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Abstract—Several studies demonstrate that there are critical 
differences between real wireless networks and simulation 
models. This finding has permitted to extract spatial and 
temporal properties for links and to provide efficient methods as 
biased link sampling to guarantee efficient routing structure. 
Other works have focused on computing metrics to improve 
routing, specially the reuse of the measure of entropy. From 
there, rises the idea of formulating a new measure of entropy that 
gives an overview of the spatiotemporal stability of a link. This 
measure will rely on spatial and temporal properties of links and 
fed with the efficiency of biased link sampling. 

Keywords-wireless networks; spatial and temporal properties; 
biased link sampling; entropy; spatiotemporal stability. 

I.  INTRODUCTION 
Wireless networks and particularly wireless sensor 

networks have been closely studied in last years. Many works 
[1, 2, 3, 4] have shown that the wireless communication 
networks have wide and deep differences with simulation 
models.  Recent studies [5, 6, 7, 8] have attempted to make the 
light on characteristics of these networks.  

Cerpa et al. [5] have presented interesting temporal 
properties of low power wireless links relying on 
experimentations and have proposed from them a new 
centralized routing algorithms and a distributed one. Zuniga 
and Krishnamachari [7, 8] have tried to explain the notion of 
“transitional region”, giving some spatial properties of the 
same type of links and providing mathematic analysis to 
understand the properties of this region and its behavior. 

Other ones have targeted to show the efficiency of 
sampling to find a satisfactory routing structure. Zhang et al 
[10, 11] have proven the efficiency of data-driven link 
estimation, using biased link sampling, to converge to an 
efficient routing solution, even with dynamic environment 
parameters (changing traffic, different topologies). 

It is also important to note that several work aim to propose 
new routing solutions [15, 21, 22, 23, 24, 25]. Among the 
different propositions, the measure of entropy seems as 
relevant one. The entropy is inspired from thermodynamics and 
deducted from the analogy between nodes in a network and 

mixtures of gazes. It provides a quantification of the order or 
the stability of a situation.  

In this paper, we will expose a detailed summary of the 
works cited above and try to extract perspectives to future 
works. Our aim is to provide a new entropy measure 
formulation that will be able to quantify the degree of 
spatiotemporal stability of a link. 

The rest of the paper is organized as follows. In section II, 
we provide a state of the art of the major work that related to 
spatial and temporal properties wireless networks links and 
underline the importance of biased link sampling to converge 
to good solution for routing. We will present, in the section III, 
the mathematical analysis of Zuniga and Krishnamachari [7, 8] 
for the properties of the “transitional region” and give some 
other results that have aroused our curiosity. In the same 
section, the metrics used in [5] and [11] are mentioned. The 
section IV focuses on the measure of entropy; its origins and 
using in different domains and particularly in the domain of 
wireless networks. The main details of our future work are 
developed in the section V and concluding is made in section 
VI. 

II. RELATED WORK 
Several studies have focused on the comparison between 

empirical observations of low power wireless communication 
networks and frequently used simulation models [1, 2, 3, 4]. 
These studies have shown that the latter ones do not reproduce 
faithfully the real aspects of wireless networks and lead to 
incoherent results. Nevertheless, they have not analyzed 
sufficiently the temporal characteristics of wireless links.  

Cerpa and al. [5] study statistic temporal properties of links 
in the low power wireless communication networks. Hence, 
different experimental scenarios, using the SCALE wireless 
measuring tool [4] were considered to understand some 
network short-term and long-term behaviours (single link auto-
correlation, bandwidth quality, covariance between links with 
same source, correlation between forward and reverse links, 
effects of different packets sizes, links temporal consistency, 
correlation between path links). The experimentations have 
contributed to the extraction of a set of relevant properties 



permitting to insure more efficiency in routing protocols. 
Indeed, a strong temporal correlation implies the use of 
required number of packets for reception as quality metric 
instead of reception rate. This correlation stipulates also using 
only good links. Moreover, the variance in time lagged 
correlation between forward and reverse links express the 
necessity to send acknowledgements immediately after the 
reception. Meanwhile, a lower variance promotes the use of 
longer packets. Given these results and considering the 
correlation between links of a same path and the consistency of 
good links, two new shortest path algorithms are proposed. In 
the one hand, a centralized algorithm which is a generalization 
of Dijkstra algorithm that takes into consideration the 
correlation between successive links of a path. In the other 
hand, a localized probabilistic algorithm that affects 
probabilistic gradients to forward links with referring to 
statistics of reverse links. 

