
HAL Id: hal-01356801
https://hal.science/hal-01356801

Submitted on 26 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YASA-M : a semantic Web service matchmaker
Yassin Chabeb, Samir Tata, Alain Ozanne

To cite this version:
Yassin Chabeb, Samir Tata, Alain Ozanne. YASA-M : a semantic Web service matchmaker. 24th
IEEE International Conference on Advanced Information Networking and Applications (AINA 2010):,
Apr 2010, Perth, Australia. pp.966 - 973, �10.1109/AINA.2010.122�. �hal-01356801�

https://hal.science/hal-01356801
https://hal.archives-ouvertes.fr


YASA-M: A Semantic Web Service Matchmaker
Yassin Chabeb, Samir Tata, and Alain Ozanne

TELECOM SudParis, CNRS UMR Samovar, Evry, France
Email: {yassin.chabeb, samir.tata, alain.ozanne}@it-sudparis.eu

Abstract—In this paper, we present new algorithms for match-
ing Web services described in YASA4WSDL (YASA for short).
We have already defined YASA that overcomes some issues
missing in WSDL or SAWSDL. In this paper, we continue
on our contribution and show how YASA Web services are
matched based on the specificities of YASA descriptions. Our
matching algorithm consists of three variants based on three
different semantic matching degree aggregations. This algorithm
was implemented in YASA-M, a new Web service matchmaker.
YASA-M is evaluated and compared to well known approaches
for service matching. Experiments show that YASA-M provides
better results, in terms of precision, response time, and scalability,
than a well known matchmaker.

I. INTRODUCTION

Web services are running through the Web and based
on standards such as SOAP for message transport, WSDL
for service description, and UDDI for service advertisement
and discovery. It is now obvious that the lack of seman-
tic descriptions in WSDL prevents automatic discovery and
hence automatic invocation and composition [1], [2]. To deal
with these issues several approaches were developed. They
use semantic models (ontologies, etc.) for the description of
semantic Web services. We can cite among others, OWL-S
[3], SAWSDL [4] and WSMO [5].
In our works, we are interested in the description of semantic
Web services which is based on the de-facto standard to
describe Web services, namely WSDL. In a previous work,
we have presented YASA4WSDL [6] (YASA for short), an ex-
tension of SAWSDL for semantic description of Web services.
YASA requires no other changes to existing WSDL or XML
Schema documents, or to the way in which they had been
used previously. YASA uses two types of ontologies. The first
one, called Technical Ontology Type, concerns ontologies that
describe service concepts (e.g. interface, input and output) and
ontologies that describe non functional concepts of services
(e.g. QoS and context information). The second ontology
type, called Domain Ontology Type, concerns ontologies that
define the semantics of the service business domain (e.g.
tourism, health, trade...). YASA was motivated mainly by
our opinion that such a language will provide facilities for
automatic service discovery, composition and enactment. In
this paper, we continue on our contribution and show how
Web services described in YASA are discovered. We present in
detail our semantic matching algorithm which consists of three
variants based on three different semantic matching degree
aggregations. Implementations were evaluated and compared
to well known approaches for Web service matching.

This paper is organized as follows. Section II presents a state
of the art of semantic matching approaches. In Section III,
we give an overview of our service description language then
we detail our service matching algorithm. Section IV presents
the implementation and the experiments of the proposed
algorithms for service matching. Finally, we conclude this
paper and present our future work.

II. STATE OF THE ART

Research efforts in matching of semantic Web services try
to identify matching degrees for relationships between the
semantic concepts that describe the elements of services and
requests (e.g. input, output). In this section, we present a
state of the art of the elementary matching. It focuses on
matching at one time only one and same part of both the
requested and the offered sides (e.g. one requested input
and one offered input). Global matching is computed from
all matching results. Therefore, elementary matching degrees
are aggregated to compute global matching degree between
requested and offered services. Related works are classified
according to their elementary matching principle, especially,
their matching degrees categories.
The matching approaches depend on the parts of the service
description to match; some approaches focuses on service pro-
cess, some others are interested in service profile (functional,
non-functional, etc.) or both of them. The matching can be
performed in various ways. It can be logic-based or not. When
it is based on text similarity measurement, on structured graph
matching, or path-length-based similarity of concepts, then it is
called non logic-based matching. Whereas when it is based on
deductive approach, it is called logic-based matching. Match-
ing approaches that use a combination of logical and non-
logical mechanisms are called hybrid matching approaches.
In the following, we present the most recent contribution to
logic-based, non-logic-based, and hybrid matching.

A. Logic-based Matching

This category uses concepts from ontologies and logical
rules. Matching degrees are defined differently depending on
semantics of matched description elements. There are mainly
three matching approaches:

• IO-matching: so called ”service profile IO-matching”.
It concerns data semantics of input (I) and output (O)
service parameters. This type of matching is adopted in
[7], [8], and [9].

• PE-matching: this category concerns the matching of ser-
vice/request preconditions (P) and effects (E). This type



of matching is adopted in PCEM [10] with preconditions
and effects are specified in Prolog.

