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FREDERIC SCHREYER ∗, REMCO I. LEINE ∗

A MIXED SHOOTING – HARMONIC BALANCE METHOD FOR

UNILATERALLY CONSTRAINED MECHANICAL SYSTEMS

In this paper we present a mixed shooting – harmonic balance method for

large linear mechanical systems on which local nonlinearities are imposed. The stan-

dard harmonic balance method (HBM), which approximates the periodic solution

in frequency domain, is very popular as it is well suited for large systems with

many degrees of freedom. However, it suffers from the fact that local nonlinearities

cannot be evaluated directly in the frequency domain. The standard HBM performs

an inverse Fourier transform, then calculates the nonlinear force in time domain and

subsequently the Fourier coefficients of the nonlinear force. The disadvantage of

the HBM is that strong nonlinearities are poorly represented by a truncated Fourier

series. In contrast, the shooting method operates in time-domain and relies on nu-

merical time-simulation. Set-valued force laws such as dry friction or other strong

nonlinearities can be dealt with if an appropriate numerical integrator is available.

The shooting method, however, becomes infeasible if the system has many states.

The proposed mixed shooting-HBM approach combines the best of both worlds.

1. Introduction

Finding periodic solutions of mechanical systems is an important task
in the design process of machines and mechanical devices. For instance,
knowledge of the response of the system to harmonic excitation is essential
to obtain information about high cycle fatigue behaviour. In engineering
systems local nonlinearities are present due to contact or coupling elements.
These local nonlinearities can have a strong impact on the global system
behaviour. Therefore, the nonlinearities have to be considered in the design
process and must be modelled accurately as well as in a computationally
efficient way.
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The most popular methods to find periodic steady-state responses of non-
linear differential equations are the Harmonic Balance Method (HBM) [1,
2, 3, 4] and the shooting method [5]. The standard HBM approximates the
periodic solution in frequency domain and is very popular as it is well suited
for large systems with many states. Local nonlinearities cannot be evaluated
directly in the frequency domain. The standard HBM performs an inverse
Fourier transformation, and then calculates the nonlinear force in time domain
and subsequently the Fourier coefficients of the nonlinear force. This proce-
dure is often denoted as the Alternating Frequency Time Method (AFT) [6].
The disadvantage of the HBM is that strong nonlinearities are poorly repre-
sented by a truncated Fourier series. Additionally, the restriction of the AFT
method to single-valued functions only allows the use of smooth contact
laws. In contrast, the shooting method operates in time-domain and relies
on numerical time-simulation. Set-valued force laws such as dry friction or
other strong nonlinearities can be dealt with if an appropriate numerical
integrator is available. The shooting method, however, becomes infeasible if
the system has many states. The proposed mixed shooting-HBM approach
combines the efficiency of HBM and the accuracy of the shooting method
and has therefore many advantages.

In this paper the mixed shooting-HBM (MS-HBM) approach is intro-
duced as a novel method to calculate periodic solutions of forced mechani-
cal systems. Two different variants of the mixed shooting-HBM approach are
presented in Section 3.2 and 3.3 respectively. Depending on the position of
the local nonlinearities within the mechanical system, the one or the other
is better suitable. The more general method of Section 3.2 is tested on a
multi-mass oscillator at the end of the paper and is compared to the full
HBM and full shooting method. As local nonlinearities, dry friction as well
as a hard unilateral constraint are investigated.

