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Let π be a positive continuous target density on R. Let P be the Metropolis-Hastings operator on the Lebesgue space L 2 (π) corresponding to a proposal Markov kernel Q on R. When using the quasi-compactness method to estimate the spectral gap of P , a mandatory first step is to obtain an accurate bound of the essential spectral radius r ess (P ) of P . In this paper a computable bound of r ess (P ) is obtained under the following assumption on the proposal kernel: Q has a bounded continuous density q(x, y) on R 2 satisfying the following finite range assumption : |u| > s ⇒ q(x, x + u) = 0 (for some s > 0). This result is illustrated with Random Walk Metropolis-Hastings kernels.

Introduction

Let π be a positive distribution density on R. Let Q(x, dy) = q(x, y)dy be a Markov kernel on R. Throughout the paper we assume that q(x, y) satisfies the following finite range assumption: there exists s > 0 such that |u| > s =⇒ q(x, x + u) = 0.

(1)

Let T (x, dy) = t(x, y)dy be the nonnegative kernel on R given by t(x, y) := min q(x, y) , π(y) q(y, x) π(x)

(2)

and define the associated Metropolis-Hastings kernel:

P (x, dy) := r(x) δ x (dy) + T (x, dy) with r(x) := 1 -R t(x, y) dy,

where δ x (dy) denotes the Dirac distribution at x. The associated Markov operator is still denoted by P , that is we set for every bounded measurable function f : R → C : ∀x ∈ R, (P f )(x) = r(x)f (x) + R f (y) t(x, y) dy.

(4)

In the context of Monte Carlo Markov Chain methods, the kernel Q is called the proposal Markov kernel. We denote by (L 2 (π), • 2 ) the usual Lebesgue space associated with the probability measure π(y)dy. For convenience, • 2 also denotes the operator norm on L 2 (π), namely: if U is a bounded linear operator on L 2 (π), then U 2 := sup f 2 =1 U f 2 . Since t(x, y)π(x) = t(y, x)π(y),

we know that P is reversible with respect to π and that π is P -invariant (e.g. see [START_REF] Roberts | General state space Markov chains and MCMC algorithms[END_REF]).

Consequently P is a self-adjoint operator on L 2 (π) and P 2 = 1. Now define the rank-one projector Π on L 2 (π) by

Πf := π(f )1 R with π(f ) := R f (x) π(x) dx.
Then the spectral radius of P -Π equals to P -Π 2 since P -Π is self-adjoint, and P is said to have the spectral gap property on L 2 (π) if

̺ 2 ≡ ̺ 2 (P ) := P -Π 2 < 1.
In this case the following property holds:

∀n ≥ 1, ∀f ∈ L 2 (π), P n f -Πf 2 ≤ ̺ n 2 f 2 . (SG 2 )
The spectral gap property on L 2 (π) of a Metropolis-Hastings kernel is of great interest, not only due to the explicit geometrical rate given by (SG 2 ), but also since it ensures that a central limit theorem (CLT) holds true for additive functional of the associated Metropolis-Hastings Markov chain under the expected second-order moment conditions, see [START_REF] Roberts | Geometric ergodicity and hybrid Markov chains[END_REF]. Furthermore, the rate of convergence in the CLT is O(1/ √ n) under third-order moment conditions (as for the independent and identically distributed models), see details in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF][START_REF] Ferré | Limit theorems for stationary Markov processes with L 2 -spectral gap[END_REF].

The quasi-compactness approach can be used to compute the rate ̺ 2 (P ). This method is based on the notion of essential spectral radius. Indeed, first recall that the essential spectral radius of P on L 2 (π), denoted by r ess (P ), is defined by (e.g. see [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF] for details):

r ess (P ) := lim n (inf P n -K 2 ) 1/n (6)
where the above infimum is taken over the ideal of compact operators K on L 2 (π). Note that the spectral radius of P is one. Then P is said to be quasi-compact on L 2 (π) if r ess (P ) < 1.

