
HAL Id: hal-01356989
https://hal.science/hal-01356989v2

Submitted on 15 Aug 2017 (v2), last revised 16 Aug 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Position and Velocity Bounds in Discrete-Time
Acceleration/Torque Control of Robot Manipulators

Andrea del Prete

To cite this version:
Andrea del Prete. Joint Position and Velocity Bounds in Discrete-Time Acceleration/Torque Control
of Robot Manipulators. IEEE Robotics and Automation Letters, 2017, �10.1109/LRA.2017.2738321�.
�hal-01356989v2�

https://hal.science/hal-01356989v2
https://hal.archives-ouvertes.fr

60 pt
0.833 in
21.2 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for first page
Paper size this page US LetterIEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2017 1

Joint Position and Velocity Bounds in Discrete-Time
Acceleration/Torque Control of Robot Manipulators

Andrea Del Prete1, Member, IEEE

Abstract—This paper deals with the problem of controlling
a robotic system whose joints have bounded position, velocity
and acceleration/torque. Assuming a discrete-time acceleration
control, we compute tight bounds on the current joint accel-
erations that ensure the existence of a feasible trajectory in
the future. Despite the clear practical importance of this issue,
no complete and exact solution has been proposed yet, and all
existing control architectures rely on hand-tuned heuristics. We
also extend this methodology to torque-controlled robots, for
which joint accelerations are only indirectly bounded by the
torque limits. Numerical simulations are presented to validate the
proposed method, which is computationally efficient and hence
suitable for high-frequency control.

Index Terms—Motion Control, Robot Safety, Optimization and
Optimal Control

I. INTRODUCTION

ONE of the main challenges in the control of robotic
systems is the fact that they are highly constrained.

Robot joints typically have bounded positions. Moreover,
actuators have bounded velocity and acceleration. Velocity and
acceleration may be not directly bounded, but their limits may
be the consequence of other bounds, such as on the motor
current, or the gear-box torque. This paper focuses on the
control of joints with constant bounds on position, velocity and
acceleration. Even though velocity and acceleration bounds
may be not constant, they can be often well approximated by
constant values [1], [2], [3], [4], [5], [6], [7].

First, let us introduce the notation that will be used through-
out the paper:

• ∧ and ∨ denote the logical quantifiers AND and OR
• t ∈ R+ denotes time
• i ∈ N denotes discrete time steps
• δt is the time-step duration of the controller
• q(t), q̇(t), q̈(t) ∈ R are the joint position, velocity and

acceleration at time t
• qi , q(iδt), q̇i , q̇(iδt), q̈i , q̈(iδt)
• qmin, qmax are the joint position boundaries
• q̇max, q̈max are the maximum velocity and acceleration

Manuscript received: April, 20, 2017; Accepted July, 30, 2017.
This paper was recommended for publication by Editor Nikos Tsagarakis

upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the European Research Council through the Actanthrope
project (ERC Grant Agreement 340050). The author would like to thank
Nicolas Mansard and Steve Tonneau for the help and the useful discussions.

1Andrea Del Prete is with the CNRS, LAAS, 7 avenue du colonel
Roche, Univ. de Toulouse, LAAS, F-31400 Toulouse, France. e-mail:
adelpret@laas.fr

Digital Object Identifier (DOI): see top of this page.

Assuming a constant acceleration throughout each time step
i, the future position qi+1 and velocity q̇i+1 are functions of
the current acceleration q̈i:

qi+1 = qi + δt q̇i +
1

2
δt2q̈i

q̇i+1 = q̇i + δt q̈i

(1)

A naive approach to bound accelerations is to compute the
maximum and minimum q̈i such that qi+1 and q̇i+1 are within
their bounds:

q̈i ≤ min

(
q̈max,

1

δt
(q̇max − q̇i),

2

δt2
(qmax − qi − δt q̇i)

)
q̈i ≥ max

(
−q̈max,

1

δt
(−q̇max − q̇i),

2

δt2
(qmin − qi − δt q̇i)

)
(2)

This approach is unsatisfactory because the resulting bounds
may be incompatible [1]. Several improvements have been
proposed, but none of them have completely solved the
problem.

A common approach [1], [2] is to use a larger value of δt in
(2), which results (most of the time) in stricter bounds. This
helps reducing the acceleration when approaching a bound,
but does not guarantee constraint compatibility.

Another approach [3] is to bound velocity with a hand-tuned
linear function of the distance to the position limit. Reducing
the velocity as you get close to a position bound is surely a
sensible idea, but this method does not explicitly account for
acceleration limits.

Other inverse-dynamics control frameworks [8], [9] simply
do not model joint position-velocity bounds, but rather rely
on the design of reference trajectories that ensure their sat-
isfaction. This approach cannot guarantee that the controller
reaction to a disturbance will not lead to violating a bound.

Control barrier functions provide a general framework for
handling constraints with arbitrary relative degree [10], [11].
However, these methods do not deal with constraint conflicts,
which are the key issue when considering bounds on position
and acceleration [5].

