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Inference of the Bottom Properties in Shallow Ice Approximation

Models

J. Monnier, P.-E. des Boscs

INSA & Mathematics Institute of Toulouse, F-31077 Toulouse cedex 4, France.
jerome.monnier@insa-toulouse.fr5

This study proposes a new inverse method to infer the bottom topography and the friction coe�cient
in the Shallow Ice Approximation models (lubrication type models for generalized Newtonian fluid flows).
The method is based on sub-regime definitions corresponding to di↵erent slip ratios; then combinations of
explicit field expressions with an elliptic linear-quadratic optimal control problem (solved by variational data10

assimilation) lead to depth estimations; next the friction field can be deduced. The numerical results performed
on realistic multi-regime flows demonstrate the robustness of the method even in presence of uncertain surface
measurements and independently of the depth measurement locations (on contrary if inverting a regularized
first order transport equation). A method by-product is to make possible the determination of the adequate
slope scale of in the shallow flow model. The method can be straightforwardly extended to unsteady flows if15

time-dependent surface observations (elevation and velocity) are available.

Keywords. Shallow flow, Shallow Ice Approximation, topography inference, friction, data assimilation, glaciers.

1 Introduction

The knowledge of the bottom topography is a basic step to set up a numerical flow model; however this crucial20

data may be unknown or di�cult to acquire especially in geophysics. Inverse methods to infer the topography,
and potentially the basal slipperiness, are then the only alternative (for a review on inverse methods in free
surface flows see e.g. [39]). The bottom topography knowledge combined with the top surface measurements
gives straightforwardly a volume - mass estimation; the next important quantity to estimate is the flux. For ice
flows, these estimations are important in the context of global warming and sea level rise.25

An extra di�culty of shallow flow inverse modeling is the following: even if the free surface presents very
small and smooth variations, the bottom topography may not. Indeed, the shallow fluid flows (even newtonian)
act as low-band filters: the bed variations are filtered by the flow. The filtering features depend on the sliding
amount at bottom, see [13][12] [26] [24] for detailed analysis applied to generalized newtonian / ice flows.

In the case of no-slip at bottom, the inference of the bottom properties is limited to the topography only.30

Then the di�culty of the corresponding inverse problem depends on the observation avaibility. In the case of
sliding at bottom (or equivalently finite friction), the inverse problem becomes much more di�cult since the
unknown becomes the (topography, friction) pair. Then a challenging goal is to separate the signature of these
two di↵erent bottom properties (topography and friction), usually given surface observations - measurements.
Under some flow conditions, these two features can lead to equivalent bottom conditions hence making the35

inference of the property pair particularly challenging, see e.g. [16][4][7] in the Newtonian case (shallow water
flows) and [12] [26] in the power-law / Glen-Nye’s law case.

The direct measurements of ice thickness, for example along a track using airborne radio-echo sounding,
are time-consuming, expensive and provide very sparse measurements only. Also radio-echo sounding can
be inaccurate due to water beneath the glaciers e.g. in southern Greenland. The current bedrock maps for40

Greenland [2] and Antarctica [6] are available at 1 km resolution from measurement surveys plus Kriging
interpolation techniques (with simple relations based on the surface slope). But the uncertainty between the
measurements still prevent to set up high resolution dynamic ice flow models; and despite the important
measurement campaigns, e.g. NASA Operation Ice Bridge. In other respect, various satellites provide quite
accurate and frequent (⇡ 10 days revisits) measurements of the ice sheet surfaces: altimeters provide the surface45

elevation H(x, t) at ⇡ +/�10�30 cm for 1 km2 pixels, while radar interferometers (InSar) provide the surface
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velocity uH (more or less accurately depending on its magnitude, see e.g. [37]). For non ice-sheet glaciers,
e.g. Arctic, Alaska, Patagonia or High Mountains, in-situ measurements are usually the surface elevation while
velocity measurements are less usual.

A great challenge is to fill up the gaps between the reliable depth measurements and to determine an e↵ective50

slipperiness (modeling basal conditions e.g. till or subglacial hydrology networks). This goal can be partially
reached by developing inverse methods combining all available information.

Let us introduce some notations, the standard depth-averaged mass equation and the classical Shallow Ice
Approximation (SIA) equation (standard lubrication approximation). The surface flow elevation is denoted by55

H, the bed elevation is denoted by b and the ice depth (or thickness) is defined by h, h = (H � b), see Fig. 1.
Then the depth-averaged mass equation reads:

div(hū) = a� @th ⌘ ȧ

where ū is the depth-averaged velocity and a is the mass balance source term. The traditional Shallow Ice
Approximation (SIA) (lubrication type equation) is obtained by injecting the velocity expression ū (which can
be derived explicitly) into the mass equation above, see e.g. [10, 5]. This gives:60

�divxy(↵h
5|rH|2rH) = ȧ

where ↵ is a coe�cient depending on the ice properties. This SIA model version is qualified of “traditional”
since no slip is considered at bottom i.e. ub = 0 (hence no friction coe�cient C appears in the equation). More
details on the shallow flow model derivations are presented in the manuscript.

The inference of the bottom properties (usually the topography only) by inverting a ice model has been
addressed in numerous studies. First let us mention the pioneer article [36]. The ice depth h or/and the e↵ective65

mass balance ȧ are infered from the depth-averaged mass equation combined with some surface elevation data
Hobs, surface velocity data uobs

H and depth measurements hobs available along flight tracks over the Columbia
glacier in Alaska. In the mass equation, the mean velocity is empirically related to the surface velocity by
a coe�cient �, � = ū/uH . (Remark that given the power-law exponent of the fluid, � defines the vertical
velocity profile; somehow this spatially-distributed coe�cient � provides a velocity model, replacing the missing70

momentum equation). Next a quadratic cost function measuring the di↵erences between the model output
and the surface velocity measurements is defined. Finally the first-order optimality condition (gradient of the
cost function vanishes) is numerically solved by the Newton algorithm. Note that this pioneer study has been
carried out before the classical use of the optimal control techniques in data assimilation problems, see e.g.
[22], and before the acquisition of rich satellite measurements. In [42], the authors employ the explicit depth75

expression in function of the SIA equation flux: h5 = 1
↵

�
|rH|3 , where the flux � is estimated by inverting the

divergence operator (given ȧ). An other pioneer study is [41] since it does not address the topography inference
only but the (topography b, friction C) pair inference. This is done for fast-flowing ice-streams (unsheared
flows) hence not modeled by the SIA equation. The inference is based on the linearized model equation and
the analysis of the transmission of flow disturbances through the ice thickness and from surface observations80

(elevation,velocity). More recently [34] [35] have elaborated a combination of e�cient computational algorithms
based on a Variational Data Assimilation (VDA), solving the same equations than [36]. The resulting algorithm
combined with multi-sources and heterogeneous data sets leads to nice bed maps at ⇡ 300 m resolution in the
challenging South Greenland regions where airborne radar sounding are inaccurate, see [32, 33]. However the
method has few drawbacks since it relies on a transport equation, hyperbolic first order. Indeed the equation85

feature limits the inversion capabilities at locations downstream the depth measurements. In other words, data
are required at the characteristic inflow locations. Furthermore the hyperbolic feature of the model leads to
error propagations e.g. the surface measurement errors. In [40, 15] the authors reconstruct the surface elevation
H and the bed elevation b from the surface velocity uH and depth measurements given at upstream again.
The inversions are based on the traditional SIA equation and velocity expression i.e. with no-slip at bottom90

only. This limits the applicatibility of the approach. Similarly [27] infers the topography of non-sliding
mountain glaciers from the surface elevation data H (and mass-balance a). Again, since the direct model is
a non-linear transport equation (the inverse problem aims at inverting the divergence operator), the authors
solve a pseudo-time dependent problem and introduce artificial di↵usion to regularize the first order operator.
Let us point out that the introduction of artificial di↵usion to invert the divergence operator presents serious95

drawbacks: the inverse problem is not the original one and the computed solution is fully dependent on the
regularization parameter. Also, the inversion is highly unstable or even numerically impossible, depending on
the locations of the measurements at boundaries. Roughly, only data in the vicinity of a characteristics root
can be infered (roughly for a given flow line, this corresponds to the inflow data). In the unsteady case, the
authors of [27] point out that smoothing the surface data is mandatory, then the computed solution is fully100

dependent on this additional regularization parameter. Next the same authors developed a so-called “shape
optimization” approach, see [28] (actually it is a parameter identification method since it aims at identifying the
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model parameter b while the domain shape is fixed). The problem is formulated as a classical optimal control
problem solved by VDA, leading to a more robust than the algorithms presented in [27]. Let us point that
such a straighforward “blind” VDA may be unable to infer the bottom properties in presence of the additional105

unknown: the spatially distributed friction parameter C(x, t). Indeed in this case, equifinality issues can appear
as demonstrated in di↵erent ways and in di↵erent contexts in [11, 13][41][16],[26, 25] [7]. Other studies address
the topography inference but either in 1D only (following flow-lines) and/or based on empirical flux estimations,
see e.g. [17].

All the aforementioned existing methods, excepted [41], are either based on the regularization of a transport110

equation (hence presenting drawbacks and limitations) and/or consider the inference of the topography only.
The inverse method of [41] is based on the perturbation theory developed in [11] hence small variations of the
infered quantity (b, C) only can be infered, moreover for fast ice streams only (in this case, the bed-to-surface
transfer function is much less filtered compared to sheared flows).

The present study aims at infering the complete bottom properties i.e. the (topography b, friction C) pair in115

a multi-regime shallow ice flow (hence presenting local and extremely sti↵ variations of the friction parameter
C) without any artificial regularization nor particular measurement location requirements (like it is the case if
inverting the first order divergence operator). Since the model considered is the SIA model (more precisely the
so-called extended SIA equation denoted xSIA), the method domain of validity ranges from fully sheared to
mildly sheared flows hence valid for a large panel of observed ice flows (however this excludes the fast ice-streams120

since unsheared and not properly modeled by the SIA models).
The present method guideline is to consider intrinsically invertible equations only (typically di↵usive /

parabolic-elliptic second order equations and not first order equations), and to consider robust, well-posed
optimal control problems only. The goal has been reached by basing the inverse method on a combination of
explicit field expressions of the xSIA equation and an intermediate linear-quadratic optimal control problem125

(hence well-posed); the latter is classically solved by VDA.
The required measurements are the surface elevation H and the surface velocity norm |uH | plus some in-situ

depth measurements. The latter can be located anywhere relativly to the stream lines. The strengths of the
resulting inversion method are the following:

i) A high robustness, including in presence of uncertain surface measurements and whatever the depth130

measurements locations;
ii) A large domain of validity in terms of flow regimes: from fully sheared to mildly sheared flows. Thus it

can be applied to the great majority of the ice-sheet surfaces (corresponding to the accumulation areas) and
high-mountains glaciers; but this excludes the fast ice-streams. (However for fast ice-stream in coastal ice sheet
areas, the depth-mass equation inversion can be e�cient, see [34, 35, 33]).135

iii) A capability to infer separately the depth from the spatially distributed friction coe�cient C. The
inference of C becomes a by-product of the depth inference. This feature is important since potential equifinality
issues while identifying the pair (topography, friction). Also the friction coe�cient is one of the greatest uncertain
parameter in geophysical shallow flow models, its values vary within few orders of magnitudes and its estimation
by expert assessment is generally impossible.140

Finally a by-product of the present analysis is a methodology to define consistent slope scales in SIA models.
Since based on shallow flow equations, this inverse method remains a↵ordable even for large computational

domains (e.g. the whole ice-sheets); this is particular true if the VDA process is implemented in parallel like it
can be done in DassFlow [30] or ISSM [21] for example. The present numerical results have been performed by
using the Fenics Python library [1, 23].145

The weakness of the method is its relative inaccuracy in the narrow regime transition areas like canyon
margins. This gives local error peaks (of 20-30% approx.), corresponding to the sti↵ variations of the infered
quantities (variations extremely local and of few orders of magnitude like the friction coe�cient).