• IOPE-matching: this category of approaches makes use of
preconditions and effects as well as inputs and outputs.
This category of matching is adopted in [11], [12], [13],
and [14].

In [9], the authors propose four matching degrees. Let A
be an advertised service and R a requested service, then
in addition to the common degrees ”Exact” and ”Fail”, the
authors propose the ”Plug-in” degree if Output(A) subsumes
Output(R), i.e. Output(A) is a set that includes Output(R), and
the ”Subsumes” degree if Output(R) subsumes Output(A), i.e.
the provider does not completely fulfill the request but it likely
needs to modify its plan or perform other requests to complete
its task [9]. The algorithm of matching compares the request
to the advertised services. It matches one by one their inputs
and outputs and records those which matched maximally but
it is not obvious that, allowing requester to (1) constraining
the minimal acceptable degree and (2) restricting concepts of
search will always offer efficient matching process. This may
leads to matching fails either by not choosing the favorable
degree or the right concepts, and then it would be necessary
to execute one or more times again the request.
In [11], for each input, output, and service category, there
is a different interpretation for different degrees: in addition
to ”Equivalent” and ”Fail” degrees, the authors propose ”Un-
known” and ”Subsumes” degrees. The first is used when the
result of matching could not be known. The second denotes
all other matching cases. Consequently, this approach does
not distinguish different matching situations able to be defined
with more accuracy. The algorithm finds out the matching for
each of the element separately. Then, results are aggregated
according to user-defined constraints or functionality that can
complete the matching result [11]. Those user-defined aspects
are not always usable in automatic and dynamic discovery
environments, for example when requesters are themselves
services.

B. Non Logic-based and Hybrid Matching

Non-logic-based Matching makes use of syntactic, struc-
tural, and numeric mechanisms like numeric concept distance,
matching of structured graph, syntactic similarity, etc. The
main idea is to use implicit semantics rather than explicit ones.
To deal with this, non-logic matching approaches make use
of term frequencies, sub-graphs, etc. This type of matching
is adopted in iMatcher1 [10] and ”DSD Matchmaker” [15]
of DIANE Service Description [16]. One talks about Hybrid
Matching when it uses a combination of logical and non-
logical matching mechanisms. Each approach, logic-based or
non logic-based, alone would fail due to its limits, whereas a
hybrid approach, i.e. a combination, may succeed. In OWLS-
MX [17], the matchmaker offers a hybrid semantic matching
of OWL-S profile IO. It exploits logic-based reasoning and
content-based information retrieval techniques. The match-
maker proposes five degrees: the first three ones are logic-
based only: ”exact”, ”plug in”, and ”subsumes”; the last two

ones are hybrid and includes additional computation of syn-
tactic similarity values: subsumed-by and nearest-neighbor. In
WSMO-MX [18], the matchmaker accepts as inputs services
specified in WSML-MX [19]. The matching is based on
the ”Intentional matching of services” in [12], the Object-
oriented graph matching of the matchmaker DSD-MM [15],
and OWLS-MX hybrid semantic matching [17]. The match-
ing degrees are computed by aggregated valuations of four
matching elements: ontology-based type, logical constraint, re-
lation name, and syntactic similarity. The degrees of semantic
matching of WSMO service and goal (requested service) types
are: ”equivalence”, ”plugin”, ”inverse-plugin”, ”intersection”,
”fuzzy similarity”, ”neutral” and, ”disjunction” (fail) [19].
The SAWSDL-MX [20] matchmaker is inspired by OWLS-
MX [17] and WSMO-MX [18]. It is based on logic-based
matching (subsumption reasoning: ”Exact”, ”Subsumes”, and
”Subsumed-by”) as well as IR-based (text retrieval) match-
ing. The syntactic similarity between offered operation and
requested operation is an average of the similarity between
the input vectors and the output vectors. The syntactic-based
degrees ”Subsumed-by” and ”Nearest-neighbor” depend on
selected text similarity measure: Loss-of-Information (LOI),
Extended Jaccard (ExtJacc), Cosine (Cos), or Jensen-Shannon
(JS) [20].
In SAWSDL, as there is no explicit mention of precondition
and effects, SAWSDL Matchmakers still match in the same
way, for example, semantic annotation on service precondition
and semantic annotation on service results. Same problems
persist for the matching of other service elements e.g. func-
tional constraints or non-functional properties like context,
QoS, and user-preferences. So to improve semantic match-
ing, we have to provide more flexibility to the developers’
community to well describe their services, to reuse clearly
semantic domain models and annotate descriptions using mul-
tiple ontologies. In a previous work, we have defines YASA (a
semantic annotation for WSDL) that deals with theses limits.
In following, we recall YASA and detail our YASA-based
matching algorithm.

