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ON THE HOMOTOPY FIBRE OF THE INCLUSION MAP

Fn(X) −֒→
∏n

1 X FOR SOME ORBIT SPACES X

MAREK GOLASIŃSKI, DACIBERG LIMA GONÇALVES AND JOHN GUASCHI

Abstract. Under certain conditions, we describe the homotopy type of the homo-

topy fibre of the inclusion map Fn(X) −֒→
∏n

1
X for the nth configuration space

Fn(X) of a topological manifold X without boundary such that dim(X) ≥ 3. We

then apply our results to the cases where either the universal covering of X is con-

tractible or X is an orbit space Sk/G of a tame, free action of a Lie group G on

the k-sphere Sk. If the group G is finite and k is odd, we give a full description

of the long exact sequence in homotopy of the homotopy fibration of the inclusion

map Fn(S
k/G) −֒→

∏
n

1
Sk/G.

This paper is dedicated to Professor S. Gitler, for his outstanding work in homo-

topy theory, his readiness to encourage the scientific progress of colleagues and of

institutions, his unwavering intellectual honesty, and his warm friendship.

Introduction

Configuration spaces have a long history and continue to be an active topic of

research, due to their interesting topological and geometric properties [6, 10]. They

arise in various areas in mathematics, such as low-dimensional topology, homotopy

theory, dynamical systems and hyperplane arrangements, and play an important rôle

in the study of braid groups [4]. If n ≥ 1, the nth configuration space of a topological

space X is defined to be the subspace of the n-fold Cartesian product
∏n

1 X defined

by:

(0.1) Fn(X) =
{

(x1, . . . , xn) ∈
n∏

1

X
∣
∣
∣ xi 6= xj for all i 6= j

}

.

Date: 26th August 2016.

2010 Mathematics Subject Classification. Primary: 55R80; secondary: 20F36, 20J06.
Key words and phrases. configuration space, free action of a group, homotopy fibre, homotopy

pull-back, Lie group, manifold, sphere, orbit space, whisker map.
1



The classical notion of configuration space has been generalised in several directions,

one of them being the following. Given a free action G×X −→ X of a group G on

X , we define the nth orbit configuration space of X (with respect to G) as follows [7]:

(0.2) FG
n (X) =

{

(x1, . . . , xn) ∈
n∏

1

X

∣
∣
∣
∣
Gxi ∩Gxj = ∅ for all i 6= j

}

.

Note that if G is the trivial group then FG
n (X) coincides with the usual configuration

space Fn(X).

One general question that is related to the study of Fn(X) is the analysis of the

inclusion map in(X) : Fn(X) −֒→
∏n

1 X , and if one is interested in the homotopy

groups of these spaces, the homotopy fibre Iin(X) of this map (up to homotopy equi-

valence). The study of the homotopy fibre of this inclusion map has been carried

out for certain manifolds X . If X is a one-dimensional manifold (the circle S1 or

the real line R1) then by [20], the configuration space Fn(R
1) is homeomorphic to a

disjoint union of n! copies of the open n-simplex, and using [6, Example 2.6], there is

a homeomorphism S1 ×Fn(R
1)

≈
−→ Fn+1(S

1). One may then describe the homotopy

fibre of the inclusion map in(X) : Fn(X) −֒→
∏n

1 X for X = R1 or S1.

The study of configuration spaces for surfaces was initiated in [11]. In the case,

the question about the homotopy fibre of in(X) was considered by Goldberg in [13]

when the surface is different from S2 and RP 2, in which case the homotopy fibre

is aspherical. Recently the cases when X is either S2 or RP 2 have been studied

in [14, 15], and it was shown that the homotopy fibre of in(X) is no longer aspherical.

In this paper, we study the homotopy fibre of the inclusion map in(X) : Fn(X) −֒→
∏n

1 X for topological manifolds X without boundary and of dimension ≥ 3. As

special cases, if the universal covering of X is contractible or X is an orbit space

Sk/G of a free, tame action of a Lie group G on the k-sphere Sk then we describe

the homotopy type of the homotopy fibre Iin(X) of the map in(X). In particular if

X = Sk/G, the group G is finite and k ≥ 3 is odd, we give a full description of

the long exact sequence in homotopy of the homotopy fibration of the inclusion map

in(X) : Fn(X) −֒→
∏n

1 X .

Let X and Y be topological spaces. We write X ≃ Y if X and Y have the same

homotopy type, and if f, g : X −→ Y are maps, we write f ∼ g if they are homotopic.

The connectivity of X , denoted by conn(X), is defined to be the largest non-negative

integer n (or infinity) for which πi(X) = 0 for all i ≤ n. In Section 1, we recall and

prove various results about pull-backs with a homotopical approach to fibrations that

will be used in the rest of the paper. It is well known that a homotopy-commutative
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diagram of the form:

X

g
��

f
// Y

g′

��

X ′
f ′

// Y ′

gives rise to a map I(g, g′) : If −→ If ′ between the homotopy fibres of f and f ′

that is compatible with this diagram (see Remark 1.2 for the precise definition of

this map and some of its properties). Proposition 1.5 highlights various homotopy

fibrations and homotopy equivalences that arise from such homotopy-commutative

diagrams, and is main result of Section 1.

In Section 2, X will mostly be a topological manifold without boundary such

that dim(X) ≥ 3, and we shall frequently assume that there exists an action of a

topological group G on X . At certain points, we will suppose additionally that the

action is tame [8], so that the quotient space X/G is also a topological manifold. In

this case, if Q1 ∈ X , the map in(X) : Fn(X) −֒→
∏n

1 X and the quotient map q(X) :

X −→ X/G induce a map ψn(X) : FG
n (X) −→ Fn(X/G) between the nth orbit

configuration space ofX and the nth configuration space ofX/G, an inclusion i′′n(X) :

FG
n (X\GQ1) −֒→

∏n
1 X , and an inclusion i′′n(X) : FG

n ((X/G)\Q̄1) −֒→
∏n

1 X/G,

where Q̄1 = q(X)(Q1). These maps are defined at the beginning of Section 2. We

also define maps jn(X) :
∏n−1

1 X −→
∏n

1 X and j′n(X) : Fn−1(X\Q1) −→ Fn(X)

that ‘insert’ the point Q1 in a given position (see equation (2.4)).

In the first part of Section 2, we shall study these maps, the aim being to relate

their homotopy fibres to that of the map in(X) : Fn(X) −֒→
∏n

1 X , and to obtain

(weak) homotopy equivalences between them. In Theorem 2.2, we prove a result

concerning the connectivity of the map in(X) that extends a result of Birman from

the smooth category to the topological category [3, Theorem 1]. The following

theorem, which is the main result of Section 2, describes certain properties of the

long exact sequence in homotopy of the fibration associated with the inclusion map

Fn(X) −֒→
∏n

1 X .

Theorem 2.5. Let G × X −→ X be a free, tame action of a Lie group G on a

connected topological manifold X without boundary, and let Q1 ∈ X. Suppose that

the inclusion map i′′n−1(X) : FG
n−1(X\GQ1) −֒→

∏n−1
1 X is null homotopic (this is

the case if for example the inclusion map X\GQ1 −֒→ X is null homotopic).

(1) The maps I(idFG
n−1(X\GQ1), id

∏n−1
1 X) : Ii′′n−1(X) −→ FG

n−1(X\GQ1) × Ω(
∏n−1

1 X)

and I(jn′(X/G), jn(X/G)) : Ii′n−1(X/G) −→ Iin(X/G) are homotopy equivalences,

and the map I(ψn−1(X\GQ1),
∏n−1

1 q(X)) : Ii′′n−1(X) −→ Ii′n−1(X/G) is a weak

homotopy equivalence. Furthermore, if G is discrete, X is 1-connected and
3



dim(X/G) ≥ 3 then the map ψn−1(X\GQ1) : F
G
n−1(X\GQ1) −→ Fn−1((X/G)\Q̄1)

is the universal covering.

(2) If j ≤ min(conn(X), dim(X/G)− 2) then πj(F
G
n−1(X\GQ1)) = 0.

(3) Suppose that the homomorphism πj(X) −→ πj(X/G) induced by the quotient

map X −→ X/G is injective for all j ≥ 1 (this is the case if for example the

inclusion map GQ1 −֒→ X is null homotopic). For all j ≥ 2, up to the identific-

ation of the groups πj−1(Iin(X/G)) and πj−1(F
G
n−1(X\GQ1)) × πj−1(Ω(

∏n−1
1 X))

via the isomorphism

πj−1(I(idFG
n−1(X\GQ1), id

∏n−1
1 X)) ◦ (πj−1(kn(X)))−1,

the restriction to the subgroup πj(
∏n−1

1 X) of πj(
∏n

1 X/G) of the boundary ho-

momorphism ∂̂j : πj−1(Ω(
∏n

1 X/G)) −→ πj−1(Iin(X/G)) given by the long exact

sequence in homotopy of the homotopy fibration Iin(X/G)

pin(X/G)
−−−−−→ Fn(X/G)

in(X/G)
−֒→

∏n
1 X/G of (2.7) coincides with the inclusion of πj(

∏n−1
1 X) in πj−1(F

G
n−1(X\GQ1))×

πj−1(Ω(
∏n−1

1 X)) via the usual identification of πj(X) with πj−1(Ω(X)).

The map kn(X) : Ii′′n−1(X) −→ Iin(X/G) mentioned in Theorem 2.5(3) is a weak

homotopy equivalence that is defined just after the commutative diagram (2.7). By

applying Theorem 2.5 to manifolds whose universal covering is contractible, in Pro-

position 2.7 we show that the homotopy fibre Iin(X/G) is weakly homotopy equivalent

to a number of different spaces that arise in the construction of the above-mentioned

maps.

In Section 3, we apply the results of Section 2 to orbit manifolds of the form Sk/G,

G being a finite group that acts freely and tamely on the k-sphere Sk, where k ≥ 3.

One of the two principal results of Section 3 is the following corollary that describes

the homotopy type of the homotopy fibre of the inclusion i′′n−1(S
k) : FG

n (S
k\GQ1) −֒→

∏n−1
1 Sk.

Corollary 3.3. Let G× Sk −→ Sk be a free, tame action of a compact Lie group G

on Sk, and let Q1 ∈ Sk.

(1) There is a homotopy equivalence Ii′′n−1(S
k) ≃ FG

n−1(S
k\GQ1)×Ω(

∏n−1
1 Sk). If the

group G is finite and dim(Sk/G) ≥ 3 then ˜Fn−1(Sk\Q1) ≃ FG
n−1(S

k\GQ1).