The outline of the article is as follows. In Section 2, the classical SIA equation and field expressions are re-150

derived; then clarifying their respective domain of validity in terms of basal friction amount (or equivalently in
terms of the slip ratio Rs). This leads to the definition of three sub-regimes corresponding to di↵erent slip ratio
range values. Next the definition and derivation of additional expressions are presented. Section 3 describes
the complete inference method. For each sub-regime, an explicit expression of the depth h is derived; all of
them depend on an unique observational surface term denoted QH . For two sub-regimes, the depth expression155

depends on the “di↵usivity” ⌘ of the xSIA equation. This di↵usivity is numerically computed by VDA. Finally,
the friction coe�cient value C can be explicitly deduced. Next, the complete method is assessed on academic test
cases presenting the complete range of flow regimes with sti↵ transition areas (hence presenting many di�culties
of real-world flows). The multi-regime academic test case is constructed in Section 4. A method to define an
a-priori slip ratio map, next a good depth first guess is developed. Section 5 aims at analysing the numerical160

results in the case of downstream depth measurements, both for perfect and uncertain surface measurements.
Various sensitivity analysis (explicit and numerical ones) are highlighted and commented. An extra di�cult test
case based on lateral depth measurements only (measurements quasi parallel to a flow line, moreover within a
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Figure 1: Notations. A shallow ice flow (x-z view) along an inclined mean slope, with surface observations.

mono-regime area) is analysed in Section 6. Finally, it turns out that the few depth estimations aforementioned
make possible to determine the correct slope scale in a SIA model. This is explained how and illustrated for 1D165

uniform flows in Section 7. The conclusion proposes few perspectives of this preliminary study.

2 The direct model

In this section, the direct model and various explicit field expressions are derived. As a first step, the classical
Shallow Ice Approximation (SIA) velocity expression and resulting equation are re-derived, see [18], [31], see170

also e.g. [5] chapter 10.2. The SIA equations derive following standard asymptotical calculations of the free
surface (non-linear) Stokes equations with respect to the geometrical ratio " = H⇤

L⇤ ; with H⇤ a characteric flow
depth and L⇤ a characteric flow length. The basic assumption states that the flow, thin geometry, is sheared;
in other words, the normal stress components are negligible. The order 0 SIA equations are in fact order 1 in
". In the literature “SIA model” generally denotes the no-slip case at bottom (fully sheared flow); also this175

terminology denotes indistinctly the explicit velocity expressions (derived from the momentum equations only)
and the corresponding lubrication type equation (derived from the depth-averaged mass equation). A much
less employed SIA equation is obtained if considering a non vanishing velocity at bottom, see e.g. [5] chapter
10.2 or [10]chapter 5.4. For a sake of precision, in this article this less classical version of the equations is called
extended (xSIA). In [3], it is formally demonstrated that the xSIA model remains valid for a friction coe�cient180

C'O(1), hence clarifying the xSIA domain of validity. This legitimates the few sub-regimes considered in next
section. (In [3], the xSIA equation is a particular case of more general shallow flow models, see Section 11 of this
reference). In other respect, in the literature the xSIA equation is derived in the mean slope coordinate system
(otherwise in the horizontal-vertical coordinate system). Nevertheless it is demonstrated in [3] that the same
expressions and equation remain valid in a more general coordinate system: the Prandlt coordinate system.185

Then this makes possible to apply the model to any bottom shape (i.e. without any clear mean slope) like those
observed in some high mountains glaciers for example.

In summary, the xSIA equation and field expressions derived below are valid for any coordinate system (here
presented in the mean slope coordinate system for a sake of clarity), non-isothermal flows and flows from fully
sheared (no slip, C = 0) to mildly sheared (C' O(1)). Next, various additional explicit expressions are derived;190

the latter being important in the forthcoming inversion method.

2.1 Basic notations and rheology

We denote by H the fluid elevation, b the topography elevation, h = (H � b) the fluid depth, see Fig. 1.
The gravity is denoted by g, the fluid density by %; the 3D fluid velocity is denoted by U = (u, v, w) = (u, w)

and its pressure by p. The stress tensor is denoted by �: �(U) = ⌧(U) � pI = 2µD (U) � pI; with µ the195

viscosity and D the symmetric rate of strain tensor, D (U) = 1
2

⇣
rU+ (rU)T

⌘
. For a sake of simplicity in the

forthcoming expressions, it is assumed that the geometry presents a “mean slope” in the (x, y)-axis which can

be described by the angle ✓. Then, g = (g sin ✓, 0,�g cos ✓)T , Fig. 1.

Rheology law. The ice rheology is a power-law (generalized Newtonian fluids). Then the deviatoric stress200

tensor reads : ⌧ = 2µD (U) = 2µ0�̇
n�1D (U). �̇ is the e↵ective strain rate defined by: �̇ = 1p

2
kD (U)kF

(Frobenius norm of the strain rate), and the viscosity µ = µ0�̇
n�1 is a power-law of the e↵ective strain rate; µ0

is the consistency. The power-law exponent n 2]0, 1[ for shear thinning fluids: ice but also lava, mud and many
industrial fluids. Recall that n > 1 for shear thickening fluids (less common fluids) and n = 1 for Newtonian
fluids.205
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Invert rheology law. By defining the e↵ective stress: ⌧e = 1p
2
k⌧kF = 2µ0�̇

n, the so-called Nye-Glen-

Steinemann’s flow law follows: D (U) = A⌧ q�1
e ⌧ with the exponent q = 1

n . A is the rate factor, A = 1
(2µ0)q

.
For glaciers, the usual exponent value is q = 3. Also for glaciers, the consistency µ0 and the rate factor A

depend on the temperature field.
In the present study, A (or equivalently µ0) is assumed to be given but depending on the space variables, in210

particular on the depth variable z.

2.2 Boundary conditions

Given a boundary of the geometrical domain ⌦, n denotes its outward normal and (t(1), t(2)) denotes its
tangential vectors with (n, t(1), t(2)) direct.

The free-surface (interface fluid-atmosphere) is denoted by �H , �H =
�
(x, y, z) 2 R3|z = H (x, y)

 
. On �H ,215

the ice stress condition reads: (⌧ � pI)n = 0.
Furthermore, the free surface dynamics reads:

@tH +UHrH = a (1)

with a the mass balance (between accumulation and ablation).
The bottom boundary �b is defined by: �b =

�
(x, y, z) 2 R3|z = b (x, y)

 
. On �b, a friction power-law is

imposed; it models the till interface as a viscous boundary layer.220

The basal shear stress reads: ⌧b = ⌧ ·n� (nT · ⌧ ·n) ·n; the tangential velocity vector reads: ub = (ub, vb) =
U� (nT ·U) · n . The classical non-linear Weertman-type friction law is imposed:

(ub, vb) = C |⌧b|q�1 (⌧xz, ⌧yz) and wb = (ub, vb) ·rb

For a sake of simplicity, the law exponent is chosen equal to the rheology one; typically q = 3.

The coe�cient C is the slip coe�cient. If C ! 0, the no-slip condition (adherence) is imposed; on the225

contrary if C ! 1 a pure slip condition (vanishing friction) is imposed. Nevertheless, to remain within the SIA
model validity, the slip coe�cient C has to vary from 0 to O(1) at most, see e.g. [3] for a detailed discussion
and analysis.

2.3 The mass equation and explicit velocity expressions

The depth averaged velocity ū and the discharge qare defined by:230

ū =
1

h

ˆ H

b

u(z)dz and q = hū = h(ū, v̄) (2)

The bottom topography is assumed to be time independent. By integrating the 3D incompressibility equation
div(u) = 0, by using the Leibnitz integration rule and the free surface dynamics equation (1), the depth averaged
mass equation is obtained:

@th+ divxy(q) = a (3)

Momentum equations. The 3D Stokes equations, 0th order in the geometrical ratio " = H
L , are

integrated in z; it gives:235

(⌧xz, ⌧yz) = (H � z)(Sx, Sy) = (H � z)S (4)

with S = rH the free surface slope, see e.g. [5, 3]. Then the shear tensor at bottom reads: ⌧b = (⌧xz, ⌧yz)|b =
Sh. The third momentum equation gives the hydrostatic pressure expression: p(z) = (H � z). The incompress-
ibility condition gives: ⌧zz = �(⌧xx + ⌧yy).

The e↵ective stress reads: ⌧e = |S|(H�z). Next the velocity derivatives expressions derive from the rheology
equations:240

8
>>><

>>>:

@xu = A⌧ q�1
e ⌧xx

1
2 (@yu+ @xv) = A⌧ q�1

e ⌧xy
1
2 (@zu+ @xw) = A⌧ q�1

e ⌧xz

@zw = A⌧ q�1
e ⌧zz

(5)

with similar expressions for @yv and 1
2 (@zv + @yw). Recall that A is the rate factor.

Let us define:
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S = |S| = |rH| and ⇢̄ = (⇢g cos ✓)q (6)

By integrating in z between b and z the expressions of @z(u, v), the longitudinal velocity components follow:
u(z) = (u, v)(z) = ub + 2⇢̄Sq�1S

´ z
b
A(H � ⇠)qd⇠. This is the classical SIA velocity expressions. They are

presented in the isothermal case for example in [5] chapter 10.2, or in [10] chapter 5.4 in the horizontal-vertical245

coordinate system (✓ = 0) with ub = 0 (no slip at bottom).

Remark 1. The rate factor A hence the viscosity µ0 a-priori depend on z. In the case A independent on z
(isothermal case), it follows: u(z) = ub +

2A
(q+1) (⇢g cos ✓)

q|S|q�1[hq+1 � (H � z)q+1] S.

Furthermore using the boundary conditions at bottom, it follows: ub = C(⇢g cos ✓)qhq |S|q�1
S. Then the250

longitudinal velocity reads:

u(z) = (u, v)(z) = ⇢̄[Chq + 2

ˆ z

b

A(H � ⇠)qd⇠] Sq�1S (7)

Note that the vertical velocity field w can be recovered from the incompressibility equation:
w(z) = (ub, vb) ·rb� ´ z

b
(@xu+ @yv)dz.