2. Fourier Transformation

In this paper the Fourier transformation is used and therefore its nomen-
clature is introduced in this section for an arbitrary time signal x(t) ∈ R

n.
The Fourier coefficients

x̂ = FFT(x(t)) =
2

T

∫ T

0

JV(t)x(t)dt (1)
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of the time signal are obtained using the Fast Fourier Transformation (FFT).
Hereto,

V(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
cos(ωt)I
sin(ωt)I
...

cos(nHωt)I
sin(nHωt)I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
I 0 0

0 I 0 . . .

0 0 I
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

are defined where ω =
2π

T
and nH denote the number of considered har-

monics and I is the n-dimensional identity matrix. The harmonic oscillation
which is described by the Fourier coefficients can be calculated using the
matrix multiplications

xh(t) = IFFT(x̂) = V(t)T x̂ (3)

and its time-derivative by

ẋh(t) = V̇(t)T x̂ = V(t)TΩx̂ (4)

where

Ω = diag(Ω1,Ω2, . . . ,ΩnH ), Ωk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0

0 0 kωI
0 −kωI 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5)

Equation (3) is often referred to as the inverse Fourier transformation. For the
understanding of the following sections note that IFFT(FFT(x(t))) = x(t) only
holds for a harmonic signal of which all contained harmonics are considered
in the ansatz function V(t).

3. Mixed shooting-HBM approach

The mixed shooting-HBM approach exploits the local character of the
nonlinearities to find periodic solutions of mechanical systems efficiently.
The system must therefore be divided into linear and nonlinear subsystems.
This can be done with or without an intermediate subsystem leading to the
methods of Section 3.2 and 3.3. First the system description is given and
subsequently both methods are discussed.
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3.1. System description

We consider a Lagrangian system of the form

Mq̈(t) + Cq̇(t) + Kq(t) = fex(t) + fnl(q(t), q̇(t)), (6)

where fnl contains the nonlinear forces and fex(t) = fex(t +T ) is the periodic
forcing. We assume that the system consists of a linear and a nonlinear
subsystem with the generalized coordinates

q =
⎛⎜⎜⎜⎜⎜⎝qN

qL

⎞⎟⎟⎟⎟⎟⎠ , (7)

that the nonlinear forces only act on the nonlinear subsystem, and that the
system matrices M, C and K have the following structure

M =
⎛⎜⎜⎜⎜⎜⎝MNN MNL

MLN MNN

⎞⎟⎟⎟⎟⎟⎠ , fnl(q, q̇) =

⎛⎜⎜⎜⎜⎜⎝ fnl,N (qN , q̇N )

0

⎞⎟⎟⎟⎟⎟⎠ . (8)

The nonlinear subsystem is subjected to nonlinear forces, which only depend
on its own positions and velocities e.g. the three DOF oscillator shown in
Fig. 1.

Fig. 1. Three DOF oscillator with dry friction and unilateral constraint

3.2. MS-HBM with a linear and a nonlinear subsystem

The reduction into two subsystems can reduce the computational effort
for systems for which the relationship dim(qL) � dim(qN ) between the di-
mensions of the subsystems holds. The linear subsystem which is described
by

MLL q̈L + CLL q̇L + KLLqL + fc = fex,L (9)

with the dynamic coupling force between both subsystem

fc = MLN q̈N + CLN q̇N + KLN qN , (10)
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is approximated using a Ritz-Galerkin Method. The ansatz for the displace-
ment field is chosen as

UnH = {qL(t) ∈ U | qL(t) = VL(t)T q̂L}, (11)

where U is the space of absolutely continuous functions. In other words, due
to the Galerkin approach, the motion of the linear subsystem is approximated
by a truncated Fourier series

qL(t) = q̂0
L +

nH∑
k=1

q̂c,k
L cos(kωt) + q̂s,k

L sin(kωt) = VL(t)T q̂L. (12)

The equality (12) can be envisaged as a constraint on the system and will be
referred to as the harmonic constraint on the linear subsystem.