(2) If j ≤ k − dim(G)− 2 then πj(F
G
n−1(S

k\GQ1)) = 0.

The second main result of Section 3 is the following proposition that gives a more

detailed description of the long exact sequence in homotopy of the fibration associated

with the inclusion map in(S
k/G) : Fn(S

k/G) −֒→
∏n

1 S
k/G.

Proposition 3.6. Let k ≥ 3 be odd, let j ≥ 2, and let G × Sk −→ Sk be a free

action of a finite group G on Sk. Let ∆n
j (S

k/G) denote the diagonal subgroup of
∏n

1 πj(S
k/G). Then:
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(1) the image of the homomorphism πj(in(S
k/G)) : πj(Fn(S

k/G)) −→
∏n

1 πj(S
k/G)

is the diagonal subgroup ∆n
j (S

k/G).

(2) there are split short exact sequences of the form:

0 −→ ∆n
j (S

k/G) −→ πj

( n∏

1

Sk/G

)

−→ πj−1

(n−1∏

1

Ω(Sk/G)

)

−→ 0 and

0 −→ πj(F
G
n−1(S

k\GQ1)) −→ πj(Fn(S
k/G)) −→ ∆n

j (S
k/G) −→ 0.

In particular, if G is the trivial group then there is a split short exact sequence:

0 −→ πj(Fn−1(R
k)) −→ πj(Fn(S

k)) −→ ∆n
j (S

k) −→ 0.
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1. Preliminaries

In this section, we first prove a lemma concerning the pull-back of a covering

map. We then go on to prove some results about homotopy fibres of homotopy

commutative diagrams that will be useful in what follows.

Lemma 1.1. Let (X, x0) and (Y, y0) be pointed topological spaces. Given a map

f : (X, x0) −→ (Y, y0) and a covering map p : (Ỹ , ỹ0) −→ (Y, y0) for a path-connected

space Ỹ , consider the associated pull-back square:

(1.1)

X ×Y Ỹ

p′

��

f ′
// Ỹ

p

��

X
f

// Y,

where p′ and f ′ are the projections of X ×Y Ỹ onto the first and second factors,

respectively. Then p′ : X ×Y Ỹ −→ X is a covering map, and π1(p
′)(π1(X ×Y Ỹ )) =

π1(f)
−1(π1(p)π1(Ỹ )). If further X is path connected and p : (Ỹ , ỹ0) −→ (Y, y0) is

the universal covering map then the number #π0(X ×Y Ỹ ) is equal to the index

[π1(Y ) : π1(f)(π1(X))] of the image π1(f)(π1(X)) in the group π1(Y ). If in addition

π1(f) : π1(X) −→ π1(Y ) is an epimorphism then p′ : X ×Y Ỹ −→ X is also the

universal covering map.

Proof. The fact that the induced map p′ : X×Y Ỹ −→ X is a covering is well known.

Then the proof of [18, Chapter V, Proposition 11.1] leads to π1(p
′)(π1(X ×Y Ỹ )) =

π1(f)
−1(π1(p)π1(Ỹ )).

Now suppose that X is path connected and that p : (Ỹ , ỹ0) −→ (Y, y0) is the

universal covering map. We shall show that the set π0(X ×Y Ỹ ) of path-connected

components of X ×Y Ỹ is in bijection with the set of right π1(f)(π1(X))-cosets

in π1(Y ). First, notice that the restriction of the map f ′ : X ×Y Ỹ −→ Ỹ to

p′−1(x0) induces a bijection ϕ : p′−1(x0) −→ p−1(y0). In light of the canonical actions

π1(X)× p′−1(x0) −→ p′−1(x0) and π1(Y )× p−1(y0) −→ p−1(y0), we have:

p′−1(x0) =
⊔

i∈π0(X×Y Ỹ )

π1(X)(x0, ỹi) and p
−1(y0) = π1(Y )y0.

Since the fibre p′−1(x0) consists of the points of the form (x0, ỹ), where ỹ ∈ p−1(y0),

for any (x0, ỹ) ∈ p′−1(x0) there exists αȳ ∈ π1(Y ) such that ȳ = αȳy0. Consequently,

ϕ(π1(X)(x0, ỹi)) = ((π1(f)(π1(X)))αȳi)y0 for i ∈ π0(X ×Y Ỹ ) which shows that two

elements (x0, ỹ
′), (x0, ỹ

′′) ∈ p′−1(x0) belong to the same path component of X ×Y Ỹ

if and only if (π1(f)(π1(X)))αȳ′ = (π1(f)(π1(X)))αȳ′′.
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To prove the last part of the statement, by the previous parts, X ×Y Ỹ is a

connected covering space of X , and π1(p
′)(π1(X ×Y Ỹ )) is trivial, so π1(X ×Y Ỹ ) is

trivial because p′ is a covering map. It follows that X ×Y Ỹ is the universal covering

space of X as required. �

Let

Ef = {(x, γ) ∈ X × Y I | γ(0) = f(x)} and If = {(x, γ) ∈ Ef | γ(1) = y0}

denote the mapping path and homotopy fibre of f , respectively. Notice that If is

determined by the homotopy pull-back diagram,

(1.2)

If

q

��

pf
// X

f

��

∗
cy0

// Y,

where cy0 : ∗ −→ Y is the constant map determined by a point y0 ∈ Y , q : If −→ ∗

is the constant map, and pf : If −→ X is the projection map. It is well known

that If −֒→ Ef −→ Y is a fibration and that Ef and X have the same homotopy

type [2, Proposition 3.5.8 and Remark 3.5.9]. We will refer to the sequence of maps

If
pf
−→ X

f
−→ Y as a homotopy fibration. By [2, Proposition 3.3.17], the homotopy

fibres of two homotopic maps have the same homotopy type.

Recall that a map f : X −→ Y of pointed spaces is said to be n-connected if

the induced homomorphism πj(f) : πj(X) −→ πj(Y ) is surjective if j = n and is

an isomorphism for all j ≤ n − 1. Note that the map f is n-connected if and only

if its homotopy fibre If is (n − 1)-connected, in other words, if πi(If) = 0 for all

0 ≤ i ≤ n− 1.

Remark 1.2.

(a) Suppose that the square

(1.3)

X

g
��

f
// Y

g′

��

X ′
f ′

// Y ′

is homotopy-commutative and that g′f(x0) = f ′g(x0) for some x0 ∈ X . Let

H : X×I −→ Y ′ be a homotopy from g′◦f to f ′◦g such thatH(x0, t) = g′f(x0) =

f ′g(x0) for all t ∈ I, and consider the associated map ϕ : X −→ (Y ′)I is given

by ϕ(x)(t) = H(x, t) for all x ∈ X and t ∈ I. In particular, ϕ(x)(0) = g′ ◦ f(x)
7



and ϕ(x)(1) = f ′ ◦ g(x). Then there is a homotopy-commutative diagram:

(1.4)

X

f

��

g

''

h

  
@

@

@

@

@

@

@

@

P

f̄
��

ḡ
// X ′

f ′

��

Y
g′

// Y ′,

where

P = {(y, γ, x′) ∈ Y × (Y ′)I ×X ′ | γ(0) = g′(y) and γ(1) = f ′(x′)}

is the standard homotopy pull-back P , the maps f̄ and ḡ are defined by projection

onto the first and third factors respectively, and h : X −→ P is the corresponding

whisker map given by h(x) = (f(x), ϕ(x), g(x)) for all x ∈ X . If y0 = f(x0) and

y′0 = g′f(x0) then:

(1.5)

If

q

��

pf
// X

f
��

∗
cf(x0)

// Y

and

If ′

q′

��

pf ′
// X ′

f ′

��

∗
cf ′g(x0)

// Y ′

are the standard homotopy pull-backs. The map H ′ : If × I −→ Y defined by

H ′((x, γ), t) = γ(t) for all (x, γ) ∈ If and t ∈ I is a homotopy from fpf to cf(x0)q,

and the associated path ϕ′ : If −→ Y I is given by ϕ′(x, γ)(t) = γ(t). The square

(1.6)

If

q

��

gpf
// X ′

f ′

��

∗
cf ′g(x0)

// Y ′

obtained by concatenating the square (1.3) and the left-hand square of (1.5)

is homotopy commutative, and a homotopy G : If × I −→ Y ′ is determined

by the concatenation of the homotopies H̄ ◦ (pf × idI) : If × I −→ Y ′ and

g′ ◦ H ′ : If × I −→ Y ′, where H̄(x, t) = H(x, 1 − t) for all x ∈ X and t ∈ I.

The map ψ : If −→ (Y ′)I associated to G is given by ψ(x, γ) = ϕ(x)−1 ∗ (g′ ◦ γ)

for all (x, γ) ∈ If , and the whisker map I(g, g′) : If −→ If ′ corresponding to

the right-hand homotopy pull-back of (1.5) and the square (1.6) and defined by

I(g, g′)(x, γ) = (g(x), ϕ(x)−1 ∗ (g′ ◦ γ)) for all (x, γ) ∈ If makes the following
8



diagram

If
pf

//

I(g,g′)

��

X

g

��

f
// Y

g′

��

If ′
pf ′

// X ′
f ′

// Y ′

homotopy-commutative. Note that the construction of I(g, g′) corresponds to

that given in [19, pp. 225-226].

(b) With the notation of part (a), if the maps g : X −→ X ′ and g′ : Y −→ Y ′

are homotopy equivalences then by applying [19, Lemma 45] to the following

homotopy-commutative diagram:

X

g
��

f
// Y

g′

��

∗oo

X ′
f ′

// Y ′ ∗,oo

we see that the map I(g, g′) : If −→ If ′ is also a homotopy equivalence. In

particular, if g : X −→ X ′ (resp. g′ : Y −→ Y ′) is a homotopy equivalence, it

follows from the commutative diagrams

X
f

// Y

g′

��

X
g′f

// Y ′

and

X

g
��

f ′g
// Y ′

X ′
f ′

// Y ′

that the map I(idX , g
′) : If −→ Ig′f (resp. I(g, id

′
Y ) : If ′g −→ If ′) is a homotopy

equivalence.

