OC) of nonlinear dynamical systems. The main feature
of this algorithm is that it allows the specification of the control
objectives as a hierarchy of tasks. Each task is described by
a cost function that the algorithm tries to minimize, while not
affecting the tasks of higher priority. The concept of strict priority
allows for an easier and more robust specification of the control
objectives, without hand-tuning of task weights. The hierarchy
also makes it possible to properly regularize the behavior of
each task independently. For the first time, we properly define
the problem of regularizing the task cost functions in the
presence of a hierarchy and propose an algorithm to compute an
approximate solution. Several simulated scenarios with different
robots compare our solution with other state-of-the-art methods,
validating the interest of the hierarchy in OC and empirically
demonstrating the importance of regularization to generate safe
behaviors.

Index Terms—Optimal control, Hierarchy of Tasks.

I. INTRODUCTION

This paper deals with the problem of motion generation
for nonlinear, possibly underactuated, dynamical systems, such
as mobile robot manipulators, quadrotors and legged robots.
A well-known and effective mathematical tool to tackle this
problem is optimal control. Optimal control algorithms allow
the user to generate motion for arbitrary systems by specifying
a cost function to minimize. While solving an optimal control
problem is intractable in most realistic cases, algorithms exist
that compute approximate local optima, which are often good
enough in practice [1], [2]. However, designing a cost function
that results in the desired behavior is much more complex than
it may look like. Especially for systems with many degrees
of freedom (DoFs) a cost function is typically a weighted
sum of several elementary costs, each one representing a task
that the robot should perform [3], [4]. For instance, to make
a humanoid robot walk, we can control the trajectory of its
center of mass and its swinging foot, its angular momentum
and its whole-body posture. If we also add manipulation
objectives, it is clear that the number of tasks rapidly grows.
In such cases, finding the right weights for the different
terms of the cost function may be extremely time consuming.
Moreover, weights are typically not robust to task variations,
e.g. the weights used for walking may be very different from
the weights needed for running. Often, rather than using
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weights, it is simpler to specify strict priorities between tasks.
This means that in case of conflict between two tasks, we
might require the most important task to be achieved at the
expenses of the other. For instance, the task of avoiding
collisions has clearly higher priority than the task of mini-
mizing the motor commands. The concept of strict priorities
is indeed widespread in robotics for inverse-kinematics [5], [6]
and inverse-dynamics [7], [8] controllers. In optimal control
strict priorities are typically approximated using much larger
weights for the high-priority tasks. However this approach
does not scale well when the number of priority levels grows
because it can lead to poor numerical conditioning. This
motivated our first work on Hierarchical Optimal Control
(HOC) [9], in which we introduced strict priorities in the
optimal control problem formulation. Later [10], we proposed
another algorithm to solve the HOC problem, Hierarchical
Differential Dynamic Programming (HDDP). In this paper
we propose an improved version of HDDP, which properly
handles the regularization of the tasks. While the problem
of regularizing the cost function is often overlooked in the
literature, we show that it is actually paramount when using
strict priorities.

A. The Role of Regularization
The problem of regularization (or damping) is well-known

in robotics [11], [12] and optimization [13], but for different
reasons. Optimization problems are regularized to avoid poor
numerical conditioning, which leads to large numerical errors
due to the finite precision of computer’s arithmetic. In this
context, the regularization parameters typically take very small
values (e.g. 10−9). This regularization, which we refer to as
algorithm regularization, modifies the original problem, thus
introducing a small error in the resulting solution. This error
is however largely compensated for by the improved behavior
of the numerical solver.

In inverse-dynamics/inverse-kinematics control instead, reg-
ularization is used to prevent large motor commands, which
occur e.g. in the neighborhood of kinematic singularities [11].
In this context, regularization parameters take much larger
values (e.g. 10−3). This regularization, which we refer to
as task regularization, is a core part of the cost functions
describing the tasks—rather than a parameter of the algorithm.
Task regularization is even more critical in optimal control:
without regularization the resulting control would overexploit
the robot actuation capabilities (e.g. saturating the motor
limits). This behavior is undesirable in most situations in
autonomous robots.

The difference between task regularization and algorithm
regularization is part of the know-how, but yet not well defined
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in robotics. This is because in inverse-kinematics/dynamics
they are both implemented through the damping factor of the
pseudo-inverses [11].

Despite its importance, the problem of task regularization
is often not explicitely mentioned, or relegated to a small
paragraph towards the end of the paper. This is because
typically task regularization does not affect the mathematical
developments that are the subject of the publication. However,
this is no longer the case when considering a hierarchical (or
lexicographic) optimization [14], [15]. Indeed we will show
that the hierarchical minimization of least-squares functions—
which has been extensively studied in robotics [13], [16] and
is at the core of our algorithm—becomes nonconvex when
introducing task regularization. Moreover, while the unregu-
larized hierarchical problem can be defined as the limit of the
weighted problem for the ratio of the weights going to infinity,
this is no longer the case if we introduce regularization.
This implies that the solution of the regularized hierarchical
problem cannot be approximated with a classic optimization
using large weights. These two properties highlight the fact
that task regularization should be taken into account from the
very beginning when dealing with hierarchical optimization.
The contribution of this paper goes thus in this direction, by
introducing a regularized version of HDDP, called Regularized
HDDP (RHDDP).

B. State of the Art

To the best of our knowledge, there is only another work
in the literature that deals with the problem of hierarchical
trajectory optimization [14]. With respect to our approach
we can find several differences. The main advantage of their
algorithm [14] is that it can handle inequality constraints.
However, this prevented them from exploiting the sparsity
of the optimal control problem, which we do thanks to the
Differential Dynamic Programming (DDP) formulation. More-
over, they did not deal with the problem of task regularization,
which is the main focus of this paper.

This work is based on two previous conference publica-
tions [9], [10]. In our first work [9] we introduced strict
task prioritization in the optimal control formulation. This
algorithm did not exploit the intrinsic sparsity of the opti-
mal control problem, which can lead to a reduction of the
computational complexity from cubic to linear in the number
of time steps. In our second work [10] we addressed this
problem by extending the DDP algorithm to account for strict
priorities between the cost functions. In this paper we present
an improved version of the HDDP algorithm, together with
extensive simulations with several robotic systems to validate
our approach.

C. Paper Overview

This paper has three contributions. First, we propose the
first well-founded definition and resolution of a hierarchy
of quadratic objectives with regularization. Second, we use
this solution to derive the first algorithm to solve HOC with
regularization, while exploiting the sparsity of the problem.

Finally, we demonstrate the importance of our approach by
several case studies on various simulated robot models.

Before discussing about HOC, Section II treats the prob-
lem of Hierarchical Quadratic Programming (HQP), which is
strongly related to HDDP. The subject of Hierarchical Least-
Squares Programming (HLSP, a special case of HQP) is well-
known in robotics and has been extensively studied [5], [16],
[17] and applied [18] in recent years. However, the problem
of task regularization has never been properly addressed. In
particular, we show that the regularized HLSP problem is not
convex in general—while HLSP always is. We then propose a
convex relaxation of regularized HQP, which gives a (possibly)
suboptimal solution that is guaranteed to satisfy the priority
constraints.

Section III introduces the problem of Parametric HQP
(PHQP), which consists in minimizing a set of quadratic cost
functions with respect to (w.r.t.) a subset of their variables,
treating the other variables as problem parameters. This is
exactly what happens in the DDP algorithm, where the op-
timization is performed w.r.t. the control variables, while the
state variables are treated as problem parameters. This allows
DDP to compute feedback control laws rather than open-loop
control trajectories.

Then, Section IV and V present the Regularized HDDP
algorithm, exploiting the results already presented for PHQP.
Section VI reports numerical simulations on different robotic
systems, comparing RHDDP with HDDP and DDP. Finally,
Section VII discusses the results and Section VIII draws the
conclusions.