To the best of our knowledge, Decre et al. [6] have been the
first ones trying to provide formal guarantees of satisfaction
of position, velocity and acceleration bounds. They computed
the future position trajectory assuming maximum deceleration,
and imposed the satisfaction of the position bound for all
the future states. Their method does not require any hand
tuning, but it has two critical issues. First, they assumed
constant velocity throughout the time step, so they do not
really bound the acceleration, but a pseudo-acceleration, de-
fined as (q̇i+1 − q̇i)/δt. Second, their method may lead to

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US Letter2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2017

conflicts between velocity and acceleration limits when getting
close to the position bounds. This second issue was later
addressed by Rubrecht et al. [5], [7]. However, they introduced
some conservatism in the solution, which they suggest to be
beneficial in case of measurement errors. We believe that the
robustness issue should be tackled explicitly if necessary, and
not through some arbitrary conservatism. Moreover, also this
work dealt with pseudo-acceleration bounds.

Other relevant results have been proposed in the field of
online trajectory generation. Kroeger et al. [4] presented online
trajectory-generation algorithms that can guarantee velocity,
acceleration and jerk bounds. While these algorithms are fast
enough to run at 1 kHz, they treat a different problem from the
one treated in this paper. First, they do not consider position
limits, while we do. Second, they compute minimum time
joint-space trajectories, while we compute the minimum and
maximum accelerations that ensure the possibility to satisfy
the bounds in the long term. This means that, for instance,
motion can be generated according to a task-space criterion,
such as following a trajectory with the end-effector, while
exploiting the manipulator redundancy to satisfy the robot
constraints.

The two main contributions of our method are:
• it is exact, i.e. not conservative—contrary to [5]
• it assumes constant acceleration between consecutive

time steps, which allows bounding the real acceleration—
rather than a pseudo-acceleration [5], [6].

Section II formally states the problem and Section III presents
an efficient algorithm to solve it. Section IV discusses a way
to extend this result to torque control. Section V validates the
approach through numerical simulations. Finally, Section VI
draws the conclusions.

II. PROBLEM STATEMENT

Let us consider a robot whose joints have limited position,
velocity and acceleration. For one joint, we define the set of
all feasible states F as:

F = {(q, q̇) ∈ R2 : qmin ≤ q ≤ qmax, |q̇| ≤ q̇max} (3)

Moreover, let us assume that our control inputs are the joint
accelerations, which are also bounded: |q̈| ≤ q̈max. At each
time step, we want to know the maximum and minimum
accelerations such that position and velocity limits can still be
satisfied in the future. This can be formulated as an infinite-
horizon optimal control problem:

q̈max0 = maximize
q̈0,q̈1,...

q̈0

subject to (q(t), q̇(t)) ∈ F ∀t > 0

|q̈i| ≤ q̈max ∀i ≥ 0

(q(0), q̇(0)) fixed

(4)

Similarly, we can define q̈min0 by minimizing q̈0 rather than
maximizing it. Since acceleration can change only at discrete
time step, position and velocity between two successive time
steps are:

q(iδt+ t) = qi + t q̇i +
t2

2
q̈i ∀i ≥ 0, t ∈ [0, δt]

q̇(iδt+ t) = q̇i + t q̈i ∀i ≥ 0, t ∈ [0, δt]
(5)

The joint limits have to be satisfied not only at the discrete
time steps, but in continuous time, so the problem has an
(uncountable) infinite number of constraints. Because of the
infinite number of variables and constraints we cannot solve
this problem in this form. The main contribution of this paper
is an efficient algorithm to compute the exact solution of this
problem.

III. PROBLEM SOLUTION

A. Viability

We recall now the concept of viability, which we will exploit
to reformulate problem (4) in a simpler form. A state is
viable [12] if starting from that state there exists a sequence
of control inputs that allows for the satisfaction of all the
constraints in the future. Formally, we can define the viability
kernel V gathering all viable states as:

(q(0), q̇(0)) ∈ V ⇔ ∃(q̈i)∞i=0 : (q(t), q̇(t)) ∈ F ∀t ≥ 0,

|q̈i| ≤ q̈max ∀i ≥ 0
(6)

The interest of introducing the viability kernel V is that
ensuring the existence of a feasible future trajectory (i.e. our
original problem) is clearly equivalent to ensuring that the
next state belongs to V . However, this definition of V does not
immediately provide practical utility: verifying its membership
amounts to finding an infinite sequence of accelerations that
results in a feasible trajectory, which is too computationally
demanding. In the following we derive an equivalent definition
of V that allows us to check membership easily. Thanks to this,
we reformulate the hard problem of satisfying the position-
velocity-acceleration limits as the simple problem of ensuring
that the next state is viable.

1) Continuous-Time Control: Let us start by assuming that
we can change q̈ at any instant (i.e. it can vary continuously).
This results in a set of viable states Vc, which is a superset
of V , namely V ⊆ Vc.