(c) If diagram (1.3) is commutative and not just homotopy commutative then we

will always take H to be constant i.e. H(x, t) = f ′ ◦ g(x) for all (x, t) ∈ X × I,

and in this case, I(g, g′)(x, γ) = (g(x), g′ ◦ γ), from which it follows that g ◦

pf = pf ′ ◦ I(g, g′). Further, I(g, g′) is the restriction to the homotopy fibres

If and If ′ of the map X × Y I −→ X ′ × (Y ′)I that sends (x, γ) ∈ X × Y I to

(g(x), g′ ◦ γ) ∈ X ′ × (Y ′)I .

(d) By [2, Lemma 6.4.11], a map f : X −→ Y is n-connected if and only if conn(If ) ≥

n− 1.

(e) Let f : X −→ Y be a pointed map, and consider the associated homotopy

fibration If
pf
−→ X

f
−→ Y . The boundary map d : Ω(Y ) −→ If is defined

by d(ω) = (x0, ω) for all ω ∈ Ω(Y ), where Ω(Y ) denotes the loop space of Y.

Suppose further that f is null homotopic. Setting g = idX , g
′ = idY and f ′ = cy0

in the construction of part (a), and taking the homotopy H to be such that

H(x0, t) = y0 for all t ∈ I, we have ϕ(x0) = cy0, and the map I(idX , idY ) : If −→
9



X×Ω(Y ) is a homotopy equivalence defined by I(idX , idY )(x, γ) = (x, ϕ(x)−1∗γ)

for all (x, γ) ∈ If . Thus I(idX , idY ) ◦ d : Ω(Y ) −→ X × Ω(Y ) is given by

I(idX , idY ) ◦ d(ω) = (x0, ω) for ω ∈ Ω(Y ), and so coincides with inclusion of

Ω(Y ). This yields a homotopy equivalence:

(1.7) If
≃

−→ X × Ω(Y ).

If F −֒→ X −→ Y is a fibration then it is well known that the homotopy fibre

of the inclusion map F −֒→ X has the homotopy type of Ω(Y ). Consequently, if

the inclusion map F −֒→ X is null homotopic then by (1.7) there is a homotopy

equivalence:

(1.8) Ω(Y )
≃

−→ F × Ω(X).

Lemma 1.3 ([15, Appendix]). Let X
f

−→ Y
g

−→ Z be pointed maps, let I(f, idZ) :

Igf −→ Ig be the map defined in Remark 1.2(c), and let pgf : Igf −→ X and

pg : Ig −→ Y denote the respective projections. Then the induced map I(pgf , pg) :

II(f,idZ ) −→ If is a homotopy equivalence.

The statement of Lemma 1.3 may be summed up by the three rightmost columns

of the following commutative diagram:

(1.9)

I(f ′)

��

I(ιgf ,ιg)

≃
// II(f,idZ)

I(pgf ,pg)

≃
//

��

If

��

Fgf
� �

ιgf

≃
//

f ′

��

Igf
pgf

//

I(f,idZ)

��

X
gf

//

f

��

Z

Fg
� �

ιg

≃
// Ig

pg
// Y

g
// Z,

where the dotted arrows indicate the corresponding homotopy fibres.

Let f : X −→ Y be a fibration, let Ff = f−1(y0) be the topological fibre over a

point y0 ∈ Y , and let If be the homotopy fibre of f . Then, by [2, Proposition 3.5.10],

the injective map ιf : Ff −֒→ If defined by ιf (x) = (x, cy0) is a homotopy equivalence.

Let jf : Ff −֒→ X denote the inclusion of the topological fibre in the total space

X . Note that jf = pf ◦ ιf . We obtain the following corollary (summarised in

diagram (1.9)) by combining this with Remark 1.2(b) and Lemma 1.3.

Corollary 1.4. Let X
f

−→ Y
g

−→ Z be pointed maps, and suppose that X
gf
−→ Z

and Y
g

−→ Z are fibrations with respective topological fibres Fgf and Fg. If f ′ :

Fgf −→ Fg is the restriction of the map f : X −→ Y to Fgf and Fg then the map

I(jgf , jg) : If ′ −→ If is a homotopy equivalence.
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As a consequence of Lemma 1.3, we have the following result (cf. [16, Chapter

IX]).

Proposition 1.5. Given the homotopy-commutative square (1.3), consider the as-

sociated homotopy-commutative diagram (1.4). Then there exist fibrations Îh −→

Îf −→ Îf ′ and Îh −→ Îg −→ Îg′, where for each k ∈ {f, g, f ′, g′, h}, Îk is a space

that has the same homotopy type as the homotopy fibre Ik of the map k. Further, the

homotopy fibres II(g,g′), II(f,f ′) and Ih have the same homotopy type.

Proof. We use the notation of Remark 1.2(a). Since f = f̄h, applying Lemma 1.3

to the composition X
h

−→ P
f̄

−→ Y , we obtain a fibration Îh −→ Îf −→ If̄ , where

Îh = II(h,idY ) ≃ Ih and Îf = EI(h,idY ) ≃ If̄h = If , which proves the first part of the

statement for the first fibration.

We now prove that the homotopy fibres II(g,g′) and Ih have the same homotopy

type. Given a point y0 ∈ Y , the two squares of the following diagram:

If̄

��

pf̄
// P

f̄
��

ḡ
// X ′

f ′

��

∗
cy0

// Y
g′

// Y ′

are homotopy pull-backs, and thus the whole rectangle is a homotopy pull-back [19,

Lemma 12]. But the square

If ′

��

pf ′
// X ′

f ′

��

∗
cg′(y0)

// Y ′

is the standard homotopy pull-back, and I(ḡ, g′) : If̄ −→ If ′ is a whisker map

by Remark 1.2(a). It follows from [19, p. 226] that I(ḡ, g′) is a homotopy equi-

valence. Now I(g, g′) = I(ḡh, g′) = I(ḡ, g′) ◦ I(h, idY ), and using the fact that

I(ḡ, g′) is a homotopy equivalence, it follows from the last part of Remark 1.2(b)

that I(idIf , I(ḡ, g
′)) : II(h,idY ) −→ II(g,g′) is a homotopy equivalence. Further,

II(h,idY ) ≃ Ih by Lemma 1.3, from which we conclude that II(g,g′) ≃ Ih. The re-

maining assertions of the proposition follow by exchanging the rôles of f, f̄ and f ′

with those of g, ḡ and g′ respectively. �

To prove the final result of this section, we require the following lemma.

Lemma 1.6. Let f : X −→ Y be a pointed map.

(1) If f is a homotopy equivalence then the homotopy fibre If of f is contractible.
11



(2) If If is contractible then the induced map Ωf : ΩX −→ ΩY is a homotopy equi-

valence. In particular, if the induced map π0(f) : π0(X) −→ π0(Y ) is surjective

then f : X −→ Y is a weak homotopy equivalence.

The first part of the lemma follows by applying [19, Lemma 45] to the homotopy

pull-back diagram (1.2). The second part may be obtained by noting that if Z

is a pointed space then the Puppe fibre sequence gives rise to a bijection (Ωf)∗ :

[Z,ΩX ] −→ [Z,ΩY ], which implies that Ωf : ΩX −→ ΩY is a homotopy equivalence.

Remark 1.7. Let f : X −→ Y be a pointed map of path-connected spaces such

that Ωf : ΩX −→ ΩY is a homotopy equivalence. Then f is a weak homotopy

equivalence, but it is not necessarily a homotopy equivalence. Indeed, the loop space

of the Warsaw circle is contractible, but the Warsaw circle is not. Nevertheless, under

certain hypotheses, f is a homotopy equivalence. For example, if f : X −→ Y is a

pointed map of path-connected Dold spaces (the class of such spaces contains CW -

spaces) for which Ωf : ΩX −→ ΩY is a homotopy equivalence, Allaud [1] proved

that f is a homotopy equivalence.

Combining diagram (1.9) with Lemma 1.6, we obtain the following result.

Corollary 1.8. Given a fibration f : X −→ Y and a map g : Y ′ −→ Y , consider

the following strict pull-back diagram

Y ′ ×Y X

f ′

��

g′
// X

f
��

Y ′
g

// Y.

Then the induced map ΩI(f ′, f) : ΩIg′ −→ ΩIg is a homotopy equivalence. Further,

if the map g : Y ′ −→ Y is 1-connected then the map I(f ′, f) : Ig′ −→ Ig is a weak

homotopy equivalence.

Proof. Let y′0 ∈ Y ′, and set y0 = g(y0′) ∈ Y . Since f : X −→ Y is a fibration, the fact

that the above diagram is a strict pull-back implies that f ′ : Y ′ ×Y X −→ Y ′ is also

a fibration. Further, the restriction of g′ to the topological fibres Ff ′ = f ′−1(y′0) and

Ff = f−1(y0) induces a homeomorphism Ff ′
≈

−→ Ff . Since the injective maps ιf :

Ff −֒→ If and ιf ′ : Ff ′ −֒→ If ′ (as defined just before the statement of Corollary 1.4)

are homotopy equivalences, the map I(g′, g) : If ′ −→ If is a homotopy equivalence,

and so Lemma 1.6(1) implies that the homotopy fibre II(g′,g) is contractible. So

by Proposition 1.5, the homotopy fibre II(f ′,f) of the map I(f ′, f) : Ig′ −→ Ig

is also contractible, and we conclude from Lemma 1.6(2) that the induced map

ΩI(f ′, f) : ΩIg′ −→ ΩIg is a homotopy equivalence, which proves the first part
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of the statement. If further g : Y ′ −→ Y is 1-connected then g′ : Y ′ ×Y X −→

X is also 1-connected, and so by Remark 1.2(d), the spaces Ig and Ig′ are path

connected. Lemma 1.6(2) implies that the map I(f ′, f) : Ig′ −→ Ig is a weak

homotopy equivalence as required. �

2. Configuration spaces and the inclusion map Fn(X) −֒→
∏n

1 X

Let X be a topological space, and let n ≥ 1. Given a free action G × X −→

X of a group G on X , recall from (0.1) (resp. from (0.2)) that Fn(X) is the nth

configuration space (resp. FG
n (X) is the orbit configuration space) of X . Let in(X) :

Fn(X) −֒→
∏n

1 X denote the inclusion map. We assume from now on that G is a

topological group. Let q(X) : X −→ X/G denote the associated quotient map, and

let x̄ = q(X)(x) for all x ∈ X . Then q(X) induces a map ψn(X) : FG
n (X) −→

Fn(X/G) given by ψn(X)(x1, . . . , xn) = (x̄1, . . . , x̄n). This map is well defined, since

if (x1, . . . , xn) ∈ FG
n (X) then for all i 6= j, Gxi∩Gxj = ∅, so x̄i 6= x̄j. We thus obtain

the following commutative diagram:

(2.1)

FG
n (X)

ψn(X)

��

� �
in(X)

∣

∣

∣

FG
n (X)

//
∏n

1 X

∏n
1 q(X)

��

Fn(X/G)
� �

in(X/G)

//
∏n

1 X/G.

Further, the associated (strict) pull-back Fn(X/G)×∏n
1 X/G

∏n
1 X is given by:

{
(
(x̄1, . . . , x̄n), (y1, . . . , yn)

)
∈ Fn(X/G)×

n∏

1

X

∣
∣
∣
∣
x̄i = ȳi for all 1 ≤ i ≤ n

}

.