A validity analysis of this velocity expression (7) in terms of flow regime (defined from the friction
parameter C range value) is presented in [3]. This is closely related to the slip ratio defined below.255

In order to obtain a direct expression of u = (u, v) (without the integrals), the rate factor A has
to be independent of z.

2.4 Additional explicit expressions and definitions

An explicit expression of the depth averaged velocity ū can be derived. To do so, let us define Ā independent

of z by: Ā =
´H
b

´ z
b
(H � ⇠)qd⇠dz =

´H
b

´ z
b
A(H � ⇠)qd⇠dz, hence:260

Ā =
q + 2

hq+2

ˆ H

b

ˆ z

b

A(H � ⇠)qd⇠dz for all (x, y; t) (8)

Given A(z) (typically in the thermal dependent case), the quantity Ā can be computed numeri-
cally for each (x, y; t). Then the depth averaged velocity reads:

ū = ⇢̄[C +
2Ā

(q + 2)
h]hqSq�1S (9)

Similarly, an explicit expression of the surface velocity uH can be derived. To do so, let us define A as follows:´H
b

A(H � ⇠)qd⇠ = A
´H
b
(H � ⇠)qd⇠ . Hence:

A =
q + 1

hq+1

ˆ H

b

A(H � ⇠)qd⇠ for all (x, y; t) (10)

Then the surface velocity uH reads:265

uH = ⇢̄[C +
2A

(q + 1)
h]hqSq�1S = ub +

2⇢̄A

(q + 1)
hq+1Sq�1S (11)

Let us point out that in the isothermal case (hence A independent on z), Ā = A = A.
Finally let us define the slip ratio as follows:

Rs =
|uH |� |ub|

|uH | = 1� |ub|
|uH | = 1� C

[C + 2A
(q+1)h]

=

2A
(q+1)h

[C + 2A
(q+1)h]

(12)

The slip ratio Rs equals 1 for fully sheared flow (sub-regime 1) and equals 0 for plug like flow.
The case Rs = 0 is out of the validity range of the present Shallow Ice Approximation validity since the

scalings assumed to derive the velocity expressions above are not valid anymore. The present SIA equations are270

a-priori valid up to a slip ratio Rs ⇡ 0.5 since the basic scaling done in the SIA equations make possible the
asymptotic derivations up to a balance between C and the term 2A

(q+1)h, see [38, 3]for a more detailed discussion
on this point.

Note that Rs = 0.5 is equivalent to the equality: C = 2A
(q+1)h .

275
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2.5 The xSIA equation

By injecting the discharge expression q̄ = hū with (9) into the free surface dynamics equation,
an one-equation model (lubrication type) is obtained; it is the xSIA equation.

@th� ⇢̄divxy([C +
2Ā

(q + 2)
h]hq+1Sq�1rH) = a (13)

with S = |rH|, q � 1. This non linear parabolic model has to be closed with boundary conditions (Dirichlet
or Neumann conditions on H) and initial conditions.280

Steady-state version. In a glacier modeling context, uncertainties on the mass source term a (modeling the
ablation / deposition at the surface) may be of the same order than the time variation @th. (This depends of
course on the considered time scale and/or the flow). Then it is classical to consider the e↵ective source term:
ȧ = �@th+ a.285

Then the steady-state version of the xSIA equation reads:

�⇢̄divxy(⌘(C, h) Sq�1rH) = ȧ (14)

where ⌘ denotes the “e↵ective di↵usivity”:

⌘(C, h) = [C +
2Ā

(q + 2)
h]hq+1 (15)

This non linear elliptic equation has to be closed with boundary conditions on H (Dirichlet conditions or
mixed ones).

Remark 2. Under the assumption the di↵usivity ⌘(C, h) is given, if the surface slope S is given too (surface290

measurements), then the equation (14) is a gentle linear elliptic equation. Nevertheless, its is well-known and
easily verified that its solution H is highly sensitive to the definition scale of the slopes S. This feature is
addressed in the last section.

3 Inference of the (topography, friction) pair from the surface mea-295

surements (S,uH)

In this section the complete inference method is derived into details; it is assessed on academic test cases in next
sections. First the inverse problem is presented and the di↵erent sub-regimes are introduced: fully sheared flow,
mildly sheared flow and weakly sheared flow. The slip ratio criteria, measuring the regime type, is defined. Next
the observational surface term QH is naturally defined from the surface observations: elevation H and velocity300

norm uH . Next the central three depth estimations, corresponding to the three sub-regimes, are derived.
In the sub-regime 1 case, the depth estimation is directly obtained from the observational term QH . In the

sub-regime 3 case, the depth estimation is explicit but depends on an intermediate variable ⌘: the “e↵ective
di↵usivity” of the xSIA equation, see (14). ⌘ can be infered by a Variational Data Assimilation process applied
to a linear version of the xSIA equation, hence aiming at solving a well-posed linear-quadratic control problem.305

Finally the intermediate and most general case (it includes the two others cases), is the mildly sheared case
(sub-regime 2). In that case, the depth can be infered as a root of a polynomial which depends on the variable
⌘.

Next, it is demonstrated that the friction coe�cient C is a simple by-product of the depth estimations
above; its explicit expressions are derived. Hence the present approach makes possible the inference of the310

bed topography b separately of the the friction coe�cient C. This is a crucial feature of the method and an
indication of its robustness.

Finally the VDA process aiming at identifying the e↵ective di↵usivity ⌘ is detailed: the adjoint equations
and the gradient cost function used to solve numerically the optimal control problem are detailed.

3.1 The inverse problem and the observed surface term QH315

The direct problem reads as follows: given the basal properties (topography, friction coe�cient) (b, C), find H
solution of (14)(15), accompanied with boundary conditions. Then the depth h = (H � b) is straightforwardly
deduced.
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The considered inverse problem reads as follows: given the surface observations (H,S,uH), find the pair
(h,C).320

In the next paragraph, explicit expression of the depth h, than C, are derived in function of an unique
observed quantity, and potentially in function of the e↵ective di↵usivity ⌘ defined by (15). To do so, three
sub-regimes are considered.

The three sub-regimes: from fully sheared to pure slip
Let us define the considered three sub-regimes.325

• Sub-regime 1 (sr1): the fully-sheared sub-regime which corresponds to a vanishing friction coe�cient.
Then C is set to 0. This sub-regime 1 corresponds to the slip ratio Rs tends to 0.

• Sub-regime 2 (sr2): the mildly-sheared regime in the sense C ⇡ Ah. Typically, let us recall that Rs = 0.5
corresponds to (q + 1)C = 2Ah.

• Sub-regime 3 (sr3): the weakly sheared regime in the sense C >> Ah, hence the slip ratio Rs tends to 1.330

Let us point out that all forthcoming derivations made in the intermediate regime (mildly sheared, sub-regime
2) are valid in the two other extreme sub-regimes (sub-regimes 1 and 3).

A formal error estimate of the asymptotic xSIA equation presented in [3] demonstrates that sub-regime 2
is the limit case of the xSIA equation validity. In other words for C larger, the a-priori scaling made to obtain
the xSIA equation breaks down. Indeed, this a-priori scaling (roughly �xz >> �xx) is not valid anymore in335

the sub-regime 3, see [38] too. Nevertheless, it will turned out that the depth estimates obtained but assuming
C >> Ah (sub-regime 3 case) is a particular case of those obtained in the sub-regime 2 case.

All the estimates derived in this section will be assessed in next section on an academic test case presenting
the full range of flow regime (i.e. the full range of slip ratio).340

The observational surface term QH The surface quantity which naturally appears in the expressions
above is the ratio between the surface velocity norm and the surface slope norm:

QH =
|uH |
Sq

(16)

Finally let notice that the slip ratio Rs defined by (12) can be read in function of QH (and the depth h) as
follows:345

Rs =
2⇢̄A

(q + 1)

hq+1

QH
(17)

3.2 Sub-regime 1 (fully sheared): explicit expression of h

Let us consider a vanishing friction coe�cient C. It follows the usual SIA expression of uH :

uH =
2⇢̄A

(q + 1)
Sq�1Shq+1 (18)

Then from the surface measurements (uH ,S), the depth h can be straightforwardly estimated by:

h ⇡

(q + 1)

2⇢̄A
QH

�1/(q+1)

⌘ hsr1 (19)

Note that this depth estimate does not depend on the vectorial features of the surface measurements; it
depends on norms only.350

Let us recall that sub-regime 1 corresponds to the “traditional SIA regime” and few studies has addressed
the depth inversion in this case, see the general introduction. The forthcoming numerical results demonstrate
that the present estimation is not accurate as soon as the slip ratio is lower than ⇡ 0.85.

3.3 The general expression: sub-regime 2 case

Sub-regime 2 corresponds to a mildly sheared regime, hence much faster flows than sub-regime 1. Nevertheless,355

this sub-regime still corresponds to the xSIA model validity (see [3] for a detailed analysis). The typical case
is Rslip = 0.5 or equivalently : (q + 1)C = 2Ah. Some depth expressions (explicit or not) are derived. Also, it
will turn out that by considering the two terms in the analytical expressions (the slip term and the deformation
term), the depth derivations below remain valid for all sub-regimes.

8



3.3.1 Algebraic system in (h,C)360

Given the surface quantity QH (from the surface velocity and slope measurements), by using the surface velocity
expression (11), it follows:

[C +
2

q + 1
Ah]hq =

QH

⇢̄
(20)

This expression combined with the expression of the e↵ective di↵usivity ⌘, see (15), leads to the
following non linear algebraic system in (h,C):

(
[C + 2

q+1Ah]hq = QH

⇢̄

[C + 2
q+2 Āh]hq+1 = ⌘

(21)

Let us point out that these two equations are not redundant. Indeed, the surface velocity expression is based365

on the momentum equation only while the xSIA equation (14) includes in addition the depth mass equation.

In a discrete point of view, if denoting by N the number of the degree of freedom of each field (e.g. the
Finite Element degrees of freedom), then (21) is a 2N equations with 2N unknowns (the N pairs (h,C) pairs).

3.3.2 Polynomial in h370

By injecting the first equation (the observed surface expression) into the second one (the e↵ective di↵usivity
expression), it follows the following polynomial in h:

a2h
q+2 � QH

⇢̄
h+ ⌘ = 0 (22)

with: a2 = m[(q + 2)A� (q + 1)Ā] and m = 2
(q+1)(q+2) .

In the isothermal case a2 = mA. Also observe that for q = 3, the polynomial is order 5, with m = 1
10 .

Given ⌘, and the observed quantity QH , the depth hsr2 can be infered by computing the roots of polynomial375

(22). It is classically done by computing the eigenvalues of the companion matrix.

Remark 3. In the isothermal case, this polynomial expression gives: QH

⇢̄ ( Rs

(q+2) � 1)h + ⌘ = 0 with Rs the slip

ratio defined by (17). Hence the depth expression in the sub-regime 2 case:

h =


1� Rs

(q + 2)

��1
⇢̄

QH
⌘ ⌘ hsr2 (23)

Even if ⌘ is given, this explicit expression cannot be evaluated in practice since the slip ratio Rs is a-priori
unknown. Nevertheless, in the sequel this expression is useful, in particular to analyse the depth estimate380

sensitivity with respect to the variations of QH .