D. Notation

The following notation is used throughout the paper:

• (A,B) is a short form for
[
A> B>

]>
.

• N (A) is the null-space projector of the matrix A.
• A† is the Moore-Penrose pseudo-inverse of the matrix A.
• ∂yg is the partial derivative of a multivariable function
g(·) with respect to one of its variables y; ∂yzg is the
partial second-order derivative with respect to y and z.

• y is a generic variable while x and u are respectively the
state and control variable in an optimal control problem.
We also denote by X and U the state and control
sequences (i.e. X = (x0 . . . xN ))

II. HIERARCHICAL QUADRATIC PROGRAMMING (HQP)

We first recall the Hierarchical Quadratic Programming
problem without regularization, as it is typically presented
in the literature [16]. For applications in robot control, most
of the time this problem is not interesting because it results
in large/discontinuous motor commands. For this reason, we
present then the regularized HQP problem, which does not
suffer from this issue, and we discuss its properties.

A. Problem Statement

Suppose to have nl quadratic functions:

g(l)(y) =
1

2
y>H(l)y + h(l)>y, l = 1, . . . , nl
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which we want to minimize in a hierarchical way:

g(l)∗ = minimize
y

g(l)(y)

subject to g(j)(y) = g(j)∗ ∀j < l
(1)

Clearly, we can expect the Hessians of all the functions g(j)(y)
to be singular—except for the last one. If that was not the
case, all the functions of priority lower than a function with a
full-rank Hessian could not be optimized at all. In this form,
the priority constraints are quadratic, which make problem
(1) nonconvex. However, it is well-known that, for the least-
squares case, we can replace them with linear constraints
(as we will recall in Section II-C), making (1) convex. We
will show that this is no longer the case if we introduce
regularization.

B. Regularizing the Problem

Suppose to have a regularized version of each objective
function:

ĝ(j)(y) =
1

2
y>Ĥ(j)y + ĥ(j)>y, j = 1, . . . , nl

We assume that the regularized Hessians are positive-definite.
A typical case of regularization consists in adding a scaled
identify matrix to the Hessians, i.e. Ĥ(j) = H(j) + λI , while
leaving the gradients unvaried, i.e. ĥ(j) = h(j). The regularized
HQP problem is then:

ŷ(l)∗ = argmin
y

ĝ(l)(y)

subject to g(j)(y) = g(j)(ŷ(j)∗) ∀j < l
(2)

Note that we do not use the regularized functions in the
priority constraints because that would leave no null space
to optimize the secondary objectives. Again, because of the
quadratic equality constraints, problem (2) is not convex. We
show now how to replace them with linear constraints that are
sufficient (but not necessary) to guarantee the satisfaction of
the original quadratic constraints, resulting thus in a convex
relaxation of (2).

C. Reformulating the Priority Constraints

Let us use the first two objectives of the hierarchy to
illustrate this technique, which can be then easily generalized
to the following objectives. The minimization of the first
objective is unconstrained, so we can compute ŷ(1)∗ as:

ŷ(1)∗ = −(Ĥ(1))−1ĥ(1)

The priority constraint for the optimization of the second
objective is then:

1

2
y>H(1)y + h(1)>y = g(1)(ŷ(1)∗)

We introduce now a simple change of variable to simplify the
derivation: y = ŷ(1)∗ + y(2). This leads us to:

1

2
y(2)>H(1)y(2) + ŷ(1)∗>H(1)y(2) + h(1)>y(2) = 0 (3)

When the HQP problem is unregularized and the functions
g(l)(y) are least-squares functions we can replace (3) with an
equivalent linear constraint, which makes the HQP convex:

1

2
y(2)>H(1)y(2) = 0 ⇐⇒ y(2) = N (H(1))z,

where z is an arbitrary variable, and we exploited the fact
that for an unregularized HQP ŷ(1) = −(H(1))†h(1) and that
for least-squares functions h(1)>N (H(1)) = 0. However, this
is not the case for the regularized HQP, which is in gen-
eral nonconvex. We suggest to replace the quadratic priority
constraints (3) with linear constraints that are sufficient but
not necessary to ensure (3). By doing so we get a convex
optimization problem whose solution is in general suboptimal
for the original problem, but it is guaranteed to satisfy the
priority constraints. A sufficient condition for (3) to hold is to
select y(2) in the null space of H(1) (to nullify the first two
terms) and h(1)> (to nullify the last term), that is:

y(2) = N ((H(1), h(1)>))z = N (1)z, (4)

Note that for a hierarchy of least-squares functions being in
the null space of H(1) would be sufficient [16] (but still not
necessary) because the gradient would always be zero in the
null space of the Hessian, i.e. h(1)>N (H(1)) = 0.

D. Solving the Second Minimization

The minimization of the second objective is then a QP:

minimize
y,z

ĝ(2)(y)

subject to y = ŷ(1)∗ +N (1)z

Eliminating the constraints and setting the gradient of the cost
to zero we get:

ŷ(2)∗ = ŷ(1)∗ − (N (1)Ĥ(2)N (1))†(ĥ(2) + Ĥ(2)ŷ(1)∗)

E. Solving the Whole Hierarchy

Generalizing this to an arbitrary number of functions nl, we
get the following recursive solution:

ŷ(l)∗ = ŷ(l−1)∗ − H̄(l)†h̄(l),

where:

H̄(l) , N (l−1)Ĥ(l)N (l−1)

h̄(l) , ĥ(l) + Ĥ(l)ŷ(l−1)∗

N (l) , N (l−1)N ((H(l), h(l)>)N (l−1)),

The recursion is initialized with N (0) = I and ŷ(0)∗ = 0.

F. A Simple Example

We can look at a simple example to give some insights
about the proposed convex relaxation of the regularized
HQP problem. Let us minimize in a hierarchical way two
quadratic functions g(1) and g(2) of the 3-dimensional variable
y = (y1, y2, y3). The function g(1) depends only on y1 and y2,
and its Hessian has rank 2. The function g(2) instead has a full-
rank Hessian. The regularized versions of g(1) and g(2) differ



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

y1

y2

y3

g(1)(y) = g(1)(ŷ(1))

ŷ(1)

ŷ(1) + N (1)z

Fig. 1. 3D example depicting the difference between the nonconvex priority
constraints of the regularized HQP problem (red cylinder) and their convex
relaxation (blue line) proposed in this paper.

only for their Hessians, which are regularized in this way:
Ĥ(l) = H(l) + λI .

In this case, the set of solutions of the priority constraint
for the second level (i.e. g(1)(y) = g(1)(ŷ(1)∗)) is described by
the surface of a 3d cylinder (see Fig. 1). This cylinder has an
axis that is parallel to y3, and passes through the minimizer
of g(1). The diameter of the cylinder is proportional to the
regularization parameter λ. For λ = 0 the cylinder collapses to
a line, and hence the priority constraint becomes linear, making
the HQP convex. For λ > 0 the problem is not convex because
the constraint of lying over the surface of a cylinder is clearly
nonlinear. Rather than looking for the minimizer of ĝ(2) over
the surface of this cylinder, our convex relaxation looks only
over a line, which is parallel to y3 and passes through ŷ(1).

In general, it is difficult to quantify the suboptimality of
the resulting solution. Depending on the problem data we
could find the global optimum, or we may be significantly
suboptimal. Another approach to solve the regularized HQP
could be to linearize the quadratic priority constraints and use
Sequential Quadratic Programming [19]. However, the linear
approximation of the quadratic constraints is in general rather
poor, and leads the algorithm to take very small steps, slowing
down convergence1. Alternatively, we could consider the in-
terior of the nonconvex set defined by the priority constraints
(which is a convex set) and use an Interior-Point method [19].
However, even this approach would require solving several
QPs for each level of the hierarchy. Our convex relaxation
instead allows us to compute an approximate solution by
solving a single QP for each hierarchy level.

