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Induction Machine Bearing Faults Detection based

on a Multi-Dimensional MUSIC Algorithm and

Maximum Likelihood Estimation

ABSTRACT

Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system

reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order

to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction

machines based on Motor Current Signature Analysis (MCSA) has been widely investigated. Several high resolution

spectral estimation techniques have been developed and used to detect induction machine abnormal operating

conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions

that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in

bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been

developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used

to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault

characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement.

The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from

a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental

data are used for validation purposes.

Keywords

Induction machine, condition monitoring, bearing fault detection, signal processing, MD MUSIC, maximum

likelihood estimation.

NOMENCLATURE

MD MUSIC = Multi-Dimensional Multiple Signal Classification;

ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques;

MCSA = Motor Current Signature Analysis;
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MLE = Maximum Likelihood Estimation;

fs = Stator supply frequency;

s = Per-unit slip;

DFT = Discrete Fourier Transform;

MCMFT = Maximum Covariance Frequency Tracking;

PSD = Power Spectral Density;

SNR = Signal to Noise Ratio;

p = Pole pairs number.

1. INTRODUCTION

In a wide variety of industrial applications, an increasing demand exists to improve reliability, availabil-

ity, and safety of electrical systems. A sudden failure of a system may lead to cost-expensive downtime,

damage to surrounding equipment or even danger to humans. Induction machine is omnipresent in these

electrical systems. Although it is robust and reliable, the induction machine is subjected to several faults.

Common failures that may occur can be roughly classified into stator winding short circuit, broken rotor

bar, broken end-ring, rotor eccentricity, bearing faults, shaft misalignment, and load faults [1], [2]. In spite

of the advances in failures detection, condition monitoring of induction machine is still a challenging task

for engineers and researchers [3]–[5].

A common approach for condition monitoring is vibration monitoring [6]–[9]. However, this method

is expensive since it requires costly additional transducers. A cost-effective alternative is stator currents

analysis since currents measurement requires limited number of sensors and is already available for

control and protection purposes [10]. In [11] the authors have performed a comparative study of vibration

monitoring, stator current analysis and stray flux processing as media for induction machine mechanical

unbalance fault detection. A literature survey showed the interest of the approach for mechanical and

electrical faults detection [12]–[19]. A Hilbert-Park transform has been successfully used for mechanical

fault diagnosis in induction machines in [20]. Most authors perform induction machine faults detection

by monitoring the additional frequency components introduced by the fault. However, no precise stator

currents model under fault is given. In various works, numerical machine models accounting for the fault

are used without providing analytical stator current expressions [21].
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Theoretical analysis has shown that faulty machine frequencies of interest are given by [5], [22]

fk = fs ± kfc, k = 0, 1, · · · , L. (1)

where fs is the electrical supply frequency, fc corresponds to the fault characteristic frequency, and 2⇥L

is the sidebands number. These frequencies are associated with air-gap eccentricity, bearing failures or

broken rotor bars faults.

In steady-state condition, fs and fc are constants and techniques based on classical spectral estimators

(Periodogram and its extensions) have been employed [4], [23]. In order to overcome the low frequency

resolution of these techniques, high resolution techniques have been proposed such as MUSIC and

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [24]–[29]. Moreover, in

[30] the authors have proposed a parametric spectral estimation technique based on a maximum likelihood

estimation that outperform the conventional techniques such as discrete Fourier transform (DFT) and

MUSIC. In non stationary environment, more sophisticated techniques have been investigated such as time-

frequency representations [31]–[35] and time-scale techniques [31], [36]. In addition to the aforementioned

techniques, many faults detection procedures based on statistical analysis of the current signal have been

proposed such as MCMFT [37] and adaptive statistical time-frequency methods [38] without presenting

any fault detection criteria for an automatic fault diagnosis.

An overview of the existing works emphasizes the compromise between frequency accuracy, frequency

resolution, statistical performance and computational cost of spectrum analysis techniques for fault de-

tection in induction machine. Furthermore, it should be mentioned that the classical techniques do not

take into account the particularity of electrical signals, such as specific frequency structure of the stator

currents under faulty conditions.

In this paper, we propose a stator current signal analytical model that takes into account the particular

structure of the fault sensitive frequencies given by (1). A stator current signal model is of great interest

since it helps to develop suitable post-processing tools and detection strategies. Then, a high resolution

signal processing technique, based on this model, is developed for fault related frequency estimation.

Finally, a fault detection criterion is presented.