As Cerpa et al. [5], Woo et al. [3] and Zhou et al. [6] have 
proposed link models relying on experimental conclusions. 
Nonetheless, they don’t give mathematical approaches to show 
the effects of channel and radio dynamics on links unreliability 
and asymmetry. Moreover, Cerpa et al. [5] and Woo et al. [3] 
present the inconvenient of being closely tied to specific 
channel and radio parameters adopted in experimentations. 

Zuniga and Krishnamachari analyze the major causes 
behind unreliability [7, 8] and asymmetry [8] of low power 
wireless sensor networks. In this kind of network, the use of 
binary disc-shaped model to model the range is inappropriate. 
Indeed, it exists a “transitional region” [1, 2, 3] which is 
unpredictable toward the good reception of a packet and affects 
the upper-layer protocols reliability. To understand this region, 
two models have been proposed: a channel model that is based 
on the log-normal path loss propagation model [9] and a radio 
reception model closely tied to the determination of packet 
reception ratio. The work on these models introduce to the 
formulation of the expressions of distribution, expectation and 
variance of the packet reception ratio according to the distance. 
These approaches have contributed to the determination, in 
terms of distances (of the beginning and the end) of the 
transitional region and the computation of its coefficient 
(relative to its size). The coefficient is more important with 
lower path loss exponent and higher deviations. It has been 
also proved that this region remains even though the presence 
of perfect-threshold receiver because of multipath effects. For 
the question on the asymmetry, heterogeneous hardware 
contributes to the extension of the transitional region. 
Nevertheless, a negative correlation between output power and 
noise floor decreases the effects of asymmetry levels. 

Thus, wireless communication is described by two complex 
sides: the spatial side and the temporal side. The estimation of 
link properties stands out as an essential recourse in routing. 
The data-driven link estimation [10] is the best method to do it; 
the information about the properties of the link is collected by 
the MAC feedback with unicast data transmission along the 
link. If the link is not used, the properties will be considered as 
unknown. This brings us to the biased link sampling (BLS) 
issue where properties of active links are sampled and updated 
whereas the inactive ones are not sampled and unknown.  

Zhang et al., in [10], via various testbeds of 802.11b 
networks, aim to demonstrate that beacon-based link estimation 
suffers from several drawbacks (impact of environment, packet 
type, packet size, interferences…). They also show that it is 
difficult to have a precise estimation, even with length and 
transmission rate as those of data packets. To address this 
problem, they propose to estimate link properties via MAC 
feedback collected from unicast data transmissions, and 
precisely the MAC latency. In this way, they define data driven 
routing metrics (ELD metric, as most important one, which 
represents a data driven version of ETX/ETT metric (ETX for 
expected number of transmission required to successfully 
deliver a unicast packet, ETT for expected time of transmission 
required). Building on this capability, Zhang et al. design a 
routing protocol “Learn On the Fly” (LOF) where estimation 
relays on unicast data transmissions. The proposed protocol 
uses control packets only during booting up; each node 
discovers its neighbours by taking few samples on the MAC 
latency. Then, the node adapts its routing decisions considering 
only the MAC feedback. The protocol LOF presents also the 
characteristic of taking into consideration temporal variations 
and eventual imperfection of initial estimations; each node 
explores alternatives neighbours with a certain probability and 
controlled frequency. The collected observations confirm the 
contribution of LOF in reducing MAC latency and energy 
consumption in packet delivery while improving route stability 
and network throughput (in the cases of bursty event and 
periodic traffics).  

In [11], Zhang et al. focus on the effects of BLS on the 
convergence of routing to optimal solution, using mathematical 
analysis and testbed experimentations for wide-range of 
scenarios (grid or random topology, diverse traffic levels). 
They also use the ETX metric (expected number of 
transmission required	   to	   successfully	   deliver	   a	   unicast	  
packet) to identify the best forwarder of the routed packet. 
Their works prove that the choice of the next forwarder in a 
routing structure remains unchanged, even though there are 
important changes of the network condition and the traffic 
intensity. In the case where optimal routing structure changes, 
after the worsening of network conditions, the reaching of the 
new optimal solution is guaranteed. The convergence presents 
an interesting characteristic of being quick. A small number of 
unicast sampling packets is sufficient (no more than 7). When 
the network conditions are better, the convergence to an 
optimal solution is not assured (due to BLS properties). 
However, the routing structure, which was able to support a 
heavy traffic, can handle a lighter one. This structure is a sub-
optimal is reliable and has performances very close to the 
optimal solution. 

