
HAL Id: hal-01356716
https://hal.science/hal-01356716v1

Submitted on 26 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capacity of a noisy function
Francois Simon

To cite this version:
Francois Simon. Capacity of a noisy function. IEEE Information Theory Workshop (ITW 2010), Aug
2010, Dublin, Ireland. pp.1 - 5, �10.1109/CIG.2010.5592779�. �hal-01356716�

https://hal.science/hal-01356716v1
https://hal.archives-ouvertes.fr


Capacity of a Noisy Function
François Simon

Institut TELECOM ; Telecom SudParis ; CITI
9 rue Charles Fourier, 91011 EVRY Cedex, France

Email: francois.simon@it-sudparis.eu

Abstract—This paper presents an extension of the memoryless
channel coding theorem to noisy functions, i.e. unreliable comput-
ing devices without internal states. It is shown that the concepts
of equivocation and capacity can be defined for noisy computations
in the simple case of memoryless noisy functions. Capacity is the
upper bound of input rates allowing reliable computation, i.e.
decodability of noisy outputs into expected outputs. The proposed
concepts are generalizations of these known for channels: the
capacity of a noisy implementation of a bijective function has
the same expression as the capacity of a communication channel.
A lemma similar to Feinstein’s one is stated and demonstrated.
A model of reliable computation of a function thanks to a noisy
device is proposed. A coding theorem is stated and demonstrated.

I. INTRODUCTION AND RELATED WORK

Reliable computation in the presence of noise has been the
subject of numerous works. Either for practical objectives (e.g,
self-checking circuits, [1]) or for theoretical purposes. Recent
references (see for example, [2], [3], [4], [5]) continue to
extend the stream opened by Von Neumann’s seminal paper (
[6]). These works identify theoretical limits or bounds (e.g.,
depth and size of circuits) but also propose frameworks to de-
sign reliable computations mainly thanks to gate redundancy.
Meanwhile, quite surprisingly, none of such works explicitly
targets the identification of a capacity for noisy computations.

The concept of capacity has been thoroughly studied for
data transmission. It has not been the case for computation
and relatively few results have been obtained.

Except more recently ( [7], see below ), to the author’s best
knowledge, the main attempt to address the question of a noisy
computation capacity came from Winograd and Cowan in their
1963 monograph ( [8] ). In [8], the entropy H(X|F (X)) of
the input source conditioned by the noisy computation output
is assessed as a noise measure. As it is the equivocation
between the noisy output and the input, this quantity is not
relevant as the equivocation due to the sole noise, except
in the special case of noisy functions called decomposable
modules. Decomposable modules are noisy functions which
can be modeled by a perfect function followed by a noisy
transmission channel: the error probability depends on the
desired output value not on the input value. Due to this
restriction, [8] did not completely succeed in proposing a noisy
computation capacity ( [8], theorem 6.3, pages 47-48 ).

Noisy computation capacity is also considered in reliable
reconstruction of a function of sources over a multiple access
channel. A definition of noisy computation capacity is estab-
lished by Nazer and Gastpar in [7] and is totally consistent

with the one proposed here. Nazer and Gastpar demonstrate
the possible advantages of joint source-channel coding of
multiple sources over a separation-based scheme, allowing
a decoder to retrieve a value which is a function of input
sources. This context makes relevant the proposed encoding
process which perfectly performs a computation equivalent to
the desired function. The encoder outputs are then transmitted
through a noisy MAC to a decoder (see proofs of Theorems
1 and 2 of [7]). This models a noisy computation as a perfect
computation followed by a noisy transmission of the result
and, thus, does not cover in full generality noisy computation
of functions.

The present paper proposes a generalization of the notions
of equivocation and capacity to noisy finite unary functions. n-
ary functions can be modeled as unary ones by concatenating
n input values in one ”meta”-input and thus modeling a joint
coding of operands. In the proposed model, the encoder and
decoder do not compute the expected function and the noisy
computing device is not considered as being only a noisy
transmission channel. It is assumed that sources are i.i.d. and
noisy functions memoryless. Bold characters indicate vectors
(sequences of symbols, of random values).

II. NOISY FUNCTION

A noisy function F implementing a ”perfect” finite function
f can be modeled as follows:

Definition 1: Let f be a function from the finite input
set I to the finite output set O. If a relation F from I
to O is such that there exists a family of probability laws
(P (F (xj)|xi))xi,xj∈I then F is a noisy function implementing
the function f .