The major issue addressed in this paper is the development of a condition monitoring strategy that can

make an accurate and reliable assessment of the presence of specific induction machine fault conditions,

namely the bearing faults. Indeed, this paper focuses on the detection of single-point defects in a rolling



4

0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30
P
S
D

(d
B
)

Frequency (Hz)

(a) Pseudo-spectrum estimate via MUSIC. (b) MD MUSIC cost-function

Fig. 1. Cost-function for classical MUSIC and MD MUSIC (cost-function in the case of a synthetic signal with fs = 50 Hz, fc = 10 Hz,
L = 2 and SNR = 50dB).

element bearing. The proposed fault detection technique is based on three steps. First, the fundamental

frequency, the fault characteristic frequency, and the number of sidebands (equivalent to model order

selection [39], [40]) are estimated based on the MD MUSIC [41]. Then, the Maximum Likelihood

Estimator (MLE), which is an optimal technique, is used to estimate the amplitude of the fault characteristic

components. Finally, a fault detection criterion is computed using the estimated amplitudes [42]. This

criterion allows to measure the fault severity and then could be used as input for an automatic fault

detection procedure.

To illustrate the difference between the classical MUSIC algorithm [43], [44] and the proposed tech-

nique, Fig. 1 presents the MUSIC pseudo-spectrum and the MD MUSIC for a supply frequency of

fs = 50Hz, a fault characteristic frequency of fc = 10Hz, and with SNR = 50dB. Figure 1a shows

that the MUSIC pseudo-spectrum exhibits spectral peaks at fs ± kfc. In contrast to the classical MUSIC,

the proposed technique tracks the supply frequency and the characteristic frequency in a two-dimensional

space. Figure 1b shows that the multi-dimensional cost-function, which exhibits a single peak at fs = 50Hz

and fc = 10Hz. Compared to MUSIC, the proposed technique makes the estimation of fs and fc (and

the subsequent processing) easier. Furthermore, as it exploits more information about the signal (the fault

characteristic frequencies are introduced in the faulty induction machine stator current model), the proposed

technique is expected to outperform the classical MUSIC algorithm. Finally, the proposed method allows

to measure the fault related frequencies amplitude when the classical MUSIC does not give the true PSD

(not the amplitude of the frequency bins).
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The major contributions of this paper are threefold:

- We propose a new model order and spectral estimation technique aiming at detecting the induction

machine fault frequency signatures.

- We demonstrate the appropriateness of the approach on bearing fault detection in induction machine.

In fact, it makes a potential failure identifiable and quantifiable.

- We prove the effectiveness of the technique on simulated and experimental data.

The remaining parts of the present work are organized as follows. Section 2 analyzes the effects of

machine bearing faults on the stator current and presents a stator current signal analytical model based on

the fault frequencies analytically reported in the literature. Section 3 describes the fault detection method

based on advanced signal processing technique. Simulation results are presented in section 4 for bearing

faults detection using air-gap eccentricity for emulation purposes. Then, experimental results reported in

section 5 show the potentiality of the proposed methodology as a suited tool for bearing faults features

extraction. Finally, section 6 concludes this work.

2. INDUCTION MACHINE STATOR CURRENT MODEL

The following section presents the effects of air-gap eccentricity and bearing faults on the stator currents.

Then, a stator current signal model for healthy and faulty machine with bearing faults is presented.

A. Bearing Fault Types and Fault-Related Components

Bearing failure is one of the foremost causes of breakdowns in rotating machinery, resulting in costly

downtime [2]. Bearing faults can be categorized as either single-point defects or generalized roughness.

Generalized roughness is the most common damage occurring to rolling bearings [45]. It produces

unpredictable broadband effects in the machines vibration and current spectrum, but it seems to be

feasible to detect them by means of the temporal vibration signal Root Mean Square analysis [46] or

spectral Kurtosis energy of vibration or current signals [45]. In contrast, single-point defects are localized

and can be classified according to the following affected elements: outer raceway defect, inner raceway

defect, ball defect, cage fault. It may be similar to an incipient fault, with a spall created by a material

defect, or a crater caused by bearing current.

This paper will particularly focus on bearing single-point defects. This type of fault produces a pre-

dictable characteristic fault frequencies in the vibration and currents waveforms [47]–[49]. In fact, local
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Fig. 2. Bearing structure with main dimensions.

or wear defects cause periodic impulses in vibration signals. Amplitude and frequency of such impulses

are determined by shaft rotational speed, fault location, and bearing dimensions. The frequency of these

impulses is given by (2)

8
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where fc corresponds to fundamental cage frequency, fbd is ball defect frequency, fid is inner race defect

frequency, and fod corresponds to outer race defect frequency. The parameter fr refers to shaft rotation

frequency, nr is the number of rollers, d is the roller diameter, D is the pitch diameter of the bearing,

and ↵ is the contact angle (Fig. 2).

Since ball bearings support the rotor, any bearing defect will produce a radial motion between the

rotor and the stator of the machine (air-gap eccentricity), which may lead to anomalies in the air-gap flux

density. As the stator current for given phase is linked to flux density, the stator current is affected as well

by the bearing defect [47], [49]. Hence, the eccentricity fault is used in order to emulate bearing faults on

the numerical model of the induction machine. The bearing fault generates stator currents at frequencies

given by (3).

fbear = |fs ⌥ kfd| (3)
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where k = 1, 2, 3, ... and fd is one of the characteristic vibration frequencies given by (2).