Second, if r ess (P ) ≤ α for some α ∈ (0, 1), then P is quasi-compact on L 2 (π), and the following properties hold: for every real number κ such that α < κ < 1, the set U κ of the spectral values λ of P satisfying κ ≤ |λ| ≤ 1 is composed of finitely many eigenvalues of P , each of them having a finite multiplicity (e.g. see [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF] for details). Third, if P is quasi-compact on L 2 (π) and satisfies usual aperiodicity and irreducibility conditions (e.g. see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]), then λ = 1 is the only spectral value of P with modulus one and λ = 1 is a simple eigenvalue of P , so that P has the spectral gap property on L 2 (π). Finally the following property holds: either

̺ 2 (P ) = max{|λ|, λ ∈ U κ , λ = 1} if U κ = ∅, or ̺ 2 (P ) ≤ κ if U κ = ∅.
This paper only focusses on the preliminary central step of the previous spectral method, that is to find an accurate bound of r ess (P ). More specifically, we prove that, if the target density π is positive and continuous on R, and if the proposal kernel q(•, •) is bounded continuous on R 2 and satisfies (1) for some s > 0, then r ess (P ) ≤ α a with α a := max(r a , r ′ a + β a )

where, for every a > 0, the constants r a , r ′ a and β a are defined by:

r a := sup |x|≤a r(x), r ′ a := sup |x|>a r(x), β a := s -s sup |x|>a t(x, x + u) t(x + u, x) du. ( 8 
)
This result is illustrated in Section 2 with Random Walk Metropolis-Hastings (RWMH) kernels for which the proposal Markov kernel is of the form Q(x, dy) := ∆(|x -y|) dy, where ∆ : R →[0, +∞) is an even continuous and compactly supported function.

In [START_REF] Atchadé | On the geometric ergodicity of Metropolis-Hastings algorithms[END_REF] the quasi-compactness of P on L 2 (π) is proved to hold provided that 1) the essential supremum of the rejection probability r(•) with respect to π is bounded away from unity; 2) the operator T associated with the kernel t(x, y)dy is compact on L 2 (π). Assumption 1) on the rejection probability r(•) is a necessary condition for P to have the spectral gap property (SG 2 ) (see [START_REF] Roberts | Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms[END_REF]). But this condition, which is quite generic from the definition of r(•) (see Remark 3), is far to be sufficient for P to satisfy (SG 2 ). The compactness Assumption 2) of [START_REF] Atchadé | On the geometric ergodicity of Metropolis-Hastings algorithms[END_REF] is quite restrictive, for instance it is not adapted for random walk Metropolis-Hastings kernels. Here this compactness assumption is replaced by the condition r ′ a + β a < 1. As shown in the examples of Section 2, this condition is adapted to RWMH.

In the discrete state space case, a bound for r ess (P ) similar to (7) has been obtained in [START_REF] Hervé | Computable bounds of ℓ 2 -spectral gap for discrete Markov chains with band transition matrices[END_REF]. Next a bound of the spectral gap ̺ 2 (P ) has been derived in [START_REF] Hervé | Computable bounds of ℓ 2 -spectral gap for discrete Markov chains with band transition matrices[END_REF] from a truncation method for which the control of the essential spectral radius of P is a central step. It is expected that, in the continuous state space case, the bound (7) will provide a similar way to compute the spectral gap ̺ 2 (P ) of P . This issue, which is much more difficult than in the discrete case, is not addressed in this work.

2 An upper bound for the essential spectral radius of P Let us state the main result of the paper.

Theorem 1 Assume that (i) π is positive and continuous on R;

(ii) q(•, •) is bounded and continuous on R 2 , and satisfies the finite range assumption (1).

For a > 0, set α a := max(r a , r ′ a + β a ), where the constants r a , r ′ a and β a are defined in (8). Then ∀a > 0, r ess (P ) ≤ α a .

Theorem 1 is proved in Section 3 from Formula (6) by using a suitable decomposition of the iterates P n involving some Hilbert-Schmidt operators.