One may then check that the map Fn(X/G) ×∏n
1 X/G

∏n
1 X −→ FG

n (X) given by
(
(x̄1, . . . , x̄n), (x1, . . . , xn)

)
7−→ (x1, . . . , xn) is a (well-defined) homeomorphism. In

particular, (2.1) is a (strict) pull-back diagram.

Now suppose that X is a topological manifold, let Qr = {q1, . . . , qr} be a fi-

nite, non-empty subset of X whose elements belong to distinct orbits, and let Q̄r =

q(X)(Qr). Let i
′
n(X) : Fn(X\Qr) −→

∏n
1 X (resp. i′′n(X) : FG

n (X\GQr) −→
∏n

1 X)

denote the composition of in(X\Qr) (resp. of in(X\Qr)
∣
∣
FG
n (X\GQr) ) with the inclu-

sion map
∏n

1 X\Qr −֒→
∏n

1 X . Since the diagram

∏n
1 (X\GQr)

� � //

q(X\GQr)
��

∏n
1 X

∏n
1 q(X)

��
∏n

1 ((X/G)\Q̄r)
� � //

∏n
1 X/G
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is a (strict) pull-back, taking X\GQr in place of X in diagram (2.1) and composing

with the above diagram, we obtain the following (strict) pull-back:

(2.2)

FG
n (X\GQr)

ψn(X\GQr)
��

� �
i′′n(X)

//
∏n

1 X

∏n
1 q(X)

��

Fn((X/G)\Q̄r)
� �

i′n(X/G)

//
∏n

1 X/G.

Now the map
∏n

1 q(X) :
∏n

1 X −→
∏n

1 X/G is a fibration, and the application of

Corollary 1.8 to the map I
(

ψn(X\GQr),
∏n

1 q(X)
)

: Ii′′n(X) −→ Ii′n(X/G) gives rise to

the following homotopy equivalence:

(2.3) ΩI
(

ψn(X\GQr),

n∏

1

q(X)
)

: ΩIi′′n(X)
≃

−→ ΩIi′n(X/G).

If 1 ≤ i ≤ n, let pi(X) :
∏n

1 X −→
∏n−1

1 X denote the projection map given

by forgetting the ith coordinate. Let J = (i1, . . . , ir) be a sequence of integers that

satisfy 1 ≤ i1 < i2 < · · · < ir ≤ n, and let pJ(X) :
∏n

1 X −→
∏n−r

1 X be the

map defined by pJ(X) = pi1(X) ◦ · · · ◦ pir(X). The map pi(X) restricts to the map

pi(X)
∣
∣
Fn(X) : Fn(X) −→ Fn−1(X) that is a fibration whose fibre may be identified

with X\Qn−1, where Qn−1 = {q1, . . . , qi−1, qi+1, . . . , qn}. This is a special case of the

following result.

Theorem 2.1 ([11, Theorem 3]). Let X be a topological manifold without boundary.

With the above notation, the map pJ(X)
∣
∣
Fn(X) : Fn(X) −→ Fn−r(X) is a fibration

whose fibre may be identified with Fr(X\Qn−r), where Qn−r = Qn\{qi1, . . . , qir}.

For 1 ≤ i ≤ n, let Ji = (1, . . . , i− 1, i + 1, . . . , n). From now on, we assume that

X is a pointed topological manifold without boundary. We thus obtain the following

commutative diagram:

(2.4)

Fn−1(X\Q1)
� �

j′n(X)
//

� _

i′n−1(X)
��

Fn(X)
pJi(X)|Fn(X)

//
� _

in(X)

��

X

∏n−1
1 X � �

jn(X)
//
∏n

1 X
pJi(X)

// X,

where the two inclusions j′n(X) : Fn−1(X\Q1) −֒→ Fn(X) and jn(X) :
∏n−1

1 X −֒→
∏n

1 X are given by inserting the point qi in the ith position. Now the rows of (2.4)

are fibrations by Theorem 2.1, so Corollary 1.4 implies that the map:

(2.5) I(jn′(X), jn(X)) : Ii′n−1(X)
≃

−→ Iin(X)

is a homotopy equivalence for all choices of 1 ≤ i ≤ n above.
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Our next goal is to prove the following theorem that is a stronger version of [3,

Theorem 1], without the hypothesis that X is smooth.

Theorem 2.2. Let X be a connected, topological manifold without boundary. Then

the inclusion map in(X) : Fn(X) −֒→
∏n

1 X is (dim(X)− 1)-connected.

Clearly, Theorem 2.2 implies [3, Theorem 1]. In order to prove Theorem 2.2, we

shall make use of the following lemma.

Lemma 2.3. Let X be a connected, topological manifold without boundary, and let

Q be a finite non-empty subset of X. Then the inclusion map i(X) : X\Q −֒→ X is

(dim(X)− 1)-connected.

Proof. If dim(X) = 1, the result is clear since X is connected. So assume that

dim(X) ≥ 2, and suppose first that Q consists of a single point q. Write X as the

union of X\Q and Dq, where Dq is a small open disc whose centre is q (such a

disc exists because X is a topological manifold), and let x be a basepoint lying in

(X\Q)∩Dq. Now (X\Q)∩Dq has the homotopy type of a sphere whose dimension

is equal to dim(X) − 1, which is strictly positive, so by Van Kampen’s Theorem,

π1(X) is isomorphic to the quotient of π1(X\Q) by the normal closure in π1(X\Q)

of the image of π1((X\Q) ∩ Dq) by the homomorphism induced by the inclusion

(X\Q)∩Dq −֒→ X\Q, which implies in particular that the homomorphism π1(i(X)) :

π1(X\Q) −→ π1(X) is surjective.

If dim(X) = 2, the result follows using the connectedness of X . Now assume

that dim(X) > 2. Then π1((X\Q) ∩ Dq) is trivial, and we conclude from the

above arguments that the homomorphism π1(i(X)) : π1(X\Q) −→ π1(X) is an

isomorphism. To compare the higher homotopy groups, consider the universal cov-

ering p : X̃ −→ X of X , and set X1 = p−1(X\Q). Identifying X1 with the pull-back

(X\Q) ×X X̃, it follows from Lemma 1.1 that the map p |X1 : X1 −→ X\Q is the

universal covering of X\Q, in analogy with the method of [9, Section 2]. By the re-

lative form of the Mayer-Vietoris sequence, the relative homology groups Hi(X̃,X1)

are zero for all 0 ≤ i ≤ dim(X) − 1. The Hurewicz Theorem then implies that

the homomorphism πj(X1) −→ πj(X̃) is an isomorphism if j + 1 < dim(X̃) and is

surjective if j = dim(X̃) − 1. So if Q consists of a single point, using the fact that

πj(X1) ∼= πj(X\Q) if j ≥ 2, the homomorphism πj(i(X)) : πj(X\Q) −→ πj(X)

is an isomorphism if j + 1 < dim(X̃) and is surjective if j = dim(X̃) − 1, which

proves the result in this case. In the general case, if Q = {q1, . . . , qm}, where

m ≥ 2, the result follows by induction on m and by writing the manifold X\Q

as (X\{q1, . . . , qm−1})\{qm}. �
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Proof of Theorem 2.2. The proof is by induction on n. If n = 1 then the statement

clearly holds. So assume that the result is true for some n ≥ 1 and for any connec-

ted topological manifold without boundary. By taking the long exact sequence in

homotopy of the fibrations of the commutative diagram (2.4), where we replace n by

n+ 1, we obtain the following commutative diagram of exact sequences:

(2.6)

πj+1(X) //πj(Fn(X\Q1)) //

πj(i′n(X))

��

πj(Fn+1(X)) //

πj(in+1(X))
��

πj(X) //πj−1(Fn(X\Q1))

πj−1(i′n(X))

��

πj+1(X) //πj(
∏n

1 X) //πj(
∏n+1

1 X) //πj(X) //πj−1(
∏n

1 X)

for all j ≥ 1. If k ≥ 0, the homomorphism πk(i
′
n(X)) may be written as the com-

position πk(Fn(X\Q1))
πk(in(X\Q1))
−−−−−−−−→ πk(

∏n
1 X\Q1)

πk(
∏n

1 i(X))
−−−−−−−→ πk(

∏n
1 X) of the ho-

momorphisms induced by the composition Fn(X\Q1)
in(X\Q1)
−−−−−→

∏n
1 X\Q1

∏n
1 i(X)

−−−−→
∏n

1 X . If further k ≤ j, the first (resp. second) homomorphism πk(in(X\Q1)) :

πk(Fn(X\Q1)) −→ πk(
∏n

1 X\Q1) (resp. πk(
∏n

1 i(X)) :
∏n

1 πk(X\Q1) −→
∏n

1 πk(X))

is surjective if j < dim(X), and is injective if j + 1 < dim(X) by the induction hy-

pothesis applied to the manifold X\Q1 (resp. by Lemma 2.3). Hence πj(i
′
n(X)) is

surjective if j < dim(X), and is an isomorphism if j + 1 < dim(X). Applying the

5-Lemma to (2.6), it follows that πj(in+1(X)) is surjective if j < dim(X) (resp. is an

isomorphism if j + 1 < dim(X)) as required. �

Theorem 2.2 gives rise to the following corollary.

Corollary 2.4. Let X be a connected topological manifold without boundary. Then

the inclusion map i′r(X) : Fr(X\Qn−r) −֒→
∏r

1X is (dim(X)− 1)-connected.

Proof. By definition, i′r(X) is the composition of ir(X\Qn−r) : Fr(X\Qn−r) −֒→
∏r

1X\Qn−r and the inclusion
∏r

1X\Qn−r −֒→
∏r

1X . It then suffices to apply

Theorem 2.2 (resp. Lemma 2.3) to the first (resp. second) map. �

Following [8], we say that the action of a topological group G on X is tame if the

orbit space X/G is a topological manifold. For instance, [17, Theorem 7.10] implies

that any free, proper and smooth action of a compact Lie group G on a smooth

manifold X without boundary is tame.