III. SERVICE MATCHING

A. Service Description

In order to enhance service discovery, composition and
invocation, we have identified requirements for the matching
of semantic Web services. It should be noted that the guidance
given regarding the uses of the attribute modelReference for
SWSADL elements has much more the flavor of suggestions
than definitions [21]. For example, the material on usage
with interfaces mentions that modelReference can be used to
categorize them according to some model, specify behavioral
aspects or other semantic definitions, and similarly for oper-
ations. Consequently, when an operation is annotated using
several semantic concepts from an ontology, one is not able
to differentiate these concepts: which one annotates category,
which one annotate the behavior, which one annotate the QoS?
And so on. The differentiation of semantic annotations of



WSDL elements can be used to enhance Web service match-
ing. Instead of using modelReference to associate one or more
semantic properties to a WSDL element, we should use means
to differentiate each semantic property that can be associated
to a WSDL element. Indeed, one can consider discovering
Web services using one specific semantic property such as
Web service effects or can consider composing/invoking Web
services using one specific semantic property such as Web ser-
vice behavior. For this reason we have defined YASA4WSDL
(YASA for short). A service description in YASA can define
for each WSDL element two attributes providing semantic
description [6]. The first attribute, called serviceConcept, con-
tains a set of URI referencing the corresponding concepts in
the Service Ontology (so called Technical Service Ontology
[22]). The second attribute, called modelReference, contains
a set of URI corresponding to the first list and which define
the semantics in one or several Domain Ontologies. Let us
consider the example presented in Figure 1.

Fig. 1. Semantic Annotation.

It represents two operations of a cinema’s reservation interface.
The operation ”yetFreePlace” checks if there are free places.
The operation ”confirmReservation”, assuming there are free
places, deals with confirmation. This operation is annotated
by two service (technical) concepts: Assumption and Effect,
for each one of them corresponds respectively a reservation
ontology concept: yetFreePlace and freeChecked. The order
of attribute values is important here. It associates the first
technical concept with the first domain concept, the second
technical concept with the second domain concept and so
on. Based on the two attributes providing semantics, this new
proposed mechanism aims to enrich descriptions and enhance
accuracy of service matching.

B. Request Description

We assume in this paper that YASA is the description
language of service requests. In this case, the requests’ de-
scriptions may be simply query-formatted YASA descriptions,
containing an abstract service description with semantic anno-
tations on interface, operation, input and output elements.

C. YASA Service Matching

Given a service request, our proposed matching process for
services described in YASA performs as follows:

• pre-selection step: a subset of candidates services is
extracted from the set of published services;

• YASA matching step: the request is compared with each
published service in the pre-selected subset.

1) Pre-selection Step: A published service matches a ser-
vice request when the following necessary conditions hold:

• For each syntactically element (interface, operation. . . ) in
the request there is the same syntactically element in the
service to be pre-selected,

• There is as much operations, input and output in the pre-
selected service as in the request.

To verify these conditions, one can consider published
services as semantic trees (RDF trees) and service requests
as SPARQL queries. A YASA description of a service can
be considered as a tree where the nodes are the services
elements (interface, input. . . ). When some service elements
are not semantically annotated, this tree can be translated into
a reduced tree where only the branches with annotated nodes
are kept, and the extremities of these branches are cut. The
generic RDF tree for YASA services is given in the Figure 2.

Fig. 2. The Generic RDF Tree ([serviceConcept] is replaced by the name of
the service concept of the YASA semantic annotation and [modelReference]
by the model reference of the YASA semantic annotation).

We use SPARQL to specify service requests. For example if
we consider the following WSDL:

1 <wsdl:interface name="Interface1">
2 <wsdl:operation name="confirmReservation"
3 serviceConcept="Assumption Effect"
4 modelReference="yetFreePlace confirmation" />
5 <wsdl:operation name="yetFreePlace"
6 pattern="http://www.w3.org/ns/wsdl/in-out">
7 <wsdl:output messageLabel="freePlaceNbr"
8 serviceConcept="Postcondition"
9 modelReference="freeChecked"/>

10 </wsdl:operation>
11 </wsdl:interface>

The resolution of a SPARQL query will return a sub-set of
pre-selected candidates services. The resulting SPARQL query
is the following:



1 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
3 SELECT ?service
4 WHERE {
5 ?service ?r1 ?interface. FILTER
6 regex(xsd:string(?r1),"hasInterface").
7 ?interface ?r2 ?op1. FILTER
8 regex(xsd:string(?r2),"hasInterfaceOperation").
9 ?interface ?r3 ?op2. FILTER

10 regex(xsd:string(?r3),"hasInterfaceOperation").
11 ?op2 ?r4 ?opt1. FILTER
12 regex(xsd:string(?r4),"hasOutput").
13 FILTER(!sameTerm(?op1,?op2))}

2) YASA Matching Step: In order to match a service request
with the services resulted from the pre-selection step, we use
an algorithm able to compare two YASA semantic descriptions
(one for the request and one for a pre-selected service).
Actually, we simply compare the service request with all the
pre-selected services. Only the services with the best matching
result are returned. An interesting enhancement, that would be
interesting to do here, consists in sort the services candidates
resulted form the pre-selection step. In this case the matching
process will be stopped when a similarity threshold is reached.