The following theorem gives a first characterization of the
”noise” impinging on the computation of a function f thanks
to F . The theorem is stated without proof as it directly derives
from AEP ( [9], pages 51-53). X denotes an i.i.d. source on
I .

Theorem 1: For any couple of positive real numbers ϵ
and δ, there exists an integer n(ϵ, δ) such that, for any n
greater than n(ϵ, δ), the set Fn((fn)−1(y0)), where y0 is a
n-sequence of fn(Xn), is split into two subsets:

1) a set of n-sequences (negligible given y0) with a total
conditional (i.e., given y0) probability less than ϵ,

2) a set of n-sequences (typical given y0) whose number
ν is such that:

(1− ϵ)2n(H(F (X)|f(X))−δ) ≤ ν ≤ 2n(H(F (X)|f(X))+δ)
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Fig. 1. Decodable sets of noisy outputs.

If yi is such a typical (given y0) n-sequence:

2−n(H(F (X)|f(X))+δ) ≤ p(yi|y0) ≤ 2−n(H(F (X)|f(X))−δ)

Moreover, if y0 is a typical n-sequence of fn(Xn) then the set
Fn((fn)−1(y0)) contains ν′ typical n-sequences of Fn(Xn)
which are typical given y0 where:

2n(H(F (X)|f(X))−δ) ≤ ν′ ≤ 2n(H(F (X)|f(X))+δ)

III. CAPACITY OF A NOISY FUNCTION

Defining a notion of capacity for noisy functions boils
down to characterizing the maximum number of in-
put n-sequences that can be selected in order to al-
low an asymptotically perfect correction/decoding process.
Decodability can be achieved by selecting inverse im-
ages (fn)−1(yi), i = 1, · · · , N, (yi typical n-sequences of
fn(Xn)), whose images, by the noisy function, do not
overlap ”too much”. Informally, one can choose at most
2nH(F (X))/2n(H(F (X)|f(X))) inverse images whose noisy im-
ages by Fn do not overlap (for large n). Each inverse im-
age offers 2nH(X|f(X)) different possible input n-sequences.
So, at most, 2n(H(X|f(X))+H(F (X))−H(F (X)|f(X))) input n-
sequences (among the 2nH(X) possible ones) can be used in
order to reach unambiguous decodability. Figure 1 illustrates
this. It will be shown below that this upper bound is reachable.

This justifies the definition of the capacity of the noisy
function F with respect to the function f as:

Cf (F ) = max
X∈S(I)

[H(X|f(X))+H(F (X))−H(F (X)|f(X))]

where S(I) the set of i.i.d. sources on I . Hence

Cf (F ) = max
X∈S(I)

[H(X|f(X))+H(f(X))−H(f(X)|F (X))]

Since f is a function, H(X) = H(f(X))+H(X|f(X)). We
get CF (f) = max

X∈S(I)
(H(X)−H(f(X)|F (X)))

The equivocation of the noisy function F w.r.t f is
the quantity H(f(X)|F (X)). If f is a bijective function,
H(f(X)|F (X)) = H(X|F (X)). This is the equivocation of a
communication channel X → F (X). The following definition
is then a generalization of that of the channel capacity.

Definition 2: Let F be a noisy implementation of the func-
tion f . The capacity of the noisy function Fw.r.t the function
f is:

Cf (F ) = max
X∈S(I)

(H(X)−H(f(X)|F (X)))

IV. A CODING THEOREM

We first state and prove a coding lemma (similar to Fein-
stein’s lemma and restricted to the simple case of memoryless
processes). The proof is inspired by [10].

A. A Coding lemma

Lemma 1: For any triple of positive real numbers (ϵ, δ, λ),
ϵ, δ < 1

2 , there exists n(ϵ, δ, λ) such that, for any n ≥
n(ϵ, δ, λ), it is possible to pick up N typical n-sequences
of fn(Xn), i.e., y1, . . . ,yN, and N sets B1, . . . ,BN, where
Bi is a set of typical n-sequences of Fn(Xn), which are
conditionally typical given yi such that:

1) ∀i = 1, ..., N , ∃Ai ⊂ (fn)−1(yi) such that
∀xn ∈ Ai, p(Fn(Xn) ∈ Bi|xn) ≥ 1 − λ and∑
xn∈Ai

p(xn|yi) ≥ 1− ϵ

2) ∀i ̸= j,Bi ∩Bj = ∅
3) 2n(H(F (X))−H(F (X)|f(X))−δ) ≤ N and N ≤

2n(H(F (X))−H(F (X)|f(X))+δ)