III. USED TOOLS TO MEASURE METRICS 
The major works described below, in the related works, 

have measured some interesting metrics to provide results and 
analysis. Zuniga and Krishnamachari [7, 8] propose the 
computation of the packet reception rate to understand the 
causes behind the move and the extent of the transitional 
region. For this, they present a mathematical model that we 
present briefly in the following subsection. We will also have a 
look on the empirical measurements done in the works of 
Cerpa et al. [5] and Zhang et al. [11]. 



A. Packet Reception Rate (PRR) 
1) Mathematical modelisation  

Zuniga and Krishnamachari [7, 8] use mathematical 
techniques from communication theory to model and analyze 
these links. The main objective is to identify the causes of the 
transitional region and the quantification of their influence. For 
this aim, expressions for the packet reception rate as a function 
of distance will be derived. These expressions take into 
consideration radio and channel parameters such as the path 
loss exponent, the channel shadowing variance, the modulation 
and encoding of the radio. The model does not consider 
interference and rely on the assumption that scenarios consider 
the traffic and contention very light. 

The approach followed by Zuniga and Krishnamachari tries 
to show how the channel and the radio determine the 
transitional region. On the one hand, for the wireless channel, 
the log-normal shadowing path loss [9] model is adopted (can 
be used for small and large coverage systems and its accuracy 
is demonstrated in comparison with other models). It is given 
by: 

 

Where d is the transmitter-receiver distance, d0 is a 
reference distance, PL(d0) is the power decay for the reference 
distance d0, η is the path loss exponent and N(0, σ)  is a zero-
mean Gaussian random variable with standard deviation σ. 
Hence, for an output power Pt, the received power Pr in dB is 
expressed by: 

 

On the other hand, for the radio, the packet reception rate Ψ 
of successfully receiving of a packet, using a modulation M is: 

 

Where γ is the SNR (Signal-to-Noise Ratio), βM is the bit-
error rate and a function of the SNR and f is the frame size. The 
SNR at a distance d can be expressed from (2): 

 

Where N(µ(d), σ) is a Gaussian random variable with mean 
µ(d), variance σ2 and Pn is the noise floor. Moreover, the 
expression of µ(d) can be determined from (2) into (4): 

 

Denoting the bit-error rate for the SNR in dB as
, the packet reception rate Ψ 

can be expressed by: 

 

In [8], Zuniga and Krishnamachari underline the impact of 
hardware variance, they propose the expression of the SNR 
measured at a node B for the output power of a node A and 
denoted as SNRAB (γAB): 

 

Where σtx
2 and σrx

2 represent the variance of the output 
power and the noise floor respectively. 

Empirical results in [8] show that it exists correlation 
between output power and noise floor. These two latter powers 
are taken as multivariate Gaussian distribution: 

 

Where Pt is the nominal output power, Pn is the average 
noise floor, T and R are the actual output power and noise 
floor, respectively, of a particular radio and S is the covariance 
matrix between the output power and the noise floor. From the 
experiments in [8], the matrix S is given by: 

 

The randomness of the SNR in (4) is provided only by 
multipath effects. The variances of the output power and the 
noise floor add two other factors of randomness. The new 
expression of SNR becomes: 

 

Where σhw
2 = σtx

2+σrx
2, σt

2 = σhw
2+σch

2 and 

 



 
(a) 10 Simulations 

 
(b) 50 Simulations 

 
(c) 500 Simulations 

Figure 1.   Packet Reception Rate VS Distance for different simulations 
numbers  

2) Experimental tests 
a) Experimentations on different numbers of simulations 

We propose to display average packet reception rate as 
function of time in the aim to see the variations of confidence 
intervals for different numbers of simulations. We reuse the 
same parameters as in [7] with NCFSK (Non Coherent 
Frequency Shift Keying) Modulation and Manchester 
encoding. The objective is to see the behaviour of confidence 
intervals and standard deviations of average packet reception 
rate with different number of simulations. 

Figure 1 shows the variation of average packet reception 
rate with the distance for different simulations numbers. We 
remark that the higher the simulations number the smaller the 
confidence intervals. For each case, the confidence intervals 
are larger in the transitional region (0.2<PRR<0.8) because of 
packet reception rate unpredictability in this region. A high 
number of simulations enable us to extract finest confidence 
intervals. When the number is low, the information is not sharp 
as below. 

Figure 2 represents the evolution of average packet 
reception rate standard deviation as function of distance. We 
see that the standard deviations for each scenario take 
maximum values (and almost the same for different cases) 
when the distance varies into the transitional region (in the 
same way with Figure 1). Nevertheless, the Gaussian form is 
larger with higher number of simulations. We can explain this 
by the fact that there are more chances to have random values 
of PRR as we are increasingly close to the frontiers of 
transitional region. 