The bearing faults and the air-gap eccentricity can be detected by monitoring the machine current

spectral components produced by the magnetic field anomaly. This condition monitoring approach provides

the advantage of not requiring any knowledge about the machine construction. The air-gap eccentricity

and bearing faults sensitive frequencies are given by [4], [5]

fecc = fs


1±m

✓
1� s

p

◆�
; m = 1, 2, 3, ... fbear = |fs ± kfd|; k = 1, 2, 3, ... (4)

These faults characteristic frequencies can be expressed in the general form of (1). In the following,

we propose a stator current signal model based on these fault characteristic frequencies.

B. Signal Model

In this paper, we consider a stator current signal model composed of 2⇥L+1 complex-valued sinusoids.

The proposed technique relies on the following assumption:

� H1: The signal is assumed to be corrupted by an additive white noise. This assumption is not

particularly restrictive since the noise can be whitened by appropriate choice of the sampling

frequency or by filtering the signal by a linear whitening filter [43, Chapter 4, Parametric Methods

for line spectra, Introduction]. Moreover, the central limit theorem, which states that, given certain

conditions, the sum of a sufficiently large number of independent and identically random variables

are approximately Gaussian distributed [50], [51].

� H2: The phases of the complex sinusoids are independent and uniformly distributed on the interval

[�⇡, ⇡[ and ak > 0. We need to specify the sign of ak in order to avoid phase indetermination.

Using (1), the stator current can be expressed as:

x[n] =
LX

k=�L

ake
j((!s+k!c)n+�k)

+ b[n] (5)

where :

� The normalized pulsations !s and !c are defined as

!s = 2⇡fs/Fs !c = 2⇡fc/Fs (6)
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where Fs corresponds to the sampling rate;

� ak and �k denote the amplitude and the phase of the kth sinusoid;

� b[n] ⇠ Nc(0, �
2
) is a complex circular white Gaussian noise i.e.:

E[b(n)] = 0 E[b(n)b(n+ ⌧)] = 0 E[b(n)b⇤(n+ ⌧)] = �2�(⌧) (7)

where E{.}, (.)⇤ and �(.) correspond to the statistical expectation, the complex conjugate and the

Dirac delta, respectively.

One can notice that if !s = 0 rad.s�1 then the signal corresponds to a periodic waveform. Furthermore,

if !c = 0 rad.s�1 or L = 0, the model reduces to a single complex sine wave embedded in Gaussian

noise.

Let us construct the column vector, x[n], that contains M consecutive samples of the observed signal

i.e.

x[n] = [x[n], · · · , x[n+M � 1]]

T (8)

where (.)T denotes the matrix transpose. Using a matrix notation, (5) can be expressed as

x[n] = D(fs, n)A(fc, n)s + b[n] (9)

where:

� b[n] is a M ⇥ 1 column vector containing the noise samples. This vector is defined as:

b[n] = [b[n], · · · , b[n+M � 1]]

T (10)

� s is a (2⇥ L+ 1)⇥ 1 column vector containing the complex sine waves amplitudes. This vector is

defined as

s = [a�Le
j��L , · · · , aLej�L

]

T (11)

� D(fs, n) is a M ⇥M diagonal matrix whose elements are given by

D(fs, n) = diag

�⇥
ej!sn, ej!s(n+1), . . . , ej!s(n+M�1)

⇤�
(12)
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� A(fc, n) is a M ⇥ (2L+ 1) Vandermonde matrix at time n whose elements are given by

A(fc, n) =
h
z�L(n) . . . zL(n)

i
(13)

where the mth entry of the column vector zk(n) 2 CM is defined as [zk(n)]m = ej!ck(n+m�1).

Since x(n) has length M and we have N observations of x(n), we can thus construct a set of

G = N �M + 1 different subvectors {x(n)}G�1
n=0 .

� The Vandermonde matrix D(fs, n)A(fc, n) at time n has rank 2L+1, which implies that M > 2L+1

and fc 6= 0 Hz [43, section 4.2.3].

Using the signal model in (9), we propose to estimate the model parameters, namely !s, !c and the

complex amplitudes ale
j�l , from x(n) (n = 0, · · · , N � 1), where N corresponds to the signal length.

3. HIGH RESOLUTION FAULT SIGNATURE ANALYSIS

In this section, we describe our power spectrum density estimator based on the MD MUSIC. Then, we

derive the maximum likelihood estimator of the amplitudes. Finally, we describe the proposed criterion

for fault detection. In the following, for the sake of simplicity, let us note A = A(fc, n) and D = D(fs, n)

A. MD MUSIC-Based Frequency Estimation

Based on the assumption H2, the covariance matrix is given by

R =E{x[n]xH
[n]} = E

(
(DAs + b[n])⇥ (DAs + b[n])H

)
= (DA) P (DA)

H
+ �2 IM (14)

where (.)H refers to Hermitian matrix transpose, IM is the M ⇥M identity matrix and

P = E{ssH}. (15)