Remark 4. The depth expression (23) includes the sub-regime 1 case. Indeed, if setting Rs = 1 and C = 0 in

the ⌘ expression, it follows: hq+1 = (q+1)
2⇢̄A QH . This is nothing else than (19) in the isothermal case.

3.4 The sub-regime 3 case

In the case of sub-regime 3, Ah is negligible compared to C, then the algebraic system (21) simplifies as follows:385

(
Chq ⇡ 1

⇢̄QH

Chq+1 ⇡ ⌘
(24)

and it follows straightforwardly the depth expression:

h ⇡ ⇢̄

QH
⌘ ⌘ hsr3 (25)

Given ⌘, and the observed quantity QH , the depth h can be straightforwardly infered.
Equivalently, the depth expression (23) which is obviously valid in the sub-regime 3 case, leads directly to

(25) by making vanish the slip ratio Rs. In other words, the sub-regime 3 is a sub-case of the sub-regime 2
case. Finally the intermediate case include all the others and the sub-regime 2 estimations above are the most390

general ones.

In next section, it will be presented how the di↵usivity ⌘ can be approximated by Variational Data Assimi-
lation (VDA), hence making possible the depth estimations in sub-regime 2 and sub-regime 3.
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395

Remark 5. Let us calculate the di↵erence between the two extreme estimations (19) and (25). For a sake of
simplicity, the flow is supposed to be isothermal (Ā = A = A). From (19), it follows: QH

⇢̄ = 2A
(q+1)h

q+1
sr1 . While

from (25), it follows: QH

⇢̄ = ⌘
hsr3

.

If setting C = 0 in ⌘ in the sub-regime3 depth estimation (25), it follows: 2A
(q+1)h

q+1
sr1 = 1

hsr3
· 2A
(q+2)h

q+2
sr1 .

Hence: hsr3 = (q+1)
(q+2)hsr1.400

In others words, given the ⌘value in the fully sheared areas (Rs close to 1), the depth formula corresponding

to the vanishing slip ratio gives a value (q+1)
(q+2) smaller than the true one (hence 20% smaller in the case q = 3) .

Nevertheless, it will be noticed in the forthcoming test case that the value range of ⌘ is very large (few orders
of magnitudes) hence leading to di↵erences of depth much greater than the present 20%. Nevertheless, this
remark will be useful to select the correct computed polynomial root of (22).405

3.5 The resulting friction coe�cient C

Given the depth value h, whatever in sub-regime 1, 2 or 3, the corresponding friction coe�cient value C can be
deduced from (21). Its value can be deduced equivalently from the first equation:

C =
1

⇢̄hq
QH � 2

(q + 1)
Ah, (26)

or from the second equation:

C =
⌘

h(q+1)
� 2

q + 2
Āh (27)

Since the observed surface term is uncertain, since the VDA process to compute ⌘ is not exact (see next410

paragraph), a-priori these two equations may give very slightly di↵erent friction values. Nevertheless in the
numerical experiments presented in next section, both expressions give extremely close values for C.

3.6 Identification of the e↵ective di↵usivity ⌘ by Variational Data Assimilation
(VDA)

3.6.1 Set up of the VDA problem415

The depth estimates in sub-regimes 2 and 3 are based on the assumption that the e↵ective di↵usivity ⌘ defined
by (15) is given. This quantity ⌘ can e↵ectively be computed by solving a linear-quadratic optimal control
problem. Indeed, let us recall that the direct model reads as follows, see (14):

�⇢̄divxy(⌘(C, h) Sq�1rH) = ȧ (28)

plus boundary conditions. It is a linear elliptic equation in H. Then the typical observation function is
defined by: J(⌘;H) = ↵H

2

´
⌦(H

⌘ � Hobs)2dx + ↵⌘

2

´
⌦ |r⌘|2dx. And the cost function reads: j̄(⌘) = J(⌘;H⌘)420

where H⌘ is the unique solution of the linear equation (15), given ⌘.

Then, given the surface measurements elevation - slope (H,S), the spatially distributed coe�cient ⌘ can be
infered by solving the optimal control problem: min⌘ j(⌘).

Since this optimal control problem is linear quadratic then it admits an unique optimal solution ⌘⇤.425

In practice, it turns out that the quantity ⌘ varies greatly (⇡ 4 orders of magnitude in a multi-regime flow),
then a log change of variable is introduced; the control variable becomes ! = ln(⌘). Furthermore the power of
the regularizing term is increased. (The regularizing process has been observed to be more e�cient with the L4

norm than with the L2 norm). The minimized cost function reads:430

j(!) =
1

2

ˆ
⌦
(H! �Hobs)2dx+

↵!

2

ˆ
⌦
|r!|4dx (29)

with ↵! to be set. And the optimal control problem reads:

min
!

j(!) (30)

Let us point out that (30) is no longer a linear-quadratic optimal control problem (the cost function is not
quadratic anymore due to the log change of variables), but the cost function remains strictly convex and the
inverse problem still admits an unique optimal solution !⇤.
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Remark 6. On the impossibility to directly assimilate uH into the xSIA equation.435

The misfit between the xSIA model and the surface observations can be based on the elevation measurements
H only (e.g. acquired by altimetry) and not on the surface velocities uH since the latter depends on the unknown
(depth,friction) pair (h,C), see (11). Thus observed uH (e.g. derived from InSAR) are not directly assimilated
by VDA. Nevertheless uH appears in the three depth estimations through the observational term QH , see (16)
and (19)(23)(25).440

The surface velocity uH (11) and the depth averaged velocity ū (9) depend on ⌘ but also on (C, h). Therefore
the basal features (C, b) cannot be identified while identifying ⌘ only.

3.6.2 The equations and numerical methods

The direct model (14)-(15) is numerically solved using a standard Lagrange finite element method, by employing
the Fenics Python library [1, 23]. The weak formulation consists to find H 2 Vt such that: 8� 2 V0, a(!;H,�) =445

b(�) with

a(!;H,�) = ⇢̄

ˆ
⌦
Sq�1e!rHr� dx and b(�) =

ˆ
⌦
ȧ� dx (31)

and V0 = W 1,q0(⌦) an adequate Banach space (q0 depending on q, q � 1), Vt its corresponding a�ne
sub-space (taking into account the non-homogeneous Dirichlet boundary condition).

For q = 3 and under an assumption on ⌘ = e! (it has to remain bounded), the existence and uniqueness of
the weak solution H 2 Vt may be addressed using mathematical analysis tools of non-linear elliptic problems450

(variational methods and/or fixed point theorems), see e.g. [8, 9]. The detailed mathematical and finite element
analysis of this equation (with extra assumptions) can be found in [20][19].

Next, the cost function (29) can be computed. The optimal control problem (30) is numerically solved by
Variational Data Assimilation (VDA); it is based on the adjoint equations and the gradient of the cost function
(first order optimization method), see e.g. [29] for details.455

The adjoint equations read as follows. Given !, given H! the unique solution of the state equation (31) (i.e.
the direct model), find p! 2 V0 such that: @Ha(!;H!, p).z = @HJ(!;H!).z for all 8z 2 V0.

Since the state equation is linear symmetric, it follows: @Ha(!;H, p).z = a(!; p, z).
Also: @HJ(!;H!).z =

´
⌦ z(H! �Hobs) dx .

The adjoint equation can be solved by the same finite element method as the state equation.460

Given the (unique) adjoint p!, the gradient of the cost function reads, see e.g. [29] Chapter 3:
j0(!) · �! = @!J(!;H!).�! � ⇥

@!a(!;H, p!).�! � @!b(!; p!).�!
⇤ 8�! , which gives:

j0(!) · �! = 2↵!

ˆ
⌦
|r!|2r!r(�!) dx� ⇢̄

ˆ
⌦
Sq�1e!�!rH!rp! dx 8�!

After discretization, including of the control variable, this gives the gradient: < rj, �!h >= j0(!h) · �!h,
where the index h denotes the finite element variable. The employed minimization algorithm is the L-BFGS
algorithm (quasi-Newton method, Python scipy procedure). The complete computational software has been465

fully assessed by implementing rigorous tests (explicit solutions with convergence curves); also the gradient
computations have been compared to convergent finite di↵erence values, see e.g. [29] Chapter 6 for details.

3.6.3 The complete VDA process

In all the sequel the complete VDA process is performed in two stages:

• A first one (VDA#1) by making fit the model output with the measured surface elevations only, i.e.470

↵! = 0 in (29).

• A second one (VDA#2), starting from the VDA#1 solution and by minimizing (29) with ↵! empirically
tuned “at best”. The goal is to make a balance between the data misfit and the regularized solution (in
particular in presence of noise in data).

Typical behaviors of both j and rj vs the minimization iterations are presented in Fig. 8.475

Twin experiments. In the present study, only synthetic data are considered, then the VDA experiments are
twin experiments. The latter consist to first generate the data by running the direct model. Next, potential
noise is added or not, depending on the experiment goal. Then the goal is to infer the sough quantities by the
inverse method and compare the computed quantities with the original - true ones.480

A crucial point will be to define good first guesses: both for (⌘,!) but also for the depth h. This crucial step
will be done by employing the analytical derivations presented in the previous section.
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Stopping criteria. Few classical criteria has to be evaluated before deciding the minimization algorithm has
converged: the stationarity of j and !, the gradient value rj in particular. In practice, the present minimization485

processes have been stopped when entering in the “over-fitting zone” i.e. when the model misfits become smaller
than the measurement uncertainties. (Here the virtual surface elevation Hobs are supposed to be accurate at
+/� 10 cm). This convergence criteria has always been reached in approximatively 30 iterations, see Fig. 8.

Orders of magnitude and accuracy. The sough quantity ⌘ presents few orders of magnitude (hence this log490

change of variables) but also with extremely sti↵ local variations. This features make the inverse problem
particularly challenging in terms of numerics.

Then the obtained numerical accuracy(on the optimal di↵usivity ⌘⇤) is not as accurate as it can be expected
in a standard linear-quadratic case. Typically, for a standard linear-quadratic VDA problem (with more gentle
control variable variations) a few % error can be easily reached; on the contrary, in presence of the large and495

sti↵ variations of the optimal control variable, a dozen of % error only is reached. For more details, we refer to
the forthcoming numerical results in next sections.

4 The multi-regime test case and first guess derivations

In this section, the academic multi-regime test case aiming at assessing the inversion method(s) presented in the
previous section is described. The considered multi-regime flows include many features of the real world flows500

in terms of fluid mechanics (i.e. independently of the measurement di�culties and uncertainties). Following
[13][26], the bed topography is defined consistently with the low-band filter feature of these shallow flows; in
particular it respects the minimal wave lengths measurable from the surface.

First a flow description is proposed and the two measurement scenarios are defined: depth measurements are
available downstream the flow (it is the case 1) or laterally, approximatively parallel to a flow line and within505

a very slow flow area only (it is the case 2). Both cases define di�cult inverse problems which have not been
solved up to now in the literature.