III. PARAMETRIC HIERARCHICAL QUADRATIC
PROGRAMMING (PHQP)

The problem of HQP becomes more complex if we are not
optimizing w.r.t. all the decision variables, but only w.r.t. a

1We performed some simple tests, which showed that the SQP algorithm
can find better solutions than our convex relaxation, but it usually takes tens
of iterations just to find a solution of the same quality. Since this is not the
main focus of the paper, for the sake of conciseness we do not report these
results here.

subset of them (as it happens in DDP). Let us split the decision
variables into two subsets y = (x, u):

g(l)(x, u) =
1

2
x>H(l)

xxx+
1

2
u>H(l)

uuu+ x>H(l)
xuu+

h(l)>x x+ h(l)>u u, j = 1, . . . , nl

We also have a regularized version of each cost function:

ĝ(l)(x, u) =
1

2
x>Ĥ(l)

xxx+
1

2
u>Ĥ(l)

uuu+ x>Ĥ(l)
xuu+

ĥ(l)>x x+ ĥ(l)>u u, j = 1, . . . , nl

Rather than optimizing w.r.t. y, we want to optimize w.r.t. u
only, treating x as a problem parameter:

û(l)∗(x) = argmin
u

ĝ(l)(x, u)

subject to g(j)(x, u) = g(j)(x, û(j)∗) ∀j < l
(5)

1) Solving the First Minimization: For the first objective
we have an unconstrained optimization, which we can solve
by computing the cost gradient and setting it equal to zero:

û(1)∗ = −(Ĥ(1)
uu )−1ĥ(1)u︸ ︷︷ ︸
k̂(1)

− (Ĥ(1)
uu )−1Ĥ(1)

ux︸ ︷︷ ︸
K̂(1)

x

2) Solving the Second Minimization: The priority constraint
for the optimization of the second objective is then:

g(1)(x, u) = g(1)(x, û(1)∗)

As before, we introduce a change of variable to simplify the
derivation: u = û(1)∗ + u(2). This leads us to:

1

2
u(2)>H(1)

uu u
(2) + (û(1)∗>H(1)

uu + x>H(1)
xu + h(1)>u )u(2) = 0

(6)
Similarly to HQP, if the problem were unregularized and
the cost functions were least-squares, we could replace this
quadratic constraint with an equivalent linear constraint (as
we did in [10]). Contrary to the regularized HQP, selecting
u(2) in the null space of H(1)

uu and h
(1)>
u is not sufficient to

ensure the satisfaction of (6), because of the term x>H
(1)
xu u(2).

A sufficient condition is to select u(2) to be also in the null
space of H(1)

xu :

u(2) = N ((H(1)
uu , h

(1)>
u , H(1)

xu ))z = N (1)z (7)

This new constraint is linear and it is a sufficient condition for
the original quadratic constraint. We propose to relax problem
(5) by replacing (6) with (7). The solution of the second
objective minimization is then:

û(2)∗ = −(H̄(2)
uu )†h̄(2)u − (H̄(2)

uu )†H̄(2)
ux x,

where:
H̄(2)
uu , N (1)Ĥ(2)

uuN
(1)

h̄(2)u , ĥ(2)u + Ĥ(2)
uu k̂

(1)

H̄(2)
ux , Ĥ(2)

ux − Ĥ(2)
uu K̂

(1)

Note that for least-squares functions, being in the null space
of Huu would still be sufficient.
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Algorithm 1 Parametric Hierarchical Quadratic Programming

function PHQP( {H(l)
uu, H

(l)
xu , h

(l)
u , Ĥ

(l)
uu, Ĥ

(l)
xu , ĥ

(l)
u }l )

2: N ← I, k̄ ← 0, K̄ ← 0
for l=1:nl do

4: k̄ ← k̄ − (NĤ
(l)
uuN)†(ĥ

(l)
u + Ĥ

(l)
uuk̄)

K̄ ← K̄ + (NĤ
(l)
uuN)†(Ĥ

(l)
ux − Ĥ(l)

uuK̄)

6: N ← NN ((H
(l)
uu, h

(l)>
u , H

(l)
xu)N)

return (k̄, K̄)

3) Solving the Whole Hierarchy: Generalizing this to an ar-
bitrary number of functions nl, we get the following solution:

û∗ = k̄ − K̄x,

which can be computed using Algorithm 1.

IV. HIERARCHICAL DYNAMIC PROGRAMMING

A. Problem Statement

Let us consider a discrete-time nonlinear dynamical system:

xi+1 = f(xi, ui), for i = 0, . . . , N − 1, (8)

where f(·) : Rn × Rm 7→ Rn is the dynamics function,
xi ∈ Rn is the state at time step i, and ui ∈ Rm is the control
at time step i. Assume that we want the system to perform
nl tasks, with task 1 having the highest priority, and task nl
the lowest. The l-th task is represented by an arbitrary cost
function:

c(l)(X,U) :=

N−1∑
i=0

φ
(l)
i (xi, ui) + φ

(l)
N (xN ) , (9)

where φ(l)i is the running cost and φ
(l)
N is the final cost. We

also have a regularized version of the cost functions:

ĉ(l)(X,U) :=

N−1∑
i=0

φ
(l)
i (xi, ui) +

λ(l)

2
||ui||2︸ ︷︷ ︸

φ̂
(l)
i (xi,ui)

+φ
(l)
N (xN ) ,

where λ(l) ∈ R is a regularization parameter. Other regular-
izations may be used if needed, as long as the Hessian of the
regularization function with respect to U is positive definite.
Our problem consists in finding the control and state sequences
(U∗, X∗) that solve the following hierarchical optimal control
problem, denoted as HOC(l):

minimize
X,U

ĉ(l)(X,U)

subject to xi+1 = f(xi, ui), for i = 0, . . . , N − 1

x0 fixed

c(j)(X,U) = c(j)(X(j)∗, U (j)∗) ∀j < l ,

(10)

for l = 1 to nl, where (X(j)∗, U (j)∗) is the optimum obtained
by solving the HOC(j).

B. Dynamic Programming with Regularization

We tackle problem (10) by applying the dynamic program-
ming algorithm [20]. The principle of dynamic programming
states that optimizing over the whole trajectory is equivalent to
performing a sequence of optimizations over a single time step,
starting from the end of the horizon and moving backwards in
time. Let us start by defining the regularized and unregularized
cost-to-go at step i for task l as:

c
(l)
i (xi, Ui) ,

N−1∑
j=i

φ
(l)
j (xj , uj) + φ

(l)
N (xN )

ĉ
(l)
i (xi, Ui) ,

N−1∑
j=i

φ̂
(l)
j (xj , uj) + φ

(l)
N (xN )

The total cost corresponds to the cost-to-go for i = 0.
1) First Task: For task 1, we define the value function (i.e.

the optimal cost-to-go), for the regularized and unregularized
cost:

V
(1)
i (xi) , minimize

Ui

c
(1)
i (xi, Ui)

V̂
(1)
i (xi) , minimize

Ûi

ĉ
(1)
i (xi, Ûi)

We call U
(1)
i (xi) and Û

(1)
i (xi) the optimal control laws

resulting from these minimizations, and X̂(1) the state se-
quence resulting from applying Û

(1)
0 (x0). By applying Bell-

man’s principle of optimality [21] we can reformulate these
minimizations over the whole future control sequence into
minimizations over a single control:

V
(1)
i (xi) = minimize

ui

V(1)
i (xi,ui)︷ ︸︸ ︷

φ
(1)
i (xi, ui) + V

(1)
i+1(f(xi, ui)) (11)

V̂
(1)
i (xi) = minimize

ûi

φ̂
(1)
i (xi, ûi) + V̂

(1)
i+1(f(xi, ûi))︸ ︷︷ ︸

V̂(1)
i (xi,ûi)

(12)

We call u(1)i (xi) and û(1)i (xi) the optimal control laws result-
ing from this minimization.