According to the Galerkin method the corresponding virtual displace-
ment field

VnH = {δqL(t)| δqL(t) = VL(t)Tδq̂L} (13)

is described using the same ansatz functions. To obtain the harmonically
constrained subsystem one requires that the virtual work of the linear sub-
system

δW =
∫ T

0

δqT
L
(
MLL q̈L + CLL q̇L + KLLqL + fc − fex,L

)
dt = 0, (14)

vanishes for all virtual displacements δqL ∈ VnH and qL ∈ UnH . From (14)
with (11) and (13) the virtual work can be described as

δW = δq̂T
L

∫ T

0

(
VL MLLΩ

2VT
L + VLCLLΩVT

L + VLKLLVT
L

)
dt q̂L+

+ δq̂T
L

∫ T

0

(VL fc)dt − δq̂T
L

∫ T

0

(
VL fex,L

)
dt = 0 ∀δq̂L.

(15)

Using (1) and by pre-multiplying (15) with
2

T
J, the last two force terms

in (15) can be interpreted as the Fourier coefficients f̂c and f̂ex,L of their
respective time signals. The dynamics of the linear subsystem can therefore
be described in frequency domain as

HLL q̂L + f̂c − f̂ex,L = 0, (16)

where q̂L represent the Fourier coefficients of the linear subsystem and

HLL =
2

T

∫ T

0

JVL MLLΩ
2VT

L + JVLCLLΩVT
L + JVLKLLVT

L dt (17)
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is the dynamic stiffness matrix. The Fourier coefficients of the coupling force
resulting from the nonlinear system are given by

f̂c =
2

T

∫ T

0

JVL fc(t)dt =

=
2

T

∫ T

0

JVL fc,h(t)dt
(18)

where fc,h(t) is the harmonic part of the coupling force fc(t). The harmonic
part fc,h(t) only depends on the harmonic part of the motion of the nonlinear
subsystem which can be expressed in the Fourier coefficients q̂N , i.e.

fc,h(t) = MLN q̈N,h + CLN q̇N,h + KLN qN,h =

= MLNΩ
2VT

N q̂N + CLNΩVT
N q̂N + KLNVT

N q̂N .
(19)

Hence, the Fourier coefficients of the coupling force can be expressed as

f̂c =
2

T

∫ T

0

JVL MLNΩ
2VT

N + JVLCLNΩVT
N + JVLKLNVT

Ndt q̂N =

= HLN q̂N

(20)

The harmonic constraint can be viewed as a Galerkin projection of the dy-
namics of the linear subsystem on the chosen harmonic basis (which is of
course an approximation of the dynamics). The nonlinear subsystem, which
is not constrained to oscillate harmonically, acts as external forcing fc(t) on
the linear subsystem. The inharmonic part of this forcing, e.g. fc(t)− fc,h(t), is
counterbalanced by the perfect constraint force which enforces the harmonic
constraint (12). Similarly, the inharmonic part of the excitation force fex,L(t)
is absorbed by the harmonic constraint and its contribution to (16) is given
by

f̂ex,L =
2

T

∫ T

0

JVL fex,Ldt. (21)

Using (16), we obtain the linear relation

q̂L = H−1
LL( f̂ex,L − HLN q̂N ) (22)

between the Fourier coefficients of the linear subsystem q̂L and the Fourier
coefficients of the nonlinear subsystem q̂N . The dynamic stiffness matrices
Hi j result from Equation (17) and (20)

Hi j = diag(Hi j,0,Hi j,1, . . .Hi j,nH ) (23)

where the diagonal entries
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Hi j,k =

⎛⎜⎜⎜⎜⎜⎝−Mi j(kω)2 + Ki j Ci jkω
−Ci jkω −Mi j(kω)2 + Ki j

⎞⎟⎟⎟⎟⎟⎠ (24)

are given for each considered harmonic oscillation. For given q̂N the equation
of motion of the linear subsystem is therefore completely described by (22).
The equation of motion of the nonlinear subsystem

MNN q̈N + CNN q̇N + KNN qN =

= −MNL q̈L − CNL q̇L − KNLqL − fex,N + fnl,N
(25)

is described in time domain. If q̂N is known, then the time-evolution qL(t) and
its derivatives are given using (22) together with (12). The influence of the
linear subsystem can therefore be considered as external forcing. To ensure
that both subsystems oscillate correspondingly a connectivity condition must
be considered in the residuum function. Hence, only the nonlinear subsystem
must be described as differential equation, which has to be solved for qN (t)
using numerical time integration. In particular, if the nonlinear force fnl,N is
a dry friction force or, more generally, described by a set-valued force law,
then dedicated time-integration schemes such as timestepping methods [7, 8]
have to be used. Here it should be noted, that the system (6) and consequently
(25) turns into a differential inclusion if a set-valued force law is considered.

