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Abstract—Adaptive beam re-shooting is proposed as a solution
to overcome essential limitations of the Gaussian Beam Shooting
technique. The proposed algorithm is based on iterative frame
decompositions of beam fields in situations where usual paraxial
formulas fail to give accurate enough results, such as interactions
with finite obstacle edges. Collimated beam fields are successively
re-expanded on narrow and wide window frames, allowing for
re-shooting and further propagation of collimated beams. Closed-
form formulas used in the course of these re-expansions are
presented, as well as first numerical tests of accuracy.

I. INTRODUCTION

Gaussian Beam Shooting (GBS) has been proposed as an
alternative to ray based methods to perform field computations
in the context of large problems involving multiple interactions
with the environment and/or propagation in non homogeneous
media. The main advantages of GBS as compared to ray based
methods are the absence of caustics, the relatively moderate
number of beams to launch by comparison with the number
of rays in full 3D problems, the localization of beam fields
around the beam axis.

Frame theory offers a rigorous mathematical ground to
the decomposition of source fields on a set of Gaussian
windows radiating paraxial Gaussian beams (GB) [1]–[3].
In this communication we propose to use this technique
iteratively in the course of a GBS algorithm, to overcome
two major deficiencies of the GBS technique: firstly, the lack
of accuracy of GB paraxial formulas for large propagating
distances and far away from the beam axis; secondly, the
fact that paraxial GB reflection and refraction formulas do
not account for abrupt transitions occuring in the presence
of edges. The proposed algorithm is based on re-shooting
beams from new frame decompositions performed either on
virtual planes or on planar or smoothly curved surfaces of
finite extension. To this end, beam fields are first decomposed
on a frame of spatially narrow Gaussian windows. The frame
coefficients on a frame of spatially wide (i.e. spectrally narrow)
windows are then obtained by a frame change performed
by a matrix-vector product. The use of these two successive
frames makes it possible to take into account both abrupt
transitions in space (via the spatially narrow windows) and
paraxial transformations (via the spectrally narrow windows).

The final decomposition on spatially wide windows is used
to launch a new set of well collimated paraxial beams, which
propagate the fields after their interaction with the encountered
obstacle surface.

It must be stressed that the re-expansion algorithm relies
on the assumption that the field distribution on the diffracting
obstacle is known. In the following, a Physical Optics (PO)
like assumption will be used, taking truncated incident fields
as the field distribution on the surface of the obstacle or
in an aperture. Applying re-expansion to transformed fields,
obtained by coupling to an exact method, would increase
the computational cost, but could be found interesting in the
case of very large problems where only a small proportion of
launched beams are diffracted. The basic PO-like algorithm
presented here could undoubtedly benefit from complementing
its “diffracted” fields with Gaussian beam summation repre-
sentations of half plane diffraction and line source radiation
[4], [5] and with Complex Source Point formulations for beam
diffraction [6].

In Section II, frame decomposition and paraxial GBS are
shortly outlined (II-A) before presenting the formulation of
beam re-expansion of propagated beam fields impinging on
the edge of an obstacle with plane interface of limited size
(II-B). Numerical results will validate this approach and give
indications about its numerical implementation in Section III.

II. DESCRIPTION OF THE ALGORITHM

A. Frame decomposition and Gaussian beam shooting

In the L2(R) Hilbert space, the set of Gaussian functions

ψµ(x) = ψ(x−mx̄)eink̄x(x−mx̄), µ = (m,n) ∈ Z2 ,

with ψ(x) =
√√

2
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L2 , is a frame if and only if x̄k̄x = 2πν
with ν < 1 (oversampling factor) [7]. x̄ and k̄x are respectively
the spatial and spectral domain translation step. In the follow-
ing, we shall use frames in L2(R2) defined by the product of
two frames in L2(R), to represent field distributions in planes.
Unless specified, the same frame parameters will be used along
both variables in R2, and the same oversampling factor will
be used in spatial and spectral domains (“balanced” frames),



hence x̄ = L
√
ν. For the sake of simplicity, we shall present

scalar formulations, valid for field components.
Frames are (over)-complete sets of functions in the relevant