4) ∀i = 1, ..., N , if ν is the number of conditionally typical
(given yi) n-sequences of Xn belonging to Ai, then:

(1− 2ϵ)2n(H(X|f(X))−δ) ≤ ν ≤ 2n(H(X|f(X))+δ)

Definition 3: The set {(Ai,Bi), i = 1, · · · , N} is called a
code of size N and of length n for the noisy function F to λ-
reliably compute the function f . The sets {Ai, i = 1, · · · , N}
and {Bi, i = 1, · · · , N} are respectively the input code and
the output code.
Before proving lemma 1, we need the following lemma:

Lemma 2: Let {(yi,Bi), i = 1, · · · , N} be a maximal set
of (yi,Bi) satisfying statements 1) and 2) of lemma 1. I.e.,
yN+1 and BN+1, for which 1) and 2) both hold, cannot
be found. Let y0 be a typical n-sequence of fn(Xn) not
belonging to {yi, i = 1, · · · , N}. Then, there exists A0, a
subset of (fn)−1(y0), such that:

∀xn ∈ (fn)−1(y0)\A0, p(F
n(Xn) ∈

N∪
i=1

Bi|xn) > λ

and
∑

xn∈(fn)−1(y0)\A0

p(xn|y0) > ϵ

Proof of lemma 2:
Suppose no such A0 exists for y0. This implies that for

any subset A0 of (fn)−1(y0) either

∃xn ∈ (fn)−1(y0)\A0, p(F
n(Xn) ∈

N∪
i=1

Bi|xn) ≤ λ (1)

or
∑

xn∈(fn)−1(y0)\A0

p(xn|y0) ≤ ϵ (2)



(fn)−1(y0)\{xn ∈ (fn)−1(y0)/p(F
n(Xn) ∈

∪N
i=1 Bi|xn)

> λ} is a subset of (fn)−1(y0) and does not satisfy inequal-
ity (1). So it must satisfy inequality (2) and therefore has a
total conditional probability (given y0) at least 1− ϵ.

Thus we can add the couple(
y0, {typical n− sequences of Fn(Xn)}\

∪N
i=1 Bi

)
to

the collection (yi,Bi)i=1,...,N , contradicting the maximality
of the chosen collection.

Proof of lemma 1:
The lower bound of N given by statement 3), under the

constraints given by statements 1) and 2), will be proved by
using a lower bound of P (Fn(Xn) ∈

∪N
i=1 Bi).

As the Bi’s are disjoint sets and, from Theorem 1 (obviously
Bi is included in Fn

(
(fn)−1(yi)

)
):∀i = 1, ..., N card(Bi) ≤

2n(H(F (X)|f(X))+δ)

⇒ card(
N∪
i=1

Bi) ≤ N.2n(H(F (X)|f(X))+δ)

The probability of any element (typical n-sequence) of Bi is
lower than 2−n(H(F (X))−δ). Hence:

P (Fn(Xn) ∈
N∪
i=1

Bi) ≤ N.2−n(H(F (X))−H(F (X)|f(X))−2δ)

N ≥ P (Fn(Xn) ∈
N∪
i=1

Bi).2
n(H(F (X))−H(F (X)|f(X))−2δ)

(3)
Knowing a suitable lower bound of P (Fn(Xn) ∈

∪N
i=1 Bi),

(3) will give a lower bound of N . The next step is devoted to
determine this lower bound.

Let yi be an n-sequence of fn(Xn). fn being a func-
tion: p(yi) =

∑
xn∈(fn)−1(yi)

p(xn). So, for any event ω,
p(ω|yi) =

∑
xn∈(fn)−1(yi)

p(ω|xn).p(xn|yi)

If ω is the event Fn(Xn) ∈
∪N

i=1 Bi and yi = y0 /∈
{y1, · · · ,yN}, by lemma 2, ∃A0 ⊂ (fn)−1(y0) such that:

p(ω|y0) =
∑

xn∈(fn)−1(y0)

p(ω|xn).p(xn|y0)

≥
∑

xn∈(fn)−1(y0)\A0

p(ω|xn).p(xn|y0)

≥ λ
∑

xn∈(fn)−1(y0)\A0

p(xn|y0) ≥ λϵ

⇒ p(Fn(Xn) ∈
N∪
i=1

Bi|y0) ≥ λϵ (4)

Inequality (4), thus, holds for any typical n-sequence y0 of
fn(Xn) which is not in {y1, · · · ,yN}.