To compare a service request description with a pre-
selected service description, the matching process performs
an elementary matching on elements of descriptions (interface,
operation. . . ). Elementary matching results are then aggregated
to compute the matching result.

a) Elementary Matching: This elementary matching
makes use of a logic and deductive approach. Elements in
the YASA (WSDL) functional parts may be annotated se-
mantically with logical concepts from several ontologies. The
matching of elements is based on the matching of concepts
used in their annotations. The elementary matching degrees
are defined within the considered subsumption based logical
rules described as follows:

• Exact: the requested and the advertised concepts are the
same (or equivalent).

• Subsumes: the advertised concept is a sub-concept of the
requested one.

• Subsumed-by: the requested concept is a sub-concept of
the advertised one.

• Has-Same-Class: the requested and the advertised con-
cepts are sub-concepts of same concept.

• Unclassified: at least one of the requested or the adver-
tised concepts has not been classified.

• Fail: No relation could be determined between requested
and advertised concepts.

These degrees were mainly established by means of
subsumption-based theory used to determine logical relation
and then matching degree between two concepts. These de-
grees have not been arbitrarily chosen, some of them are
proposed by our approach (Has-Same-Class and Unclassified)
and some others find their origin in previously presented state
of the art related to service matching.
Note that the requested and offered WSDL elements are
respectively annotated by a list of domain concepts that
corresponds to a list of technical concepts. The matching of

the requested and offered WSDL elements will be based on
the matching of pairs of concepts from these lists according
to their order in these lists. The order is very important here.
It ensures the matching of the adequate requested domain
concept to the correspondent offered one, once the requested
technical concept matches exactly the correspondent offered
one, and so on (see Figure 3).

Fig. 3. Elementary / Semantic Matching.

We called the values resulted from the concept matching ”el-
ementary matching degrees”. They are aggregated in different
ways to compute the global matching degree of two YASA
descriptions (one for the request and one for a pre-selected
service). We have defined an aggregation approach based
on the average of elementary matching degrees and adapted
two approaches that use Cupid [23] and combinatorial [24]
algorithms.

b) Min-Average matching approach.: In the Min-
Average matching approach, for each annotated YASA service
description element, interface, operation, input, and output, the
algorithm computes its own matching degree value between
one requested element and the correspondent offered one. A
pseudo algorithm for average-based matching is given below.
MD here stands for Matching Degree. Let us consider ”a” and
”b” thresholds over which, respectively, an interface matching
degree and an operation matching degree are significant. Inter-
face and Operation are the first description elements to match;
by defining thresholds, discovery becomes more selective and
precise (we prefer the highest matching degree) and faster (we
do not spend time to try the matching of inputs/outputs of
dissatisfying interface/operations).

1 InterfaceMD=SemanticMatching(rqtInterface,advInterface);
2 if (InterfaceMD > a){
3 loop{
4 OperationMD=SemanticMatching(rqtOperation,advOperation);
5 if (OperationMD > b)
6 loop{
7 InputsMD=SemanticMatching(rqtInputs,advInputs);
8 OutputsMD=SemanticMatching(rqtOutputs,advOutputs);
9 }end loop

10 GlobalOperationMD=((InputsMD+OutputsMD+OperationMD)/3);
11 OperationsMD= OperationsMD+ GlobalOperationMD
12 }end loop
13 return YasaMD=
14 (InterfaceMD+(OperationsMD/nbrRequestedOperations))/2;
15 } else return 0

In the following, we explain how to map elementary
matching degrees to numbers and how to use them to global



matching degrees.

TABLE I
MAPPING ELEMENTARY MATCHING DEGREES TO NUMBERS

Elementary Matching Degrees Interface / Operation / Output Input
EXACT 5 5

SUBSUMES 4 3
SUBSUMED BY 3 4

HAS SAME CLASS 2 2
UNCLASSIFIED 1 1

FAIL 0 0

Services with offered inputs that are more general than re-
quested inputs, satisfy the request as if they provide equivalent
inputs but services with offered inputs that are more specific
than requested inputs, may not satisfy always users. So we
take into account those details for Inputs: we substitute ”SUB-
SUMES” by 3 and ”SUBSUMED BY” by 4. For interface,
operations and outputs: more precise the matching is, higher
is the associated value (see Table I).

To motivate our approach, we present in the following a
matching case of a request with three services. In Table II, each
line presents the elementary matching degrees of a published
service element (Interface, an operation Oper1, an operation
Oper2, an input Input1, an output Output1) to the requested
service elements. To evaluate aggregation, we present here two
approaches to calculate final matching degree. In column 4, the
aggregation is the minimal value of the elementary matching
degrees. In column 5, the aggregation is the average value
calculated from the elementary matching degrees.

TABLE II
EXAMPLES OF MIN- AND AVERAGE-BASED AGGREGATIONS

Interface Oper1 Oper2 Input1 Output1 Min
Value

Average
Value

5 5 5 4 5 4 4.83
5 5 5 5 3 3 4.67
5 3 3 5 5 3 4.65

To evaluate Min-Value-based aggregation approach used in
SAWSDL-MX, let us consider services in line two and line
three:

• In line two: aggregation assumes the worst result of the
aggregated matching degrees {3,5}, so it keeps 3,

• In line three: aggregation assumes the worst result of the
aggregated matching degrees {3,5}, so it keeps 3,

Finally, the two published services are considered as same
regarding matching results. But it is obvious that the service
in line five is better than service in line six (see their operation
matching degrees or their average matching values).