C. Introducing the Hierarchy

For a task l > 1, we define the unregularized value function
as the minimum cost-to-go, subject to the constraint of not
affecting the cost-to-go of the higher-priority tasks:

V
(l)
i (xi) ,minimize

Ui

c
(l)
i (xi, Ui)

subject to c
(j)
i (xi, Ui) = c

(j)
i (xi, U

(j)
i ) ∀j < l

Again, applying Bellman’s principle of optimality we can
reformulate this optimization as:

V
(l)
i (xi) = minimize

ui

V(l)
i (xi, ui)

subject to V(j)
i (xi, ui) = V

(j)
i (xi) ∀j < l

(13)
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The regularized value function is instead the minimum regu-
larized cost-to-go, subject to the constraint of not affecting the
cost-to-go of the higher-priority tasks:

V̂
(l)
i (xi) ,minimize

Ûi

ĉ
(l)
i (xi, Ûi)

subject to c
(j)
i (xi, Ûi) = c

(j)
i (x̂

(j)
i , Û

(j)
i ) ∀j < l

(14)
Note the difference w.r.t. the constraints of the unregularized
value function: here the desired cost-to-go is a function of the
optimal state x̂(j)i rather than the current state xi. This is due to
the fact that U (j)

i is the minimizer of c(j)i , whereas Û (j)
i is not.

In particular, using xi instead of x̂(j)i in (14) would prevent
the secondary tasks from modifying the state sequence found
by the first task, that is X̂(1). This is because the control law
Û (1) minimizes the regularized cost, so applying it from a
state that does not belong to X̂(1) would result in a different
value of the unregularized cost c(1)i . This difference prevents
us to directly apply the same reduction as in (13).

D. Reformulation of the Regularized Problem

In order to apply Bellman’s principle to reformulate (14)
as a problem of a single control input, we need to introduce
another control law. This control law tries to maintain the
unregularized cost-to-go at the same value given by the
regularized control law:

Ũ
(l)
i (xi) , findUi s.t. c

(l)
i (xi, Ui) = c

(l)
i (x̂

(l)
i , Û

(l)
i )

Intuitively, Ũ (l) should behave like the regularized control
law in feedforward, but like the unregularized control law in
feedback. As long as the state sequence follows X̂(l) we have
Ũ (l) = Û (l). However, if the state sequence is modified by
other tasks, Ũ (l) uses the feedback action to maintain the same
value of the unregularized cost-to-go. By definition, this new
control law allows us to reformulate (14) as:

V̂
(l)
i (xi) ,minimize

Ûi

ĉ
(l)
i (xi, Ûi)

subject to c
(j)
i (xi, Ûi) = c

(j)
i (x

(j)
i , Ũ

(j)
i ) ∀j < l

Now we can apply Bellman’s principle of optimality to refor-
mulate the minimization of the cost function over the whole
control sequence as a cascade of minimizations over a single
control input. However, we can not do the same for the priority
constraints: since Ũ (j)

i is not the minimizer of c(j)i the principle
of optimality does not apply. This prevents us from directly
reformulating the priority constraints as functions of a single
control input.

E. Final HDP Formulation

We propose then to replace the priority constraints with
stricter constraints that are functions of a single control input
so as to benefit from the computational efficiency of dynamic
programming. The new constraints state that the cost-to-go
of the higher-priority tasks at each time step must stay the

same—which is sufficient but not necessary to guarantee that
the total cost stay the same:

V̂
(l)
i (xi) ,minimize

ûi

V̂(l)
i (xi, ûi)

subject to Ṽ(j)
i (xi, ûi) = Ṽ

(j)
i (xi) ∀j < l,

(15)
where Ṽ

(j)
i (xi) is the value function associated to the new

control law (i.e. Ṽ (j)
i (xi) = c

(j)
i (x

(j)
i , Ũ

(j)
i )), and:

Ṽ(l)
i (xi, ui) = φ

(l)
i (xi, ui) + Ṽ

(l)
i+1(f(xi, ui))

Solving this sequence of optimization problems for
l = 1, . . . , nl and for i = N − 1, . . . , 0, initialized with
V̂

(l)
N (xN ) := φ

(l)
N (xN ), we could solve (10).

V. HIERARCHICAL DIFFERENTIAL DYNAMIC
PROGRAMMING

The previous section derived the optimality conditions along
samples of the trajectory, resulting in several difficult (typically
nonconvex) optimization problems. We devised a discretized
version of the conditions to improve the paper clarity, however
they could be quite directly extended to the continuous case
as differential conditions. This section proposes a complete
algorithm to compute the solution satisfying conditions (15).
Direct resolution is not tractable in general. We rather follow
the route proposed initially by the DDP approach [22]. We
build at each time step a quadratic approximation of the
condition, which we can then solve using the proposed PHQP
algorithm. The presentation of our method is self contained,
but is best understood if the reader has in mind the classic
DDP formulation. A concise and modern presentation of it
can be found e.g. in [3].

A. Quadratic Differential Approximation
We start by considering a nominal control sequence

Ū , (ū0, · · · , ūN−1) and the corresponding state sequence
X̄ , (x̄1, · · · , x̄N ) resulting by applying the former control
to the system (8). We introduce the new variables of our
optimization problem, which are the variation of control and
state with respect to their nominal values: δui , ui − ūi and
δxi , xi − x̄i. We can now approximate V(l)

i , V̂(l)
i and Ṽ(l)

i

with their second-order Taylor’s expansions and optimize the
resulting quadratic functions with the PHQP algorithm. Let us
define the local least-squares approximation of V̂(l)

i :

V̂(l)
i (xi, ui) ≈ V̂(l)

i (x̄i, ūi) +
1

2
||Â(l)>

x,i δxi + Â
(l)>
u,i δui + âi||2

In the following, for coherence with our previous works [9],
[10] and the standard DDP algorithm [3], we prefer to repre-
sent the local approximation of V̂(l)

i with a quadratic form2:

V̂(l)
i (xi, ui) ≈ V̂(l)

i (x̄i, ūi) +
[
Q̂

(l)>
x,i Q̂

(l)>
u,i

] [
δxi
δui

]
+

1

2

[
δx>i δu>i

] [Q̂(l)
xx,i Q̂

(l)
xu,i

Q̂
(l)
ux,i Q̂

(l)
uu,i

] [
δxi
δui

] (16)

2We derive the algorithm without exploiting the least-squares structure, so
that all the developments are still valid for a general quadratic approximation.
The only exception is the hybrid control law (see Appendix), which we derive
only for the least-squares case.
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The coefficients of the quadratic approximation of V̂(l)
i can be

recursively computed as:

Q̂
(l)
x,i , ∂xφ

(l)
i + ∂xf

>∂xV̂
(l)
i+1

Q̂
(l)
u,i , ∂uφ

(l)
i + ∂uf

>∂xV̂
(l)
i+1 + λ(l)ūi

Q̂
(l)
xx,i , ∂xxφ

(l)
i + ∂xf

>∂xxV̂
(l)
i+1∂xf + ∂xV̂

(l)
i+1∂xxf

Q̂
(l)
uu,i , ∂uuφ

(l)
i + ∂uf

>∂xxV̂
(l)
i+1∂uf + ∂xV̂

(l)
i+1∂uuf + λ(l)I

Q̂
(l)
xu,i , ∂xuφ

(l)
i + ∂xf

>∂xxV̂
(l)
i+1∂uf + ∂xV̂

(l)
i+1∂xuf

(17)
The local quadratic approximation of V(l)

i and Ṽ(l)
i are defined

similarly, removing the symbolˆ or replacing it with the sym-
bol˜ (respectively) and setting λ(l) to zero. All the derivatives
in (17) are computed for xi = x̄i and ui = ūi.