It is obvious that Vc is a subset of F because all viable
states are also feasible, but not all feasible states are viable.
If q is approaching one of its bounds with a large velocity,
then the acceleration capabilities may not be sufficient to stop
before the bound. For a given initial position q0, we can find
the maximum initial velocity q̇VM that allows us to satisfy the
position limits in the future:

q̇VM = maximize
q̇0,q̈(t)

q̇0

subject to (q(t), q̇(t)) ∈ F ∀t ≥ 0

|q̈(t)| ≤ q̈max ∀t ≥ 0

q(0) = q0, q̇(0) = q̇0

(7)

The solution of this problem is rather intuitive: the maxi-
mum initial velocity is such that, if we constantly apply the
maximum deceleration, we end up exactly at qmax with zero
velocity. Then to solve the problem we can:

1) write the position trajectory for constant acceleration
q̈(t) = −q̈max,

2) compute the time at which the velocity of this trajectory
is zero t0 = q̇0/q̈

max,

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US LetterDEL PRETE et al.: JOINT POSITION AND VELOCITY BOUNDS 3

0

q

q̇
Viability

Rubrecht et al. [7]

Decre et al. [6]

Implicit pos-acc

Pos-vel bounds

Fig. 1: State-space plot showing the viability constraints (as
computed in this paper, in [5] and in [6]), the position and
velocity bounds and the constraints implicitly imposed by the
position and acceleration bounds for qmax = −qmin = 1 rad,
q̇max = 5 rad/s, q̈max = 15 rad/s2.

3) compute the initial velocity such that q(t0) = qmax

Following these steps we find:

q̇VM (q) =
√

2q̈max(qmax − q0) (8)

Similarly, the minimum initial velocity to ensure viability is:

q̇Vm(q) = −
√

2q̈max(q0 − qmin) (9)

We can conclude that the set of viable states is:

Vc = {(q, q̇) : (q, q̇) ∈ F , q̇Vm(q) ≤ q̇ ≤ q̇VM (q)} (10)

This definition of Vc allows us to check easily the viability of
a state by just verifying three inequalities.

Fig. 1 shows how Vc and F may look like in a state-
space plot. The same plot also depicts the joint velocity limits
computed using the methods presented in [5] and in [6]. The
method proposed by [6] is conservative in the context of
acceleration control because it was derived assuming velocity
control. Moreover, we can see a discontinuity when approach-
ing the position bounds. The second method [5] fixed the issue
of the discontinuity, but it is conservative (even assuming ve-
locity control). Finally, Fig. 1 also shows the state constraints
implicitly imposed by the position-acceleration bounds, e.g.
starting from qmin with zero velocity and applying maximum
acceleration we find the maximum velocity we can reach for
each state.

2) Discrete-Time Control: If the control can only change at
discrete time steps, we have to pay attention to what happens
after we reached the position boundary (e.g. qmax) with zero
velocity. In case of continuous-time control we can switch
immediately to q̈ = 0 after reaching qmax, so we can be sure
that no constraint violation will occur. In case of discrete-time
control instead we need to maintain q̈ = −q̈max until the
end of the time step in which we reach qmax. In theory this
may lead us to violating the lower position or velocity bound.
However, in practice, this is extremely rare, as we argue in
the following.

Let us assume the worst case, namely we reach the state
(qmax, 0) while applying maximum deceleration a moment
after the beginning of the time step. In this case we need to
maintain q̈ = −q̈max for the remaining of the time step (which
is approximately δt). At the end of the time step the state will
then be q = qmax − 0.5δt2q̈max, q̇ = −δt q̈max , q̇discr .
At that point we can bring the joint to a stop by applying
q̈ = q̈max for one time step, which would lead us to q =
qmax− δt2q̈max , qdiscr. In case qdiscr and q̇discr are within
their bounds, then we have nothing to worry about and V =
Vc. The conditions to verify are then:

qmax − qmin ≥ δt2q̈max, q̇max ≥ δt q̈max (11)

Typically these conditions are verified because δt is much
smaller than 1. For instance, even assuming a value of δt as
large as 0.1 s, to violate (11) we would need either q̇max to
be more than 10 times smaller than q̈max, or (qmax − qmin)
to be at least 100 times smaller than q̈max. Even if this is the
case, we can safely set q̈max to be smaller than its real value
so as to satisfy (11).

When (11) is not verified the definition of V is much
more complex than that of Vc. To avoid this mathematical
complexity of limited practical utility, in the remaining of the
paper we will assume that (11) is verified, and so V = Vc.

B. Reformulating (4) in Terms of Viability

Now that we derived a simple definition of V , we can
exploit it to reformulate problem (4). Given the current state
(q, q̇) ∈ V , we need to find the maximum (or minimum)
value of q̈ such that: i) the next state (q(δt), q̇(δt)) belongs
to V , and ii) the whole trajectory leading to the next state
belongs to F . Note that the first condition alone is not
sufficient: the trajectory between two viable states may violate
a constraint. Viability only ensures the existence of a feasible
future trajectory, meaning that, even starting from a viable
state, you can end up violating a constraint. In mathematical
terms we reformulate (4) as:

q̈max0 = maximize
q̈

q̈

subject to q(0) = q, q̇(0) = q̇

(q(t), q̇(t)) ∈ F ∀t ∈ [0, δt]

q̇Vm(q(δt)) ≤ q̇(δt) ≤ q̇VM (q(δt))

|q̈| ≤ q̈max

(12)

This problem is much simpler than its original version be-
cause: i) it has a single variable (rather than an infinite
sequence of variables), and ii) its constraints concern only
the trajectory in [0, δt] (rather than in [0,∞]). However, even
problem (12) is hard to solve because its constraints are i)
infinitely many, and ii) nonlinear. In the next three subsections
we reformulate the inequality constraints of problem (12); each
one will give us a lower and an upper bound on q̈, which we
will combine in Section III-F.