Let us consider another example in Table III, the third
and the fifth lines. In despite of the same average matching
value (4.67), they present different matching cases. Users can
execute service of third line always without having problems
(the offered inputs are more general than the requested inputs
and the offered outputs are more specific than requested
outputs) but the execution of the service of the fifth line may

generate unexpected more general outputs, that is why we have
to consider them differently.

We propose to define YASA Matching Degree by the
matching value and the min-value defining a kind of ”match-
ing level”. The matching value is computed by the average
algorithm from elementary matching values of the Service
elements (Interface, Operations, Inputs, and Outputs). The
matching level (Min) of a service is the lowest elementary
matching value of its elements. By taking into account both of
average matching value and Min-value, we enhance precision
when evaluating final global matching degrees as a couple
of numbers. They are sorted by matching level then average
matching value. The problem identified above in line four and
line six was resolved; (4, 4.67) is better evaluated than (3,
4.67) (see Table III). So, final global YASA matching degree
are determined by, first, the Min matching degree between
description elements (offered and requested) and second, by
the Average of matching values.

TABLE III
RESULTS OF MIN-AVERAGE MATCHING DEGREES

Interface Operation Input Output Min Average Min-
Average
Matching
Degree

5 5 5 5 5 5 (5, 5)
5 5 5 4 4 4.83 (4, 4.83)
5 5 4 5 4 4.83 (4, 4.83)
5 5 4 4 4 4.67 (4, 4.67)
5 5 3 5 3 4.67 (3, 4.67)
5 5 5 3 3 4.67 (3, 4.67)

c) The Cupid Approach: Most of the algorithms that
compare graphs (ontologies, schemas, etc.) rely on two pro-
cesses: the evaluation of the similarity of compared graphs
nodes and edges, and the aggregation of nodes and edges
similarities to compute the global similarity of the graphs. The
Cupid [23] algorithm is used to compare schemas considered
as trees. It supposes that the similarities between nodes at same
depth of the trees are extensively calculated. Then it computes
from the leaves to the root of the two trees, a similarity, named
”weighted similarity”, for each pair of nodes of each tree.
This similarity represents the one between the two sub-graphs
rooted by the considered. Its basic principle is the following.
Two leaves nodes are similar if nodes in their environment are
similar. And, two nodes, not leaves, are similar if the leaves of
the sub-trees of which they are root are similar. The algorithm
has been adapted to the matching of YASA considering the
following principles:

• Graphs are made of four levels: service / interface /
operation / input-output. Only the number of elements
on each level may change, but an interesting point is that
an intermediary level can not be missing.

• The matching of two operations, two interfaces, is dele-
gated to an elementary matcher
d) The Combinatorial Approach: In the systematic ap-

proach [24], trees are compared recursively and in a com-
binatory way. The algorithm considers that nodes and edges



linguistic similarities have already been computed. The Com-
binatorial approach has been implemented without modifica-
tion of the principle of the algorithm. A small implementation
difference with the implementation described in [24] is that
the elemental matchings are not precomputed. It may have
been interesting to precompute these elemental matching to
apply them a pre- or additional treatment as we have done
in the Cupid approach. The similarity of input and output,
in the Cupid approach, is extensively precomputed. That is
for each pair of offered input and request input; respectively
offered output and request output the elemental similarity is
calculated. With these results it is interesting to us to add a
”similarity bonus” to operations such as:

• Request and offer operations have the same number of
inputs and outputs.

• The two correspondent sets of requested and published
inputs have the maximum similarity.

• The two correspondent sets of requested and published
outputs have the maximum similarity.

The algorithm has been adapted to the matching of YASA
considering same principles as in the adaption of the Cupid
approach.

e) Discussion: . Seeing the state of art, our approach is
considered as an IOPE-advanced (logic-based) matching. On
the one hand, we provide an almost full-semantic functional
matching. Trying to do best than in [7] and [9], we append
to inputs and outputs two important matching weights of
functional elements: operation and interface. On the other
hand, we do not only exploit precondition and effect concepts
as in [18], [10], [11], [12], and [14]. In fact, our matching
paradigm is using useful service’s concepts from well-known
and standard service ontologies and meta-models (enriched
and merged into a common Service Ontology [22]). For
example, we can match description based on required concepts
like postcondition, capability, goal, result, etc.

Our matching mechanism provides more accurate Matching
Degrees than ones proposed in [9] and [11]; we bring three
improvements:

• Compared to [12], [11], [17], [9] and [8] in which
the matching is mainly based on inputs and/or outputs,
we distinguish Matching Degrees for inputs, outputs,
operation, and interface. For example, if one requires
a service providing some inputs/outputs within specific
interface’s goals and/or some operations’ capabilities, it
is obvious that semantic matching results would be more
satisfying and precise than matching all services basically
through required inputs/outputs, either syntactically or
even semantically like in [11] and [17].