Remark 1 Assume that the assumptions (i)-(ii) of Theorem 1 hold. Then, if there exists some a > 0 such that α a < 1, P is quasi-compact on L 2 (π). Suppose moreover that the proposal Markov kernel Q(x, dy) satisfies usual irreducibility and aperiodicity conditions. Then P has the spectral gap property on L 2 (π). Actually, if q is symmetric (i.e. q(x, y) = q(y, x)), it can be easily proved that, under the condition r ′ a + β a < 1, P satisfies the so-called drift condition with respect to V (x) := 1/ π(x), so that P is V -geometrically ergodic, that is P has the spectral gap property on the space

(B V , • V ) composed of the functions f : R → R such that f V := sup x∈R |f (x)|/V (x) < ∞. If furthermore R π(x) dx < ∞,
then the spectral gap property of P on L 2 (π) can be deduced from the V -geometrical ergodicity since P is reversible (see [START_REF] Roberts | Geometric ergodicity and hybrid Markov chains[END_REF][START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF]). However this fact does not provide a priori any precise bound on the essential spectral radius of P on L 2 (π). Indeed, mention that the results [Wu04, Th. 5.5] provide a comparison between r ess (P ) and r ess (P |B V ), but unfortunately, to the best of our knowledge, no accurate bound of r ess (P |B V ) is known for Metropolis-Hasting kernels. In particular note that the general bound of r ess (P |B V ) given in [HL14, Th. 5.2] is of theoretical interest but is not precise, and that the more accurate bound of r ess (P |B V ) given in [HL14, Th. 5.4] cannot be used here since in general no iterate of P is compact from B 0 to B V , where B 0 denotes the space of bounded measurable functions f : R → R equipped with the supremum norm. Therefore, the V -geometrical ergodicity of P is not discussed here since the purpose is to bound the essential spectral radius of P on L 2 (π).

Remark 2 If π and q satisfy the assumptions (i)-(ii) of Theorem 1, and if moreover q satisfies the following mild additional condition ∀x ∈ R, ∃y ∈ [xs, x + s], q(x, y) q(y, x) = 0, (10) then, for every a > 0, we have r a < 1, so that the quasi-compactness of P on L 2 (π) holds provided that there exists some a > 0 such that r ′ a +β a < 1. Note that Condition (10) is clearly fulfilled if q is symmetric. To prove the previous assertion on r a , observe that r(•) is continuous on R (use Lebesgue's theorem). Consequently, if r a = 1 for some a > 0, then r(x 0 ) = 1 for some x 0 ∈ [-a, a], but this is impossible from the definition of r(x 0 ) and Condition (10).

Remark 3 Actually, under the assumptions (i)-(ii) of Theorem 1, the fact that r a < 1 for every a > 0, and even the stronger property sup x∈R r(x) < 1, seem to be quite generic. For instance, if q is of the form q(x, y) = ∆(|x -y|) for some function ∆ and if there exists θ > 0 such that π is increasing on (-∞, -θ] and decreasing on [θ, +∞), then sup x∈R r(x) < 1. Thus, for every a > 0, we have r a < 1 and r ′ a < 1. Indeed, first observe that r a < 1 for every a > 0 from Remark 2. Consequently, if sup x∈R r(x) = 1, then there exists (x n ) n ∈ R N such that lim n |x n | = +∞ and lim n r(x n ) = 1. Let us prove that this property is impossible under our assumptions. To simplify, suppose that lim n x n = +∞. Then, from the definition of r(•), from our assumptions on q, and finally from Fatou's Lemma, it follows that, for almost every u ∈ [-s, s] such that ∆(u) = 0, we have lim inf n min(1, π(

x n + u)/π(x n )) = 0. But this is impossible since, if u ∈ [-s, 0] and x n ≥ θ + s, then π(x n + u) ≥ π(x n ).
Theorem 1 is illustrated with symmetric proposal Markov kernels of the form Q(x, dy) := ∆(xy) dy where ∆ : R →[0, +∞) is : 1) an even continuous function ; 2) assumed to be compactly supported on [-s, s] and positive on (-s, s) for some s > 0. Then q(x, y) := ∆(xy) satisfies (1) and t(•, •) is given by

∀u ∈ [-s, s], t(x, x + u) := ∆(u) min 1 , π(x + u) π(x) .
Corollary 1 Assume that q(x, y) := ∆(xy) with ∆(•) satisfying the above assumptions and that π is an even positive continuous distribution density such that the following limit exists:

∀u ∈ [0, s], τ (u) := lim x → +∞ π(x + u) π(x) ∈ [0, 1]. ( 11 
)
Assume that the set {u ∈ [0, s] : τ (u) = 1} has a positive Lebesgue-measure. Then P is quasi-compact on L 2 (π) with

r ess (P ) ≤ α ∞ := max r ∞ , γ ∞ < 1 where γ ∞ := 1 - s 0 ∆(u) 1 -τ (u) 1/2 2 du.
Proof. We know from Theorem 1 that, for any a > 0, r ess (P ) ≤ max r a , r ′ a + β a with r a := sup |x|≤a r(x), r ′ a := sup |x|>a r(x). It is easily checked that

β a = s -s ∆(u) sup |x|>a min π(x + u) π(x) , π(x) π(x + u) du.
Note that

∀x ∈ R, r(x) = 1 - s -s ∆(u) min 1, π(x + u) π(x) du.
For u ∈ [-s, 0], τ (u) is defined as in (11). Then

∀u ∈ [-s, s], τ (u) = lim y → +∞ π(y) π(y -u) = 1 τ (-u)
with the convention 1/0 = +∞. Thus, for every u ∈ [-s, 0], we have τ (u) ∈ [1, +∞]. Moreover we obtain for every u ∈ [-s, s]:

lim x → -∞ π(x + u) π(x) = τ (-u).
since π is an even function. We have for every a > 0

r ′ a = 1 -min inf x<-a s -s ∆(u) min 1, π(x + u) π(x) du , inf x>a s -s ∆(u) min 1, π(x + u) π(x) du .
Moreover it follows from dominated convergence theorem and from the above remarks that

lim x → ±∞ s -s ∆(u) min 1, π(x + u) π(x) du = s -s ∆(u) min 1, τ (±u) du
from which we deduce that

r ′ ∞ := lim a → +∞ r ′ a = 1 -min s -s ∆(u) min 1, τ (-u) du , s -s ∆(u) min 1, τ (u) du = 1 - s -s ∆(u) min 1, τ (u) du (since ∆ is an even function) = 1 - 0 -s ∆(u) du - s 0 ∆(u)τ (u) du (since τ (u) ≤ 1 for u ∈ [0, s], τ (u) ≥ 1 for u ∈ [-s, 0]) = 1 - s 0 ∆(u) 1 + τ (u) du.
Note that, for every a > 0, we have r a < 1 from Remark 2. Moreover r ′ ∞ ≤ 1/2 from the last equality. Thus r ∞ := sup x∈R r(x) < 1. Next we obtain for every a > 0

β a = s -s ∆(u) max sup x<-a min π(x + u) π(x) , π(x) π(x + u) , sup x>a min π(x + u) π(x) , π(x) π(x + u) du
and again we deduce from dominated convergence theorem and from the above remarks that

β ∞ := lim a → +∞ β a = s -s ∆(u) max min τ (-u) 1/2 , 1 τ (-u) 1/2 , min τ (u) 1/2 , 1 τ (u) 1/2 du = s -s ∆(u) min τ (u) 1/2 , 1 τ (u) 1/2 du (since τ (-u) = 1 τ (u) ) = 0 -s ∆(u) τ (u) -1/2 du + s 0 ∆(u) τ (u) 1/2 du = 0 -s ∆(u) τ (-u) 1/2 du + s 0 ∆(u) τ (u) 1/2 du = 2 s 0 ∆(u) τ (u) 1/2 du. Thus r ′ ∞ + β ∞ = 1 - s 0 ∆(u) 1 + τ (u) -2τ (u) 1/2 du = 1 - s 0 ∆(u) 1 -τ (u) 2 du < 1
since by hypothesis the set {u ∈ [0, s] : τ (u) = 1} has a positive Lebesgue-measure.

Since r ess (P ) ≤ max r a , r ′ a + β a holds for every a > 0, we obtain that r ess

(P ) ≤ max r ∞ , r ′ ∞ + β ∞ < 1. Thus P is quasi-compact on L 2 (π).
Example 2.1 (Laplace distribution) Let π(x) = e -|x| /2 be the Laplace distribution density, and set q(x, y) := ∆(xy) with ∆(u

) := (1 -|u|) 1 [-1,1] (u). Then ∀u ∈ [0, 1], τ (u) := lim x → +∞ π(x + u) π(x) = e -u .
Then

γ ∞ = 1 - 1 0 (1 -u) 1 -e -u/2 2 du = 8 e -1/2 -e -1 -7/2.
From Corollary 1, P is quasi-compact on L 2 (π) with r ess (P ) ≤ max 1 -1/e , 8 e -1/2e -1 -7/2 = 8 e -1/2e -1 -7/2 ≈ 0.9843 since r ∞ := sup x∈R r(x) ≤ 1 -1/e.