The covariance matrix eigenvalues decomposition can be written as follows

R = U⇤UH (16)

where ⇤ is a diagonal matrix containing the eigenvalues �1 � · · · � �M of R and U is a unitary matrix

containing the associated eigenvectors. Under the assumption H1 and the fact that P is non-singular, the
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diagonal matrix ⇤ can be decomposed as

⇤ =

2

64
� 0

0 �2IM�2L�1

3

75 (17)

where � is a diagonal matrix containing the 2 ⇥ L + 1 greatest eigenvalues of ⇤. Figure 3 shows an

ordered eigenvalues distribution model for a signal composed of 2L + 1 complex sine waves embedded

in a white noise with variance �2. Let us decompose U as follows

U = [S G] (18)

where:

� S is a M ⇥ (2L + 1) matrix formed from the eigenvectors associated with the 2 ⇥ L + 1 greatest

eigenvalues,

� G is a M ⇥ (M �2L�1) matrix formed from the eigenvectors associated with the M � (2⇥L+1)

least significant ones.

Using (14), it can be shown that:

RG = (DA) P (DA)

HG + �2 G (19)

As U is a unitary matrix (UHU = IM ), SHG = 0 and GHG = IM�(2⇥L+1). Then, using (16) and (17), it

follows that

RG = U⇤UHG = [S G]

2

64
� 0

0 �2IM�2L�1

3

75

2

64
SH

GH

3

75G = [S G]

2

64
� 0

0 �2IM�2L�1

3

75

2

64
0

IM�(2⇥L+1)

3

75

(20a)

= [S G]

2

64
0

�2IM�(2⇥L+1)

3

75 (20b)

= �2G. (20c)

Substituting (20c) in (19), we obtain the following result

(DA) P (DA)

HG = 0 (21)
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which readily implies

(DA)

HG = 0. (22)

In practice, the samples covariance matrix R is unknown and should be estimated from the available

data. Let

bR =

1

G

G�1X

n=0

x[n]x[n]H (23)

be the estimator of the covariance matrix and bU = [

bS bG] be its corresponding eigenvectors. The frequencies

fs and fc can then be found as follows

{bfs, bfc} = arg max

{f0,f1}
J (f0, f1) (24)

where

J (f0, f1) =
1

���(D(f0)A(f1))H bG
���
2

F

(25)

and where k.k2F denotes the Frobenius norm. If bG = G, (22) and (25) show that the cost-function J (f0, f1)

tends to infinity for f0 = fs and f1 = fc. In practice, as bG ⇡ G, J (fs, fc) has a finite value. Figure 1b

displays the cost-function for a synthetic signal with fs = 50 Hz, fc = 10 Hz, L = 2 and SNR = 50dB.

It can be observed that the cost-function exhibits a well-defined peak at f0 = 50Hz and f1 = 10Hz.
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The proposed approach requires a priori knowledge about the number of sidebands L for the evaluation

of the cost-function. In fact, the estimation of L is of great interest since it allows to improve the frequency

estimation (determine the borders between the signal subspace and the noise subspace, which is the most

important step on MD MUSIC algorithm). Moreover, the L estimate carries out the information about the

fault existence. For L = 0, the induction machine operate under healthy condition. When L 6= 0, a fault

occurs and a criterion must be computed in order to determine the fault severity. Finally, It permits to

enhance the sensitivity of the fault criterion.

If the number of sidebands is unknown, the cost-function can be modified to take into account the

estimation of L. Indeed, by following the approach in [52], it can be shown that the fundamental frequency,

the fault characteristic frequency, and the number of sidebands L can be estimated by maximizing the

following three-dimensional cost-function

Jc(f0, f1, L) =
(2L+ 1)M(M � 2L� 1)

���(D(f0)A(f1))H bG
���
2

F

. (26)

For a grid connected induction machine, the supply frequency fs can be assumed to be known. Thus,

exploiting this assumption, the cost-function reduces to a two-dimensional one and the optimization

problem can be solved using a two-dimensional grid search. For illustration, Fig. 4 displays the proposed

cost-function for estimating the number of sidebands L, assuming that the fundamental frequency fs is

known. The synthetic signal is the same as the one of Fig. 1 (L = 2, fc = 10Hz). The figure shows that

the proposed method correctly estimates L and fc.

B. MD MUSIC Efficient Implementation

1) MD MUSIC implementation using FFT: The two major sources of higher computational complexity

of the proposed method are the computation of the eigenvalues decomposition (EVD) of the covariance

matrix in (23), and the 3�D optimization problem in (26). In the following, we will show how the cost-

function in (26) can be computed efficiently. Let us define the Fourier matrix F 2 CF⇥F , with F � N ,
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as

F =

2

666666664

1 1 1 . . . 1

1 z1 z2 . . . z(F�1)

...
...

...
...