Hilbert space, thus any field distribution can be represented
as a sum of weighted Gaussian frame windows. The weights
or “frame coefficients” are obtained by projecting the field
distribution on the “dual frame” windows. The “dual frame”
windows can be approximated by the initial frame windows
multiplied by a constant factor [3]. The more overcomplete
the initial frame, i.e. the smaller the oversampling factor ν,
the more accurate this approximation is.

GBS is relatively easy to perform from such frame de-
compositions: each Gaussian window radiates in the form
of a paraxial Gaussian beam, in as much as its parameter
L, characterizing its spatial width, is large enough to ensure
sufficient collimation [8]. Such beam fields can be expressed
in the form of complex rays:
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In this expression x = (x, y) is the position vector of a
point in the plane of decomposition, in the cartesian system
of coordinates (x, y, z); µ = (m,n, p, q) is a composite index
in Z4, with m (resp. p) the translation index in space along
x (resp. y), and n (resp. q) the translation index in spectral
domain along kx (resp. ky). (xb, zb) is a system of coordinates
associated to the beam: the zb axis is the “beam axis”, and it
is directed along the wavevector with projection (nk̄x, qk̄y) in
the (x, y) plane. The beam complex curvature matrix Γ(zb)
(hence the denomination of “complex ray”) accounts both for
Gaussian decrease of the magnitude transversely to the beam
axis, and to equiphase surface curvature.

B. Re-expansion algorithm

In environments comprising a number of obstacles with
planar or smoothly curved interfaces, beams impinging on a
given interface are transformed into reflected or transmitted
GB through paraxial formulas if:

1) their previous propagating distance is not “too large” as
compared to their collimating distance,

2) the incident field on edges can be considered negligible.
Otherwise, paraxial reflexion, transmission or further propaga-
tion is not valid, and we propose then to apply a re-expansion
algorithm to the incident beam field [9]. We present the
algorithm with a view toward ground based Radar applications,
hence in the context of outdoor semi-urban environments.
Planar building walls can be considered as the most common
finite size obstacles encountered by propagating beams in that
context. The re-expansion algorithm is well suited to such
cases. It will be performed in two steps:

1) The incident field is decomposed on a frame of narrow
Gaussian windows in the plane of the wall, using closed
form expressions previously established via paraxial
approximation of a spectral integral (see II-B). To ac-
count for the “partial” beam incidence on the wall, the

coefficients of narrow windows centered outside the wall
are put to zero. In this way, beam fields are roughly
truncated along the edge.

2) A change of frame is performed, via a matrix-vector
product (see II-B), yielding the vector of coefficients
for the “truncated” incident field decomposition on a
frame of wide Gaussian windows. Each wide window
radiates in the form of a collimated Gaussian beam, and
its reflected or refracted fields are known in the form
of paraxial Gaussian beams. The total field reflected
or refracted by the wall is thus finally expressed as a
weighted summation of collimated Gaussian beams.

Importantly, the same frames are used for all the beams
incident on a given surface, so that the final weighting
coefficients of the beams issued from this decomposition
are obtained as the sum of those obtained for all incident
beams. The number of “new” beams to be launched after
re-expansion does not depend on the number of beams
impinging on edges, but on the number of wide frame
windows significantly excited by these beams and radiating
non negligible fields into the regions of interest. In Radar
retro-diffusion simulations for instance, only the beams
reaching the target, and propagating back to the radar antenna
have to be taken into account. As a consequence, the number
of frame coefficients to compute at each re-expansion step
is expected to remain moderate. The same frames, and
consequently a unique frame change matrix, can be used
for all the re-expansions required in a given environment,
allowing for the pre-computation of the frame change matrix
coefficients.