 

 
Figure 2.  Average Packet Reception Rate Standard Deviations VS Distance 

for different simulations numbers 

b) Experimentations on different numbers of nodes 
We also try to see how behave confidence intervals and 

standard deviations when we use one node for 1000 
simulations and 10 node for 100 simulations each one. Will the 
second scenario cause more randomness? 

For this, we take into consideration that there are 
randomness caused by multipath effects and hardware variance 
as in [8]. We use also parameters used in [8] to work on indoor 
and outdoor environments. We keep the use of NCFSK as 
modulation technique and Manchester as encoding scheme. 



 

 
(a) indoor 

 
(b) outdoor 

Figure 3.  Average Packet Reception Rate VS Distance for different sets of 
nodes 

Figure 3 shows the evolution of average packet reception 
rate with the distance for 1000 simulations done with one node 
and with 10 nodes. We find that the average PRR for the two 
scenarios, in both environments, have close evolutions. We 
notice also that in the transitional region, the confidence 
intervals have almost the same sizes. At the borders of the 
region, the confidence intervals in the scenario with 10 nodes 
are a little bit larger. This demonstrates that if we are far from 
borders of transitional region, the different sources of 
randomness are “hidden” by the unpredictability of the region. 
When we are closer to the borders, the effects of randomness 
sources are visible because we are nearer to predictable region 
(connected or disconnected). 

Figure 4 represents the evolution of packet reception rate 
standard deviation with the distance for the same scenarios. We 
detect some similarities with Figure 2. When we have several 
nodes, there is a combination between many configurations of 
randomness. Using one node limits the randomness. That’s 
why, when 10 nodes are used, the Gaussian evolution is larger. 

 

 
(a) indoor 

 
(b) outdoor 

Figure 4.  Packet Reception Rate Standard Deviation VS Distance for 
different sets of nodes 

B. Data-Driven Versions of ETX/ETT Metric 
1) Mathematical modelisation 

Zhang et al. [11] have used in their study the ETX metric 
(expected number of transmissions for delivering a data 
packet). To estimate it, they consider the data-driven link 
estimation and routing method L-ETX [10]. In the latter 
method, the packet delivery reliability (PDR), along a link, is 
determined from MAC feedback for unicast data transmissions. 
The ETX of this link is computed as the inverse of the PDR. 
The measure for a path consists in summing the ETX metrics 
of each link belonging to the path. 

Zhang et al. have also considered a localized, geographic 
routing metric ETD (ETX per unit-distance to destination) to 
have an idea on the efficiency of forwarding neighbours. 
Taking into consideration S as sender, R as neighbour of S and 
D as destination, the ETD via R is given by 

 

Where ETXS,R is the ETX of the link from S to R, LS,D represents 
the distance that separates S and D and LR,D the distance 
between R and D. 

In [10], a similar approach is adopted. The MAC latency 
appears as a routing metric similar to ETT (and ETX with fixed 



transmission rate). From this consideration, the ELD metric is 
defined (ELD for expected MAC latency per unit distance to 
destination) which permits to minimize the end-to-end MAC 
latency from source to destination. 

The MAC latency per unit distance to the destination (LD), 
denoted by LD(S, R), is given by 

 

Where DS,R is the MAC latency from S to R. The expected 
MAC latency per unit distance to destination ELD, denoted by 
ELD(S, R), is calculated as following 

 

A source will choose the next hop that gives the lowest 
ELD metric among all the neighbours. This recourse helps to 
select forwarders, in a reliable communication range, to 
decrease the end-to-end MAC latency and in the same time to 
reduce energy consumption. 

Cerpa et al. [5] used also the ETX metric that they call RNP 
(Required Number of Packets) and the packet reception rate. 
They compute them empirically with the set of tests that they 
propose. They also underline that assuming that ETX metric is 
the inverse of the packet reception rate is not an efficient 
estimation when the latter is between 10% and 90%. 

2) Experimentations 
We propose to represent the ETD metric jointly with the 

PRR evolution. Taking the indoor configuration, we assume 
the following scenario: we consider a sender S, a destination D 
and a relay node R. We vary the distance between the node S 
and the node R and compute for each distance the average ETX 
metric (with confidence intervals) and then the ETD metric. 
The distance between the node S and D is 40 meters and the 
distance between S and R varies between 1 and 39 meters. We 
assume also that the maximum number of retransmissions is 7. 
When the transmission is failed, ETX is equal to 8. We 
represent the results for 100 and 200 simulations. 