1 zF�1 z2(F�1) . . . z(F�1)(F�1)

3

777777775

(27)

where z = e�j2⇡(1/F ). Next, let us define a matrix H 2 RF⇥M containing the squared absolute values of

the inverse FFT of the zero-padded eigenvectors in U given by (16) as

[H]lm =

�������

2

64FH

2

64
U

0

3

75

3

75

lm

�������

2

(28)

with [H]lm being the (l,m)

th element of H. For a candidate of fundamental frequency 2⇡(f0/F ), the fault

related frequency 2⇡(f1/F ), and model order L, the Frobenius norm can be calculated as follows

���(DA)

H bG
���
2

F
=

MX

m=2⇥L+2

2⇥L+1X

l=0

[H]([f0±l⇥f1]+1)m (29)
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Thus, the complexity of calculating the cost-function given by (26) for different fs, fc, and L can

be significantly reduced by calculating the inverse FFT of all eigenvectors once for each given data set.

Finally, a sufficiently accurate results at a reasonable computational complexity are obtained using the

FFT-based method by maximizing the following cost-function:

Jc(f0, f1, L) =
(2L+ 1)M(M � 2L� 1)

PM
m=2L+2

P2⇥L+1
l=0 [H]([f0±l⇥f1]+1)m

(30)

The relation above gives the relationship between the MUSIC and the Fourier transform, which can be

implemented easily using the FFT algorithm. Moreover, this makes the approximate approach attractive

since most DSP-boards include functions for FFT computation. This method gives a coarse estimator of

the fundamental frequency, fault related frequency, and model order L. However, it is more appropriate for

faults parameters tracking especially for fast varying parameters. If a very accurate estimates are desired,

a refined estimate can be found using the initial cost-function associated with appropriate optimization

procedure.

2) Numerical optimization: The maximum of the cost-function in (26) can not be found analytically.

Moreover, it is highly multimodal function. Hence, numerical optimization techniques adapted to multi-

modal functions with various local minima and maxima are required. Since the search space is relatively

limited for fundamental frequency fs and L, a fixed grid search has been first implemented. This method

has the advantage of providing the global maximum in the search space with respect to the chosen grid.

However, it is time consuming and requires a fine discretization of the search space to obtain accurate

results. Newton-Raphson method is a quite attractive and powerful method. Unfortunately, it requires the

computation of the gradient and the Hessian of the cost-function. Moreover, the algorithm can converge

to local minima. An efficient class of optimization algorithms are evolutionary algorithms, which include

evolutionary programming [53], evolution strategies, and genetic algorithms [54]. The latter outperforms

the previously discussed methods in terms of accuracy and computational cost [55]. Consequently, genetic

algorithms have been chosen for our application.

C. MD-MUSIC for non-stationary signals

The implementation of the MD MUSIC-based technique is based on a batch estimation of eigenvectors

of an estimate of signal covariance matrix, making them unsuitable for adaptive processing that is needed
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for non-stationary signal parameters tracking. In fact, the MD MUSIC described earlier is adequate when

the stator current are supposed to be stationary. For variable speed drives and transients, the proposed

approach can be used for high resolution PSD estimation based on short data acquisition length. In fact,

assuming that the signals are stationary for short times, the proposed approach can be used adaptively in

order to track the evolution of the fundamental frequency, and the fault related frequency with respect

to time. These estimates can be obtained by computing the covariance matrix and the cost-function for

consecutive time-frames.

The proposed multidimensional MUSIC relies on the covariance matrix estimation. To do this in

a manner that facilitates adaptivity, we may employ the following estimate based on an exponential

forgetting factor 0 < � < 1 [56]:

R(n) = (1� �)R(n� 1) + �x(n)xH
(n) (31)

The forgetting factor controls the trade-off between estimation accuracy and parameters tracking per-

formance of the proposed algorithm. A significant value of the forgetting factor gives less weight to older

samples, while a small value gives less weight to newer samples. Once the covariance matrix is estimated,

the frequency content and the model order L may be estimated as described in (26).

D. Maximum Likelihood-Based Amplitude Estimation

The amplitudes of the frequency components convey the information about the fault severity. These

amplitudes are contained in the vector s. The amplitudes and phases can be seen in (9) to be linear complex

parameters that can be easily found given the fundamental frequency and the fault related frequency. Note

that in practice fc and fs are unknown and must be replaced by their estimates in (32) (see the previous

subsection for details). Indeed, maximum likelihood estimator (MLE) of the complex amplitudes s, denoted

bs, is given by [57]

bs =
 

G�1X

n=0

(DA)

H
(n)(DA)(n)

!�1

⇥
G�1X

n=0

(DA)

H
(n)x[n] (32)

Let us decompose the (2L+ 1)⇥ 1 column vector bs as

bs = [bs�L, bs�L+1, · · · , bsL�1, bsL]T . (33)
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Using the structure of s in (11), the amplitudes ak can be estimated by

bak = |bsk| . (34)

The MLE of the amplitudes of the complex sinusoids is efficient [57, Theorem 7.5].