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US Letter4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2017

C. Position Inequalities

The position trajectory is a second-order polynomial, which
we want to remain bounded within the position limits:

qmin ≤ q + tq̇ + 0.5t2q̈ ≤ qmax ∀t ∈ [0, δt] (13)

The classical approach in the literature is to ensure that these
inequalities are satisfied only for t = δt. If the velocity does
not change sign in the current time step, this is actually enough
to guarantee the satisfaction of these constraints over the whole
interval [0, δt]. However, in case of a change in the sign of
the velocity, the constraints may be satisfied for t = δt, but
violated for some value of t between 0 and δt. Let us focus
first on the upper bound. To reduce the infinite number of
constraints to a finite number we rewrite the upper-bound
constraint in (13) as:

f(q̈) ≤ qmax, (14)

where:
f(q̈) = maximize

t∈[0,δt]
[q + tq̇ + 0.5t2q̈] (15)

To find the time at which the position trajectory reaches its
extremum we set its derivative to zero:

q̇ + tq̈ = 0 → text , −q̇/q̈ (16)

The extremum is a maximum and it is reached in the interior
of the time step if and only if:

q̇ > 0, q̈ ≤ −q̇/δt , q̈M1 (17)

If these conditions are satisfied the maximum position is:

f(q̈) = q + textq̇ + 0.5(text)2q̈ = q − q̇2/(2q̈) (18)

Constraint (14) then becomes:

q̈ ≤ −q̇2

2(qmax − q)
, q̈M2 (19)

If instead the conditions (17) are not satisfied then the max-
imum position is reached at the boundaries of the time step,
so we only need to ensure that the constraint is satisfied for
t = δt, which gives us:

q̈ ≤ 2

δt2
(qmax − q − δt q̇) , q̈M3 (20)

Now we can put all of this together. If q̇ ≤ 0 the acceleration
upper bound is simply q̈M3 . If q̇ > 0 things are more
complicated instead: if (17) is satisfied then the upper bound
is q̈M2 , otherwise the upper bound is q̈M3 . We may then rewrite
(14) as:

(q̈ ≤ q̈M1 ∧ q̈ ≤ q̈M2) ∨ (q̈ > q̈M1 ∧ q̈ ≤ q̈M3), (21)

or equivalently:

q̈ ≤ min(q̈M1 , q̈M2) ∨ q̈M1 < q̈ ≤ q̈M3 (22)

Depending on the values of q̈M1 , q̈M2 and q̈M3 , one among them
is the real acceleration upper bound. Fig. 2a depicts the six
possible scenarios. The third case results in a disconnected
set of feasible accelerations, which is impossible because V is
connected. When q̈M3 > q̈M1 (i.e. the first two cases) then q̈M3

q̈M
1 q̈M

2 q̈M
3

q̈M
1 q̈M

2q̈M
3

q̈M
1q̈M

2 q̈M
3

q̈M
1q̈M

2
q̈M
3

q̈M
1 q̈M

2q̈M
3

q̈M
1q̈M

2q̈M
3

(a) The six possible orderings of
q̈M1 , q̈M2 and q̈M3 . The region in
red represents the feasible accel-
eration region according to (22).

q̈3q̈2q̈1

q̈3q̈2 q̈1

q̈3q̈2 q̈1

(b) The three possible orderings
of q̈1, q̈2 and q̈3. The region in
red represents the feasible accel-
eration region according to (26).

Fig. 2: Possible orderings of the variables used in our algo-
rithm.

Algorithm 1 accBoundsFromPosLimits

Require: q, q̇, qmin, qmax, δt
q̈M1 ← −q̇/δt
q̈M2 ← −q̇2/(2(qmax − q))
q̈M3 ← 2(qmax − q − δt q̇)/(δt2)
q̈m2 ← q̇2/(2(q − qmin))

5: q̈m3 ← 2(qmin − q − δt q̇)/(δt2)
if q̇ ≥ 0 then

q̈LB ← q̈m3
if q̈M3 > q̈M1 then

q̈UB ← q̈M3
10: else

q̈UB ← min(q̈M1 , q̈M2)

else
q̈UB ← q̈M3
if q̈m3 < q̈M1 then

15: q̈LB ← q̈m3
else

q̈LB ← max(q̈M1 , q̈m2)

return { q̈LB , q̈UB }

is the upper bound. In the other three cases the upper bound
is the minimum between q̈M1 and q̈M2 .

Repeating the same analysis for the lower bound we get the
computation summarized by Algorithm 1.