The sub-regime areas are a-priori defined from the surface velocity thresholds (and verified to be correct
a-posteriori). Given the surface observations (elevation and velocities), given the depth measurements at few

points (e.g. a flight track over an ice-shed in Antarctica or Greenland), an a-priori slip ratio law R
(0)
s is derived.510

This a-priori law turns out to be crucial in all the remaining inference process. From R
(0)
s and using the depth

estimations derived in the previous section, first guesses of depth are calculated. The resulting depth first guess
h(0) is already an excellent estimation of the true depth. The extremely sti↵ variations, moreover of few orders
of magnitude, of the sough quantity ⌘ is highlighted; this feature makes the numerical inversion particularly
challenging.515

The next steps of the (depth, friction) inferences (including VDA processes) are done in the next sections for
di↵erent scenarios (Case 1 and Case 2, with exact or perturbed measurements).

4.1 Flow description

The geometrical domain ⌦ is a square of length L=100 km. The surface elevation H, the slopes S, and the bed520

elevation b are presented in Fig. 3. The flow presents the whole range of slip ratio Rs: from 0.02 to 0.98, see
Fig. 2; hence this flow contains the three sub-regimes.

The bed presents sinusoidal variations which are consistent with the mesh size (⇡ 10 points minimum per
wave length) and consistent with the depth (⇡ 5 depth values minimum per wave length). For more details on
the shallow ice flow filtering features, the reader can refer to the detailed and complementary analysis presented525

in [13, 26].
The test case definition is a crucial point to assess in a reliable way the inference method. It has to represent

a real like flow (hence multi-regime) and it has to be consistent with the shallow ice flow - xSIA model filtering
features. The flow is assumed to be isothermal with q = 3 and A = 3.10�24 (this value corresponds to ices at
⇡ �5oC); also: ⇢ = 934 and g = 9.81.530

The bed elevation is defined by: b(x, y) = 150 sin( 6⇡L x)sin( 6⇡L y) + 400 e�
(y� 3

4
L)2

2⇥9e07 + 200 e�( (y�L/2)2

2⇥9e07 )2 .

The friction coe�cient is defined by: C(x, y) = A 1000
q+2

1
50

h
1 + 502exp(� (y�L/2)2

2⇥9e07 ) + 50exp(� (y�L/2)4

(2⇥9e07)2 )
i
.

The definitions of b and C above generate a canyon draining a faster ice stream, see Fig. 2.
The surface elevation H is obtained by solving the xSIA equation (14)(15) with Dirichlet boundary condi-

tions. The latter read: H(x, y) = 1000� 5 · 10�3x for all x 2 @⌦. Hence the lateral boundary surfaces present535

a longitudinal mean slope equal to 5‰.
The computational finite element mesh is a structured triangular mesh 140x140 with refinements in the

sharpest bed variation areas, in particular in the vicinity of the left boundary of the canyon. The resulting
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Sub-regime Velocity norm |uH | (m/y) Corresponding slip ratio Rs

sr1: fully sheared |uH | < 1 Rs ' 0.8
sr2: intermediate 1  |uH |  10 0.1 / Rs / 0.8
sr3: full sliding |uH | > 10 Rs / 0.1

Table 1: Sub-regime area definitions (from the surface velocity norm).

Figure 2: The multi-regime test case. (Up) Left: surface velocity uH (in m/y). Right: slip ratio Rs. (Down)
Left: bed elevation b. (in m) Right: friction coe�cient C (in log scale). White lines on the bed elevation denote
the sub-regime boundaries defined by Table 1.

surface elevation H and slope values S are plotted in Fig. 3. The surface slopes are defined for each mesh
triangle; they range from 0.3 % to 0.8%.540

It can be noticed that the bed bumps have a clear e↵ect on the top surface slopes. On the contrary, the
canyon location cannot be visually detected neither from the surface elevation nor from the surface slopes, see
Fig. 3.

Let us point that the sinusoidal bed variations respect the minimal wavelengths not fully filtered by the
(shallow) flow, see the complimentary studies [13] and [26]. Also the minimal grid points per wave length is545

respected.
Let us point out that the regime transitions are mainly due to the friction coe�cient variations, see Fig. 2,

and these variations are extremely sti↵: few orders of magnitudes within a narrow space region (hence almost
discontinuities with 1 or 2 order of magnitude gaps). Then a numerical inference of this parameter is obviously
very di�cult. Nevertheless the forthcoming numerical results demonstrate that the present approach makes550

possible an accurate depth inference despite this extremely sti↵ variations of C.

Sub-regime zone definitions From the surface velocity norm |uH |, three sub-regimes areas are a-priori
defined. These three sub-regimes areas correspond approximatively to the slip ratio Rs indicated in Table 1.

The resulting sub-regimes boundaries are plotted in white and black on the bed elevation maps, see e.g. Fig.555

2.
The white lines denote the sub-regime 1 boundaries, the black lines denote the sub-regime 3 boundaries;

hence the sub-regime 2 area is defined by the white and black lines.

On the large variations and few orders of magnitude of ⌘ The surface velocity presents 3 orders of560

magnitude (from 0.1 to 100m/y). In the present test case (which is representative of many real ice-sheds), this
leads to a friction coe�cient C presenting 4 orders of magnitude, see Fig. 2. Then the observational quantity
QH defined by (16) presents 3-4 orders of magnitude too, see Fig. 4.

13



Figure 3: The multi-regime test case. Up: surface elevation H (in m). Middle: slope values S. Down: bed
elevation b (in m). The lateral blue line and the downstream red line (figures up and down) denote the depth
measurement locations (e.g. flight tracks)

The e↵ective di↵usivity ⌘ defined by (15) is plotted in Fig. 4. This quantity ⌘ presents patterns very similar to
QH ones, with 4 orders of magnitude too.565

The e↵ective di↵usivity ⌘ will be computed by a VDA process. Its large and locally sti↵ variations makes its
numerical inference very di�cult, despite the optimal control problem is mathematically well-posed, and even
linear-quadratic with respect to the ⌘ variable. The forthcoming numerical results confirm the sti↵ness of this
numerical inverse problem.

570

Let us notice that these large variations are due to the depth variations and not to the regime (or equivalently
slip ratio) variations. Indeed, in the sub-regime 1 case, if setting C = 0, Rslip = 1, then: ⌘sr1 = 2A

(q+2)h
q+2.

Hence ⌘ varies with few orders of magnitude since ⌘ ⇠ hq+2.

Also, in the case of sub-regimes 2 and 3, ⌘ = ⌘sr1 + Chq+1. Typically for Rs = 0.5 , (q + 1)C = 2Ah and:575

⌘ = [ (2q+3)
(q+1)(q+2) ]2Ahq+2 = (2q+3)

(q+1) ⌘sr1. In the case q = 3, it gives: ⌘ = 9
4⌘sr1. Therefore the large variations of ⌘

are not due to the regime variations but to the depth variations.

Measurements: 2 scenarios In the following the depth h is infered following the method described previ-
ously, next the friction coe�cient C is infered. Two scenarios depending on the measurement locations will be580

considered:

• Case #1: the depth is measured downstream the flow, see the red line in Fig. 3.

• Case #2: the depth is measured laterally only, following the blue line in Fig. 3.

Both cases are hard inverse problems (and unsolved up to now) for few reasons.
In Case #1, the measurement is available downstream and not upstream, hence any method based on an585

hyperbolic equation (even regularized by artificial di↵usion for example), e.g. the depth mass equation, can
infer a reliable depth since the given information is downstream and not upstream of the characteristics.
The present model is elliptic hence the inversion robustness is quite the same independently on the measurement
location(s).

A-priori, Case #2 is a even harder inverse problem since the measurements”miss” the canyon hence “miss”590

the large bed variations. Then a a-priori relationship between the surface velocity and the bed variations cannot
be directly deduced from the measurements.
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Figure 4: The multi-regime test case. Down: bed elevation b (in m); Middle: e↵ective di↵usivity ⌘(in log scale);
Up: observed quantity QH (in log scale).

One of the key point of the inference method(s) is the quality of the first guess; the latter being deduced
from the surface observations, the depth measurements and some expertise. To define a first guess of depth h,
first a a-priori slip ratio law/map Rs is constructed.595

4.2 From the measurements to a-priori slip ratio maps

As already mentioned, the depth measurements provide (H,h) along the lines/tracks indicated in Fig. 3.
Combined with the surface measurements (H,uH), these local depth measurements provide a local slip ratio
law since Rs can be written as a function of h and QH , see (17). Recall q and A are given.

The slip ratio law Rs vs the surface velocity uH is plotted in Fig. 14; the slip ratio law Rs vs the (complete)600

observational term QH is plotted in Fig. 6.
The measurements are plotted for the two scenarios: the downstream measurements case (Case 1) and the

lateral measurements case (Case 2). In the case 2, the measured slip ratio range is extremely small hence making
the inverse problem particularly di�cult. Then two extra empirical values are added to the measurement values:
(uH = 1m/y,Rs = 0.5) and (uH = 20m/y,0.03), see Fig.5 (Right). These two extra values are the two isolated605

points indicated in green in Fig. 5 (Right) and Fig. 6 (Right).
The complete relation Rs(QH , h) for all points of the computational domain is plotted in all figures (blue

crosses).
The two extra empirical values (potential based on expertise) make fit quite well the slip ratio law throughout

the flow, see Fig. 5 (Right).610

Next, given the measured slip ratio graph(s) (the blue points), a least-square approximation gives an a-priori

slip ratio law R
(0)
s . This a priori slip ratio law can be deduced from the surface velocity uH only, Fig. 5, or

from the complete surface observational term QH , Fig. 6.
It turns out that the variation range of QH is much larger than those of uH only. Then it seems more adequate

to define the a-priori slip ratio law R
(0)
s from the slip ratio law in function of uH , and not in function of QH .615

A comparison between the obtained two a-priori slip ratio laws is made in Fig. 7. As expected, the velocity-
derived law is closer to the sough pattern (i.e. the true slip ratio map). It can noticed in Fig. 7 that the
QH -derived law makes appear the bed bumps since the presence of S�q in the definition of QH .
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Figure 5: Slip ratio vs |uH | (in log scale) for test case 1 (downstream measurements) (Left) and test case
2 (lateral measurements) (Right). The blue dots are the measurements. The cyan crosses are the values
throughout the domain (they are not measured). The red dots are the resulting a-priori slip ratio law, obtained
by least-squares.

Figure 6: Slip ratio vs QH (in log scale) for test case 1 (downstream measurements) (Left) and test case 2 (lateral
measurements) (Right). The blue dots are the measurements. The cyan crosses are the values throughout the
domain (they are not measured). The red dots are the resulting a-priori slip ratio law, obtained by least-square.
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Figure 7: Slip ratio maps. (Left) True values. (Middle) A-priori law derived from uH only. (Right) A-priori
law derived from QH .