A periodic solution of the complete system can be represented by the
trajectory qN (t) on the interval 0 ≤ t ≤ T and by the Fourier coefficients q̂N ,
as q̂L is expressed by (22). The initial condition qN (0) and q̇N (0) together
with qL(t) = VL(t)T q̂L allow to construct qN (t) over one period. The vector
of unknowns

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
q̂N

qN (0)

q̇N (0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (26)

therefore fully represents a periodic solution of the system. Similar to a shoot-
ing method, we require for the nonlinear subsystem the periodicity conditions
qN (T )−qN (0) = 0 and q̇N (T )− q̇N (0) = 0, where the state at t = T is obtained
through numerical time-integration of (25). The periodicity condition of the
linear subsystem is given in frequency domain by (22). Hence, we seek a
periodic solution by finding a zero of the nonlinear function

fR(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
q̂N − FFT(qN (t))
qN (T ) − qN (0)

q̇N (T ) − q̇N (0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (27)

7



Note that FFT(qN (t)) is the Fourier transformation

FFT(qN (t)) =
2

T

∫ T

0

JVN qN (t)dt. (28)

of the solution of the differential equation (25) and q̂N are the Fourier co-
efficients which represent the dynamical behaviour of the linear subsystem
in the vector of unknowns x through (22). If the connectivity condition
q̂N − FFT(qN (t)) = 0 holds, then the linear subsystem is oscillating in cor-
respondence to the movement of the nonlinear subsystem. Obviously, due to
the harmonic approximation, the connectivity condition between both sub-
systems leads to an approximated solution of the linear and the nonlinear
subsystem. The periodic solution converges to the exact solution for an in-
creasing number of considered harmonic oscillations. The zeros of fR(x) can
be solved with a Newton-type method by iterating

xi+1 = xi −
(
∂ fR

∂x

)−1

fR(xi), (29)

where the Jacobian is obtained through finite differences. The calculation
procedure of this method is depicted in Fig. 2.

3.3. MS-HBM using an intermediate subsystem

For the second approach System (6) must be divided into three subsys-
tems. The first subsystem is subjected to the nonlinear force and is coupled
through the linear Subsystem 2 to the third subsystem which has to be linear
as well. For the second approach the system matrices must therefore exist in
the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
M11 M12 0

M21 M22 M23

0 M32 M33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , fnl(q, q̇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
fnl,N (q1, q̇1)

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , q =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
q1

q2

q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (30)

This method is suitable if the relation between the dimensions of the sub-
systems

dim(q3) � dim(q1) > dim(q2) (31)

holds. Using the first approach Subsystem 1 and 3 do not have to be uncou-
pled since the system is not restricted to condition (31). The first approach
is therefore more general than the method described in this section. If the
relation (31) between the dimensions is fulfilled, then the approach using an
intermediate subsystem can be beneficial. This may for instance be the case
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Fig. 2. Calculation scheme of MS-HBM with linear and nonlinear subsystem

for an extension of the system depicted in Fig. 1 to a chain of n masses,
where the first n1 masses are subjected to friction and the mass n1 + 1 acts
as intermediate subsystem.