If ω is the event Fn(Xn) ∈
∪N

i=1 Bi, by inequality (4)

p(ω) =
N∑
i=1

p(ω|yi).p(yi) +
∑

y0 /∈{y1,...,yN}

p(ω|y0).p(y0)

≥
N∑
i=1

p(ω|yi).p(yi) + λϵ.
∑

y0 /∈{y1,...,yN}

p(y0)

but p(ω|yi) =
∑

xn∈(fn)−1(yi)

p(ω|xn).p(xn|yi)

≥
∑

xn∈Ai

(1− λ).p(xn|yi) ≥ (1− λ).(1− ϵ)

The last inequality is given by the constraint expressed in
statement 2). Thus we get:

p(ω) ≥ (1− λ)(1− ϵ)
N∑
i=1

p(yi) + λϵ
∑

y0 /∈{y1,...,yN}

p(y0)

≥ min((1− λ)(1− ϵ), λϵ).
∑

yn typical

n−sequence

of fn(Xn)

p(yn)

≥ min((1− λ)(1− ϵ), λϵ).(1− ϵ)

We can assume that ϵ ≤ 1
2 and λ ≤ 1

2 . So

p(Fn(Xn) ∈
N∪
i=1

Bi) ≥ λϵ.(1− ϵ)

Giving the lower bound looked for. By (3), we get:

N ≥ λϵ(1− ϵ)2n(H(F (X))−H(F (X)|f(X))−2δ)

For any positive ϵ, λ, δ0, a δ small enough and a n large
enough can be chosen such that λϵ(1 − ϵ)2−2nδ ≥ 2−nδ0 to
get

N ≥ 2n(H(F (X))−H(F (X)|f(X))−δ0)

The same kind of path can be followed to upper bound N .
Since the Bi’s are sets of typical n-sequences of Fn(Xn),
card(

∪N
i=1 Bi) ≤ 2n(H(F (X))+δ).

Since Bi is a set of conditionally typical (given yi) n-
sequences, from Theorem 1, for all i = 1, ..., N :

card(Bi).2
−n(H(F (X)|f(X))−δ) ≥ p(Fn(Xn) ∈ Bi|yi)

If ω denotes the event Fn(Xn) ∈ Bi:

p(ω|yi) =
∑

xn∈(fn)−1(yi)

p (ω|xn) .p(xn|yi)

≥
∑

xn∈Ai

p (ω|xn) .p(xn|yi)

≥ (1− λ)
∑

xn∈Ai

p(xn|yi) ≥ (1− λ)(1− ϵ)

Thus card(
N∪
i=1

Bi) ≥ N.(1− λ)(1− ϵ)2n(H(F (X)|f(X))−δ)

This leads to

N.(1− λ)(1− ϵ)2n(H(F (X)|f(X))−δ) ≤ 2n(H(F (X))+δ)

⇒ N ≤ 1

(1− λ)(1− ϵ)
2n(H(F (X))−H(F (X)|f(X))+2δ)

For any positive real numbers δ0, λ and ϵ, a small enough δ
and a large enough n can be found to get:

N ≤ 2n(H(F (X))−H(F (X)|f(X))+δ0)



This closes the proof of statements 1), 2) and 3).
As:

∀i = 1, ..., N
∑

xn∈Ai

p(xn|yi) ≥ 1− ϵ

the Shannon-McMillan theorem extended to conditional en-
tropies leads to statement 4):

(1− 2ϵ)2n(H(X|f(X))−δ) ≤ ν ≤ 2n(H(X|f(X))+δ)

B. A coding theorem for Noisy Functions

The model of the complete process to reliably compute a
finite function g : I ′ → O′ acting on a i.i.d. source X ′, thanks
to a noisy implementation F of a finite function f : I → O
can be viewed as:

• encoding: let X0
n be the nth extension of an i.i.d. source

for which we have a maximal code (Ai,Bi)i=1,··· ,N
allowing to λ-reliably compute fn(X0

n) by Fn(X0
n)

(cf lemma 1 and definition 3) ; a typical k-sequence x′

of X′k is encoded into a typical n-sequence of X0
n by a

injective function, say U , such that U(x′) ∈ Ai for some
i = 1, · · · , N

• computation of the noisy function: Fn is applied to
U(x′) producing a typical n-sequence Fn(U(x′)) of
Fn(X0

n) where Fn(U(x′)) belongs to a given Bi (with
high probability)