D. Velocity Inequalities

Since the velocity trajectory is a line we just need to ensure
that the velocity bounds be satisfied for t = δt:

1

δt
(−q̇max − q̇) ≤ q̈ ≤ 1

δt
(q̇max − q̇) (23)

E. Viability Inequalities

Let us consider the upper bound of the viability inequality:

q̇(δt) ≤
√

2q̈max(qmax − q(δt))
q̇ + δtq̈ ≤

√
2q̈max(qmax − q − δt q̇ − 0.5δt2q̈)

(24)

This constraint is clearly nonlinear in q̈, but we can derive
an algorithm to reformulate it as a simple upper bound. Since

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US LetterDEL PRETE et al.: JOINT POSITION AND VELOCITY BOUNDS 5

Algorithm 2 accBoundsFromViability

Require: q, q̇, qmin, qmax, q̈max, δt
a← δt2

b← δt(2q̇ + q̈maxδt)
c← q̇2 − 2q̈max(qmax − q − δt q̇)
q̈1 ← −q̇/δt

5: ∆← b2 − 4ac
if ∆ ≥ 0 then

q̈UB ← max(q̈1, (−b+
√

∆)/(2a))
else

q̈UB ← q̈1
10: b← 2δt q̇ − q̈maxδt2

c← q̇2 − 2q̈max(q + δt q̇ − qmin)
∆← b2 − 4ac
if ∆ ≥ 0 then

q̈LB ← min(q̈1, (−b−
√

∆)/(2a))
15: else

q̈LB ← q̈1
return { q̈LB , q̈UB }

the right-hand side (RHS) of (24) is always positive, if the
left-hand side (LHS) is negative then (24) is satisfied:

q̇ + δt q̈ ≤ 0 ⇔ q̈ ≤ − q̇

δt
, q̈1 (25)

If instead the LHS is positive we can take the square of both
sides:

(q̇ + δtq̈)2 ≤ 2q̈max(qmax − q − δt q̇ − 0.5δt2q̈))

aq̈2 + bq̈ + c ≤ 0,
(26)

where:
a = δt2

b = δt (2q̇ + δt q̈max)

c = q̇2 − 2q̈max(qmax − q − δt q̇)
(27)

If ∆ = b2 − 4ac ≥ 0 this parabola is equal to zero in two
points q̈2 and q̈3 (which coincide if ∆ = 0):

q̈2 ,
−b−

√
∆

2a
, q̈3 ,

−b+
√

∆

2a
(28)

Since a > 0 by definition, the inequality (26) is satisfied for
q̈2 ≤ q̈ ≤ q̈3. If instead ∆ < 0 then the parabola is always
positive and there exists no value of q̈ that satisfies (26).
Putting it all together we can rewrite (24) as:

(q̈ ≤ q̈1) ∨ [(q̈ > q̈1) ∧ (∆ ≥ 0) ∧ (q̈2 ≤ q̈ ≤ q̈3)] (29)

Similarly to what we did for the position inequalities in
Section III-C, we can analyse the different scenarios depending
on the values of q̈1, q̈2 and q̈3 (see Fig. 2b). Here we have
only three possible scenarios because by definition q̈2 ≤ q̈3.
The third case results in a disconnected set of feasible accel-
erations, which is impossible because V is connected. In the
other cases the bound is given by the maximum between q̈1
and q̈3. Repeating the same analysis for the lower bound, we
get the computation summarized by Algorithm 2.

1

0

2
3

4

5

Fig. 3: Feasible state space for qmax = −qmin = 0.5 rad,
q̇max = 2 rad/s, q̈max = 10 rad/s2, and δt = 0.1s. Region
0 represents the unreachable space, while region 1 represents
the space that is not viable. In each of the other four regions,
a different acceleration upper bound dominates the others. In
region 2 it is the one coming from the position inequality (13).
In region 3 it is the one coming from the velocity inequality
(23). In region 4 it is the acceleration upper bound q̈max. In
region 5 it is the one coming from the viability inequality (24).

Algorithm 3 Compute Joint Acceleration Bounds

Require: q, q̇, qmin, qmax, q̇max, q̈max, δt
q̈UB ← [0, 0, 0, q̈max]
q̈LB ← [0, 0, 0,−q̈max]
(q̈LB [0], q̈UB [0])← accBoundsFromPosLimits(...)
q̈LB [1]← (−q̇max − q̇)/δt

5: q̈UB [1]← (q̇max − q̇)/δt
(q̈LB [2], q̈UB [2])← accBoundsFromViability(...)
return {max(q̈LB), min(q̈UB)}

F. Final Algorithm to Solve (4)

Finally, to compute the solution of our original problem
(4), we just need to compute all the upper and lower bounds
of q̈, and then select the minimum among the upper bounds
and the maximum among the lower bounds. This procedure is
summarized by Algorithm 3.

Fig. 3 shows the feasible state space divided into six
different regions. Apart from the non-viable region and the
non-reachable region, in each of the other four regions there is
a different active constraint in (12). Note that the size of these
regions depends on the values of the time step and the position,
velocity and acceleration bounds. In some cases certain regions
may even disappear.

IV. TORQUE CONTROL

During the last 15 years robots are switching from ve-
locity/acceleration control to torque control [13], [14]. This
section presents one way to apply the methodology proposed
in the previous section to a torque-controlled robot. In order
to do so we have to face two issues.