E. Fault Detection Criterion

In order to successfully perform fault detection, a fault criterion is required to measure the machine

state and fault severity. Since the information about the fault is carried out by the sidebands amplitude

ak(k 6= 0), we propose to compute the sidebands energy to fundamental frequency energy ratio as a fault

indicator [58]. This criterion is expressed mathematically as

C =

LX

k=�L,k 6=0

✓
ba2k
ba20

◆
. (35)

This criterion allows to measure the fault severity. It can be used as an input for a fault decision

algorithm to automatically take decision on the operating state and condition of the machine and detecting

any abnormal operating conditions.

The proposed fault detection algorithm is summed up in Fig. 5.

4. NUMERICAL SIMULATIONS

This section presents the simulation results on stator current issued from a coupled electromagnetic

circuits approach-based simulation tool [21], [59]. The proposed approach has been used to detect air-gap

eccentricity, emulating bearing faults, whose characteristic frequencies match the analytical stator current

model presented in (1).

A. Induction machine modeling

The machine modeling under faulty conditions has been performed based on the coupled electromagnetic

circuits method. The detailed description of this model can be found in [60]. All parameters are calculated

from the actual geometry and winding layout of the machines rather than from transformed or equivalent

variables.

The considered machine in this study is a three-phase squirrel-cage induction motor with four poles,

4 kW/50 Hz, 230/400 V. The machine has 28 rotor bars and 48 stator slots. The machine remaining
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Recording a new data x[n]
Stator current
signal model

Find { bfs, bfc, bL} with (26)

Estimate bs with (32)

Estimate bak with (34)

Compute C with (35)

Continue test ?

Fault severity/Decision making

YES

NO

Fig. 5. Flowchart of the fault detection algorithm.

Rotor

Stator

•

(a) Static eccentricity.

Rotor

Stator

•
✓(t)

(b) Dynamic eccentricity.

Rotor

Stator

•
✓(t)

(c) Mixed eccentricity.

Fig. 6. Different types of eccentricity.

parameters are given in Appendix A. It has been demonstrated that single-point bearings faults have an

effect over the machine eccentricity and/or load variations [49], [61], [62]. In fact, bearing fault will induce

mechanical eccentricities, but also load-torque variations. Hence, in the carried-out simulations, bearing

faults are emulated by generating only one sort of physical phenomena: rotating eccentricities at bearing

characteristic fault frequency fc. These eccentricities lead to periodical changes in the induction machine

inductances [49]. Three types of eccentricity are considered; the static, dynamic and mixed eccentricity

as illustrated by Fig. 6.
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Fig. 7. Stator current PSD for a healthy and a faulty machine (Mixed eccentricity).

The faults have been implemented and stator currents have been retrieved at 2 kHz sampling rate for

2s. The stator current PSD for 100% loaded faulty induction machine with 10% mixed eccentricity is

given by Fig. 7. Figure 7a gives the stator current Periodogram while Figs. 7b and 7c depict the MUSIC

and the proposed approach based PSD. These figures show that, for a faulty induction machine, the stator

currents model corresponds to the one proposed within this paper. In fact, sidebands appear around the

fundamental frequency due to eccentricity fault.

In the following, a single phase stator current has been processed using the proposed MD MUSIC for

fault detection. Then, the MLE is used for fault related frequency amplitudes estimation. Finally, the fault

criterion C has been computed in order to measure the fault severity.

B. Emulated Bearing Faults Detection

Table 1 gives the simulation results for 10% air-gap eccentricity faults detection based on the proposed

approach for a fully loaded induction machine.

These results demonstrate the appropriateness of the proposed approach. In fact, the MD MUSIC allows

to distinguish faulty machine from the healthy one by estimating the model order L. It is interesting

to notice that the proposed approach may be used to distinguish the static eccentricity and the dynamic

(mixed) eccentricity based on the model order L. In fact, for static eccentricity the model order is equal to 1,

while for dynamic (mixed) this parameter is equal to 2. Moreover, as compared with the classical MUSIC,

the proposed approach allows to measure the fault related frequency amplitudes. Once the amplitudes are

estimated, the criterion is computed in order to measure the fault severity. This fault detection criterion
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Table 1
MD MUSIC: RESULTS FOR SIMULATED HEALTHY AND FAULTY MACHINE WITH EMULATED BEARING FAULTS.

State
bfc

(Hz)

bfs
(Hz)

bL
bak
(A)

C
(⇥10

�3)
Healthy �� 50 0 a0 = 10.5 0

23.15 50.001

1 a�1 = 0.35

1.7
Static a0 = 10.11

ecc. a1 = 0.21

23.19 50.04

2 a�2 = 0.69

4.5
a�1 = 0.075

Dynamic a0 = 10.43

ecc. a1 = 0.042

a2 = 0.002

26.14 49.98

2 a�2 = 0.18

0.53
a�1 = 0.12

Mixed a0 = 10.44

ecc. a1 = 0.1

a2 = 0.34
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Fig. 8. Eccentricity fault detection-based on the proposed MD MUSIC based approach.

may be used as an input for decision algorithm.

In order to prove the effectiveness of the proposed approach for fault severity tracking, several simu-

lations have been performed with different air-gap eccentricity degrees and for various load conditions.