For Subsystem 2 and 3 we use the Galerkin approach, as before for the
linear subsystem, and impose perfect constraints on the system which force
the response to be harmonic of the form

q2(t) = q̂0
2+

nH∑
k=1

q̂c,k
2

cos kωt+ q̂s,k
2

sin kωt = V2(t)T q̂2, q3(t) = V3(t)T q̂3. (32)

The motion q1(t) of Subsystem 1 is described in time domain and is not
constrained to be harmonic. The Fourier coefficients of the generalized co-
ordinates q1(t) are obtained from

q̂1 =
2

T

∫ T

0

JV1(t)q1(t)dt. (33)
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The equations of motion of Subsystem 2 and 3 can therefore be expressed
in frequency domain as

H21 q̂1 + H22 q̂2 + H23 q̂3 = f̂ex2,

H32 q̂2 + H33 q̂3 = f̂ex3,
(34)

where Hi j are the dynamic stiffness matrices. Using (34) the Fourier coeffi-
cients q̂3 can be expressed in q̂2 as

q̂3 = H−1
33 ( f̂ex3 − H32 q̂2) (35)

and can therefore be eliminated from the equations of motion in frequency
domain, i.e.

H21 q̂1 + (H22 − H23H−1
33 H32)q̂2 = f̂ex2 − H23H−1

33 f̂ex3. (36)

The equations of motion of Subsystem 1 are nonlinear and are simulated
in time-domain. For known q̂2 one can calculate its time-domain represen-
tation q2(t) and its derivatives and solve the differential equation for q1(t)

M11 q̈1(t) + C11 q̇1(t) + K11q1(t) = −(M12 q̈2(t)+
+ C12 q̇2(t) + K12q2(t)) + fex1(t) + fnl1(q1(t), q̇1(t))

(37)

using numerical integration techniques. A periodic solution is completely
described by the vector of unknowns

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
q̂2

q1(0)

q̇1(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (38)

We require for Subsystem 1 the periodicity conditions q1(T )− q1(0) = 0 and
q̇1(T ) − q̇1(0) = 0, where the state at t = T is obtained through numerical
time-integration of (37). The periodicity conditions of Subsystems 2 and 3
are given in frequency domain by (36) and (35). The residuum function to
find a periodic solution

fR(x)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
H21q̂1+(H22−H23H−1

33H32)q̂2 − f̂ex2 +H23H−1
33 f̂ex3

q1(T ) − q1(0)

q̇1(T ) − q̇1(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (39)

is defined by (36) and the periodicity condition of Subsystem 1. The zeros
of fR(x) can be solved with a Newton-type method by iterating

xi+1 = xi −
(
∂ fR

∂x

)−1

fR(xi). (40)
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4. Numerical examples

The three DOF-oscillator (Fig. 1) is used as a numerical benchmark
to compare the MS-HBM approach (method of Section 3.2) with the full
shooting method and the full HBM, in both computation effort as well as
accuracy. The system is inertially decoupled due to its diagonal mass matrix.
It is important to note, that the MS-HBM is not restricted to inertially de-
coupled systems. However, the presence of inertial coupling may necessitate
to use a large number nH of harmonics to arrive at a sufficiently accurate
approximation of the periodic solution. Another way to improve the accura-
cy could be to expand the nonlinear subsystem in order to describe a larger
part of the system in time domain. Since the full shooting method and the
MS-HBM approach solve the nonlinear subsystem as a nonlinear differential
inclusion, modern time-stepping methods with a set-valued force law are used
for both methods. In contrast to the full shooting method and MS-HBM, the
standard HBM with alternating frequency time approach only calculates the
nonlinear force in time domain which makes it impossible to use the same
contact model. Two types of contacts are considered separately in this work
to compare the different methods for a system which is subjected to friction
or to a completely elastic unilateral constraint.

4.1. System with friction

First, the different methods are investigated for a system under influence
of dry friction. Using the MS-HBM or the shooting approach a set-valued
force law can be used within the concept of (measure) differential inclusions.
The friction force is expressed by the set-valued relationship

−λT ∈ μFN Sign(γT ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μFN , γT > 0,[

−1, 1
]
μFN , γT = 0,

−μFN , γT < 0.