• We considered that degrees of matching, in some match-
ing mechanisms, either insufficient like in [13], [8] and
[9], or unclear like in [12]. In [13], we can find one case
of subsumption through the degree SUBSUMES, either
selected matching degree would be UNKNOWN or FAIL,
that is why we propose two more precise degrees that take
into account more specific subsumption matching cases:

SUBSUMED BY and HAS SAME CLASS. Regarding
the work presented in [9], we recall that it is not only
essential to take into account inputs but also it is im-
portant to provide significant degree respecting different
matching cases (see Table I).

• Compared to aggregation mechanism used in SAWSDL-
MX [20] which assume the worst result of the aggre-
gated matching degrees, we enhance semantic matching
aggregation by considering both of ”matching level” (the
minimal elementary matching degree) and and average
matching value (determined from elementary matching
values). This aspect of our contribution allowed us to
better evaluate final global matching degrees based on
Min-Average aggregation (see Table III).

IV. YASA-M MATCHMAKER

We have implemented the semantic matching algorithms
within the semantic service bus developed in the French ANR
SemEUsE project. The realized semantic service architecture
implemented the semantic service models and offer so the first
step to a Dynamic Semantic Service Bus [25].

A. Implementation and Testbed Generation

We have implemented in Java our semantic matching
approach through three algorithm variants based on three
different semantic matching degree aggregations (i.e. Min-
Average algorithm, Combinatory algorithm, and Cupid algo-
rithm). Each implemented algorithm of matching degrees’ ag-
gregation uses our elementary semantic matching then results
are aggregated based on its own principle. To evaluate and
compare our semantic matching of Web service description to
well known approaches for service matching, we have used the
Semantic Web Service Matchmaker Evaluation Environment
(SME2) [26]. SME2 evaluates matchmakers for Semantic
Web services over given test collections in terms of standard
retrieval performance evaluation measures. The recent version
published on May 6, 2009 comes with test collections for
OWL-S and SAWSDL, and several features for testing and
reporting of results. For each developed programs of our three
semantic matching variants, we have implemented a sme2
plug-in in order to evaluate it within the SME2 benchmark.
To realize evaluations, we have developed a test collection
generator in order to provide us with test collections described
in YASA and SAWSDL, etc. In order to enhance quality of
the results returned by the Min-Averaged-based, Combinatory-
based, and Cupid-based matching algorithms, we have used as
Data sources two corpuses of services designed as realistic as
possible.

In our benchmark, for compatibility reasons with the match-
ing algorithms of SAWSDL-MX, the profile of the generated
services in the first corpus is the following: one interface by
service, one operation by interface, and one input and one
output by operation. The second corpus has a more realistic
profile: one interface by service, one or two operations by
interface and one to three inputs/outputs by operation. The



article [27] has characterized a real set of services by figure4.

Fig. 4. Distribution of Parameters in a Corpus of Services.

On the X axis is shown the number of occurrences of a
given parameter ”p” in the corpus of services. On the Y axis
is put the number of parameters that have the same number
of occurrences as the number of occurrences put on the X
axis. We have considered that two parameters are identical
if they bear the same couple of annotations ”serviceConcept
+ modelReference” that we name a ”signature”. Our aim has
hence been to generate a corpus of services with a distribution
of occurrences of signatures similar to the one defined in [27].

The annotation of parameters, ”input” and ”output”, uses
concepts taken from the technical ontology of YASA, and
concepts from the domain ontologies provided with the bench-
mark SME2. We kept a set of each of these ontologies. The
number of signatures that have a given number of occurrences
has been established with the formula given by [27]. This later
expresses the increase of the number of signatures with their
rarity (for example there is one modelReference appearing 27
times, but 10 modelReference appearing 3 times).

In order to preserve the realistic shape of the distribution of
signatures applied to operations, services, and interfaces, we
define an interpolated distribution that we apply to them. This
interpolated distribution is such as the number of occurrences
of a signature is:

”Nbr of element to annotate” is the number of operations,
interfaces, or services. Then for each operation, interface and
service a signature is randomly taken in its corresponding
interpolated distribution. Each request is expressed with a
service, randomly picked up in the previously generated cor-
pus. We consider that a service is equivalent to the request
and should be returned by the matching algorithms if it is
substitutable to the request one. We set that a service is
semantically substitutable to another one, if their syntactic
elements are annotated in the following way:

• For the operations, interfaces, services, output: covari-
ance: the domain annotations of the candidate service
should be the children of the domain annotation of same
serviceConcept in the request.

• For the inputs: contra-variance: the domain annotations
of the candidate inputs should be the parents (ancestors)
of the inputs annotations in the request.

Figure 5 shows the profile of the obtained distribution.

Fig. 5. Profile Curve of the Distribution.

B. Experiments

To validate our proposals, we have made two types of
evaluations:

• The first evaluation focuses on comparing our proposed
YASA-Matchmaker variants.