• decoding: the first step is to associate to Fn(U(x′)) the
typical n-sequence yi of fn(X0

n) corresponding to Bi

(cf lemma 1), the second step is to apply to yi a function
V : {y1, . . . ,yN} → {typical k-sequences of gk(X′k)}
such that V(yi) = gk(x′)

A decoding error occurs when one obtains a n-sequence yj

(or equivalently a Bj) such that V(yj) ̸= gk(x′)
To be able to define a decoding function V (i.e, a deter-

ministic decoding), the encoding function U has to be such
that the typical n-sequences of one Ai ⊂ (fn)−1(yi) (yi ∈
{y1, . . . ,yN}) are used for encoding typical k-sequences of
only one (gk)−1(z), z typical k-sequence of fk(X′k).

We also require that V be an injection (as we have required
from U). The typical k-sequences of a gk−1

(z), z typical k-
sequence of gk(X′k), are encoded in typical n-sequences of
one and only one Ai ⊂ (fn)−1(yi) (yi ∈ {y1, . . . ,yN}). So,
if x′

1 and x′
2 are two typical k-sequences of X′k:

fn(U(x′
1)) = fn(U(x′

2)) ⇔ gk(x′
1) = gk(x′

2)

Definition 4: With the notations given above, the ratio R =
k.H(X′)

n is called the encoding input rate. An input rate R is
said to be achievable with respect to the function f if there
exists a sequence of codes of size n such that the maximal
probability of decoding error tends to 0 as n tends to infinity.

Theorem 2: If R < Cf (F ), then R is achievable w.r.t f .
Conversely, if R > Cf (F ), there is no code such that the error
probability tends to 0 as n → ∞

Proof: Only a sketch of the proof is given.

The proof of achievability is conducted in two steps. First,
it is shown that the injective encoding of typical k-sequences
of a set (gk)−1(z) on typical n-sequences belonging to Ai

is possible for suitably chosen k and n (lossless coding).
Secondly, it is shown that, at input rates below capacity and
for k and n suitably chosen, the sets Ai are almost as many as
the sets (gk)−1(z). This will prove that it is possible to find
a code fulfilling the encoding and decoding constraints. Thus,
considering only the typical sequences of X′k, the maximal
error probability will be upper bounded by λ.

Let δ′′ > 0. Since Q is dense in R, there exist k and n such
that:

H(X ′|g(X ′))

H(X0|f(X0))
<

n

k
<

H(X ′|g(X ′)) + δ′′

H(X0|f(X0))

Moreover, k and n can be chosen as large as needed. Thus:

k.H(X ′|g(′X))

H(X0|f(X0))
< n <

k.(H(X ′|g(X ′)) + δ′′)

H(X0|f(X0))
(5)

We can choose δ, δ′ > 0 and 0 < ϵ < 1/2 small enough for:

k.(H(X ′|g(X ′)) + δ)− log(1− 2ϵ)

H(X0|f(X0))− δ′
< n

<
k.(H(X ′|g(X ′)) + δ + δ′′)

H(X0|f(X0)) + δ′

giving

k.(H(X ′|g(X ′))+δ) < log(1−2ϵ)+n.(H(X0|f(X0))−δ′)

< n.(H(X0|f(X0)) + δ′) < k.(H(X ′|g(X ′)) + δ + δ′′)

If ν1 is the number of typical k-sequences of (gk)−1(z) and
ν2 is the number of typical n-sequences in an Ai, we have:

ν1 < 2k.(H(X′|g(X′))+δ) < (1− 2ϵ)2n.(H(X0|f(X0))−δ′)

< ν2 < 2n.(H(X0|f(X0))+δ′) < 2k.(H(X′|g(X′))+δ+δ′′)

It is thus possible to find an injection from the set of typical
k-sequences of (gk)−1(z) on Ai. This shows the first step.

Assume that R = kH(X ′)/n < Cf (F ) = H(X0) −
H(f(X0)|F (X0)), X0 being a source achieving capacity. So

k(H(g(X ′)) +H(X ′|g(X ′))) <

n.(H(f(X0))−H(f(X0)|F (X0))) + n.H(X0|f(X0))

By (5), n.H(X0|f(X0))− k.H(X ′|g(X ′)) < k.δ′′ thus

kH(g(X ′)) < n.(H(f(X0))−H(f(X0)|F (X0))) + k.δ′′

ϵ1, δ
′′′ > 0 can be chosen small enough in order to get:

2k(H(g(X′))+δ′′′) < 2n.(H(f(X0))−H(f(X0)|F (X0))+
k
n .δ′′−ϵ1)