(41)

The parameters μ and FN are the friction coefficient and normal load, re-
spectively. This friction model cannot be used for the HBM. To compare the
methods in a most suitable way, the friction force for the HBM is approxi-
mated using an arctangent function

−λsmooth
T = μFN

2

π
arctan(κγT ), (42)

being a smoothed approximation of (41). The approximation (42) tends to
the set-valued force law (41) for large values of the smoothing parameter κ.
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In Fig. 3 the displacements of the system calculated with all three methods
for the period T = 10 s are shown. During this period the first mass shows a
pronounced stick-slip behaviour. Though for the HBM 20 harmonics and for
the MS-HBM only 3 harmonics are considered, the mixed method approx-
imates much better the results of the full shooting method. The smoothing
parameter is chosen preferably high (κ = 800). The mixed and full shooting
method employ the set-valued description (41) of the friction law and can
therefore describe stiction precisely. The HBM, however, not only uses the
smoothed friction law (42) but also uses harmonic shape functions to ap-
proximate the friction force which leads to a poor description of this force.
In contrast, the MS-HBM describes the nonlinear subsystem in time domain
and approximates only the coupling between both subsystems with harmonic
shape functions.

Fig. 3. Displacement and friction force for a periodic solution with period time T = 10 s of the

three DOF oscillator with dry friction

The MS-HBM approach becomes more advantageous than the full shoot-
ing method if the dimension of the linear subsystem is much larger than that
of the nonlinear subsystem. To demonstrate this, the linear subsystem is
extended with additional masses. This expanded model is used to compare
the full HBM, the full shooting and the mixed approach. The excitation force
is chosen as fexi = 0 for i = 1 . . . n− 1 and fexn = 5 cos(ωt). The methods are
compared for one excitation frequency in computation effort and accuracy.
To start the calculation for a specific excitation frequency, a starting guess
for the first iteration is needed. However, the methods iterate in different
unknowns and the same starting guess can therefore not be given. The HBM
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needs an initial guess for the Fourier coefficients of the nonlinear subsystem,
whereas the starting guess for the MS-HBM consists of the state of the
nonlinear subsystem and Fourier coefficients which describe the motion of
the linear subsystem through (22). However, to provide comparable starting
guesses, solutions for an excitation frequency close to the actual frequency
are used as starting vectors for the iterative loops of the respective approxi-
mation methods. This choice seems reasonable, since this is done as well if
a frequency response diagram is calculated.

In Fig. 4 the relative error of the amplitude of the first and nth mass and
the calculation effort is shown for different numbers of considered harmonics
nH . Both ratios are with respect to the full shooting method, which is chosen
as reference as it is almost exact.

The results show that the computation effort for a moderate accuracy
can be reduced drastically by using the MS-HBM approach. Compared to
the HBM, the mixed approach shows for all values of nH more accurate
results. The horizontal plateau of the relative error of the mixed method can
be explained by the limited resolution of the used Fourier transformation and
the integration schemes. Therefore, an increase in the number of harmonics
can only decrease the error down to a problem dependent minimum value.

Fig. 4. Work-precision-diagram of the HBM and the mixed shooting-HBM approach in relation to

full shooting for a system of n = 30 masses with friction and different numbers of considered

harmonics (nH = 1, 3, . . . , 25)

The used parameters for the calculations of the system with friction are
summarized in Table 1.

Table 1.