First, so far we have assumed a constant acceleration during
the time step, while now we have a constant torque. Con-
sidering an n-degree-of-freedom manipulator, the relationship
between torques and accelerations is given by:

τ = M(q)q̈ + h(q, q̇), (30)

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US Letter6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2017

Algorithm 4 Estimate Acceleration Bounds From Torque
Bounds
Require: qmin,qmax, q̇max, τmax, N

q̈UB ← [∞, . . . ,∞]
q̈LB ← −[∞, . . . ,∞]
for i = 1→ N do

q← random(qmin,qmax)
5: q̇← random(−q̇max, q̇max)

M ← computeMassMatrix(q)
h← computeBiasForces(q, q̇)
for j = 1→ size(q) do

q̈max ← (τmax[j]− h[j])/M [j, j]
10: q̈min ← (−τmax[j]− h[j])/M [j, j]

q̈UB [j]← min(q̈UB [j], q̈max)
q̈LB [j]← max(q̈LB [j], q̈min)

return {q̈LB , q̈UB}

where τ ∈ Rn are the joint torques, q̈ ∈ Rn are the joint ac-
celerations, M(q) ∈ Rn×n is the inertia matrix, h(q, q̇) ∈ Rn
are the bias forces. According to (30) a constant torque does
not imply a constant acceleration because q and q̇ change
during the time step. However, since time steps are typically
short (i.e. between 1 and 10 ms), h and M do not change
much between the beginning and the end of the time step.
Hence we can assume that accelerations are approximately
constant throughout the time step.

The second issue is that joint accelerations are not directly
bounded, but they are indirectly bounded by the torque limits
τmax. This means that the acceleration bounds depend on the
system state. Trajectory generation under torque constraints
requires solving a complex optimization problem [15], which
we cannot afford inside a control loop. We suggest a conserva-
tive solution, that is to estimate offline worst-case acceleration
bounds and use them in our algorithm.

Algorithm 4 shows a sampling-based procedure to estimate
these bounds: i) we generate a large number N of random
states, ii) for each state we compute the upper/lower accel-
eration bound at each joint, assuming that the other joint
accelerations are zero, iii) for each joint we select the worst-
case bounds. This procedure is not completely conservative
because it computes the acceleration bounds for a certain joint
assuming that the other joint accelerations are zero—while this
is unlikely the case in reality. However, typically only one joint
at a time will have its state on the boundaries of the viable
set V . When this happens, only this joint requires maximum
acceleration to stop before its position limit, and the tracking at
the other joints can be temporarily degraded to accommodate
this need. However, if needed, a more conservative procedure
to estimate worst-case acceleration bounds from torque bounds
can be used.

V. SIMULATIONS

In this section we validate the proposed method through
numerical simulations with the 7-degree-of-freedom arm of the
Baxter robot1. In both our tests we compare the naive approach

1http://www.rethinkrobotics.com/baxter/

to bound accelerations (2) with the approach proposed in this
paper. Our first test focuses on joint-space acceleration control,
while in our second test the robot joints are torque controlled
and the task is executed by the end-effector in Cartesian-
space. All the kinematics and dynamics quantities have been
computed with the Pinocchio library [16].

A. Joint-Space Acceleration Control

In this test we use the following joint-space acceleration
controller:

minimize
q̈

||q̈d − q̈||2

subject to q̈lb ≤ q̈ ≤ q̈ub
(31)

The desired joint accelerations are computed as:

q̈d = kp(q
r − q)− kdq̇, (32)

where kp, kd ∈ R+ are the proportional and derivative
gains. The values used for the simulations are kp = 1000,
kd = 2

√
kp, δt = 0.01 s. We carried out several simulations

using different methods to compute the acceleration bounds
q̈lb, q̈ub and verified which ones were successful in preventing
constraint violations. To incite the hitting of a joint bound we
set the reference position qr for the first joint outside its valid
range (i.e. 0.1 radians above its upper bound). The results are
summarized by Fig. 4.

1) Naive Acceleration Bounds: Using the naive approach
(2), the first joint violated the upper position bound, as shown
in Fig. 4a. Fig. 4b shows that using a larger value of δt for
computing the acceleration bounds [1], [2] helps mitigating the
issue, but it does not completely solve it. The impact velocity
is reduced, but the constraint is still violated.

2) Viability-Based Acceleration Bounds: Using our algo-
rithm, position and velocity bounds are reached multiple
times, but never violated, as shown by Fig. 4c. The system
never reached the steady state (qmax, 0)—as it would if the
controller were continuous time. The joint velocity oscillates
around zero, while its acceleration is discontinuous. Even if
unpleasant on a real system, this behavior is sound, because
we did not bound jerk. We can easily get rid of these
discontinuities by using larger values of δt for computing the
acceleration bounds, as shown in Fig. 4d.