Example 2.2 (Gauss distribution) Let π(x) = e -x 2 /2 / √ 2π be the Gauss distribution density, and set q(x, y)

:= ∆(|x -y|) with ∆(u) := (1 -|u|) 1 [-1,1] (u). Then ∀u ∈ (0, 1], τ (u) := lim x → +∞ π(x + u) π(x) = 0, so that γ ∞ = 1 - 1 0 (1 -u) du = 1 2 .
From Corollary 1, P is quasi-compact on L 2 (π) with r ess (P ) ≤ max 0.156 , 0.5 = 0.5 since

r ∞ ≤ 1 -e -1/2 -e 1/8 1 0 (1 -u)e -(u+1) 2 /2 du ≤ 0.156.
In view of the quasi-compactness approach presented in Introduction for computing the rate ̺ 2 (P ) in (SG 2 ), the bound r ess (P ) ≤ 0.5 obtained for Gauss distribution (for instance) implies that, for every κ ∈ (0.5, 1), the set of the spectral values λ of P on L 2 (π) satisfying κ ≤ |λ| ≤ 1 is composed of finitely many eigenvalues of finite multiplicity. Moreover, from aperiodicity and irreducibility, λ = 1 is the only eigenvalue of P with modulus one and it is a simple eigenvalue of P . Consequently the spectral gap property (SG 2 ) holds with ̺ 2 (P ) given by

• ̺ 2 (P ) = max |λ|, λ ∈ U κ , λ = 1 if U κ = ∅, • ̺ 2 (P ) ≤ κ if U κ = ∅ (
in particular, if for every κ ∈ (0.5, 1) we have U κ = ∅, then we could conclude that ̺ 2 (P ) ≤ 0.5).

The numerical computation of the eigenvalues λ ∈ U κ , λ = 1, is a difficult issue. Even to know whether the set U κ \ {1} is empty or not seems to be difficult. In the discrete state space case (i.e P = (P (i, j)) i,j∈N ), this problem has been solved by using a weak perturbation method involving some finite truncated matrices derived from P (see [START_REF] Hervé | Computable bounds of ℓ 2 -spectral gap for discrete Markov chains with band transition matrices[END_REF]). In the continuous state space case, a perturbation method could be also considered, but it raises a priori difficult theoretical and numerical issues.

Proof of Theorem 1

For any bounded linear operator U on L 2 (π) we define

∀f ∈ L 2 (π), U a f := 1 [-a,a] • U f and U a c f := 1 R\[-a,a] • U f.
Obviously U a and U a c are bounded linear operators on L 2 (π), and U = U a + U a c . Define Rf = rf with function r(•) given in (3). Recall that T is the operator associated with kernel T (x, dy) = t(x, y)dy. Then the M-H kernel P defined in (4) writes as follows:

P = R + T = R a + R a c + T a + T a c with R a c R a = R a R a c = 0 and R a T a c = 0. Lemma 1 The operators T a , T a c R a and (R a c + T a c ) n R a for any n ≥ 1 are compact on L 2 (π).
Proof. Using the detailed balance equation (5), we obtain for any f ∈ L 2 (π)

(T a f )(x) = 1 [-a,a] (x) R f (y) t(x, y) dy = R f (y) 1 [-a,a] ( x) t(x, y) π(y) π(y) dy = 
R f (y) t a (x, y) π(y) dy with t a (x, y) := 1 [-a,a] (x) t(y, x) π(x) 
.

Function q(•, •) is supposed to be bounded on R 2 , so is t(•, •). From inf |x|≤a π(x) > 0 it follows that t a (•, •) is bounded on R 2 . Consequently t a ∈ L 2 (π ⊗ π)
, so that T a is a Hilbert-Schmidt operator on L 2 (π). In particular T a is compact on L 2 (π).