Now let G×X −→ X be a free, tame action of a group G on a topological manifold

X without boundary, and consider the commutative diagram (2.2) and the leftmost

commutative square of (2.4), where in the second case, we replace X by X/G and

Q1 by Q̄1. Applying the construction of Remark 1.2(c) to each of these squares gives
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rise to the following commutative diagram, where the rows are homotopy fibrations:

(2.7)

Ii′′n−1(X)

pi′′n−1(X)

//

I(ψn−1(X\GQ1),
∏n−1

1 q(X))

��

FG
n−1(X\GQ1)

ψn−1(X\GQ1)

��

� �
i′′n−1(X)

//
∏n−1

1 X

∏n−1
1 q(X)

��

Ii′n−1(X/G)

pi′
n−1

(X/G)

//

I(j′n(X/G),jn(X/G))

��

Fn−1((X/G)\Q̄1)
� _

j′n(X/G)

��

� �
i′n−1(X/G)

//
∏n−1

1 X/G
� _

jn(X/G)

��

Iin(X/G)

pin(X/G)
// Fn(X/G)

� �
in(X/G)

//
∏n

1 X/G,

the map I(ψn−1(X\GQ1),
∏n−1

1 q(X)) : Ii′′n−1(X) −→ Ii′n−1(X/G) gives rise to a homo-

topy equivalence ΩI(ψn−1(X\GQ1),
∏n−1

1 q(X)) : ΩIi′′n−1(X) −→ ΩIi′n−1(X/G) by (2.3),

and the map I(j′n(X/G), jn(X/G)) : Ii′n−1(X/G) −→ Iin(X/G) is a homotopy equival-

ence by (2.5). Let kn(X) : Ii′′n−1(X) −→ Iin(X/G) be the weak homotopy equivalence

defined by kn(X) = I(j′n(X/G), jn(X/G)) ◦ I(ψn−1(X\GQ1),Π
n−1
1 q(X)).

Let G×X −→ X be a tame, free action of a Lie group G on a topological manifold

X without boundary. This action gives rise to a fibration G −֒→ X −→ X/G of

manifolds, where the fibre over the point Q̄1 ∈ X/G is identified with GQ1. If the

inclusion map GQ1 −֒→ X is null homotopic then the homomorphism πj(X) −→

πj(X/G) induced by the quotient map X −→ X/G is injective for all j ≥ 0, so

we may regard πj(X) as a subgroup of πj(X/G). Furthermore, by (1.8), there is a

homotopy equivalence h : Ω(X/G)
≃

−→ G × Ω(X) that may be described in terms

of a homotopy between the inclusion map GQ1 −֒→ X and the constant map. If

e ∈ G denotes the unit element of G, the restriction of the inverse of the homotopy

equivalence h : Ω(X/G)
≃

−→ G × Ω(X) to {e} × Ω(X) is homotopic to the loop of

the projection map X −→ X/G.

For the purpose of the following theorem, which is the main result of this section,

for all j ≥ 0, we identify πj+1(X/G) with πj(G)×πj+1(X) via the homotopy equival-

ence h : Ω(X/G)
≃

−→ G× Ω(X), and πj(
∏n

1 X/G) with πj(
∏n−1

1 X/G)× πj(X/G).

For this particular identification, we are taking i = n in (2.4).

Theorem 2.5. Let G × X −→ X be a free, tame action of a Lie group G on a

connected topological manifold X without boundary, and let Q1 ∈ X.. Suppose that

the inclusion map i′′n−1(X) : FG
n−1(X\GQ1) −֒→

∏n−1
1 X is null homotopic (this is

the case if for example the inclusion map X\GQ1 −֒→ X is null homotopic).

(1) The maps I(idFG
n−1(X\GQ1), id

∏n−1
1 X) : Ii′′n−1(X) −→ FG

n−1(X\GQ1) × Ω(
∏n−1

1 X)

and I(jn′(X/G), jn(X/G)) : Ii′n−1(X/G) −→ Iin(X/G) are homotopy equivalences,

and the map I(ψn−1(X\GQ1),
∏n−1

1 q(X)) : Ii′′n−1(X) −→ Ii′n−1(X/G) is a weak

homotopy equivalence. Furthermore, if G is discrete, X is 1-connected and
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dim(X/G) ≥ 3 then the map ψn−1(X\GQ1) : F
G
n−1(X\GQ1) −→ Fn−1((X/G)\Q̄1)

is the universal covering.

(2) If j ≤ min(conn(X), dim(X/G)− 2) then πj(F
G
n−1(X\GQ1)) = 0.

(3) Suppose that the homomorphism πj(X) −→ πj(X/G) induced by the quotient

map X −→ X/G is injective for all j ≥ 1 (this is the case if for example the

inclusion map GQ1 −֒→ X is null homotopic). For all j ≥ 2, up to the identific-

ation of the groups πj−1(Iin(X/G)) and πj−1(F
G
n−1(X\GQ1)) × πj−1(Ω(

∏n−1
1 X))

via the isomorphism

πj−1(I(idFG
n−1(X\GQ1), id

∏n−1
1 X)) ◦ (πj−1(kn(X)))−1,

the restriction to the subgroup πj(
∏n−1

1 X) of πj(
∏n

1 X/G) of the boundary ho-

momorphism ∂̂j : πj−1(Ω(
∏n

1 X/G)) −→ πj−1(Iin(X/G)) given by the long exact

sequence in homotopy of the homotopy fibration Iin(X/G)

pin(X/G)
−−−−−→ Fn(X/G)

in(X/G)
−֒→

∏n
1 X/G of (2.7) coincides with the inclusion of πj(

∏n−1
1 X) in πj−1(F

G
n−1(X\GQ1))×

πj−1(Ω(
∏n−1

1 X)) via the usual identification of πj(X) with πj−1(Ω(X)).

Proof.

(1) By hypothesis, i′′n−1(X) is null homotopic. Let H : FG
n−1(X\GQ1) × I −→

∏n−1
1 X be a homotopy between i′′n−1(X) and the constant map at the basepoint

of
∏n−1

1 X , and let ϕ(x) : I −→ (
∏n−1

1 X)I be the path given by ϕ(x)(t) =

H(x, t). Applying Remark 1.2(e) to the homotopy fibration

(2.8) Ii′′n−1(X)

pi′′n−1(X)

−−−−−→ FG
n−1(X\GQ1)

i′′n−1(X)
−−−−→

n−1∏

1

X,

we obtain a homotopy equivalence:

(2.9) I(idFG
n−1(X\GQ1), id

∏n−1
1 X) : Ii′′n−1(X) −→ FG

n−1(X\GQ1)× Ω(
∏n−1

1 X)

defined by I(idFG
n−1(X\GQ1), id

∏n−1
1 X)(x, γ) = (x, ϕ(x)−1∗γ) for all (x, γ) ∈ Ii′′n−1(X).

Since the map ψn−1(X\GQ1) : F
G
n−1(X\GQ1) −→ Fn−1((X/G)\Q̄1) is 1-connected,

the map I(ψn−1(X\GQ1),
∏n−1

1 q(X)) : Ii′′n−1(X) −→ Ii′n−1(X/G) is a weak ho-

motopy equivalence by Corollary 1.8 and (2.3). Further, by (2.5), the map

I(jn′(X/G), jn(X/G)) : Ii′n−1(X/G) −→ Iin(X/G) is a homotopy equivalence, and

this proves the first part of the statement.

Assume that G is a discrete group. Since X is a 1-connected manifold,

the quotient map
∏n−1

1 q(X) :
∏n−1

1 X −→
∏n−1

1 X/G is the universal cov-

ering. Now dim(X/G) ≥ 3, and applying Corollary 2.4, we see that the ho-

momorphism π1(i
′
n−1(X/G)) : π1(Fn−1((X/G)\Q̄1)) −→ π1(

∏n−1
1 X/G) is an

isomorphism. It follows from diagram (2.2) and Lemma 1.1 that ψn−1(X\GQ1) :

FG
n−1(X\GQ1) −→ Fn−1((X/G)\Q̄1) is the universal covering.
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(2) Let j ≤ min(conn(X), dim(X/G) − 2). Applying the long exact homotopy se-

quence to the following commutative diagram whose rows are fibrations:

(2.10)

∏n−1
1 G //FG

n−1(X\GQ1)
ψn−1(X\GQ1)

//
� _

i′′n−1(X)

��

Fn−1((X/G)\Q̄1)� _

i′n−1(X/G)
��∏n−1

1 G //
∏n−1

1 X

∏n−1
1 q(X)

//
∏n−1

1 X/G

yields the following commutative diagram whose rows are exact:

(2.11)

πj(
∏n−1

1 G) //πj(F
G
n−1(X\GQ1))

πj(ψn−1(X\GQ1))

//

πj(i′′n−1(X))

��

πj(Fn−1((X/G)\Q̄1))
∂j

//

πj(i′n−1(X/G))

��

πj−1(
∏n−1

1 G)

πj(
∏n−1

1 G) //πj(
∏n−1

1 X)
πj(

∏n−1
1 q(X))

//πj(
∏n−1

1 X/G)
∂̄j

//πj−1(
∏n−1

1 G),

where ∂j : πj(Fn−1((X/G)\Q̄1)) −→ πj−1(
∏n−1

1 G) (resp. ∂̄j : πj(
∏n−1

1 X/G) −→

πj−1(
∏n−1

1 G)) is the boundary homomorphism corresponding to the first (resp.

second) row of (2.10). Since j ≤ dim(X/G) − 2, by applying Corollary 2.4

to the manifold X/G, we see that the homomorphism πk(i
′
n−1(X/G)) is sur-

jective for all k ≤ j + 1 and is an isomorphism if k ≤ j. The fact that

j ≤ conn(X) implies that the homomorphism πk(
∏n−1

1 X/G) −→ πk−1(
∏n−1

1 G)

is surjective for all k ≤ j + 1 and is an isomorphism if k ≤ j. By the com-

mutativity of the diagram (2.11), it follows that the boundary homomorphism

∂k : πk(Fn−1((X/G)\Q̄1)) −→ πk−1(
∏n−1

1 G) is surjective for all k ≤ j + 1 and

is an isomorphism if k ≤ j, and so by exactness of the uppermost row of (2.11),

πj(F
G
n−1(X\GQ1)) = 0 for all j ≤ min(conn(X), dim(X/G)− 2).