1) Closed form expressions for beam re-expansion on a
narrow window frame: In this subsection we give the expres-
sion of the narrow window frame coefficients A′

µ′ obtained by
paraxial approximation of the projection integral of an incident
beam field on the narrow frame windows {ψ′µ′} defined in the
P ′(O′, x′, y′) plane. The incident beam is well collimated, and
radiated into the z > 0 half space by a ψµ(x) frame window
defined in the P (O, x, y) plane. We introduce the notation
σx = σy = L/

√
2π and σ = σxσy). kx = (kx, ky) (resp.

kx′ = (kx′ , ky′)) are the spectral variables related to the space
variables x = (x, y) (resp. x′ = (x′, y′)). The spectrum of the
incident beam field is given by:

ψ̃′µ(kx′) = ψ̃µ(kx)
kz
kz′

eik·
−−→
OO′ =

∑
µ′

A′µ′ ψ̃′µ′(kx′) (2)

Projecting this spectrum on the spectra of the approximate dual
narrow windows and using a paraxial approximation yields:
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gnq , g

′

nq and g
′′

nq are the values of the function g defined
above, of the vector of its first partial derivatives and of the
matrix of its second partial derivatives, respectively , for the
kx′ spectral variable corresponding to kx = (nk̄x, qk̄y).

2) Frame change: We outline here the way we perform the
computation of frame coefficients in a given frame, knowing
the frame coefficients of the same distribution in a first frame.
This “frame change” is easily performed by a matrix-vector
product, with a matrix whose elements are available in closed
form.

Let us denote A′µ′ (resp. Aµ) the frame coefficients of
the U(x) distribution on a first (resp. second) frame. The
first frame windows are denoted by ψ′µ′ and the dual frame
windows for the second frame are denoted by ϕµ. × denotes
the complex conjugate. According to frame theory, we can
write:

Aµ =
∫ ∞
−∞

U(x) ϕ×µ(x) dx (4)

=
∑
µ′

A′µ′

∫ ∞
−∞

ψ′µ′(x) ϕ×µ(x) dx

=
∑
µ′

Cµ
′

µ A
′
µ′ with Cµ

′

µ =
∫ ∞
−∞

ψ′µ′(x) ϕ×µ(x) dx

Hence A = CA′ where A (resp. A′) is the vector of frame
coefficients for the decomposition on the wide (resp. narrow)
window frame and C can be viewed as a frame change
matrix. The integrals involved in the calculation of the C
matrix elements are easily evaluated in closed form. It must
be noted that this matrix exhibits specific features favorable to
fast computation of the matrix vector product (periodic block
matrix).

III. NUMERICAL TESTS: RE-EXPANSION OF TRUNCATED
GAUSSIAN BEAM FIELDS

For first tests of our re-expansion algorithm, we address the
typical problem of a diffracting aperture. Let us consider one
beam among the set of beams shooted from a frame decom-
position representing a directive antenna radiation. The frame
is defined in the (O, x, y) plane. This source frame parameters
are the same along the variables x and y: L = 10λ, ν = 0.09.
Hence the collimating distance for beams with axis along z:
bo = L2/λ = 100λ. With a view towards UHF ground surface
radar application in semi-urban environments, the working
frequency is taken as f = 430MHz, i.e. λ = 0.7m. The beam
collimating distance is then equal to 70m. The beam field is
linearly polarized along the y axis.

The frames used at steps (1) and (2) of the re-expansion
algorithm are defined as follows:

1) narrow window frame: L = 0.2λ = 0.14m, ν = 0.09,
hence x̄ = ȳ = 0.06λ = 0.042m, k̄x = k̄y = 1.5ko with
ko the free space wavenumber.

2) wide window frame: L = 10λ = 7m, ν = 0.09, hence
x̄ = ȳ = 3λ = 2.1m, k̄x = k̄y = 0.03ko.