Figure 8 shows the proposed fault detection criterion variation for the static, dynamic, and mixed eccen-

tricities and for different load conditions.

The achieved results clearly show that the proposed approach is able to detect a very low degree of
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eccentricity regardless of the load conditions. Moreover, it can be seen that the fault severity increases

when load increases even though the eccentricity degree remains the same.

5. EXPERIMENTAL RESULTS

This section reports on the performance of the proposed approach for bearing faults detection in

induction machine. The experimental setup is described first, then the proposed approach is applied off-line

in Matlab R� for different bearing faults severity.

A. Experimental Setup Description

A conventional 0.75kW induction machine drive test rig is used in order to test the proposed fault

detection and diagnosis approach. The test rig scheme is given by Fig. 9 and the rated data of the used

induction machine are given in Appendix B.

Synchro.
generator

DC
motor

DC
generator

Induction machine

Load Tacho generator

Data acqui.
card 10 kHz

Fault detection algorithm

R
S
T

Fig. 9. Test rig scheme.

The test rig mechanical part is composed by a synchronous and an induction machine. The induction

machine is fed by the synchronous generator in order to eliminate time-harmonics. In fact, when fed

by a PWM inverter, the induction motor is subjected to voltage harmonics. Depending on the type of

the used PWM, the switching frequency and the control strategy, the motor currents contain several
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PSD estimation
approach Periodogram MUSIC Proposed approach Proposed approach

(using FFT)
CPU time 0.062 sec 0.22 sec 9.89 sec 1.02 sec

Table 2
COMPUTATIONAL COST OF FFT, MUSIC AND THE PROPOSED APPROACH.

time-harmonics. These time-harmonics can complicate the fault detection process. Moreover, inverters

can generate potentially damaging bearing currents. This way, the currents flowing through the induction

motor windings are considered near-sinusoidal currents. Indeed, this will automatically eliminate supply

harmonics and therefore allow focusing only on bearing faults effect on the stator current. The induction

machine has two 6204.2 ZR type bearings (single row and deep groove ball bearings). Bearing faults are

obtained by simply drilling holes in different parts.

The measured quantities for off-line bearing fault detection were the line-currents. For all the experi-

ments, the stator fundamental frequency was equal to fs = 50 Hz. All the signals were acquired at a 1kHz

sampling frequency for 20s by a data acquisition card and processed using Matlab R�. As the information

relative to the bearing faults is mostly contained in the low frequency band, these signals were down-

sampled at 200 Hz sampling rate. The stator current waveform and the corresponding PSD based on the

Periodogram, the MUSIC and the proposed approach are given by Fig. 10. It can be observed from Fig.

10a that the frequency components related to the fault are present even in the case of a healthy machine.

However, their amplitudes increase in the presence of bearing fault. The proposed approach (Fig. 10c)

allows to discriminate the frequency components related to the fault and those, which may be related

to manufacturing problems or shaft misalignment. The latter are considered as belonging to the noise

subspace. Concerning the computational complexity, the CPU time requirements (performed on 1 second

signal on a HP ProBook PC at 2.2 GHz, using Matlab R�) for the PSD evaluation based on the three

approaches is given by Table 2. It can be observed that the proposed approach has higher computational

cost than MUSIC or FFT. However, unlike FFT or MUSIC, the proposed approach allows to directly

measure a fault indicator while FFT or MUSIC give the signal spectrum. Moreover, the bearing degradation

does not evolve rapidly, which make the fault diagnosis based on the proposed technique interesting. It must

be emphasized that the proposed approach computational cost depends on the method used to compute

the covariance matrix, its eigenvalues and the optimization technique (grid search, gradient, Newton, etc.)

used in order to resolve the 3-D optimization problem. Furthermore, as discussed in 3.2.1 the proposed

approach can be implemented based on FFT in order to drastically decrease the computational cost.
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(c) Proposed approach-based spectrum.

Fig. 10. Classical spectrum analysis techniques on experimental data.

Figure 11 gives the stator current waveform in the case of healthy and faulty machine with the

corresponding spectrogram. This figure shows that bearing fault can be detected using the stator current

since the spectrogram with bearing fault exhibits sidebands around the supply frequency introduced by the

fault. Moreover, the sidebands amplitude changes with respect to time. For these reasons, the proposed

algorithm is used in order to track the fault severity with respect to time.

The next section describes the appropriateness of the proposed technique for bearing fault detection on

the experimental data.

B. Experimental Results Analysis: Artificially Deteriorated Bearings

The off-line experimental results are summarized on Table 3 for several fault severities. This Table

presents the fault criterion variation for healthy and faulty induction machine. The signal length was

equal to 1s for these simulations.

This table highlights the presence of the sidebands even if the machine is healthy since the model order

is non-zero. A non-zero model order means that the healthy machine presents some asymmetries, which

are dues to manufacturing problems [63]. However, these sidebands amplitude is lower than in the faulty

case. The criterion computed using these amplitudes increases in the case of faulty machine. Therefore,

It can be assumed that the proposed fault criterion, which is based on MD MUSIC and MLE for the

amplitude, gives a reliable fault indicator.