(3) Let d̃ : Ω(
∏n−1

1 X) −→ Ii′′n−1(X) denote the boundary map of the homotopy fibra-

tion (2.8), and let ∂̃j : πj(
∏n−1

1 X) −→ πj−1(F
G
n−1(X\GQ1))× πj−1(Ω(

∏n−1
1 X))

denote the composition of the associated boundary homomorphism πj−1(d̃) with

the isomorphism πj−1(I(idFG
n−1(X\GQ1), id

∏n−1
1 X)) induced by the homotopy equi-

valence given by (2.9). Identifying πj(X) with πj−1(Ω(X)), and applying Re-

mark 1.2(e), it follows that ∂̃j coincides with the inclusion homomorphism

πj

(
n−1∏

1

X

)

−֒→ πj−1(F
G
n−1(X\GQ1))× πj−1

(

Ω

(
n−1∏

1

X

))

.
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The first and third rows of diagram (2.7) give rise to the following commutative

diagram of homotopy fibrations:

(2.12)

Ii′′n−1(X)

pi′′
n−1

(X)

//

kn(X)

��

FG
n−1(X\GQ1)

j′n(X/G)◦ψn−1(X\GQ1)

��

� �
i′′n−1(X)

//
∏n−1

1 X

jn(X/G)◦
∏n−1

1 q(X)

��

Iin(X/G) pin(X/G)

// Fn(X/G)
� �

in(X/G)

//
∏n

1 X/G,

where the leftmost vertical map kn(X) : Ii′′n−1(X) −→ Iin(X/G) is defined by

kn(X) = I(j′n(X/G), jn(X/G)) ◦ I(ψn−1(X\GQ1),Π
n−1
1 q(X)), and is a weak

homotopy equivalence by part (1). Now let d̂ : Ω(
∏n

1 X/G) −→ Iin(X/G) be the

boundary map of the lower homotopy fibration of (2.12), and let

∂̂j : πj−1(Ω(

n∏

1

X/G)) −→ πj−1(Iin(X/G))

be the induced boundary homomorphism.

Consider the element ω = (ω1, . . . , ωn−1, cqn−1) ∈ Ω(
∏n−1

1 X). The map
∏n

1 q(X) induces a map Ω
∏n

1 q(X) : Ω(
∏n

1 X) −→ Ω(
∏n

1 X/G), so

(Ω
∏n

1 q(X))(ω, cqn) = (ω̄1, . . . , ω̄n−1, cq̄n) ∈ Ω(
∏n

1 X/G) and

d̂ ◦ (Ω
∏n

1 q(X))(ω) = (q̄1, . . . , q̄n, ω̄1, . . . , ω̄n−1, cq̄n) ∈ Iin(X/G)(2.13)

by Remark 1.2(e). On the other hand, (q1, . . . , qn−1, ω1, . . . , ωn−1) ∈ Ii′′n−1(X), and

by Remark 1.2(c), the definition of kn(X), (2.9) and (2.13), we have:

kn(X)(q1, . . . , qn−1, ω1, . . . , ωn−1) = d̂ ◦ (Ω
∏n

1 q(X))(ω) and

I(idFG
n−1(X\GQ1), id

∏n−1
1 X)(q1, . . . , qn−1, ω1, . . . , ωn−1) = (q1, . . . , qn−1, ω1, . . . , ωn−1).

Thus the image of ([ω], [cqn]) ∈ πj(
∏n−1

1 X)× πj(X) under the composition

πj−1(I(idFG
n−1(X\GQ1), id

∏n−1
1 X)) ◦ (πj−1(kn(X)))−1 ◦ ∂̂j ◦ πj(

∏n
1 q(X))

is equal to ([cq1], . . . , [cqn−1 ], [ω]). In particular, up to identification of πj−1(Iin(X/G))

and πj−1(F
G
n−1(X\GQ1))× πj−1(Ω(

∏n−1
1 X)) via the isomorphism

πj−1(I(idFG
n−1(X\GQ1), id

∏n−1
1 X)) ◦ (πj−1(kn(X)))−1,

the restriction of the homomorphism ∂̂j : πj−1(Ω(
∏n

1 X/G)) −→ πj−1(Iin(X/G))

to the subgroup πj(
∏n−1

1 X) of πj(
∏n

1 X/G) coincides with the inclusion of

πj(
∏n−1

1 X) in πj−1(F
G
n−1(X\GQ1)) × πj−1(Ω(

∏n−1
1 X)) which completes the

proof. �

Theorem 2.5 implies the following corollary.
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Corollary 2.6. Let X be a connected topological manifold without boundary such

that dim(X) ≥ 3, let X̃ be its universal covering, and let Q1 ∈ X̃. Suppose that the

map i′′n−1(X̃) : F
π1(X)
n−1 (X̃\π1(X)Q1) −֒→

∏n−1
1 X̃ is null homotopic.

(1) The spaces F
π1(X)
n−1 (X̃\π1(X)Q1) and

˜Fn−1(X\Q̄1) are homeomorphic, and there

exists a homotopy equivalence Ii′′n−1(X̃) ≃
˜Fn−1(X\Q̄1)×Ω(

∏n−1
1 X̃), and a weak

homotopy equivalence between Iin(X) and
˜Fn−1(X\Q̄1)× Ω(

∏n−1
1 X̃).

(2) Let j ≥ 2. Up to the identification of the groups πj(
∏n

1 X̃) with πj(
∏n

1 X)

via the isomorphism πj(q(X̃)) : πj(X̃) −→ πj(X) and the identification of the

groups πj−1(Iin(X)) and πj−1(F
π1(X)
n−1 (X̃\π1(X)Q1)) × πj−1(Ω(

∏n−1
1 X̃)) via the

isomorphism given in the statement of Theorem 2.5(3), the restriction of the

boundary homomorphism ∂̂j : πj(
∏n

1 X̃) −→ πj−1(Iin(X)) of the homotopy long

exact sequence of the homotopy fibration

Iin(X)

pin(X)
−−−→ Fn(X)

in(X)
−֒→

n∏

1

X

to the subgroup πj(
∏n−1

1 X̃) of πj(
∏n

1 X̃) coincides with the inclusion of πj(
∏n−1

1 X̃)

in πj−1(F
π1(X)
n−1 (X̃\π1(X)Q1))× πj−1(Ω(

∏n−1
1 X̃)) via the usual identification of

πj(X̃) with πj−1(Ω(X̃)).

Proof. In the whole of the proof, we shall replace the manifold X (resp. the group

G) of Theorem 2.5 by X̃ (resp. by π1(X)). The group π1(X) is discrete, and since

X is a manifold, π1(X) is countable and so is a 0-dimensional Lie group.

(1) Since π1(X) is discrete, X̃ is 1-connected and dim(X) ≥ 3, it follows from

the second part of the statement of Theorem 2.5(1) that F
π1(X)
n−1 (X̃\π1(X)Q1) is

homeomorphic to ˜Fn−1(X\Q̄1). Applying this to the first part of Theorem 2.5(1)

yields the rest of the statement.

(2) Since q(X̃) : X̃ −→ X is a covering map, the induced homomorphism πj(q(X̃)) :

πj(X̃) −→ πj(X) is injective for all j ≥ 1 and is an isomorphism for all j ≥ 2.

Up to the identification of πj(
∏n

1 X̃) with πj(
∏n

1 X) via this isomorphism, the

result then follows directly from Theorem 2.5(3). �

The following result brings together various descriptions for the homotopy type

of the homotopy fibre Iin(X), where X is a topological manifold without boundary

whose universal covering is contractible.

Proposition 2.7. Let X be a connected topological manifold without boundary such

that dim(X) ≥ 3 and whose universal covering X̃ is contractible, and let Q1 ∈ X̃.

Then the homotopy fibre Iin(X) of the map in(X) : Fn(X) −→
∏n

1 X is weakly
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homotopy equivalent to each of the following six spaces: ˜Fn−1(X\Q̄1), Fn(X)×∏n
1 X

∏n
1 X̃, F̃n(X), F

π1(X)
n (X̃), Fn−1(X\Q̄1)×∏n−1

1 X

∏n−1
1 X̃ and F

π1(X)
n−1 (X̃\π1(X)Q1).

Proof. Let p(X̃) : X̃ −→ X denote the universal covering map.

• Since the space
∏n

1 X̃ is contractible, the map i′′n−1(X̃) : F
π1(X)
n−1 (X̃\π1(X)Q1) −֒→

∏n−1
1 X̃ is null homotopic. So by (1.7), Ii′′n−1(X̃) ≃ F

π1(X)
n−1 (X̃\π1(X)Q1). Further,

π1(X) is discrete, X̃ is 1-connected and dim(X) ≥ 3, it follows from Theorem 2.5(1)

that F
π1(X)
n−1 (X̃\π1(X)Q1) ≃ ˜Fn−1(X\Q̄1).

• The strict pull-back (2.2) gives rise to a homotopy equivalence F
π1(X)
n−1 (X̃\π1(X)Q1) ≃

Fn−1(X\Q̄1)×∏n−1
1 X

∏n−1
1 X̃ .

So Ii′′n−1(X̃), F
π1(X)
n−1 (X̃\π1(X)Q1),

˜Fn−1(X\Q̄1) and Fn−1(X\Q̄1)×∏n−1
1 X

∏n−1
1 X̃ are

pairwise homotopy equivalent.

• Since dim(X) ≥ 3, the map in(X) : Fn(X) −→
∏n

1 X is 2-connected by The-

orem 2.2, and thus π1(in(X)) is an isomorphism. Further,
∏n

1 p(X̃) :
∏n

1 X̃ −→
∏n

1 X is the universal covering, and so it follows from Lemma 1.1 that F̃n(X) ≃

Fn(X)×∏n
1 X

∏n
1 X̃.

• The pull-back (2.1) gives rise to a homotopy equivalence Fn(X) ×∏n
1 X

∏n
1 X̃ ≃

F
π1(X)
n (X̃).

• Consider the (strict) pull-back:

Fn(X)×∏n
1 X

∏n
1 X̃

p′(X)

��

ĩn(X)
//
∏n

1 X̃

∏n
1 p(X̃)

��

Fn(X) �
� in(X)

//
∏n

1 X.

Since the projection map p′(X) : Fn(X) ×∏n
1 X

∏n
1 X̃ −→ Fn(X) is 1-connected,

the map I(p′(X),
∏n

1 p(X̃)) : Iĩn(X) −→ Iin(X) is a weak homotopy equivalence

by Corollary 1.8 and (2.3). On the other hand, the map ĩn(X) is null homotopic

because the space
∏n

1 X̃ is contractible, and it follows from (1.7) that Iĩn(X) ≃

Fn(X)×∏n
1 X

∏n
1 X̃.