B. Cartesian-Space Torque Control

In this simulation we show the importance of correctly
bounding the joint accelerations during task-space control. We
used a task-space inverse dynamics controller [17] to reach a
desired configuration with the end-effector of Baxter’s arm.
At the same time, a lower-priority joint-space task is used to
stabilize the null space of the end-effector. The controller also
guarantees the torque and acceleration limits. At each control
loop we computed the desired joint torques by solving the
following Quadratic Program:

minimize
τ ,q̈

||v̇d − J(q)q̈− J̇(q, q̇)q̇||2 + w||q̈p − q̈||2

subject to τ = M(q)q̈ + h(q, q̇)

q̈lb ≤ q̈ ≤ q̈ub, |τ | ≤ τmax,
(33)

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US LetterDEL PRETE et al.: JOINT POSITION AND VELOCITY BOUNDS 7

2

q
[r
a
d
]

22

q̇
[r
a
d
/s
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

-12

12

q̈
[r
a
d
/s
2
]

(a) Acceleration bounds computed with the naive approach (2) and the
same δt of the controller.

2

q
[r
a
d
]

δt =2x δt =5x δt =20x

22

q̇
[r
a
d
/s
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

-12

12

q̈
[r
a
d
/s
2
]

(b) Acceleration bounds computed with the naive approach (2) and larger
values of δt than the controller.

2

q
[r
a
d
]

22

q̇
[r
a
d
/s
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

-12

12

q̈
[r
a
d
/s
2
]

(c) Acceleration bounds computed with the approach proposed in this
paper and the same δt of the controller. Even if these acceleration
discontinuities may be undesirable on a real system, this behavior is
sound because we did not limit the jerk of our trajectory. Using a larger
value of δt in the acceleration bound computation makes them disappear.

2

q
[r
a
d
]

δt =2x δt =5x δt =20x

22

q̇
[r
a
d
/s
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

-12

12

q̈
[r
a
d
/s
2
]

(d) Acceleration bounds computed with the approach proposed in this
paper and larger values of δt than the controller.

Fig. 4: Trajectories of the first joint of the Baxter arm obtained by using different techniques to compute the acceleration
bounds. For this simulation we had δt = 0.01 s, qmax = 2 rad, q̇max = 2 rad/s, q̈max = 12 rad/s2.

1 2 3 4 5
Time [s]

0.0

1.0

2.0

3.0

q
[r
a
d
]

1 2 3 4 5
Time [s]

−2.0

−1.0

0.0

1.0

2.0

q̇
[r
a
d
/s
]

1 2 3 4 5
Time [s]

−30

0

30

q̈
[r
a
d
/s
2
]

0.30 0.40 0.50 0.60

0.30 0.40 0.50 0.60

(a) Using the naive approach the joint reaches its lower position
bound at 0.36 s with a velocity of −1.4 rad/s.

1 2 3 4 5
Time [s]

0.0

1.0

2.0

3.0

q
[r
a
d
]

1 2 3 4 5
Time [s]

−2.0

−1.0

0.0

1.0

2.0

q̇
[r
a
d
/s
]

1 2 3 4 5
Time [s]

−30

0

30

q̈
[r
a
d
/s
2
]

0.2 0.3 0.4 0.5

0.2 0.3 0.5

(b) Using the proposed method position, velocity and accelera-
tion bounds are satisfied throughout the whole trajectory.

Fig. 5: Trajectory of the elbow joint using either the naive approach or our approach to compute the joint acceleration bounds.
In both cases we used a larger δt (2×) than the controller to avoid discontinuities.

57 pt
0.792 in
20.1 mm

48 pt
0.667 in
16.9 mm

48 pt
0.667 in
16.9 mm

43 pt
0.597 in
15.2 mm

Margin requirements for the other pages
Paper size this page US Letter8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2017

where J(q) ∈ R6×n is the end-effector Jacobian, and w ∈ R is
the postural-task weight. The desired end-effector acceleration
and joint accelerations are computed as:

v̇d = kp log(H(q)−1Hd)− kdJ(q)q̇

q̈p = kp(q
r − q)− kdq̇,

(34)

where kp, kd ∈ R+ are the proportional and derivative gains,
and H,Hd ∈ SE(3) are respectively the measured and desired
rigid transformation from world to end-effector frame. The
values used for this simulations are kp = 10, kd = 2

√
kp,

δt = 0.01 s, w = 10−3.
We selected the initial and final pose of the end-effector so

that the elbow joint moves towards its lower bound. We carried
out several simulations using different methods to compute
the acceleration bounds q̈lb, q̈ub and checked for violations of
joint limits. The acceleration bounds were estimated offline
from the torque bounds using Algorithm 4 with N = 106

(about 5 minutes of computation time).
1) Naive Acceleration Bounds: In our first simulation we

computed q̈lb and q̈ub using the naive method (2). We com-
puted the acceleration bounds with a value of δt twice as
large as the controller to avoid discontinuities in the joint
accelerations. The robot managed to reach the desired pose
with its end-effector, but the elbow joint reached its lower
position bound with a large velocity of 1.4 rad/s (as shown by
Fig. 5a). On a real robot this could have seriously damaged the
system. We also tried using a much larger value of δt (20×).
While this helped reducing the impact velocity of the elbow
joint to 0.3 rad/s, it did not prevent the impact.