In order to investigate the criterion variations with respect to time, experiments have been performed

for 20 seconds. The proposed approach was then applied on signal sub-vectors in order to demonstrate



23

0 5 10 15 20
−3

−2

−1

0

1

2

3

S
ig
n
a
l
(A

)

Time(sec)

(a) Stator current waveform in healthy case.

0
5

10
15

20

020406080100
−50

−40

−30

−20

−10

Time (sec)

Spectrogram

Frequency (Hz)

(b) Stator current spectrogram in healthy case.

0 5 10 15 20
−3

−2

−1

0

1

2

3

S
ig
n
al

(A
)

Time(sec)

(c) Stator current waveform with bearing fault.

0
5

10
15

20

020406080100
−50

−40

−30

−20

−10

Time (sec)

Spectrogram

Frequency (Hz)

(d) Stator current spectrogram with bearing fault.

Fig. 11. Experimental data analysis.

the usefulness of the proposed approach for fault tracking. Figure 12 summarizes the experimental results

for several fault severities.

From this figure, it can be concluded that the proposed fault detection criterion is sensitive to the fault

but varies with respect to time. However, It remains higher in the case of a faulty machine compared to

the healthy one.

6. CONCLUSION

This paper have proposed a new induction machine faults detection scheme using the stator current.

Indeed, MD MUSIC associated with MLE has been proposed and demonstrated for bearing faults detection

in induction machines. The model order estimation (sidebands number produced by the fault and there

localization) enhances the fault indicator reliability and then allows to detect incipient faults. This method

could be adapted to any kind of fault assuming that the fault characteristic frequencies are known.
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Table 3
MD MUSIC: RESULTS FOR EXPERIMENTAL HEALTHY AND FAULTY MACHINES WITH L ESTIMATION FOR BEARING FAULTS DETECTION.

State
bfs

(Hz)

bfc
(Hz)

bL
bak
(A)

C
(⇥10

�5)

Healthy
machine

49.92 8.4020 2

a�2 = 0.0014

a�1 = 0.0012

a0 = 2.1648

a1 = 0.0016

a2 = 0.0032

0.33736

Bearing
fault

(severity 1)
49.99 24.918 1

a�1 = 0.0081

a0 = 2.1371

a1 = 0.006

2.2116

Bearing
fault

(severity 2)
50.07 24.8294 2

a�2 = 0.0066

a�1 = 0.0105

a0 = 1.9856

a1 = 0.0069

a2 = 0.0039

5.5043

Bearing
fault

(severity 3)
50.05 24.8401 2

a�2 = 0.0094

a�1 = 0.0110

a0 = 2.0837

a1 = 0.0079

a2 = 0.0058

7.037

The proposed bearing fault detection was first tested using stator currents issued from coupled elec-

tromagnetic circuits approach based tool. Then, an experimental validation was performed on induction

machine with bearing faults. The carried-out simulations and experiments obviously confirm the appro-

priateness of the stator current model and the proposed MD MUSIC-MLE fault detection approach.

The advantages of this noninvasive approach compared to other existing methods are its ability to

extract information about the fault existence and then to compute criterion allowing to measure its severity.

Moreover, the frequency components introduced by the fault depend on the machine operating conditions.

Consequently, the proposed approach allows to directly estimate the fault characteristic frequency without

estimating the machine speed or slip.

Further investigations are required in order to validate the proposed approach on generalized roughness,

which is the most common damage occurring on rolling bearings. Additional works will be performed in

order to propose an appropriate optimization algorithm that may contribute to decrease the computational
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Fig. 12. Criterion variations for bearing fault detection using the proposed MD MUSIC-based approach.

cost. Moreover, the proposed approach will be validated for variable frequency power supply and adjustable

speed drives.
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APPENDIX A

Table 4
RATED DATA OF THE SIMULATED INDUCTION MACHINE.

Symbol Quantity Machine
Pn nominal power 4 kW
fs supply frequency 50 Hz
Vn supply voltage 230/400 V
In nominal current 9.1 A
⌦n nominal speed 1425 rpm
p number of pole pairs 2
q number of rotor bars 28
Ns number of stator slots 48
J inertia 0.0131 kg ·m2

Rs stator phase resistance 1.5 ⌦

Rb bar resistance 69.9 · 10�6
⌦

Re end ring resistance 5 · 10�6
⌦

Lb rotor bar leakage inductance 0.28 · 10�6 H
Le end ring leakage inductance 0.036 · 10�6 H
L length of the magnetic circuit 148 · 10�3 m
Rav average radius of the air-gap 45 · 10�3 m
e air-gap thickness 0.28 · 10�3 m

APPENDIX B

Table 5
RATED DATA OF THE TESTED INDUCTION MACHINE.

Quantity Machine
nominal power 0.75 kW

supply frequency 50 Hz
supply voltage 220/380 V

nominal current 3.4/1.95 A
nominal speed 2780 rpm

number of pole pairs p =1
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