Selected parameters for the system with friction

parameter mi ki ci μ ω fex,30

value 1 1 0 0.8
1

5
π 5 cos(ωt)
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4.2. System with unilateral constraint

In the second example, the friction force on the first mass is replaced
by a unilateral constraint. The unilateral constraint is modelled within the
concept of measure differential inclusions using the hard contact law

0 ≤ gN ⊥ λN ≥ 0, (43)

where gN is the contact distance (gN = gN,0 − q1) and λN represents the
contact force. The Newtonian impact law is expressed through the inequality
complementarity

0 ≤ γ+N + eNγ
−
N ⊥ ΛN ≥ 0 with 0 ≤ eN ≤ 1, (44)

with the post-and pre-impact relative velocities γ+N and γ−N , the contact im-
pulse ΛN and the restitution coefficient eN . For a more detailed description
of the contact law and impact law see e.g. [8]. The concept of measure
differential inclusions with set-valued contact and impact law can only be
used for the MS-HBM and full shooting method. As discussed at the be-
ginning of Section 4, the HBM only allows a single-valued contact law.
Therefore, the contact for the HBM is modelled using a one-sided spring-
damper element

−λpenalty

N =

⎧⎪⎪⎨⎪⎪⎩
kcgN + dcγN gN ≤ 0

0 gN > 0,
(45)

which is in fact a nonsmooth contact law for dc > 0 as the contact force
jumps at collision time instants. The equivalent restitution coefficient eN
for a specific one-sided spring-damper element can be calculated following
Brogliato [9]. Since only a non-dissipative elastic contact (eN = 1) is used in
this work, dc is taken as zero and the model tends to the hard contact if kc is
tending to infinity. In Fig. 5, the displacements of a five DOF oscillator with
a contact distance (gN,0 = 0.1) at the first mass for the HBM, MS-HBM and
the full shooting method are depicted. The used parameters are summarized
in Table 2. Figure 6 shows the velocity of the first mass. Like before for
the system with dry friction, the HBM has difficulties to approximate the
jump in the velocity of the first mass at the collision time-instant (t = 0.55),
although the contact stiffness kc is chosen relatively high. The mixed and full
shooting method show a true velocity jump whereas the HBM only gives a
rough approximation of this phenomenon.

To demonstrate the efficiency of the MS-HBM for the system with uni-
lateral constraint, it is extended to the size of 50 masses. The investigated
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Fig. 5. Displacements of a five DOF oscillator with impact calculated with the different methods

Table 2.

Selected parameters for the system with impact

parameter m1 m2−5 ki ci kc eN ω fex,5

value 10 1 1 0.3 8000 1
1

5
π 5 cos(ωt)

Fig. 6. Velocity of the periodic solution of the 5 DOF oscillator with impact
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periodic solution is depicted in Fig. 7 as a phase diagram which shows the
existence of an accumulation point, i.e. infinitely many impacts occur during
a finite time period. The HBM cannot model this effect but the MS-HBM
already provides a good approximation with just a few considered harmonics
and it exactly fulfils the non-penetration condition of the contact. The relation
between the number of considered harmonics and the relative error of the
amplitude as well as the relative calculation time are depicted in Fig 8. As in
the previous examples the full shooting method is used as reference. The MS-
HBM provides an accuracy of less than 2% deviation of the amplitude with
only one-fifth of the calculation effort. It should be noted that the reduction
of the calculation effort becomes even more significant if the size of the
linear subsystem increases.

Fig. 7. Phase diagram of the nonlinear subsystem of the 50-mass oscillator calculated with 3 and

9 considered harmonics using the HBM (left), MS-HBM (right), as reference the full shooting

approach is depicted in both diagrams as black curve

Fig. 8. Work-Precision diagram of 50-mass oscillator with unilateral constraint with the shooting

method as reference
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5. Concluding Remarks

The presented mixed shooting-HBM approach shows good characteris-
tics in accuracy as well as in calculation effort, at least for the investigated
benchmark system with dry friction or unilateral constraint. Depending on
the system size and the nonlinear characteristics the method can be a good
alternative to the commonly used methods like HBM and shooting. It should
be noted, that the numerical efficiency of the methods are hard to compare
and that there exist alternative Harmonic Balance Methods to compute peri-
odic solutions of systems with dry friction and impact. Further research will
focus on providing a better comparison of the mixed shooting-HBM method
with existing methods [10].
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