• The second evaluation focuses on comparing our pro-
posed YASA-Matchmaker variants to SAWSDL-MX
variants.

For comparing our proposed YASA-Matchmaker variants
(Min-Average, Combinatory, and Cupid), we have conducted
four tests. The goal of this first evaluation was to see the
behavior of each YASA-Matchmaker variant algorithm by
increasing ”the number of requests” and ”published services”
in which they were matching relevant services.

For comparing our proposed YASA-Matchmaker variants
(Min-Average, Combinatory, and Cupid) to SAWSDL-MX
variants (Logic, Cos, ExtJacc, JS, and LOI), we have con-
ducted four tests. The goal of this second evaluation was
to compare the behavior of each YASA-Matchmaker variant
algorithm and SAWSDL-MX variants algorithm by increasing
”the number of requests” and ”published services” in which
they were matching relevant services.

1) Query Response Time: The figure 6.(a) presents ”aver-
age query response time” of YASA-Matchmaker (YASA-M
for short) variants (Min-Average, Combinatory, and Cupid)
computed for the four tests.

Experiments in term of ”average query response time” con-
ducted over our implementation, shows that the Min-Average
YASA-M variant offers the lowest values over the four tests.
Average query response time of Combinatory and Cupid
variants increases proportionally with number of services and
number of queries. In conclusion, the Min-Average YASA-
M variant offers better behavior when increasing number
of queries and number of services. In fact, performance in
term of ”memory consumption” shows also that the Min-
Average YASA-M variant consumes less memory, computed
for the four test collections TC{1,2,3,4} containing respec-
tively {2q/27s,20q/60s,45q/135s,90s/270s} with q:queries and



Fig. 6. Evaluations and Experiments.

s:services. Memory consumption of Combinatory and Cupid
variants increases proportionally with number of services and
number of queries. In conclusion, the Min-Average YASA-
M variant offers better behavior when increasing number of
queries and number of services.

2) Execution Time: The figure 6.(b) presents execution
time of YASA-Matchmaker variants (Min-Average,
Combinatory, and Cupid) and SAWSDL-MX variants
(Logic, Cos, ExtJacc, JS, and LOI), computed for the
four test collections TC{5,6,7,8} containing respectively
{2q/10s,20q/63s,45q/94s,90q/184s} with q:queries and
s:services. Experiments in term of ”execution time” conducted
over our implementation, shows that the Min-Average YASA-
M variant offers the lowest values over the four tests.
Average query response time of Combinatory and Cupid
variants increases proportionally with number of services
and number of queries. In conclusion, the Min-Average
YASA-M variant offers better scalability in term of response
time. Using the same service descriptions, written in YASA
and SAWSDL, experiments in term of ”execution time”
conducted over SAWSDL-MX implementation and our
implementation shows that the Min-Average YASA-M
variant then the logic SAWSDL-MX variant offer the lowest
values, computed for the four test collections TC{1,2,3,4}
containing respectively {2q/27s,20q/60s,45q/135s,90s/270s}
with q:queries and s:services. Execution time in all other
YASA-M and SAWSDL-MX variants increases proportionally
with number of services and number of queries. In conclusion,
the Min-Average YASA-M variant offers better scalability.

3) Precision: Experiments in term of ”precision” conducted
over SAWSDL-MX implementation and our implementation
shows that the average precision results of YASA-M vari-
ants offer better values than the logic and JS SAWSDL-MX
variants. The figure 6.(c) shows that average precision in all
YASA-M and SAWSDL-MX variants decreases proportionally
with number of services and number of queries. In conclusion,
the Combinatory YASA-M variant offers better average pre-
cision. Note that ”a” and ”b” in the Average Algorithm were
substituted by 4 (SUBSUMES) in our experiments.

V. CONCLUSION

We presented in this paper our recent work and experiments
on semantic service matching. Our approach uses an improved
algorithm using extended semantic annotation, based on Web
Service standards. Our ongoing work, within the French ANR
SemEUsE project aims at providing with partners means to
improve discovery process after integrating context-sensitive
properties and quality of service (or non-functional) require-
ments (dependability, reliability and security constraints). In
the near future, service composition, invocation and monitor-
ing in this project, already based on YASA descriptions, will
consider three realistic use cases: ”Bike ride”, ”Fire fighting”
and ”Emergency and crisis situation”.

REFERENCES

[1] W3C, “ Web Services Description Language (WSDL),”
http://www.w3.org/TR/wsdl/.

[2] ——, “ Web Services Description Language (WSDL) version 2.0 part 1:
Core language ,” http://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[3] ——, “ OWL-S: Semantic Markup for Web Services ,”
http://www.w3.org/Submission/OWL-S/.

[4] ——, “ Semantic annotations for WSDL and XML schema ,”
http://www.w3.org/TR/2007/REC-sawsdl-20070828/.

[5] ESSI WSMO working group, “ Web Service Modeling Ontology ,”
http://www.wsmo.org/.

[6] Y. Chabeb and S. Tata, “Yet Another Semantic Annotation for WSDL
(YASA4WSDL),” in IADIS WWW/Internet 2008 Conference, October
2008, pp. 462–467.