B. Backward Pass

The computation of (17) is initialized with
V̂

(l)
N (xN ) = φ

(l)
N (xN ). Then we can minimize our quadratic

model of V̂(l)
i using PHQP, which gives us the locally-optimal

feedforward and feedback terms for task l at time i (starting
from i = N − 1). Finally, to compute the solution for time
step i − 1 we need to compute V̂

(l)
i (δxi) to update our

quadratic approximation of V̂(l)
i−1. We can do it by substituting

the locally-optimal control δû(l)i = k̂
(l)
i − K̂

(l)
i δxi into (16),

which gives us:

V̂
(l)
i (δxi) ≈ V̂ (l)

s,i + V̂
(l)>
x,i δxi +

1

2
δx>i V̂

(l)
xx,iδxi ,

where3:

V̂
(l)
x,i = Q̂

(l)
x,i − K̂

(l)>
i Q̂

(l)
u,i − K̂

(l)>
i Q̂

(l)
uu,ik̂

(l)
i + Q̂

(l)
xu,ik̂

(l)
i

V̂
(l)
xx,i = Q̂

(l)
xx,i + K̂

(l)>
i Q̂

(l)
uu,iK̂

(l)
i − Q̂

(l)
xu,iK̂

(l)
i − K̂

(l)>
i Q̂

(l)
ux,i
(18)

For the unregularized value function V (l)
i we have exactly the

same equations, but using the unregularized control law rather
than the regularized one. For the hybrid value function Ṽ

(l)
i

we need to use the following control law (see proof in the
Appendix):

δũ
(l)
i = k̂

(l)
i − K̂

(l)
i δx̂

(l)
i −K

(l)
i (δxi − δx̂(l)i ) (19)

The feedback term of this control law is the same as for the
unregularized control law, whereas its feedforward term is:

k̃
(l)
i = k̂

(l)
i + (K

(l)
i − K̂

(l)
i )δx̂

(l)
i

In our tests, to speed-up the algorithm, we neglected the terms
depending on the second-order derivatives of the dynamics.
This is the same approximation that distinguishes the iterative
LQR algorithm [3], [23] from DDP [24]. This allows us
also to avoid the computation of some terms, since we have:
Ṽ

(l)
xx,i = V

(l)
xx,i, Q̃

(l)
uu,i = Q

(l)
uu,i, Q̃

(l)
ux,i = Q

(l)
ux,i, Q̃

(l)
xx,i = Q

(l)
xx,i.

3We do not report here the value of V̂ (l)
s,i because it does not affect the

computation.

C. Regularizing the Optimization

So far we extensively discussed the issue of regularizing the
cost functions describing the robot tasks, which we refer to as
task regularization. The main goal of this regularization is to
prevent the use of large control inputs. However, algorithm
regularization remains necessary in general for a number of
reasons that we describe now. The backward pass operates
on a local approximation of the original problem (10). This
model is only valid in the neighborhood of the current solution,
so we must avoid taking too large steps. The regularization
has a damping effect on near-singular directions, which tends
to limit unreasonable step lengths. Moreover the Hessian
Quu may become nonpositive, because the initial problem
is nonconvex or because of propagation of numerical errors
along the backward pass. Algorithm regularization ensures the
soundness of the inversion of the Hessian.

We can achieve all of these goals by adding to all Q̂(l)
uu,i’s the

identity matrix scaled by a sufficiently large scalar parameter
µ(l). Initial values for µ(l) are given by the user (and may
affect a lot the speed of convergence, as shown in our tests).
At each iteration the algorithm decides whether to increase or
decrease the current value of µ(l) depending on the eigenvalues
of Q̂(l)

uu (after projection in the null space of previous tasks,
see Algorithm 2) and the line-search parameters (more details
on this in Section V-E). The null-space projectors must be
computed with the unregularized pseudo-inverses to ensure
the proper hierarchy propagation.

D. Order of the Operations

Now that we have defined the backward propagation of
the value functions, we need to decide how to use them. In
particular, we have two options:

1) Solve task l (starting from l = 1) for i = N − 1, . . . , 0
and then move on to task l + 1.

2) Solve all tasks for time step i (starting from i = N − 1)
and then move on to time step i− 1.

We decided to use the first option. To understand the reason
behind this choice we need to look at what happens after
the backward pass, that is the forward pass. During the
forward pass we simulate the system forward in time using
the locally-optimal control policy; if needed, we gradually
reduce the magnitude of the feedforward control term until the
associated cost does not improve. This is equivalent to the line-
search procedure used in Sequential Quadratic Programming
for nonlinear optimization [19]. During the backward pass of
task l+1 we assume that the feedforward term of task l will be
completely applied, while this may not be the case because of
the potential reduction occurring in the forward pass. It could
be then beneficial to perform the forward pass of task l before
the backward pass of task l+ 1, so that we could account for
this reduction. This is only possible if we select the first one
of the two options mentioned above.

Following this choice, Algorithm 2 summarizes the back-
ward pass. Its inputs are: the derivatives of the dynamics
and the cost function ∂.f, {∂.φi}i; the null-space projec-
tor, feedforward and feedback terms of the previous tasks
{Ni, k̄i, K̄i}i; the task regularization parameter λ; the nominal
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Algorithm 2 Regularized HDDP: Backward Pass
function BACKPASS( ∂.f, {∂.φi, Ni, k̄i, K̄i}i, λ, Ū , µ )

2: Initialize V (l)
x,N , V (l)

xx,N , V̂ (l)
x,N , V̂ (l)

xx,N

for i = N − 1 to 0 do
4: . Compute regularized control law

(Q̂
(l)
x,i, Q̂

(l)
u,i, Q̂

(l)
xx,i, Q̂

(l)
uu,i, Q̂

(l)
xu,i)← (17)

6: Q̄uu ← Ni(Q̂
(l)
uu,i + µI)Ni

if min(eigenvalues(Q̄uu,i)) < 0 then
8: Increase µ and repeat from line 2

k̂i ← −Q̄†uu(Q̂
(l)
u,i + Q̂

(l)
uu,ik̄i)

10: K̂i ← Q̄†uu(Q̂
(l)
ux,i − Q̂

(l)
uu,iK̄i)

(V̂
(l)
x,i , V̂

(l)
xx,i)← (18) with k̄i + k̂i and K̄i + K̂i

12: . Compute unregularized control law
(Q

(l)
x,i, Q

(l)
u,i, Q

(l)
xx,i, Q

(l)
uu,i, Q

(l)
xu,i)← (17)

14: Q̄uu ← NiQ
(l)
uu,iNi

ki ← −Q̄†uu(Q
(l)
u,i +Q

(l)
uu,ik̄i)

16: Ki ← Q̄†uu(Q
(l)
ux,i −Q

(l)
uu,iK̄i)

(V
(l)
x,i , V

(l)
xx,i)← (18) with k̄i + ki and K̄i +Ki

return {k̂i, K̂i,Ki, µ}i

control sequence Ū and the Hessian regularization parameter µ
(see Section V-C). The central part of the algorithm is identical
to the PHQP algorithm presented in Section III.

E. Forward Pass (Line Search)

As usual, the forward pass consists in a forward simula-
tion of the system using the locally-optimal control policy
computed in the backward pass. It is used as a line search,
i.e. at the end of the forward simulation we check whether
the cost of all tasks decrease in a lexicographic order, i.e. a
decrease of the cost of task l must not lead to an increase of
the cost of any task j < l. In practice, we allow for a small
increase of the higher-priority costs to speed-up convergence:
a step is validated if it leads to a decrease of the current cost
that is much larger than the increase of the higher-priority
costs. A user-defined parameter defines how much larger this
improvement should be (we used 103 for all our tests).