Thus Iĩn(X), Fn(X) ×∏n
1 X

∏n
1 X̃ , Fn(X) ×∏n

1 X

∏n
1 X̃ and F

π1(X)
n (X̃) are pairwise

homotopy equivalent, and are weakly homotopy equivalent to Iin(X). Finally, (2.5)

implies that Ii′n−1(X) ≃ Iin(X), and by Corollary 1.8 and (2.3), there is a weak homo-

topy equivalence Ii′′n−1(X̃) −→ Ii′n−1(X), and the result follows. �

The family of manifolds covered by Euclidean spaces is properly contained in

the family of manifolds whose universal covering is contractible. The fact that the
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inclusion is strict may be seen by considering for example the Whitehead open 3-

manifold that is contractible but not homeomorphic to R3.

Remark 2.8. By [5, Theorem 1.6, Chapter V, p. 229] and [21], the universal covering

of any paracompact aspherical manifold is contractible.

3. The homotopy fibre of the inclusion map Fn(S
k/G) −֒→

∏n
1 S

k/G and the associated long exact sequence in homotopy

In this section, we start by studying the homotopy fibre of the inclusion in(S
k/G) :

Fn(S
k/G) −֒→

∏n
1 S

k/G, where Sk/G is the orbit manifold associated with a free

tame action of a Lie group G on the k-sphere Sk. One of our aims is to describe

completely the long exact sequence in homotopy of the homotopy fibration

Iιn(Sk/G) −→ Fn(S
k/G) −→

n∏

1

Sk/G

in the case that G is discrete (so finite). Let k ≥ 3, and consider a free tame action

G× Sk −→ Sk of a compact Lie group G on Sk. If dim(G) = 0 then G is finite, and

comparing Euler characteristics, we obtain χ(Sk) = |G| . χ(Sk/G), so G is trivial or

Z2 if k is even, and |G| ≥ 2 if k is odd. In particular, for G = Z2 we get S
k/Z2 = RP k,

the k-dimensional real projective space. If dim(G) > 0 then we have the following

result.

Theorem 3.1 ([5, 8.5. Theorem]). Suppose that G is a compact Lie group such that

dim(G) > 0 and that acts freely on Sk. Then G is isomorphic to a subgroup of S3.

More precisely, up to isomorphism, G is one of the following groups: S1; N(S1), the

normaliser of S1 in the group S3; or S3.

Using Theorem 3.1, we obtain the following proposition.

Proposition 3.2. Let G be a compact Lie group G, and let G× Sk −→ Sk be a free

action of G on the sphere Sk.

(1) If G is finite with |G| > 2 or G = S1 then k is odd.

(2) If G = N(S1) or G = S3 then k = 4m+ 3 for some m ≥ 0.

Proof.

(1) First, suppose that G is finite with |G| > 2. Given a free action G× Sk −→ Sk,

we see that χ(Sk) = |G| . χ(Sk/G), so k is odd because |G| > 2. Now assume

that G = S1. A free action S1×Sk −→ Sk of S1 on Sk induces a free action of the

cyclic group Zl on Sk for all l ≥ 1. Comparing Euler characteristics once more,

we obtain χ(Sk) = l. χ(Sk/Zl), and taking l ≥ 3, we deduce once more that k is

odd.
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(2) Suppose that G = N(S1) or S3. A free action S3 × Sk −→ Sk of S3 on Sk induces

a free action N(S1)×Sk −→ Sk of N(S1) on Sk, and a free action N(S1)×Sk −→

Sk of G on Sk induces a free action S1 × Sk −→ Sk of S1 on Sk. By (1), it

follows that k = 2m′ + 1 for some m′ ≥ 0, from which we obtain an induced

free action Z2 × S2m′+1/S1 −→ S2m′+1/S1 of Z2 on S2m′+1/S1. Using the Euler

characteristic relation χ(S2m′+1/S1) + χ((S2m′+1/S1)Z2) = 2χ̃((S2m′+1/S1)/Z2)

given in [12, p. 146] for the reduced Euler characteristic χ̃, we see that m′ is also

odd, and so k = 4m+ 3 for some m ≥ 0. �

If k ≥ 3, let G×Sk −→ Sk be a tame, free action of a compact Lie group G on Sk,

and consider the topological manifold without boundary Sk/G that is the orbit space

for this action. If Q1 ∈ Sk, the map Sk\GQ1 −֒→ Sk factors through the contractible

space Sk\Q1, and so is null homotopic. If 1 ≤ i ≤ n, the fact that the following

diagram:

FG
n (S

k\GQ1)

Ji(Sk)
∣

∣

∣

FG
n (Sk/GQ1)

��

� �
i′′n(S

k)
//
∏n

1 S
k

Ji(S
k)

��

Sk\GQ1
� � // Sk

is commutative implies that the map i′′n(S
k) : FG

n (S
k\GQ1) −֒→

∏n
1 S

k is also null

homotopic. We obtain the following corollary by applying parts (1) and (2) of The-

orem 2.5 to the map i′′n(S
k).

Corollary 3.3. Let G× Sk −→ Sk be a free, tame action of a compact Lie group G

on Sk.

(1) There is a homotopy equivalence Ii′′n−1(S
k) ≃ FG

n−1(S
k\GQ1)×Ω(

∏n−1
1 Sk). If the

group G is finite and dim(Sk/G) ≥ 3 then ˜Fn−1(Sk\Q1) ≃ FG
n−1(S

k\GQ1).

(2) If j ≤ k − dimG− 2 then πj(F
G
n−1(S

k\GQ1)) = 0.

Let k ≥ 3. We now proceed to study the long exact sequence in homotopy of the

homotopy fibration

Iin(Sk/G)

p
in(Sk/G)

−−−−−→ Fn(S
k/G)

in(Sk/G)
−−−−−→

n∏

1

Sk/G.

In this case, there is a homotopy equivalence Ii′′n−1(S
k)

≃
−→ FG

n−1(S
k\GQ1)×Ω(

∏n−1
1 Sk)

by Theorem 2.5(1). We restrict our attention to the case where k is odd and

dim(G) = 0 i.e., G is finite. Up to the identification of the group πj(Iin(Sk/G))

with πj−1(F
G
n−1(S

k\GQ1)× Ω(
∏n−1

1 Sk)) described in Theorem 2.5(3), our aim is to
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describe the boundary homomorphism:

∂̂j : πj

( n∏

1

Sk
)

−→ πj−1

(

FG
n−1(S

k\GQ1)× Ω

(n−1∏

1

Sk
))

,

as well as other homomorphisms of that exact sequence. Since k ≥ 3, Corollary

3.3(2) implies that π1(Iin(Sk/G)) = 0. So we may assume that j > 2. In what follows,

we shall need the following result (cf. [10, Theorem 3.1]).

Lemma 3.4. Let k ≥ 3 be odd, and let G × Sk −→ Sk be a free action of a finite

group G on Sk. Then for all 1 ≤ i, l ≤ n, there exists a map λi(S
k) : Sk −→ FG

n (S
k)

such that the composition Sk
λi(S

k)
−−−→ FG

n (S
k)

ψn(Sk)
−−−−→ Fn(S

k/G)
pJl(S

k/G)|Fn(Sk/G)
−−−−−−−−−−−→ Sk/G

is homotopic to the quotient map q(Sk) : Sk −→ Sk/G for 1 ≤ i ≤ n. If l = i then

the composition coincides with q(Sk).

Proof. To construct the continuous map λi(S
k) : Sk −→ FG

n (S
k), consider a non-

vanishing vector field on Sk. Such a vector field exists because k is odd. Since the

given action G× Sk −→ Sk is free, there exists ǫ > 0 such that the distance between

any two distinct points belonging to the same G-orbit is greater than ǫ. Given x ∈ Sk,

consider the n-tuple (x, x2, . . . , xn), where form = 2, . . . , n, xm is the point on the in-

tegral curve of the vector field passing through x and corresponding to the parameter

value t = (m−1)/R for R > 0 sufficiently large. Thus the distance between any two

points of this n-tuple is less than ǫ, and so the points x, x2, . . . , xn−1 and xn belong

to distinct orbits. Given 1 ≤ i ≤ n, set λi(x) = (x2, . . . , xi, x
︸︷︷︸

ith position

, xi+1, . . . xn).

By construction, λi(x) belongs to the orbit configuration space FG
n (S

k) and λi is

continuous. Further,

pJl(S
k/G)

∣
∣
Fn(Sk/G) ◦ ψn(S

k) ◦ λi(x) =







q(xi+1) if l < i,

q(x) if l = i,

q(xi) if l > i.

In each case, one may use the integral curve of the vector field to show that the

composition pJl(S
k/G)

∣
∣
Fn(Sk/G) ◦ ψn(S

k) ◦ λi : S
k −→ Sk/G is homotopic to q(Sk) as

required. �

If the group G is trivial, Lemma 3.4 implies that the fibration Fn(S
k) −→ Sk

admits a section (cf. [10, Theorem 3.1]). The lemma also yields some information

about the homomorphism πj(in(S
k/G)) : πj(Fn(S

k)) −→ πj(
∏n

1 S
k/G) induced by

the inclusion map in(S
k/G) : Fn(S

k/G) −֒→
∏n

1 S
k/G, and which is relevant to

understanding the long exact homotopy sequence in homotopy of the homotopy

fibration Iin(Sk/G) −→ Fn(S
k/G) −֒→

∏n
1 S

k/G. In order to study the homomorphism
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πj(in(S
k/G)) : πj(Fn(S

k/G)) −→ πj(
∏n

1 S
k/G), consider a basepoint (x1, . . . , xn) ∈

Fn(S
k/G), where we assume that the set {x1, . . . , xn} is contained in a small disc

whose centre is a point x0 ∈ Sk/G. If 1 ≤ i ≤ n, choosing a path from xi to

x0 inside this disc allows us to identify πj(S
k/G, xi) with πj(S

k/G, x0), and in this

way, the group πj(
∏n

1 S
k/G, (x1, . . . , xn)) may be identified isomorphically with the

group
∏n

1 πj(S
k/G, x0). In what follows, we shall consider the composition of the

homomorphism πj(in(S
k/G)) : πj(Fn(S

k/G)) −→ πj(
∏n

1 S
k/G, (x1, . . . , xn)) by this

isomorphism, which by abuse of notation, we shall also denote by πj(in(S
k/G)) :

πj(Fn(S
k/G)) −→ πj(

∏n
1 S

k/G).