If ν3 is the number of typical k-sequences of gk(X′k) and
N is the size of the code (i.e., the number of (Ai,Bi)), we
have (by AEP and Lemma 1):

ν3 < 2k(H(g(X′))+δ′′′)

< 2n.(H(f(X0))−H(f(X0)|F (X0))+
k
n .δ′′−ϵ1) < N



1

2

3

1

2

1

2

3

1

2

1−q

1−q

1−q

q

q

q

f F

Fig. 2. Example

This ends the proof of step 2 of the ”achievability” part.
Assume now that R > Cf (F ). As before, it is possible

to find an injection from the set of typical k-sequences of
gk−1

(z) on Ai. In other words, inequality (5) holds. Since
R > CF (f):

kH(g(X ′)) >

n.(H(f(X0))−H(f(X0)|F (X0)))

+ n.H(X0|f(X0))− k.H(X ′|g(X ′))

(5) ⇒ n.H(X0|f(X0))− k.H(X ′|g(X ′)) > 0

So kH(g(X ′)) > n.(H(f(X0))−H(f(X0)|F (X0)))
We can find δ > 0 small enough such that

2k(H(g(X′))−δ) > 2n.(H(f(X0))−H(f(X0)|F (X0))+δ)

This implies that ν3 > N . This means that the encoding
requires to use sets A0 which do not belong to the input code.
By lemma 2, the error probability does not vanish.

Non typical (i.e., negligible) k-sequences and n-sequences
have not been considered in the sketch of the demonstration
as being of vanishing total probability.

In the proof of the converse part, we could relax the
assumptions on V: even if V is non injective, at input rates
above capacity, the error probability does not vanish.

V. EXAMPLE

Let f : {1, 2, 3} → {1, 2} be the function such that
f(1) = f(2) = 1 and f(3) = 2. f is the simplest non trivial
discrete function which is non injective. Let F be a noisy
implementation of f such that P (F (x) = f(x)) = 1 − q,
q ̸= 1/2 (figure 2). Let α be the value 2

1
1−2q . The capacity

Cf (F ) is given by the expression:

C =
(1 + α)(1− q)− 1

(1 + α)(1− 2q)
+ q log(q)

+ (1− q) log(1− q)− α

1 + α
log(α) + log(1 + α)

For example, if q = 0.1, then Cf (F ) = 1.16235. If we
compute the channel capacity of the noisy function F (con-
sidered as a transmission channel), we obtain 0.531 which is
lower than Cf (F ). This is totally consistent with the intuitive
interpretation of equivocation: the amount of information to
add to a noisy result to retrieve the input of the non-invertible
function is likely to be larger than the amount of information
we must add to a noisy result to obtain the correct one.

VI. CONCLUSION

The coding theorem (as the companion lemma) allows to
state that information redundancy through coding is a possible
way to reliably compute when given a noisy device. This noisy
device needs no embedded (i.e., gate) redundancy to reach
reliability. In addition to encoding and decoding, the ”price
to pay” is that only suitably selected input blocks among all
the possible ones are used. In practical contexts, the noisy
apparatus has to be built in accordance with a companion
code leading to efficient encoding and decoding. Moreover,
coding can efficiently be complemented with gate redundancy:
the more gate redundancy, the less noise and, thus, a better
capacity. Gate redundancy and information redundancy are two
levers on which reliability can be built.

While the definition of F does not relate to f , the capacity
of F depends upon the desired function f . According to
the function f to be ”extracted” from F , the capacity will
be more or less. The limit case is when H(f(X)|F (X)) is
minimum (i.e., 0) which corresponds to the availability of
perfect decoding : f(X) is a deterministic function of F (X).
This is possible if F is itself deterministic, thus either perfect
or ”totally” noisy.

The constraints on the encoding and the decoding processes
participate to forbid the model to reduce to a coder computing
the desired function f and transmitting the result through
a noisy channel whose output is given to a decoder. If f
is non injective, the injective coder cannot handle the same
computation. The same holds for the decoder thanks to the two
step paradigm. Moreover, Lemma 1 expresses the ”computing
capacity” the noisy function F possesses with respect to f for
a given source.

The proposed model of reliable computation involves two
perfect functions g and f . This is intended to capture major
real cases, for example, a self-checking adder designed to
handle operands in a residue code. The desired function g is a
regular arithmetic addition while the actual unreliable circuit
implements an regular arithmetic addition aside a modulo-
adder acting on the residues ( [11] ).
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