If this is not the case we reduce the magnitude of the
feedforward term of the control policy and repeat again. This
is the control policy used during the forward pass of task j:

δû
(l)
i =δû

(l−1)
i + ν(l)k̂

(l)
i − K̂

(l)
i (xi − x̄i)

− K̄(l−1)
i (xi − x̄i − δx̂(l−1)i ),

where δû(0)i = 0, ν(l) is the line-search parameter of task l
and δx̂(l−1) is the state deviation corresponding to the control
deviation δû(l−1). The term δx̂(l−1) for the feedback of the
higher-priority tasks comes from the hybrid control law (19).
In this way, the unregularized feedback gains of all higher-
priority tasks help not modifying the associated unregularized
costs. Note that, by doing so, if k̂(l)i and K̂(l)

i are void we get
exactly δû(l)i = δû

(l−1)
i . We always initialize ν(l) = 1 and we

decrease it with an exponential update rule:

ν(l) := alν(l),

where a ∈ [0, 1] is a parameter of the algorithm and l is the
current iteration number of the line-search procedure. If the
line-search does not converge after a predefined number of
iterations, we increase the regularization parameters µ(l) and
repeat the backward pass. The pseudo-code to compute one
complete step of RHDDP is reported in Algorithm 3.

F. Improving the algorithm

Because of the regularization, all tasks try to reduce the
control inputs while not affecting the higher-priority tasks.
This means that each task is likely to undo the action taken
by the lower-priority tasks at the previous iteration of the
algorithm (assuming that this action increased the control
inputs). This effect should not disturb the convergence because
in the backward pass each task can “see” what has been done
by the higher-priority tasks, and compensate for it if that does
not affect their unregularized costs. However, whenever the
line search of a task converges to a small value of ν (e.g.
< 0.1), its control action is drastically reduced, and so it is
this compensation. In practice, the result of this phenomenon
is that the low-priority tasks converge very slowly.

To avoid this effect, we modify the regularization term in
the cost functions. Rather than minimizing the norm of all
the control inputs, each task only minimizes the norm of the
control inputs computed by itself and the higher-priority tasks.
This is exactly the content of the variable Ū (l) in Algorithm 3,
which is updated in line 16.

G. Algorithm Summary

We now summarize the proposed algorithm. Each iteration
is composed of the following phases:

1) Problem approximation.
2) Local control computation, or backward pass.
3) Line search, or forward pass.
4) Computation of the null space

Convergence is tested at the end of each iteration. The conver-
gence criteria consists in an absolute criterion and a relative
one. We assume that the algorithm has converged if the cost
is lower than the absolute tolerance value. Alternatively, the
relative improvement between two successive iterations must
be smaller than a relative tolerance value.

VI. SIMULATIONS

This section presents several simulations on different robotic
systems to validate the proposed algorithm (RHDDP) and
compare it to the classic DDP algorithm and to the pre-
vious version of HDDP [10]. In all tests we use weights
to approximate strict priorities with the DDP algorithm and
we compare this approximation with our method. The main
result is that obtaining a safe hierarchy behavior with optimal
control is nearly impossible with weighted DDP, while it is
straightforward with RHDDP. All the results of the simulations
can be seen in the accompanying video.

Section VI-A presents simulations with the PR2 robot that
stress the difficulty of tuning the cost weights with DDP.
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Algorithm 3 Regularized Hierarchical Differential Dynamic Programming: 1 Step

1: function RHDDP( x0, Ū , f(.), {Ū (l), c(l)(.), λ(l), µ(l)}l )
2: N ← I, k̄ ← 0, K̄ ← 0, δû← 0, δx̂← 0, Ū (l) ← Ū
3: X̄ ← FORDWARDDYNAMICS(x0, Ū , K̄)
4: for l = 1 to nl do
5: ({k̂i, K̂i,Ki}i, µ(l))← BACKPASS(∂.f, {∂.φ(l)i , Ni, k̄i, K̄i}i, λ(l), Ū (l), µ(l))
6: (δûi, δx̂i, ν)← LINESEARCH({δûi, k̂i, K̂i, K̄i, δx̂i}i)
7: if ν = 0 then
8: Increase µ(l) and go back to line 5
9: if ν < νthr then

10: Increase µ(l)

11: else if ν = 1 then
12: Decrease µ(l)

13: for i = 0 to N − 1 do
14: k̄i ← δûi +Kiδx̂i
15: K̄i ← K̄i +Ki

16: Ū
(l)
i ← Ū

(l)
i + δûi

17: Initialize Ṽ (l)
x,N

18: for i = N − 1 to 0 do
19: (Q̃

(l)
x,i, Q̃

(l)
u,i)← (17)

20: (Ṽ
(l)
x,i )← (18) with k̄i and K̄i

21: Ni ← NiN ((Q
(l)
uu,i, Q̃

(l)>
u,i , Qxu,i)Ni)

22: Ū ← Ū + δû
23: X̄ ← X̄ + δx̂
24: return (Ū , X̄, {Ū (l), µ(l)}k)

Moreover it analyzes the convergence of the RHDDP algo-
rithm. Section VI-B (always with PR2) shows that without
a hierarchy we cannot properly regularize the tasks: either
regularization is too large and takes over the low-priority task,
or regularization is not enough and so commands are too large.
In Section VI-C we use a simple cart-pole system to highlight
again—but in a different way—the benefits of the hierarchy
when regularizing the tasks. Finally, Section VI-D presents a
more complex set of simulations with the UR5 robot, which
is asked to execute a sequence of tasks distributed in time.
RHDDP allows us to trade-off accuracy and efficiency by
using the regularization without compromising the hierarchy
(i.e. low-priority tasks deteriorate first when regularization
increases). In this test we also show that RHDDP is capable
of faster convergence with respect to the old version of the
algorithm (HDDP [10]).

The tests have been executed on a computer with two
processors Intel Xeon CPU E5-2620V2 (6 cores 2.10GHz) and
64GB of RAM. The tested algorithms were coded in Matlab
(v2013b) but the simulation of the systems is computed thanks
to the C++ dynamic engine MuJoCo [25].

A. Test 1: PR2 - Final Cost

This simulation compared RHDDP and DDP in a grasping
task with the PR2 robot. The goal was to perform the following
four tasks (in order of priority):

1) have zero joint velocity at final time i = N
2) grasp left (red) ball with left gripper (final cost only)

(a) Initial state. (b) Final state with both algorithm.

(c) Final state with DDP and second
ball 100 m away.

(d) Final state with RHDDP and
second ball 100 m away.

Fig. 2. Test 1: snapshots of the simulations when both balls are close to the
robot (top row) and when one of the balls is far away (bottom row).

3) grasp right (orange) ball with right gripper (final cost
only)

4) minimize 2-norm of control trajectory

In this test we did not need to use any regularization for
the tasks because they used only a final cost—the robot was
not asked to reach the goal as fast as possible. Results are
summarized by Fig. 2 to 4 and Table I.

When using DDP we used the following weights to approx-
imate strict priorities: 106, 103, 1, 10−6. First we set the two
balls slightly too far away from each other to be reached at
the same time (see Fig. 2a). In this scenario both RHDDP
and DDP managed to reach the first ball and to minimize
the distance to the second ball (see Fig. 2b). Then we moved
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TABLE I
TEST 1: COST FUNCTION VALUES.

Algorithm Scenario Task 2 Task 3 Effort
DDP Balls close 1.23 10−7 1.01 10−1 3.51 104

RHDDP Balls close 3.65 10−13 1.12 10−1 2.84 104

DDP Balls far 6.03 10−3 5.03 103 2.64 104

RHDDP Balls far 2.39 10−10 5.04 103 2.73 104
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(c) Cost of task 3.
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(d) Cost of task 4.

Fig. 3. Test 1: cost of the different tasks over the iterations of the algorithm
when second ball is 100 m away from the robot.
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Fig. 4. Test 1: value of the regularization parameters throughout the iterations
of the RHDDP (one value for each task) and DDP algorithm.

the second ball 100 meters away from the robot. In this case
DDP did not manage to reach the first ball (see Fig. 2c), while
RHDDP did (see Fig. 2d). This clearly shows that weights are
task dependent, and using strict priorities provides more robust
behaviors. Table I shows the values of the cost functions with
RHDDP and DDP.