Let us propagate the beam radiated by the ψµ frame window
with µ = (0, 0, 0, 0). The beam axis is then along the z axis,
and the beam system of coordinates is (O, x, y, z). To assess
the accuracy of the paraxial approximation used to compute
the narrow window frame coefficients in our re-expansion
algorithm, we consider an absorbing screen parallel to the
source plane, at distance z = 0.5bo = 35m, with a centered
square aperture of lateral dimensions 5λ = 3.5m.

Fig. 1 presents a comparison between:

• a reference plane wave spectrum integral computation of
the beam fields truncated by the aperture;

• a synthesis of the truncated beam fields based on the
narrow window frame expansion, taking into account only
windows centered inside the aperture;

• a synthesis of the truncated beam fields based on the wide
window frame re-expansion obtained by frame change
from the previous narrow window frame expansion.

The field magnitude is presented along the y axis. The
field value calculated with paraxial beam expressions is not
presented on that curve, for it is not visibly different from
the reference, owing to the proximity of the aperture points to
the beam axis and to the short propagation distance (less than
bo). The synthesis with the narrow window frame appears to be
extremely accurate. The computed maximum normalized error
is 5.10−4, i.e. -66dB, even slightly smaller than the paraxial
approximation error (-65dB). The synthesis with the wide win-
dow frame is visibly less accurate, with oscillations caused by
spectral truncation, resulting in a 4.8.10−2 (−26dB) maximum
error. It is however well established that abruptly truncated
field synthesis in the plane of truncation requires very large
numbers of spectral domain coefficients for windows centered
outside of visible spectrum, while these coefficients are useless
to further propagate fields by GBS.

Fig. 1. Field magnitudes obtained by a reference solution and by frame
synthesis, after paraxial re-expansion of an incident beam field truncated by
a rectangular aperture



This frame re-expansion is then used to shoot beams and
compute fields, after “diffraction” by the aperture. Fig. 2
presents a map of these diffracted fields, in dB, in the plane
z = 0.7bo i.e. at a distance 0.2bo = 20m from the diffracting
aperture. This close distance between the aperture and the
observation plane allows to check the ability of GBS to
represent fields in regions not situated in the far field of
obstacles or sources. Fig. 3 presents a cut of this map along the
x axis, together with a “reference” diffracted field, obtained by
plane wave spectrum integral of the truncated reference field
in the plane of the aperture. Finally, Fig. 4 shows a map of
the normalized error, in dB, for the fields presented in Fig. 2.
From all these results, it appears that the frame re-expansion
algorithm leads to accurate results. Subsequent work will
evaluate the ability of this algorithm to yield accurate results in
more general configurations. It was already shown that in the
case of free space propagation, the results obtained by tilted
beam re-expansion were more accurate than paraxial beam
formulas.

Fig. 2. Diffracted Gaussian beam field at a distance 20λ (0.2b0) behind a
(5λ)2 aperture, obtained by GB re-shooting from a frame re-expansion in the
aperture

Fig. 3. Comparison of diffracted field magnitudes (in dB) obtained by GBS
after re-expansion and by reference plane wave spectrum integral - same case
as in Fig. 2

IV. CONCLUSION

A re-expansion algorithm is proposed to overcome the
limitations of paraxial GBS algorithms in terms of propagation

Fig. 4. Normalized error (in dB) of the field obtained with GBS after re-
expansion - same case as in Fig. 2

path lengths and diffraction by limited size obstacles. The re-
expansion scheme is based on an initial frame decomposition
of collimated beam fields on narrow window frames. Closed
form expressions for the frame coefficients of such decompo-
sitions have been established through paraxial approximations.
The frame change matrix used in the second step of the re-
expansion scheme to re-expand the beam fields on spatially
wide windows is analytically pre-computed. First numerical
checks with this algorithm have lead to accurate results.
Future work will consist in testing the ability of the algorithm
to address more general scenarii: lateral obstacles, grazing
incidence... Some of the constraints on oversampling and on
narrow window widths will be relaxed in future tests, in order
to keep the computational burden as low as possible.
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