Figure 8: Cost function and gradient norm vs minimization iterations (L-BFGS algorithm) for test case1 with
exact measurements.
(Left): VDA#1: misfit term only. (Right) VDA#2: cost function = regularization term + misfit term

4.3 First guesses620

The VDA process aims at infering the e↵ective di↵usivity ⌘, next the depth h can be deduced, next the friction
coe�cient C. This VDA process requires a first guess ⌘(0). To define this first guess ⌘(0), a depth first guess

h(0) is first defined as a straightforward by-product of the a-priori slip ratio map R
(0)
s . Recall that given the

observational surface term QH , given the slip ratio law Rs, the depth expression reads:

h(QH , Rs) = [
(q + 1)

2⇢̄A
QHRs]

1
(q+1) (32)

This depth estimation is valid in all sub-regime cases. Then the first guess h(0) is defined as follows:625

h(0) = h(QH , R
(0)
s ) where R

(0)
s is the a-priori slip ratio map defined previously. Next, given this first guess h(0),

a first guess ⌘(0) can be explicitly obtained from the polynomial expression (22).

Let us point out that the accuracy of h(0) depends on the accuracy R
(0)
s ; also the expression (32) with

Rs = 1 gives (19). In the present test cases, it turns out that for high values of Rs (sub-regime 1 case), h

directly defined from (19) is more accurate than if evaluating (32). This is due to the quite low accuracy of R(0)
s630

for high values, see e.g. Fig. 16.
For comparison, the first guess h(0) defined by (32) everywhere is plotted in Fig. 9 (exact data case) while

those defined by (19) in the sub-regime 1 and (32) elsewhere is plotted in Fig. 11: compare the two first guesses
in the sub-regime 1 area.

Finally, observe that the present method consisting to derive a first guess ⌘(0) does not require an explicit635

friction coe�cient first guess. This is an important feature and a strength of the present inversion method since
the uncertainties on the (empirical) friction coe�cient C are large; hence it would be a real issue to define
directly a reliable first guess on this quantity.
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Figure 9: Test case 1 with exact measurements. (Top) True values. (Down) 1st guess values. From left to right
: slip ratio Rs, bed elevation b (in m) infered from (32), e↵ective di↵usivity ⌘(log scale).

5 Case 1: downstream measurements

In this section, the numerical results obtained in the case of downstream measurements (red tracks in Fig. 3) are640

presented and analysed. First, the inference process is performed from the exact data; Second, it is performed
from perturbed data (the exact surface measurement QH plus a random noise).

The complete inverse method is as follows: first guesses are evaluated from the various analytical formula
as described in the previous section; next the VDA process described previously is performed to estimate the
e↵ective di↵usivity ⌘; next the depth h (or equivalently the bed elevation b) is obtained in the whole domain.645

Finally the corresponding friction parameter C can be explicitly deduced. Recall that in the sub-regime 1 areas,
the analytical formula (19) is su�cient to infer the depth hence not requiring the VDA process.

5.1 Exact measurements

Given the downstream depth measurements, see Fig. 3, given the exact surface data (H,S), the VDA process
(28)-(30) is performed in two steps:650

• VDA#1: the cost function contains the misfit term only, i.e. ↵⌘ = 0 in (29).

• VDA#2: the regularization term is added to the cost function, see (29). The goal of this second VDA
process is to obtain a reasonably smooth solution while fitting the data.

After each VDA process, the two depth estimations (19) and (25) are explicitly obtained while the sub-regime
2 depth estimation hsr2 is obtained by solving numerically the polynomial (22). The polynomial roots are655

classically obtained by computing the eigenvalues of the corresponding companion matrix (by employing the
Python procedure numpy.roots). The selected root value is those belonging to the interval [hsr3, hsr1]. If
imaginary, the real part only is considered.

5.1.1 VDA#1: fitting data only

The VDA problem (28)-(30) is numerically solved with ↵⌘ = 0. As detailed previously, an a-priori slip ratio660

map R
(0)
s is defined, next a depth first guess h(0), next the first guess ⌘(0). These first guesses are presented

in Fig. 16. It can be noticed that the resulting depth first guesses h(0)
sr⇤ are already an excellent estimation of

the true depth. From a “single” downstream measurement plus the observed surface term QH , the infered bed
without performing the VDA process is already accurate, see Fig. 16.

665

Next VDA#1 process is performed. The cost function and gradient vs minimization iterations are plotted
in Fig. 8. From the obtained optimal value ⌘⇤, the three depth estimations are computed; they are plotted
in Fig. 10. The three estimates give quite accurate results in their respective domain of validity. Typically
hsr1 is accurate to within 5% (and less) in the sub-regime 1 area; hsr2 (resp. hsr3 ) is accurate to within 10%
in the inner part of the sub-regime 2 area (resp. sub-regime 3 area) and accurate to within 20% at the area670

boundaries.
The large variations and sti↵ variations of ⌘ between the di↵erent sub-regime areas makes the numerical

inverse problem di�cult. The numerical infered value ⌘ is relatively less accurate, hence the less accurate depth
estimation in these areas. Concretely, it gives the local “peaks” of errors (⇡ 25% error) plotted in Fig. 10.
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Figure 10: Test case 1 with exact measurements; depth obtained after VDA#1. (Down) From left to right :
hsr1, hsr2, hsr3 and true value (with the lines indicating the sub-regimes areas defined by Table 1). (Top) From
left to right : corresponding relative errors (for each hsr⇤).

Error First guess After VDA #1 After VDA #2
kh�htruek2

khtruek2
0.099 0.084 0.076

kh�htruek1
khtruek1

0.443 0.443 0.443

k H �Hobs k1 14.08 0.15 0.19
1
n k H �Hobs k2 0.0446 0.0002 0.0002

Table 2: Test case #1 with exact measurements: global errors (throughout the domain). (The errors on H are
obtained by running the direct model).

In other respect, let us recall that by construction the sub-regime2 depth derivation, see (22), is valid675

everywhere; it includes the three sub-regime cases. Hence the sub-regime 2 estimation hsr2 is valid throughout
the computational domain. However, it is not necessarily the most accurate estimation, see Fig. 10, since the
respective simplifications made to obtain hsr1 and hsr3 circumvent the potential errors made on the a-priori

slip ratio law R
(0)
s . Therefore these simplified estimations give more accurate values; this is particularly true in

the sub-regime 1 case, see Fig. 10.680

Following the a-priori definitions of the sub-regime areas, see Table 1, the combination of the 3 estimations
hsr⇤ gives the global bed inference plotted in Fig. 11. At the sub-regime limits, corresponding to the large and
sti↵ variations of ⌘, the relative error on b equals approximatively 20% (corresponding to the “linear peaks”
plotted in Fig. 11). Out of these sti↵ regime transition areas, the relative error is smaller than 10%.

685

The resulting friction field
Let us recall that in the present inverse method, the friction coe�cient is a simple by-product of the depth

inference. In other words, the present method makes possible to separate the two crucial basal fields: the bed
and the friction. Given a depth estimation, it is straightforward to compute the friction coe�cient either from690

(26) or from (27). Numerically, both give extremely close values. The resulting friction coe�cient is plotted in
Fig.12. The blue parts correspond to the sub-regime 1 areas. In these areas, a threshold has been applied (to
a very low value); this threshold being defined such that C << Ah , see (15). Then the relative error in the
sub-regime 1 is meaningless. In the sub-regime 2 area (resp. sub-regime 3), the error is globally between 10%
and 60%, excepted where the depth error is higher. Then at the sub-regime limits, the error on the friction field695

can reach 100%.
As expected, the estimated friction is accurate where the estimated depth is accurate. On the contrary where

the estimated depth is less accurate, the estimated friction coe�cient can’t be accurate since it is implicitly set
such that it makes fit the model outputs with the observations. Somehow this friction coe�cient absorbs all
errors (including the modeling errors which are null in the present study).700
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Figure 11: Test case 1: Bed elevation after VDA#1, with exact measurements. (Down) From left to right: 1st
guess, infered value after VDA#1, true value (with the lines indicating the sub-regimes areas defined by Table
1). (Top) Corresponding relative errors. The white lines denotes the di↵erent regime zones.

Figure 12: Test case 1: friction coe�cient C after VDA#1, with exact measurements. (Down) From left to
right: 1st guess, infered value after VDA#1, true value. (Top) Corresponding relative errors.

Finally let us recall that the regime transition are mainly due to the friction coe�cient variations, see Fig.
2, and these variations are extremely sti↵: few orders of magnitudes within a narrow space region. Then a
numerical inference of this parameter is obviously very di�cult. Nevertheless the numerical results demonstrate
that the present approach makes possible an accurate depth inference despite this extremely sti↵ variations of
C (variations being almost discontinuities with few order of magnitude gaps).705

5.1.2 VDA#2: smoothing process

The first VDA process (VDA#1) was deliberately taking into account the observational term only. The goal
was to analyse the inference capabilities of the present mix analytical-VDA method. From this VDA#1 optimal
solution (⌘#1, h#1) , a second VDA process is performed. The goal is to smooth the solution while keep fitting
the data.710

The control variable is still ! = ln(⌘). The cost function j(!) is defined by: j(!) = ↵HjH(!) + ↵!j!(!),
with

jH(!) =
1

2

ˆ
⌦
|H! �Hobs|2dx and j!(!) =

1

2

ˆ
⌦
|r!|4dx, (33)

with ↵H = 1 and ↵! = 20. The regularizing weight parameter ↵ is set following an empirical L-curve
criteria, see e.g. [14]. The cost function and gradient norm vs minimization iterations is plotted in Fig. 8 right.
The minimization process makes decrease both the regularization term and the misfit term. The resulting fields715
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Figure 13: Test case 1: bed elevation after VDA#2, with exact measurements. (Down) From left to right: 1st
guess, infered value after VDA#2, true value. (Top) Corresponding relative errors. The white lines denotes the
sub-regime area boundaries defined from Table 1.

are plotted in Fig. 13 and Tab. 2. This second VDA process makes decrease the error mainly in the sti↵
variations of ⌘ (the “error peaks” located at the sub-regimes boundaries), making decrease approximatively the
error peaks from 20% to 15%. Furthermore, VDA#2 slightly makes improve the accuracy everywhere else by a
few % (compare Fig. 13and Fig. 11).

720

5.2 Uncertain surface measurements: (quasi-)explicit sensitivities

The surface measurements are the surface elevation H (potentially acquired by altimetry) and the surface
velocity uH (potentially acquired by InSAR techniques). From these measurements, the slopes S and the
observational term QH defined by (16) can be estimated. The uncertainty sources are numerous and the
resulting accuracy on QH depends on many factors. Typically, the error measurements in H can be a-priori725

considered uniform in space; on the contrary the error measurements in uH depends on its amplitudes, hence
depending on the sub-regime areas. Finally let us remark that the observational term QH is linear in uH (hence
introducing some noise in uH is equivalent to introduce the same noise in QH),; this is di↵erent with respect
to the slopes since QH ⇠ S�q.

5.2.1 The depth estimations hsr⇤ vs observational term perturbations �QH730

Let us analyse the sensitivity of the three depth estimations with respect to perturbations on QH . This analysis
is crucial in term of robustness of the inversion method, and sensitivity with respect to the error measurements.
Recall that QH is defined by (16) hence varies linearly in uH and varies in S�q.