1) Convergence of the Algorithm: Fig. 3 shows the value
of the cost functions throughout the iterations of RHDDP and
DDP. Fig. 4 instead shows the values taken by the regulariza-
tion parameters µ(l). With RHDDP the regularization quickly
converged to its minimum value (10−8) for the first two
tasks, which allows a fast convergence to a good approximate
solution. On the other hand, DDP convergence is delayed by
the algorithm regularization, which never reaches its minimum
value due to the artificial ill conditioning introduced by the
weight scaling. Convergence of DDP is somehow sequential:

TABLE II
TEST 2: COST FUNCTION VALUES.

Algorithm Regularization Task 1 Task 2 Effort
Max

DDP 10−5 3.46 45.3 238
DDP 10−8 0.881 13.5 3325
RHDDP 10−5 3.45 12.2 319
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Fig. 5. Test 2: cost of the different tasks over the iterations of the algorithm.
In the legend, DDP1 is DDP with wr = 10−5, while DDP2 is DDP with
wr = 10−8.

low-priority tasks improve only after high-priority tasks have
converged (e.g. see Fig. 3b and 3c).

B. Test 2: PR2 - Integral Cost
This test is based on the same scenario of the previous

test (with the second ball almost reachable), but i) it uses
integral cost functions rather than final costs only, and ii) it
does not include the final zero-velocity task. Since we are
using integral costs, we need to regularize the tasks to avoid
too large commands. For DDP we used w1 = 1 (weight of
the first task), w2 = 10−3 (weight of the second task) and we
tried two different values of wr (weight of the regularization,
i.e. minimum-effort task). Results are summarized by Fig. 5
and Table II. In brief, it was not possible to find a correct
value of wr for DDP, while it was immediate for RHDDP.

Using wr = 10−5 was enough to avoid too large control
inputs, but resulted in a large cost for the second task. Using
wr = 10−8 allowed us to improve the execution of the second
task, but resulted in large control inputs. With RHDDP we
used wr = 10−5 for the regularization, which was large
enough to avoid large commands; at the same time, also the
second task was executed at its best. This is thanks to the fact
that RHDDP allows us to keep same ratio between task and
regularization weights, which is not the case for DDP. With
DDP, when using wr = 10−5, the ratio between w2 and wr
was only 10−2, so the performance of the second task was
negatively affected.
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(a) Initial state. (b) Goal state.

Fig. 6. Test 3: initial and goal state of the cart-pole.
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(a) Cost of task 1. After iteration 30
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Fig. 7. Test 3: value of the cost functions throughout the iterations of the
algorithm. In the legends, DDP1 to DDP4 represent DDP with w2 = 1 to
10−3, respectively.
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Fig. 8. Test 3: trajectory of the cart-pole system obtained with the different
algorithms. The cart start at position 0 and should move to position 6.

RHDDP and DDP with wr = 10−5 resulted in almost
identical costs for task 1 and 3 (see Table II), but RHDDP
performed better task 2. Increasing w2 would improve task 2,
but at the expenses of task 1 and 3. Increasing w1 and w2 is
equivalent to decreasing wr and would worsen task 3. This
suggests that RHDDP allowed us to get a behavior that we
could not achieve by using DDP, no matter the values of w1,
w2 and wr.

C. Test 3: Cart-Pole

In this simulation we tested RHDDP and DDP with a simple
underactuated system: the cart-pole. In order of priority, the
tasks to perform were:

1) keep the pole high (integral cost between 0.7N and N )
2) reach a goal position with the cart (integral cost between

0.7N and N )

TABLE III
TEST 3: COST FUNCTION VALUES.

Algorithm w2 wr Task 1 Task 2 Effort
RHDDP N.A. 0 1 10−5 5 10−5 4.55 102

RHDDP N.A 10−2 3.65 10−4 5.93 10−1 1.60 102

DDP 1 10−2 1.84 10−1 6.66 10−2 1.11 102

DDP 10−1 10−2 2.55 10−4 6.88 1.60 101

DDP 10−2 10−2 3.77 10−6 1.25 102 7.83 10−2

DDP 10−3 10−2 1.25 10−7 1.41 102 1.25 10−3

TABLE IV
TEST 4: COST FUNCTION VALUES.

wr Task 1 Task 2 Task 3 Task 4 Task 5 Effort
5
10−5

1.4
10−8

3.3
10−6

4.4
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8.3
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2.8
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5
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26.5 16.1 8.0
10−2

(a) Initial state. (b) Task 4: reach ball at time step
i = N/2.

(c) Task 2: reach ball at time step
i = N .

Fig. 9. Test 4: snapshots of the simulation.

The two tasks are compatible only if we allow the system
to use large control inputs (see first line of Table III). With
DDP, we kept constant w1 = 1 (weight of the first task)
and wr = 10−2 (weight of the regularization), whereas we
varied w2 (weight of the second task). Using w2 = 10−1

or less, only task 1 was achieved (see corresponding lines
in Table III) because wr was too large w.r.t. w2. Using
w2 = 1 allowed the system to execute the second task, but it
deteriorated the performance of the first task (see third line of
Table III). With RHDDP we used wr = 10−2 as well, but the
hierarchy allowed for the execution of the second task while
not deteriorating the first task (see second line of Table III).
Fig. 8 depicts some of the trajectories found by DDP and
RHDDP.

D. Test 4: UR5 - Sequential Tasks

In this test we used the UR5 robot to reach two balls one
after the other. The first goal of this test is to show how,
with RHDDP, increasing the regularization affects first the
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Fig. 10. Test 4: values of the cost functions obtained by using different values
of the regularization parameter λ.
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regularization parameter of task 1.

Fig. 11. Test 4: convergence of the cost functions using the algorithm
presented in this paper (RHDDP) and its previous version (HDDP [10]).

low-priority tasks. In order of priority, the tasks to perform
were:

1) have zero velocity at time step N
2) reach second ball at time step N (see Fig. 9c)
3) have zero velocity for the gripper between 0.9N and N
4) reach first ball at time step 0.45N (see Fig. 9b)
5) have zero velocity for the gripper between 0.4N and

0.5N

All the tasks are compatible if we allow the system to use large
control inputs. Table IV and Fig. 10 summarize the results.
We observed that wr can be increased to force the system to
use smaller control inputs, and it progressively deteriorates the
low-priority tasks.

1) Comparison with HDDP: We also solved this problem
with the previous version of our algorithm (HDDP [10]),
but without using any task regularization because this was
not allowed by HDDP. Fig. 11 shows that, thanks to the

TABLE V
TEST 4: CONVERGENCE OF DDP/HDDP/RHDDP. TIME IS EXPRESSED IN

SECONDS.

µinit DDP0 DDP2 DDP3 HDDP RHDDP
It. Time It. Time It. Time It. Time It. Time

10−6 7 2.8 9 3.8 65 28 245 299 157 197
10−4 7 2.9 35 14.3 >500 >250 83 105 58 77
10−2 8 3.4 259 116 >500 >250 98 130 58 77
100 12 5.3 393 179 >500 >250 100 129 63 82.3
102 14 5.8 >500 >250 >500 >250 113 141 89 111
104 16 6.7 >500 >250 >500 >250 116 146 72 90.8
106 21 9.0 >500 >250 >500 >250 118 148 70 88

improvements proposed in this paper, convergence is faster
with RHDDP. Moreover, Fig. 11f shows that HDDP starts
decreasing the cost of task 2 only after the algorithm regu-
larization of task 1 has decreased. This is due to an incorrect
handling of the algorithmic regularization in HDDP, which has
been addressed in RHDDP. As a result, RHDDP is capable of
decreasing the cost of task 2 while optimizing task 1.

2) Comparison with DDP: Finally, we solved the same
problem also with DDP, trying three different sets of values for
the task weights and different initial values of the algorithmic
regularization parameter µ. Due to the lack of task regulariza-
tion all the tasks are compatible, so the choice of the weights
does not affect the final results, but it affects the convergence
of the algorithm. Table V summarizes the results.