2) Viability-Based Acceleration Bounds: We then computed
q̈lb and q̈ub using the method proposed in this paper (i.e.
Algorithm 3). Similarly to the previous test, we used a larger
δt (2×) to compute the acceleration bounds. Also in this case
the end-effector reached the desired pose, but no constraint
was violated: Fig. 5b shows that the elbow joint safely reached
its lower bound with zero velocity.

VI. CONCLUSIONS

This paper discussed the control of robots whose joints
have bounded positions, velocities and accelerations. Despite
the well-known difficulty of satisfying position, velocity and
acceleration bounds [6], [7], [3], [1], no exact solution had
been proposed yet. We found the maximum and minimum
current joint accelerations that guarantee the existence of a
feasible future trajectory. This problem can be formulated as
an untractable infinite-horizon optimal control problem. We
reformulated it using the concept of viability and derived an
efficient algorithm to solve it. We also proposed a pragmatic
way to apply this technique to torque-controlled robots, whose
accelerations are only indirectly bounded by the torque limits.
Simulations on the Baxter arm showed the interest of using
our approach to guarantee the satisfaction of the joint bounds.

Despite its clear utility, the proposed algorithm has several
limitations, which should be addressed in future work.
• The algorithm assumes constant bounds. Even though

we proposed an approach to deal with state-dependent

bounds, this approach is conservative and further research
is necessary to fully exploit the robot capabilities.

• An exact knowledge of the state and the model of the
robot was assumed, hence the computed bounds are not
robust to uncertainties.

• We did not deal with the case of physical interaction with
the environment, in which unknown external forces may
lead to constraint violations. Moreover, rigid contacts
constrain the robot motion, coupling all the joints, thus
the proposed method would not be directly applicable.

• We did not account for jerk limits, which would be
certainly useful in practice, even though we expect them
to substantially increase the algorithm complexity [4].

REFERENCES

[1] K. C. Park, P. H. Chang, and S. H. Kim, “The Enhanced Compact QP
Mathod for Redundant Manipulators Using Practical Inequality Con-
straints,” in IEEE International Conference on Robotics and Automation
(ICRA), 1998.

[2] L. Saab, O. E. Ramos, N. Mansard, P. Soueres, and J.-y. Fourquet,
“Dynamic Whole-Body Motion Generation under Rigid Contacts and
other Unilateral Constraints,” IEEE Transactions on Robotics, vol. 29,
no. 2, pp. 346–362, 2013.

[3] F. Kanehiro, M. Morisawa, W. Suleiman, K. Kaneko, and E. Yoshida,
“Integrating geometric constraints into reactive leg motion generation,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[4] T. Kröger and F. M. Wahl, “On-Line trajectory generation in robotic
systems. Basic concepts for instananeous reactions to unforseen (sensor)
events,” IEEE Transaction on Robotics, vol. 26, no. 1, pp. 94–111, 2010.

[5] S. Rubrecht, V. Padois, P. Bidaud, and M. De Broissia, “Constraints
Compliant Control : constraints compatibility and the displaced config-
uration approach,” in IEEE/RSJ Intenational Conference on Intelligent
Robots and Systems (IROS), 2010.

[6] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending
iTaSC to support inequality constraints and non-instantaneous task speci-
fication,” in IEEE International Conference on Robotics and Automation
(ICRA), 2009.

[7] S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and M. Da Silva Simoes,
“Motion safety and constraints compatibility for multibody robots,”
Autonomous Robots, vol. 32, no. 3, pp. 333–349, 2012.

[8] P. M. Wensing and D. E. Orin, “Generation of Dynamic Humanoid
Behaviors Through Task-Space Control with Conic Optimization,” in
IEEE International Conference on Robotics and Automation (ICRA),
2013.

[9] T. Koolen, J. Smith, G. Thomas, S. Bertrand, et al., “Summary of Team
IHMC ’ s Virtual Robotics Challenge Entry,” in IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2013.

[10] Q. Nguyen and K. Sreenath, “Exponential Control Barrier Functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference, 2016.

[11] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained Robot Control
Using Control Barrier Functions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016.

[12] J.-P. Aubin., Viability Theory. Birkhauser, 1990.
[13] G. Hirzinger and A. Albu-Schäffer, “On a new generation of torque

controlled light-weight robots,” in IEEE International Conference on
Robotics and Automation (ICRA), 2001.

[14] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and
L. Righetti, “Momentum control with hierarchical inverse dynamics on
a torque-controlled humanoid,” Autonomous Robots, vol. 40, no. 3, pp.
473–491, 2016.

[15] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-Optimal Control of
Robotic Manipulators Along Specified Paths,” The International Journal
of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[16] N. Mansard, “http://stack-of-tasks.github.io/pinocchio,” 2016.
[17] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized Motion-Force

Control of Constrained Fully-Actuated Robots: ”Task Space Inverse
Dynamics”,” Robotics and Autonomous Systems, vol. 63, pp. 150–157,
2015.

	Check the bookmarked pages for margin impositions
	Page 1: Margin imposition
	Page 2: Margin imposition
	Page 3: Margin imposition
	Page 4: Margin imposition
	Page 5: Margin imposition
	Page 6: Margin imposition
	Page 7: Margin imposition
	Page 8: Margin imposition