Now observe that

(T a c R a f )(x) = 1 R\[-a,a] (x) R 1 [-a,a] (y) r(y) f (y) t(x, y) dy = R f (y) k a (x, y) π(y) dy
where k a (x, y)

:= 1 [-a,a] (y) 1 R\[-a,a] (x) r(y) t(x, y) π(y) -1 . Then T a c R a is a Hilbert-Schmidt operator on L 2 (π) since k a (•, •) is bounded on R 2 from our assumptions. Thus T a c R a is compact on L 2 (π).
Let us prove by induction that (R

a c + T a c ) n R a is compact on L 2 (π) for any n ≥ 1. For n = 1, (R a c + T a c )R a = T a c R a is compact. Next, (R a c + T a c ) n R a = (R a c + T a c ) n-1 (R a c + T a c )R a = (R a c + T a c ) n-1 T a c R a . Since T a c R a is compact on L 2 (π) and the set of compact operators on L 2 (π) is an ideal, (R a c + T a c ) n R a is compact on L 2 (π).
Lemma 2 For every n ≥ 1, there exists a compact operator K n on L 2 (π) such that

P n = K n + R n a + (R a c + T a c ) n .
Proof. For n = 1 we have P = K 1 + R a + (R a c + T a c ) with K 1 := T a compact by Lemma 1. Now assume that the conclusion of Lemma 2 holds for some n ≥ 1. Since the set of compact operators on L 2 (π) forms a two-sided operator ideal, we obtain the following equalities for some compact operator K ′ n+1 on L 2 (π):

P n+1 = P n P = K n + R n a + (R a c + T a c ) n K 1 + R a + (R a c + T a c ) = K ′ n+1 + R n+1 a + R n a R a c + R n a T a c + (R a c + T a c ) n R a + (R a c + T a c ) n+1 = K ′ n+1 + (R a c + T a c ) n R a + R n+1 a + (R a c + T a c ) n+1 .
Then the expected conclusion holds true for

P n+1 since K n+1 := K ′ n+1 + (R a c + T a c ) n R a is compact on L 2 (π) from Lemma 1.
Theorem 1 is deduced from the next proposition which states that T a c 2 ≤ β a . Indeed, observe that R a 2 ≤ r a and R a c 2 ≤ r ′ a . Set α a := max r a , r ′ a + β a . Then Lemma 2 and T a c 2 ≤ β a give

P n -K n 2 ≤ R a n 2 + R a c 2 + T a c 2 n ≤ 2 α n a .
The expected inequality r ess (P ) ≤ α a in Theorem 1 then follows from Formula (6).

Proposition 1 For any a > 0, we have T a c 2 ≤ β a .

Proof. Lemma 3 below shows that, for any bounded and continuous function f : R → C, we have

T a c f L 2 (π) ≤ β a f L 2 (π)
. Then Inequality T a c 2 ≤ β a of Proposition 1 follows from a standard density argument using that T 2 ≤ P 2 = 1 and that the space of bounded and continuous functions from R to C is dense in L 2 (π).

Lemma 3 For any bounded and continuous function f : R → C, we have

T a c f L 2 (π) ≤ s -s {|x|>a} |f (x + u)| 2 t(x, x + u) 2 π(x) dx 1 2 du ≤ β a f L 2 (π) . (12) 
Proof. Let f : R → C be a bounded and continuous function. Set B := R \ [-a, a]. Then it follows from (1) that

(T a c f )(x) = 1 B (x) R f (y) t(x, y) dy = 1 B (x) s -s f (x + u) t(x, x + u) du. (13) 
For n ≥ 1 and for k = 0, . . . , n, set u k := -s + 2sk/n and define the following functions:

h k (x) := 1 B (x) f (x + u k ) t(x, x + u k ). Then B 2s n n k=1 h k (x) 2 π(x) dx 1 2 = 2s n n k=1 h k L 2 (π) ≤ 2s n n k=1 h k L 2 (π) ≤ 2s n n k=1 B |f (x + u k )| 2 t(x, x + u k ) 2 π(x) dx 1 2 . (14) 
Below we prove that, when n → +∞, the left hand side of ( 14) converges to T a c f L 2 (π) and that the right hand side of (14) converges to the right hand side of the first inequality in (12). Define