The error measurements come independently from uH and S. Concerning the slope values S, an additional
issue may be addressed: at what scale the numerical model has to be set up ? This slope scale questioning is735

classical and is di�cult to tackle. However the slope scale is a global concept, then the answer (given in terms
of length factor) is the same everywhere in the computational domain. From the sensitivity analysis below, an
approach to identify the correct slope scale of the xSIA model is suggested in next section.

Let us present a sensitivity analysis of the three depth estimations with respect to variations of QH . We
denote by h(1 + �h) the resulting depth of a perturbed observational term QH(1 + �Q). For each depth740

estimation, the resulting depth variation �h is plotted vs �Q in Fig. 14(Left); for a [�50,+50]% perturbation
range.

In the sub-regime 1 case, it follows from (19) that:

�hsr1 = (1 + �Q)1/q+1 � 1 (34)

Therefore the uncertainties on the observational term QH, or equivalently on the surface velocity uH , is
greatly damped, see Fig. 14. A typical example for these fully sheared flows (hence slow flows) is the following:745

a 30% noise on uH (or equivalently on QH) makes hnoise
sr1 deviate from hsr1 by ⇡ 8% only.

In the sub-regime 3 case, it follows from (25) that:
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Figure 14: (Left) Explicit depth variations (�hsr1, �hsr2, �hsr3) : (Left) vs �QH ; (Right) vs S.
�hsr2 is obtained by computing the roots of the perturbed polynomial (22). The curves �hsr2 are plotted for
typical slip ratio values.

�hsr3 =
1

(1 + �Q)
� 1 (35)

In the intermediate sub-regime 2 case, the dependency is more complex since the uncertainties propagate
into the roots of polynomial (22). As a first step, the estimation (23) shows that if assuming the slip ratio
Rs invariant then the sensitivity of hsr2 with respect to QH is the same than those in the sub-regime 3 case:750

�h = 1
(1+�Q) � 1. Next to compute the complete sensitivity of hsr2 with respect to QH , the polynomial (22) has

to be numerically solved for each perturbed value of QH . In Fig. 14 (Left), �hsr2 is plotted vs �Q for the few
typical slip ratio values. To plot these curves, the di↵erent steps are the following: given a slip ratio Rs , the
corresponding friction coe�cient C is evaluated from (12), next ⌘is evaluated from (15), next QH is evaluated
from (17), and finally the sough root of the polynomial (22) with the perturbed QH is computed.755

For weakly sheared - slipping flows (sub-regimes 2 and 3), hence relatively fast flows, a typical 10% noise on
uH makes deviate h by ⇡ 10 � 20% %, depending on the slip ratio value. Hence realistic uncertainties on the
surface velocity uH does not prevent to estimate correctly the depth.

In next section, a [�20,+20]% random noise (range indicated by the vertical dashed lines in Fig. 14 (Left))
will be added to QH before performing the complete inversion process (i.e. including the VDA process).760

5.2.2 The depth estimations hsr⇤ vs slope perturbations �S
The observational term QH vs slope perturbations �S. If perturbing the slope S then QH is perturbed as
follows: QH(1 + �Q) = UH

Sq(1+�S)q . Therefore: �Q = 1
(1+�S)q � 1 . Roughly a [�10,+10]% (resp. [�20,+20]%)

perturbation on S leads to a [�40,+25]% (resp. [�50,+100]%) perturbation on QH .
Now, let us compute the depth estimations hsr⇤ vs slope perturbations �S. As before, we denote by h(1+�h)765

the resulting depth of the perturbed observational term S(1 + �S).
In the sub-regime 1 case, the direct expression �hsr1(�S) is straightforwardly obtained. In the sub-regime 3

case, �hsr3 depends on �S but also on �⌘.
In the sub-regime 2 case, the di↵erent steps are the following: given a slip ratio Rs the corresponding friction

coe�cient C is evaluated from (12), next ⌘ is evaluated from (15), next QH is evaluated from (17), and finally770

the sough root hsr2(1 + �hsr2) of the polynomial (22) is computed (root corresponding to the perturbed value
of S hence QH).

In Fig. 14 (Right), the few �hsr⇤ values are plotted vs �S. The di↵erence of behavior between �hsr2 and
�hsr1 (resp. �hsr3) at high slip ratio value (resp. low value) is remarkable. In particular, for diminishing slopes
values, �hsr2 and �hsr3 behaves similarly. For increasing slopes values, �hsr2 is more accurate than �hsr1 (for775

high slip ratio values).

5.3 The complete inversion process with an uncertain observational term QH

In the previous numerical depth inference, the surface measurements were supposed to be exact. In the present
numerical experiment, a 20% random noise is added to QH . Recall that this perturbation in QH is equivalent780
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Figure 15: Test case 1: perturbed QH . (Down) From left to right: QH with noise, after smoothing process,
original “true” field. (Top) The corresponding relative errors.

error First guess after VDA #1 after VDA #2
kh�htruek2

khtruek2
0.089 0.079 0.075

kh�htruek1
khtruek1

0.533 0.468 0.437

k H �Hobs k1 8.294 0.26 0.27
1
n k H �Hobs k2 0.0264 0.0004 0.0003

Table 3: Test case #1 with uncertain measurements: global errors (throughout the domain). (The errors on H
are obtained by running the direct model).

to a 20% random perturbation in uH ; or it corresponds approximatively to a 5% random perturbation in S, see
Fig. 14. Then the consequences of this randomly perturbed QH to the infered depth are analyzed.

As a first step, the randomly perturbed QH is smoothed by minimization the following cost function:

g(QH) =
1

2
kQH �Qobs

H k22,⌦ +
↵

2
krQHk22,⌦dx ⌘ 1

2
[g1(QH) + ↵g2(rQH)] (36)

Again the regularizing weight parameter ↵ is set following an empirical L-curve criteria. This led to set:
↵ = 5.2 1011. The cost function values (g1(QH), g2(rQH)) equals: (0, 5.2 1011) at the first iteration and785

(1.8 109, 3.7 1010) at the 32nd and last iteration. The corresponding values of QH are plotted in Fig. 15.

Next the VDA process to compute ⌘ is performed. Let us notice that the noise on QH has a direct impact on

the a-priori slip ratio map R
(0)
s then on the first guesses ⌘(0) and h(0). The first guesses, computed as described

previously, are plotted in Fig. 16. Again, the first guesses h
(0)
sr⇤ are already excellent estimations of the true790

values.
Next, the complete VDA process is performed: the VDA#1 process, ↵! = 0 in (29), next the VDA#2

process with ↵! = 7 . From the obtained optimal value ⌘⇤, the three depth estimations are computed; they

are plotted in Fig. 10 and Fig. 18, see also Tab. 3. The three depth estimates h
(0)
sr⇤ give results roughly as

accurate as in the exact measurements case. Indeed hsr1 is accurate to less than 5% in the sub-regime 1 area;795

hsr2 (resp. hsr3 ) is accurate to 10% (and less) in the inner part of the sub-regime 2 area (resp. sub-regime 3
area) and accurate to 20% at the area boundaries.

Compared to the first depth value, the VDA process improved the solution mainly in the sub-regime 3 area:
the error decreases from 10� 30% before VDA to 5� 20% after VDA, see Fig. 16and Fig. 18.

The resulting friction field800

Given the depth h everywhere, the friction coe�cient C is obtained explicitly by evaluating (26) or (27),
both formula giving quite the same values. The resulting friction coe�cient is not plotted since its patterns and
its accuracy are very similar to the case of exact measurements, see Fig.12.

In summary, a 20% random noise on QH throughout the computational domain (potentially corresponding
to a 20% noise on uH or to a 5% noise on S) does not a↵ect the robustness of the present inversion approach805

nor the accuracy of the infered depth. Nevertheless this encouraging result has to be tempered since the
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Figure 16: Test case 1 with uncertain measurements (20% random noise on QH). (Top) True values. (Down)
1st guess values after the smoothing process. From left to right : slip ratio Rs, bed elevation b (in m) infered
from (32), e↵ective di↵usivity ⌘(log scale).

Figure 17: Test case 1 with uncertain measurements (20% random noise on QH); depth obtained after VDA.
(Down) From left to right : hsr1, hsr2, hsr3 and true value (with the lines indicating the sub-regimes areas
defined by Table 1). (Top) From left to right : corresponding relative errors (for each hsr⇤).
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Figure 18: Test case 1 with uncertain measurements (20% random noise on QH); bed elevation. (Down) From
left to right: 1st guess, infered value after VDA, true value (with the lines indicating the sub-regimes areas
defined by Table 1). (Top) Corresponding relative errors. The white lines denotes the di↵erent regime zones.

slope term S considered in the xSIA equation (14) was considered as exact. Only the observational term QH

(appearing throughout the complete inversion process: explicit formulas, first guesses and the VDA process)
has been perturbed. The questioning of the slope uncertainty (and/or the slope scale definition) is addressed
in a forthcoming section.810

6 Case 2: lateral measurements

The present numerical experiment is the same as the previous one with exact data but the location of the depth
measurements. In the present case, the depth is measured following the lateral line/track indicated in blue in
Fig. 3. Consequences are important since the depth measurements are available in a mono-regime area only
(fully sheared area) furthermore parallel to a flow line. In particular, these measurements do not include any815

point in the canyon nor various upstream points. This configuration makes the inverse problem particularly
challenging.

6.1 First guess

The first step of the inverse method consists to define the a-priori slip ratio map R
(0)
s . In the present configura-

tion, the depth measurements do not include a varying slip ratio, hence extra a-priori have to be made. Then820

as already mentioned the two a-priori are made:

• a surface velocity |uH | = 1m/y corresponds to slip ratio Rs = 0.5,

• a surface velocity |uH | = 20m/y corresponds to slip ratio Rs = 0.03,

see the 2 green points in Fig. 5. Given the resulting a-priori slip ratio map R
(0)
s , the first guess ⌘(0) and finally

the depth first guess h(0) are computed as previously described. These first guesses are plotted in Fig. 19, see825

also Tab. 4. Again, the resulting depth first guess h(0) is already excellent.
Let us point out that if the a-priori slip ratio is inaccurate, typically by considering the second point equal to

(2m/y,0.03) hence leading to a really bad R
(0)
s , see Fig. ??, then the 2-norm relative error in h is approximatively

20% instead of 7� 8%, see Tab. 4.

6.2 Infered bed elevation after VDA830

Next the VDA process is performed. In the present case, it turns out that the regularization term j! is not
greatly necessary (recall that data are exact), see Tab. 4. Then the presented results are those of VDA#1 only:
↵! = 0 in (29). The minimization process converges in 30 iterations, reaching the +/� 10 cm uncertainties on
the surface elevation.