Let us define the weight distance ∆w as the ratio between
the weights of the neighbor tasks, e.g. w1/w2. When ∆w = 1
(DDP0) the algorithm converged quickly regardless of the
value of µinit. With ∆w = 102 (DDP1), the artificial ill-
conditioning introduced by the weights slows down the con-
vergence, especially for large values of µinit. With ∆w = 103

(DDP3) the ill-conditioning has an even stronger effect on the
convergence, which is much slower for all values of µinit.
More in details, the reason why DDP2 and DDP3 converged
faster for small values of µinit lies in the line search. For
instance, with DDP3 task 5 has a weight of 10−6, so starting
with µinit = 10−2 the regularization has a much larger weight
than task 5. The result is that, during the first steps, the other
tasks converge to a local minimum (because compared to them,
the regularization is not so large) and µ reduces until task 5
can be solved. At this point, the algorithm needs to reduce c(5)

without worsening the other costs, e.g. for a step that reduces
c(5) of 1, c(1) should increase no more than 10−12 (because
task 1 has a weight of 106). This is almost impossible because
of the nonlinearity of the problem, so the algorithm can only
take little steps to reduce the last tasks, which leads to a slow
convergence. On the contrary, using a smaller value of µinit,
all tasks can converge during the first iterations. Since task 1
decreases, even if task 5 affects a bit task 1, it is tolerated as
long as the weighted sum of the costs decreases.

RHDDP and HDDP seems more robust to variations of
µinit. The reason behind this is that the line search of
(R)HDDP is not negatively affected by the scaling introduced
by the weights. In our tests, (R)HDDP validates a step if
it leads to an improvement of the current cost that is 103

times larger than the deterioration of the higher-priority costs
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(see Section V-E). Moreover, as expected, RHDDP converges
always in less iterations than HDDP.

VII. DISCUSSION

There are several benefits of the proposed approach with
respect to non-hierarchical trajectory optimization. First, fixing
priorities is usually much easier for the user than finding good
weights, and it results in more robust behaviors (i.e. weights
may need to be retuned if the task is modified, as shown
in Section VI-A). Second, RHDDP allows us to properly
regularize the tasks. As shown in Section VI-B and VI-C we
can arbitrarily increase regularization while still executing the
secondary tasks and satisfying the priority constraints. Also
compared to other hierarchical trajectory optimization meth-
ods [14], our approach presents some benefits. In particular,
it exploits the sparsity of the HOC problem and it properly
handles the task regularization.

One limitation of our approach is that, in order to get
a low computational cost for each iteration we replaced
some constraints with stricter constraints. This allows us to
guarantee the satisfaction of the original constraints, at the
expenses of restricting the space of solutions explored by our
algorithm. Let us illustrate this with a simple 1-dimensional
dynamical system:

xi+1 = xi + δt ui

Suppose that the system starts at x0 = 0 and its first task is
to minimize the cost (xN − 5)2. If we regularize the task, the
system will not reach exactly 5, but it will stop before, e.g.
at xN = 4.7. Now let us introduce a second task, of lower
priority, which consists in minimizing the cost (xN/2 − 10)2.
Again, due to the task regularization, the system will not reach
x = 10, but will stop before, e.g. at xN/2 = 9. Starting from
xN/2 = 9, the best thing to do to preserve the same cost of
task 1 (i.e. (4.7−5)2) would be to reach xN = 5.3. However,
RHDDP is not able to do that, and will still reach xN = 4.7,
thus using larger control inputs to obtain the same cost. This
limitation is due to the relaxation of the priority constraints that
we proposed in Section II-C. One way to overcome this issue
would be to use inequalities to express the priority constraints
as:

g(j)(y) ≤ g(j)(ŷ(j))
This would also preserve the convexity of the regularized HQP
problem, but it would increase the computational cost of the
algorithm due to the need of handling the inequalities (e.g. by
using an interior-point method [19]).

Let us now consider another example using the same simple
dynamical system. Suppose that the first task consists in
minimizing

∑N
i=0(xi−5)2. Given that the task is regularized,

the resulting state sequence is depicted by the blue continuous
line in Fig. 12, which results in a cost of task 1 of about 34.8.
Clearly, there exist infinitely many other state sequences that
result in the same cost of task 1, e.g. the other two lines in
Fig. 12. However, RHDDP cannot exploit this redundancy to
achieve secondary tasks because of the relaxation introduced
in Section IV-B. Rather than constraining the total cost of
the higher-priority tasks, RHDDP constrains their cost-to-go
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1

2

3

4

5

6

7

x

Fig. 12. Example of trajectory redundancy: these three state sequences result
in the same value of the cost function:

∑N
i=0(xi − 5)2.

at each time step, which removes part of the redundancy
in case of integral costs. To overcome this issue we should
abandon dynamic programming and study another algorithm
to exploit the sparse structure of the HOC problem. Even if
the computational complexity may be similar to RHDDP, the
resulting algorithm would be harder to implement. DDP also
directly provides the feedback gains for free, which makes
close-loop trajectory execution possible. This advantage would
be lost with another approach.

VIII. CONCLUSIONS

This paper presented a novel algorithm for motion genera-
tion of nonlinear dynamical system. The motion is generated
by performing a hierarchical minimization of a number of
functions of the system state and control sequences. Each
function describes a task that the robot should achieve, and
its position in the hierarchy defines its priority level w.r.t. the
other tasks. This concept of strict priorities, as opposed to the
soft priorities obtained by using a weighted sum, allows for an
easier and more robust specification of the motion objectives.
In particular, no weight tuning is necessary and numerical
ill conditioning is avoided. Moreover, the proposed algorithm
properly handles the issue of regularizing the tasks. Our tests
clearly show the benefit of the hierarchy, which allows us
to properly regularize the problem while preserving the strict
priorities. This was not possible with soft priorities.

Another contribution of the paper regards the regularization
of a hierarchy of quadratic functions (HQP), the optimization
problem that is at the core of our algorithm. Even if the use of
regularization is ubiquitous in robotics optimization problems,
we are the first to define the regularized HQP problem and
to show that it is nonconvex. We then proposed a convex
relaxation of this nonconvex problem, which allows us to get
an approximate solution in a single iteration. We also showed
the importance of both the hierarchy and the regularization to
generate safe behavior with autonomous robots in simulation.

APPENDIX

Here we prove the soundness of the hybrid control law
(19). Recalling the definition given in Section IV-D, the hybrid
control law Ũ

(k)
i must satisfy this equation:

c
(l)
i (xi, Ũ

(l)
i ) = c

(l)
i (x̂

(l)
i , Û

(l)
i )

As usual, we can reformulate this as a constraint on the single
control input ũ(l)i :

Ṽ(l)
i (xi, ũ

(l)
i ) = Ṽ(l)

i (x̂
(l)
i , û

(l)
i )



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

Using the least-squares approximation of Ṽ and dropping the
indexes i and l for the sake of simplicity we get:

1

2
y>A>Ay + h>y =

1

2
ŷ>A>Aŷ + h>ŷ,

where A =
[
Ax Au

]
, y = (δx, δũ) and ŷ = (δx̂, δû).

Let us perform a change of variable y = ŷ + ∆y, where
∆y = (∆x,∆u):

1

2
∆y>A>A∆y + ŷ>A>A∆y + a>A∆y = 0

Suppose now that ∆u = −K∆x:(
1

2
∆x>

[
I −K>

]
A> + ŷ>A> + a>

)
A

[
I
−K

]
∆x = 0

A sufficient condition to satisfy this equation for any value of
∆x is:

A

[
I
−K

]
= 0

Ax −AuK = 0

K = A†uAx

K = (A>uAu)†A>uAx

K = Q†uuQux

This gives us the hybrid control law (19):

δũ = δû−Q†uuQux(δx− δx̂)
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