∀x ∈ B, χ n (x) := 2s n n k=1 h k (x) = 2s n n k=1 f (x + u k ) t(x, x + u k ).
From Riemann's integral it follows that ∀x ∈ B, lim 

n → +∞ χ n (x) = s -s f (x + u) t(x, x + u) du since the function u → f (x + u) t(x, x + u) is continuous on [-s,
lim n → +∞ B 2s n n k=1 h k (x) 2 π(x) dx = B s -s f (x + u) t(x, x + u) du 2 π(x) dx = T a c f 2 L 2 (π) . (15) 
Next, observe that

2s n n k=1 B |f (x + u k )| 2 t(x, x + u k ) 2 π(x) dx 1 2 = 2s n n k=1 ψ(u k )
with ψ defined by

ψ(u) := B |f (x + u)| 2 t(x, x + u) 2 π(x) dx 1 2
.

Using the assumptions Theorem 1, it follows from Lebesgue's theorem that ψ is continuous. Consequently Riemann integral gives

lim n → +∞ 2s n n k=1 B |f (x + u k )| 2 t(x, x + u k ) 2 π(x) dx 1 2 = s -s ψ(u) du. (16) 
The first inequality in (12) follows from (14) by using (15) and ( 16).

Let us prove the second inequality in (12). The detailed balance equation (5) gives

s -s {|x|>a} |f (x + u)| 2 t(x, x + u) 2 π(x) dx 1 2 du = s -s {|x|>a} |f (x + u)| 2 t(x, x + u) t(x, x + u) π(x) dx 1 2 du = s -s {|x|>a} t(x, x + u) t(x + u, x) |f (x + u)| 2 π(x + u) dx 1 2 du ≤ f L 2 (π) s -s sup |x|>a t(x, x + u) t(x + u, x) du = f L 2 (π) β a .

Conclusion

The study of the iterates of a Metropolis-Hasting kernel P is of great interest to estimate the numbers of iterations required to achieve the convergence in the Metropolis-Hasting algorithm. In conclusion we discuss this issue by comparing the expected results depending on whether P acts on B V or on L 2 (π). Recall that the V -geometrical ergodicity for P (see Remark 1) writes as: there exist ρ ∈ (0, 1) and C ρ > 0 such that

∀n ≥ 1, ∀f ∈ B V , P n f -π(f ) V ≤ C ρ ρ n f V . (SG V )
Let ̺ V (P ) be the infinum bound of the real numbers ρ such that (SG V ) holds true.

1. In most of cases, the number ̺ V (P ) is not known for Metropolis-Hasting kernels. The upper bounds of ̺ V (P ) derived from drift and minorization inequalities seem to be poor and difficult to improve, excepted in stochastically monotone case (e.g. see [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF]Sec. 6] and [START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF]). Consequently the inequality ̺ 2 (P ) ≤ ̺ V (P ) (see [START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF]Th. 6.1]) is not relevant here. Observe that applying the quasi-compactness approach on B V would allow us to estimate the value of ̺ V (P ), but in practice this method cannot be efficient since no accurate bound of the essential spectral radius of P on B V is known.

2. The present paper shows that considering the action on L 2 (π) rather than on B V of a Metropolis-Hasting kernel P enables us to benefit from the richness of Hilbert spaces. The notion of Hilbert-Schmidt operators plays an important role for obtaining our bound (9). The reversibility of P , that is P is self-adjoint on L 2 (π), implies that any upper bound ρ of ̺ 2 (P ) gives the inequality P n f -Πf 2 ≤ ρ n f 2 for every n ≥ 1 and every f ∈ L 2 (π). Consequently any such ρ provides an efficient information to estimate the numbers of iterations required to achieve the convergence in the Metropolis-Hasting algorithm.

From our bound (7) it can be expected that the quasi-compactness method (cf. Introduction) will give a numerical procedure for estimating ̺ 2 (P ) in the continuous state space case.

  s] from the assumptions of Theorem 1. Note that sup n sup x∈B |χ n (x)| < ∞ since f and t are bounded functions. From Lebesgue's theorem and from (13), it follows that