From the obtained optimal value ⌘⇤, the three depth estimations are computed. Next, following the a-priori835

definitions of the sub-regime areas, Table 1, the combination of the 3 estimations hsr⇤ gives the infered bed
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Errors First guess After VDA #1 After VDA #2
kh�htruek2

khtruek2
0.084 0.076 0.070

kh�htruek1
khtruek1

0.443 0.443 0.446

k H �Hobs k1 6.89 0.21 0.17
1
n k H �Hobs k2 0.0236 0.0002 0.0002

Table 4: Test case #2: global errors (throughout the domain). (The errors on H are obtained by running the
direct model).

Figure 19: Test case 2 (lateral measurements). (Top) True values (Down) First guess values. From left to right
: slip ratio Rs, depth h, e↵ective di↵usivity ⌘.

plotted in Fig. 21.
Like in Case 1, at the sub-regime limits (corresponding to the large and sti↵ variations of ⌘), the relative error
is higher (approximatively 20% in h) than anywhere else. Out of these sti↵ regime transition areas, the error
on the depth h is small, lower than 7%; even lower in the sub-regime 1 area. Again the three estimates give840

accurate results in their respective domain of validity.
In comparison with the first guess, Fig. 19, the VDA process improves a bit the depth estimates in the inner

parts of sub-regimes 2 and 3 and at the “sub-regimes boundaries” (making decrease the peak errors).

845

Concerning the friction coe�cient C (which is computed a-posteriori), its accuracy is similar to the case
of downstream measurements, see Fig.12. For this field C, the VDA process improves greatly its accuracy, in
particular in the sub-regime 2 area. Typically the VDA process makes decrease the errors from 30% to less
than 20% in the smooth areas; and from approximatively 200% to 100% in the sti↵ transition areas.

850

6.3 On the robustness of the inversion method

As already noticed for the first guess, the present depth inference is (slightly) more accurate than in the
downstream measurements case (Test case 1), compare Fig. 11 with Fig. 21. This result is only due to the

better a-priori slip ratio law R
(0)
s , see the fitting law in Fig. 5 (Right). Also, Test case 2 results demonstrate

the following important feature. Since the present depth inversions are based on an elliptic equation (and855

not a hyperbolic equation), the xSIA equation (14), then the depth measurements location is not important.
Typically, measuring the depth at upstream, downstream or laterally, does not a↵ect the inversion method
accuracy. The important starting points of the present approach are the accuracy of the surface observations

(the observational term QH) and the accuracy of R(0)
s derived from the depth measurements.
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Figure 20: Bed elevation first guess b(0). (Down) from left to right: Test case 1, test case 2, true value. (Top)
Corresponding relative errors.

Figure 21: Test case 2: bed elevation after VDA. (Down) From left to right: first guess, infered value after
VDA, true value. (Top) Corresponding relative errors.
The white lines denotes the sub-regime area boundaries defined from Table 1..
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7 Inference of the correct slope scale in the xSIA model860

As already discussed, a major di�culty to set up a SIA model is to manage its high sensitivity to the slope
values S. This sensitivity means sensitivity with respect to the slope error measurements but also with respect
to the slope scale definition of the flow model. The latter is a global concept in space. Typically for the ice-
sheets, out of ice-streams and/or far inland to be sub-regime 1 compatible, a standard accepted slope scale is
approximatively 10h⇤ , h⇤ being a characteristic thickness. Nevertheless, for more sliding flows (i.e. in sub-865

regime 2 and sub-regime 3 areas), this characteristic scale may have to be adapted, see e.g. [11, 26] for detailed
analysis. From the present new depth estimations, let us propose two approaches to define the correct slope
scale of a xSIA model (14).

A first approach would consist to infer correlations between the slope scale and the depth from the depth
measurements (e.g. measurements based on the blue or red lines in Fig. 3 or based on the massive data870

sets available for the two ice-sheets[6], [2]). Indeed, from a data set providing all the model outputs (surface
elevation, surface velocity and depth in particular), it is possible to infer an “optimal” slope scale. Then, given
the numerical model (including the computational and bed topography grids), this optimal slope scale can be
considered throughout the computational domain.

A complimentary second approach would rely on the few present depth estimations. First let us recall that875

the sub-regime 2 estimation, see (22) and (23), is valid everywhere i.e. it is valid in the three sub-regime areas
(despite in practice it may be not necessarily the most accurate in sub-regime 1 area since numerical errors in
Rs or ⌘, see the discussion above and Fig. 10). Then the correct SIA model slope scale can be defined from the
radically di↵erent behaviors of the depth estimations with respect to QH .

Indeed, the sub-regime 1 depth estimation (19) behaves in Q1/(q+1)
H while the sub-regime 2 estimation (23)880

behaves in Q�1
H . Therefore, given all the points located in the sub-regime 1 and sub-regime 2 areas (point set

identified from a-priori values like Tab. 1 or from the a-priori slip ratio value R
(0)
s ), the two depth estimations

can be computed from the observed slope value at di↵erent slope scales (e.g. at 1-5-10 mesh size or at 1-5-10
characteristic depth).

Then the correct slope scale (which is an uniform concept in the whole computational domain) is those885

giving the closest depth obtained from the two estimations. In other words, the correct scale corresponds to
the intersection point between the hsr1 and hsr2 curves in Fig. 14. In a large set of data, the intersection point
can be statistically estimated.

Since the present depth estimations are local, this method to infer the optimal / correct slope scale of the
xSIA model can be illustrated for 1D uniform flows.890

1D uniform flows, corresponding to the three sub-regimes.
Let us consider 1D uniform flows. The fluid properties (A, q, ⇢) are identical as previously and three typical

flows are considered. For all three, the slope value is: S = 0.2%.
Each flow di↵ers from each other by the values of uH and h. Then are evaluated: the observational term895

QH , the friction coe�cient C from (26), the e↵ective di↵usivity ⌘ and the slip ratio Rs .
Finally, the three estimations (19), (23) and (25) can be computed. The three typical flows considered are

the following.

• Flow sr1 (highly sheared): uH = 5 m/y and h = 2.103m.
It follows: QH ⇡ 19.8, C ⇡ 2.20 10�22, ⌘ ⇡ 4.19 10�8 and Rs ⇡ 0.93.900

The resulting three depth estimations are: hsr1 ⇡ 2035.7, hsr2 ⇡ 2000.0, hsr3 ⇡ 1627.3 , see Fig. 22 for
S = 0.2%.
Recall the true value is h = 2000; as expected the hsr2 estimation is perfect since including all terms and
evaluated from exact data.
The hsr1 estimation is 1.7% accurate because of the slip ratio value close to 1 (but with 7% slipping). Let905

us notice that with these data but C = 0, the surface velocity would be uH ⇡ 4.66m/y.

• Flow sr2 (mildly sheared flow): uH = 20 m/y and h = 2.103m.
It follows: QH ⇡ 79.3, C ⇡ 9.88 10�21, ⌘ ⇡ 1.96 10�7 and Rs ⇡ 0.23.
The resulting three depth estimations are: hsr1 ⇡ 2878.9, hsr2 ⇡ 2000.0, hsr3 ⇡ 1906.8 , see Fig. 22 for
S = 0.2%.910

Recall the true value is h = 2000. Again, as expected the hsr2 estimation is perfect.
The hsr1 estimation is incorrect (43.9% error); the hsr3 estimation is 4.7% accurate because of the slip
ratio Rs value (which is quite low).

• Flow sr3 (very weakly sheared flow): uH = 50 m/y and h = 103 m.
It follows: QH ⇡ 198.1, C ⇡ 2.56 10�19, ⌘ ⇡ 2.57 10�7 and Rs ⇡ 5.8 10�3.915

Let us notice that with these data but C = 0, it would give uH ⇡ 0.29m/y only.
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Figure 22: 1D uniform flows: the three depth estimations hsr⇤. From left to right: sub-regime 1 case, sub-regime
2 case, sub-regime 3 case.

The resulting three depth estimations are: hsr1 ⇡ 3620.1, hsr2 ⇡ 1000.0, hsr3 ⇡ 998.8 , see Fig. 22 for
S = 0.2%.
Recall the true value is h = 2000 (with the perfect hsr2 estimation again).
The hsr3 estimation is extremely accurate (0.12% error) since the slip ratio is extremely low. On the920

contrary, the hsr1 estimation is really wrong (262% error). As expected, the hsr1 estimation over estimates
the true value.

These three typical examples highlight each depth estimation behavior and accuracy, depending on their
respective domain of validity.
Next, the same computations are performed but by making vary the slope S from S = 0.1% to 0.35% (recall925

that the reference - “true” value is S = 0.2%). Making vary S makes vary QH . The resulting curves are plotted
in Fig. 22. In Fig. 22 (Right), the graphs of hsr2 and hsr3 are fully superposed. This curves illustrate the
radically di↵erent behaviors of the explicit depth estimations with respect to S.

It can be noticed that in sub-regime 1 case, the correct-sough slope value (S = 0.2) can be recovered by
detecting the intersection point between the two estimations hsr1 and hsr2, see Fig. 22 (Left).930

Since the sub-regime 1 estimation (19) over estimates the true value as soon as the sliding is not vanishing,
then in the sub-regime 2 and sub-regime 3 areas, the intersection points give an upper-bound only of the correct
depth, hence an upper-bound only of the correct slope value, see Fig. 22 (Middle) and (Right).

In other words, the present three depth estimations make possible to infer the correct slope scale to set up
consistently the xSIA models, if some depth measurements are available. Indeed, the approach detailed here in935

1D can be applied in the 2D case since the estimations are point-wise. Then the inference of the correct slope
scale from available complete data (including depth measurements) in the weakly sheared areas (sub-regime
1 areas) becomes possible. Next this optimal slope scale can be applied in the xSIA model throughout the
computational domain (i.e. where depth data are not available and in the other sub-regime areas).

940

8 Conclusion & perspectives

This study proposes a new inverse method to infer the bottom topography b and the friction coe�cient C945

in the Shallow Ice Approximation models. Then the method can be applied to the great majority of the ice
sheet surfaces (sheared flow areas) and to many high mountain glaciers. In a mathematical point of view, the
present inverse method can be applied to any shallow sheared generalized Newtonian fluid flow, for example
lava flows (with the thermal field given), mud flows and many polymer flows. The method is based on the
definition of sub-regimes depending on the slip ratio, di↵erent combinations of explicit field expressions with950

a linear-quadratic optimal control problem solved by Variational Data Assimilation (where the direct equation
is a gentle linear elliptic equation). This leads to a particularly robust method even in presence of uncertain
surface measurements and independently of the depth measurement locations (on the contrary if inverting a
regularized first order transport equation); also the potential various error measurements are damped (and
not propagated). Finally the di�cult question aiming at determining the correct slope scale in a SIA model955

may be solved by cross-comparing the few depth estimations proposed. While assessing the method with few
di�cult academic multi-regime test cases, the method weakness turned out to be its relatively low accuracy in
the sti↵ variation areas of the friction coe�cient C (typically in canyon margins where C varies of few orders of
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magnitude); however this demonstrates the method capability to infer a reliable bottom topography elevation b
despite an extremely varying friction coe�cient C. This new inverse method can be straightforwardly extended960

to unsteady flows if the available surface observations are time-dependent too. It will be assessed with real data
sets in a forthcoming study
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