[7] N. Srinivasan, M. Paolucci, and K. Sycara, “Adding OWL-S to UDDI,
implementation and throughput,” in In First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004),
2004, pp. 6–9.

[8] J. Fan, B. Ren, and L.-R. Xiong, “An Approach to Web Service
Discovery Based on the Semantics,” in FSKD (2), 2005, pp. 1103–1106.

[9] Massimo Paolucci and Takahiro Kawamura and Terry R. Payne and
Katia Sycara, “Semantic Matching of Web Services Capabilities,” in
International Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

[10] M. Schumacher, H. Helin, and H. Schuldt, Semantic Web Service
Coordination . Chapter 4, CASCOM: Intelligent Service Coordination
in the Semantic Web, Birkhäuser Basel, 2008.

[11] M. C. Jaeger, G. Rojec-Goldmann, G. Mhl, C. Liebetruth, and K. Geihs,
“Ranked Matching for Service Descriptions using OWL-S,” pp. 91–102,
2005, in Paul Müller, Reinhard Gotzhein, and Jens B. Schmitt, editors,
Kommunikation in verteilten Systemen (KiVS 2005), Kaiserslautern,
Germany, February 2005. Springer.

[12] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic
location of services,” in Proc. of the 2nd European Semantic Web
Conference (ESWC). Heraklion, Crete: LNCS 3532, Springer,
2005, pp. 1–16. [Online]. Available: http://www.informatik.uni-
trier.de/ ley/db/conf/esws/eswc2005.html#KellerLLPF05



[13] U. Küster and B. König-Ries, “Evaluating semantic web service match-
making effectiveness based on graded relevance,” in Proc. of the 2nd
International Workshop SMR2 on Service Matchmaking and Resource
Retrieval in the Semantic Web at the 7th International Semantic Web
Conference (ISWC08), Karlsruhe, Germany, October 2008.

[14] M. Stollberg, U. Keller, H. Lausen, and S. Heymans, “Two-Phase Web
Service Discovery Based on Rich Functional Descriptions,” in ESWC
’07: Proc. of the 4th European conference on The Semantic Web. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 99–113.

[15] M. Klein and B. Knig-ries, “Coupled Signature and Specification
Matching for Automatic Service Binding,” in Proc. of the European
Conference on Web Services (ECOWS 2004. Springer, 2004, pp. 183–
197.

[16] U. Kuster and B. Konig-Ries, “Semantic Service Discovery with
DIANE Service Descriptions,” in WI-IATW ’07: Proc. of the 2007
IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology - Workshops. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 152–156.

[17] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with OWLS-MX,” in Proc. of the fifth international joint
conference on Autonomous agents and multiagent systems. New York,
NY, USA: ACM Press, 2006, pp. 915–922.

[18] F. Kaufer and M. Klusch, “WSMO-MX: A Logic Programming Based
Hybrid Service Matchmaker,” in European Conference on Web Services.
Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 161–170.

[19] M. Klusch, P. Kapahnke, and F. Kaufer, “ Evaluation of WSML Service
Retrieval with WSMO-MX,” in IEEE International Conference on Web
Services, 2008. ICWS ’08, Sept. 2008, pp. 401–408.

[20] M. Klusch and P. Kapahnke, “Semantic Web Service Selection with
SAWSDL-MX,” in SMRR, ser. CEUR Workshop Proceedings, R. L.
Hernandez, T. D. Noia, and I. Toma, Eds., vol. 416. CEUR-WS.org,
2008.

[21] D. Martin, M. Paolucci, and M. Wagner, “Bringing Semantic Annota-
tions to Web Services: OWL-S from the SAWSDL Perspective,” in 6th
International and 2nd Asian Semantic Web Conference, November 2007,
pp. 337–350.

[22] Y. Chabeb, S. Tata, and D. Belaid, “Toward an integrated ontology for
web services,” in Fourth International Conference on Internet and Web
Applications and Services, 2009. ICIW ’09, May 2009, pp. 462–467.

[23] J. Madhavan, P. Bernstein, and E. Rahm, “Generic Schema Matching
with Cupid,” in The VLDB Journal, 2001, pp. 49–58.

[24] H. Z. Jiwei, H. Zhu, J. Zhong, J. Li, and Y. Yu, “An approach for
semantic search by matching rdf graphs,” in Proc. of the Special Track on
Semantic Web at the 15th International FLAIRS Conference (sponsored
by AAAI, 2002.

[25] The French ANR SemEUsE Project, “ SemEUsE architecture ,”
http://www.semeuse.org/architecture.html.

[26] SemWebCentral, “ The Semantic Web Service Matchmaker Evaluation
Environment ,” http://www.semwebcentral.org/projects/sme2/.

[27] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara, “WSBen: A Web Services
Discovery and Composition Benchmark, booktitle = ICWS ’06: Proc.
of the IEEE International Conference on Web Services.” Washington,
DC, USA: IEEE Computer Society, 2006, pp. 239–248.