Lemma 3.5. Let k ≥ 3 be odd, and let G × Sk −→ Sk be a free action of a finite

group G on Sk. Then π0(Fn((S
k/G)\Q̄1)) = 0, π1(Fn((S

k/G)\Q̄1) =
∏n

1 G, and the

homomorphism πj(i
′
n(S

k/G)) : πj(Fn((S
k/G)\Q̄1)) −→ πj(

∏n
1 S

k/G) induced by the

inclusion map i′n(S
k/G) : Fn((S

k/G)\Q̄1) −֒→
∏n

1 S
k/G is trivial for all j ≥ 2.

Proof. By Corollary 2.4, the homomorphism πj(i
′
n(S

k/G)) : πj(Fn((S
k/G)\Q̄1)) −→

πj(
∏n

1 S
k/G) is an isomorphism for j = 0, 1, whence π0(Fn((S

k/G)\Q̄1)) = 0 and

π1(Fn((S
k/G)\Q̄1)) =

∏n
1 G. So assume that j ≥ 2. Taking X = Sk and r = n = 1

in (2.2), we obtain the following pull-back diagram:

(3.1)

Sk\GQ1

ψ1(Sk\GQ1)
��

� �
i′′1 (S

k)
// Sk

q(Sk)
��

(Sk/G)\Q̄1
� �

i′1(S
k/G)

// Sk/G.

Now π1(i
′
1(S

k/G)) is an isomorphism, and so ψ1(S
k\GQ1) : S

k\GQ1 −→ (Sk/G)\Q̄1

is the universal covering by Lemma 1.1. In particular, πj(ψ1(S
k\GQ1)) is an iso-

morphism. Further, as we saw just before Corollary 3.3, the map i′′1(S
k) : Sk\GQ1 −֒→

Sk is null homotopic. We conclude from (3.1) that the homomorphism πj(i
′
1(S

k/G)) :

πj((S
k/G)\Q̄1) −→ πj(S

k/G) is trivial. But if 1 ≤ i ≤ n, the composition of the map

i′n(S
k/G) : Fn((S

k/G)\Q̄1) −֒→
∏n

1 S
k/G with the projection pJi(Sk/G) :

∏n
1 S

k/G −→

Sk/G factors through the map i′1(S
k/G) : (Sk/G)\Q̄1 −֒→ Sk/G, and so the homo-

morphism πj(i
′
n(S

k/G)) : πj(Fn((S
k/G)\Q̄1)) −→ πj(

∏n
1 S

k/G) is trivial. �

Let ∆n
j (S

k/G) denote the diagonal subgroup of
∏n

1 πj(S
k/G). We end this paper

with the following proposition.

Proposition 3.6. Let k ≥ 3 be odd, let j ≥ 2, and let G×Sk −→ Sk be a free action

of a finite group G on Sk. Then:

(1) the image of the homomorphism πj(in(S
k/G)) : πj(Fn(S

k/G)) −→
∏n

1 πj(S
k/G)

is the diagonal subgroup ∆n
j (S

k/G).
26



(2) there are split short exact sequences:

0 −→ ∆n
j (S

k/G) −→ πj

( n∏

1

Sk/G

)

−→ πj−1

(n−1∏

1

Ω(Sk/G)

)

−→ 0 and(3.2)

0 −→ πj(F
G
n−1(S

k\GQ1)) −→ πj(Fn(S
k/G)) −→ ∆n

j (S
k/G) −→ 0.(3.3)

In particular, if G is the trivial group then there is a split short exact sequence:

0 −→ πj(Fn−1(R
k)) −→ πj(Fn(S

k)) −→ ∆n
j (S

k) −→ 0.

Proof. Let j ≥ 2.

(1) First, note that the quotient map q(Sk) : Sk −→ Sk/G induces an isomorphism

πj(q(S
k)) : πj(S

k) −→ πj(S
k/G). Let sj : πj(S

k/G) −→ πj(Fn(S
k/G)) be defined

by sj = πj(ψn(S
k) ◦ λi(S

k)) ◦ (πj(q(S
k)))−1. It follows from Lemma 3.4 that:

πj(pJi(S
k/G))

∣
∣
πj(Fn(Sk/G)) ◦ sj = idπj(Sk/G)

for all 1 ≤ i ≤ n. In particular, the homomorphism πj(pJi(S
k/G))

∣
∣
πj(Fn(Sk/G)) is

surjective and admits a section sj. Taking the long exact sequence in homotopy

of the fibration

Fn−1(S
k/G\Q̄1)

j′n(S
k/G)

−֒→ Fn(S
k/G)

pJi(S
k/G)|Fn(Sk/G)

−−−−−−−−−−−→ Sk/G,

we obtain the following split short exact sequence:

0 −→ πj(Fn−1(S
k/G\Q̄1))

πj(j′n(S
k/G))

−−−−−−−→ πj(Fn(S
k/G))

πj(pJi(S
k/G)|Fn(Sk/G)

)

−−−−−−−−−−−−−→ πj(S
k/G) −→ 0.

In particular,

(3.4) πj(Fn(S
k/G)) = Im(πj(j

′
n(S

k/G)))⊕ Im(sj).

Now let 1 ≤ i, l ≤ n. By Lemma 3.4, the composition pJl(S
k/G)

∣
∣
Fn(Sk/G) ◦

ψn(S
k) ◦ λi(S

k) is homotopic to q(Sk), from which we deduce that:

πj(in(S
k/G) ◦ ψn(S

k) ◦ λi(S
k))(πj(S

k)) ⊆ ∆n
j (S

k/G).

Conversely, if α ∈ πj(S
k/G) then:

(3.5) πj(in(S
k/G) ◦ ψn(S

k) ◦ λi(S
k))((πj(q(S

k)))−1(α)) = (α, . . . , α),

and we conclude that:

∆n
j (S

k/G) = πj(in(S
k/G) ◦ ψn(S

k) ◦ λi(S
k))(πj(S

k))

= πj(in(S
k/G) ◦ ψn(S

k) ◦ λi(S
k)) ◦ (πj(q(S

k)))−1(πj(S
k/G))

= πj(in(S
k/G)) ◦ sj(πj(S

k/G)),

so

(3.6) πj(in(S
k/G))(Im(sj)) = ∆n

j (S
k/G).
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In the commutative diagram of fibrations (2.4), replace X by Sk/G, and Q1

by Q̄1. By Lemma 3.5, the homomorphism

πj(i
′
n−1(S

k/G)) : πj(Fn−1((S
k/G)\Q̄1)) −→ πj

(n−1∏

1

Sk/G

)

is trivial. Taking the long exact sequence in homotopy of (2.4), and using the

commutativity of the resulting diagram, we deduce that Im(πj(j
′
n(S

k/G))) ⊂

ker πj(in(S
k/G)). By taking the image of (3.4), it follows from this inclusion

and (3.6) that Im(πj(in(S
k/G))) = ∆n

j (S
k/G) as required.

(2) Consider the homotopy fibration

(3.7) Iin(Sk/G)

p
in(Sk/G)

−−−−−→ Fn(S
k/G)

in(Sk/G)
−−−−−→

n∏

1

Sk/G.

Taking the long exact sequence in homotopy and using part (1) and the iso-

morphism between πj(Iin(Sk/G)) and πj(F
G
n−1(S

k\GQ1)) given by Proposition 2.7,

we obtain the short exact sequence (3.3). Let s′j : ∆
n
j (S

k/G) −→ πj(Fn(S
k/G))

be defined by s′j = sj ◦ πj(pJi(S
k/G))

∣
∣
∣∆n

j (S
k/G) . If (α, . . . , α) ∈ ∆n

j (S
k/G) then

πj(in(S
k/G)) ◦ s′j(α, . . . , α) = πj(in(S

k/G)) ◦ sj(α) = (α, . . . , α) by (3.5), which

shows that (3.3) splits.

We now derive the short exact sequence (3.2). We take X = Sk in The-

orem (2.5)(3). The hypotheses of the theorem are satisfied because the inclu-

sion Sk\GQ1 −֒→ Sk is null homotopic, and the homomorphism πm(q(S
k)) :

πm(S
k) −→ πm(S

k/G) is an isomorphism for all m ≥ 2 and is injective if

m = 1. As in the statement of Theorem (2.5)(3), we consider the homo-

topy fibration (3.7), and we identify πj−1(Iin(Sk/G)) with πj(F
G
n−1(S

k\GQ1)) ×

πj−1(
∏n−1

1 Ω(Sk/G)), and πj−1(Ω(S
k/G)) with πj(S

k/G). It then follows that

the restriction to the subgroup πj(
∏n−1

1 Sk/G) of πj(
∏n

1 S
k/G) of the boundary

homomorphism ∂̂j : πj−1(Ω(
∏n

1 S
k/G)) −→ πj−1(Iin(Sk/G)) coincides with the in-

clusion of πj(
∏n−1

1 Sk/G) in πj−1(F
G
n−1(S

k\GQ1))×πj−1(Ω(
∏n−1

1 Sk/G)). On the

other hand, if α ∈ πj(S
k/G) then by part (1), (α, . . . , α) ∈ Im(πj(in(S

k/G))),

and so ∂̂j(α, . . . , α) = 0 by exactness. Applying Theorem (2.5)(3) once more,

we see that ∂̂j(0, . . . , 0, α) = ∂̂j(−α, . . . ,−α, 0) = (0,−α, . . . ,−α), where in the

final expression, 0 (resp. (−α, . . . ,−α)) corresponds to the πj(F
G
n−1(S

k\GQ1))-

factor (resp. to the πj−1(
∏n−1

1 Ω(Sk/G))-factor). It follows from these consid-

erations that Im(∂̂j) = πj−1(
∏n−1

1 Ω(Sk/G)). We then obtain the short exact

sequence (3.2) by noting that ker(∂̂j) = ∆n
j (S

k/G) by exactness and part (1).

The fact that (3.2) splits is a consequence of Theorem (2.5)(3). �
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Note that Proposition 3.6 gives a complete description of the long exact homotopy

sequence in homotopy of the homotopy fibration (3.7) in the case where G is finite

and k is odd. The study of the configuration spaces Fn(RP
2k) constitutes work in

progress.
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