 

 
(a) 100 simulations 

 
(b) 200 simulations 

Figure 5.  Average Packet Reception Rate and ETD metric VS Distance for 
different simulations number 

The results are given in the figure 5. In the connected area, 
ETD is lower with more important distance between the node S 
and the node R. This result is logic because in the connected 
area the number of retransmissions is always 1. We note that 
the lowest value of ETD corresponds to a distance that marks 
the beginning of the transitional region (11 meters with 100 
simulations and 10 meters with 200 simulations). At this 
distance, the PRR (0.933 with 100 simulations and 0.974 with 
200 simulations) is still important and the losses are few. This 
observation indicates that the relay node far by this distance 
from the node S, is the best forwarder because it permits to be 
as nearest as possible to the destination and keeping in the 
same time a good delivery rate with the sender. We see that the 
ETD metric takes higher values when the relay node is in the 
middle of transitional region; this is due to the increase of the 
number of retransmissions. When the relay node is near to 
disconnected area, ETD metric decreases linearly; the average 
number of retransmissions tends to 8 (as we assume when the 
transmission is failed, we note also that confidence intervals 
are small) and with incremental distances, the ETD metric is 
smaller. 

IV. THE MEASURE OF ENTROPY 
The measure of entropy has been used in several works. Its 

definition has varied from one work to another. We will expose 
a little overview on the origin of entropy and a brief description 
of works having used this measure. 



A. Original definition of Entropy 
The concept of entropy was introduced for the first time by 

Clausius [12] as a unique measure of reversible change in 
thermal energy concerning the absolute temperature. He 
focused on the macroscopic behaviour of chemical microscopic 
reactions and proposed thermodynamic entropy. Based on 
Clausius works, Boltzmann defined the combination 
microstates statistic entropy [13] as 

  

Where pi is the probability that the microstate i is verified 
during system fluctuations and kB is Boltzmann’s constant. 
This definition is applied to characterize the order in the system 
and how the system self-organizes among different entities. 

Later, Shannon introduced the concept of information 
entropy H [14]. This measure has been used to quantify the 
capacity of a transmission channel and has been extended to 
other domains. 

B. Different approaches using entropy 
Many works propose the use of entropy, for different aims. 

In [15], Lu et al. have presented, firstly, the principles of self-
organization. Indeed, wireless networks use the self-
organization to minimize configuration needs, to facilitate the 
deployment of the network and to support applications and 
services. The recourse to self-organization schemes permits to 
improve the order in the network. This organization take place 
on two levels: microscopic (logic links between nodes) and 
macroscopic (formation of flexible structure). Secondly, Lu et 
al. justify the use of entropy with three major reasons: 

• The organization in a wireless network is similar to a 
thermal dynamic system. 

• Many metrics have been proposed to evaluate self-
organization strategies (protocol overhead, algorithmic 
complexity…) but they do not give any idea on order 
degree.  

• The statistic entropy used in thermodynamics is a key 
measure because it describes the behaviour of self-
organization protocols compared to changes of 
inherent parameters in the network as the reliability of 
links and nodes. 

Lu et al. consider the entropy as a system macroscopic 
description taking into consideration microscopic interactions. 
Similarly, the equilibrium between two perfect gazes 
(macroscopic level) is the result of molecular interactions 
(microscopic level). Since self-organization limits interactions, 
so it limits also the entropy. To evaluate the entropy of a link, 
the following expression is proposed 

 

Where u and v represent two nodes from the network nodes set 
X. 

High entropy values indicate an important disorder, 
whereas low ones signify a better organization. This analysis is 
inspired from thermodynamics: when the entropy is low, the 
equilibrium is more stable and the disorder is less significant at 
molecular level. 

This approach is interesting but the measure of entropy give 
only an overview of the order quantification and do not inform 
about stability and robustness of routing when used with self-
organization strategies. 

In [16], Sneppen et al. use measures applied on network 
topologies. These measures characterize the ability of a node to 
lead and send a signal to its destination(s). The entropy is 
considered and is described as the capacity to predict from 
which neighbour the message arrives. It quantifies the 
predictability (or the order/disorder) of a traffic around a node. 
The probabilities represent the fraction of messages received 
from each neighbour. In [17], they present measures the 
investigation on constraints posed by the network structure on 
communication. They define two measures of entropy: the 
predictability relative to messages targeting a specified node 
(Target Entropy) and the predictability relative to messages 
crossing a specified node and one of its neighbours. The 
analysis of theses measures lead to some conclusions: 

• When the entropy values are high, the predictability is 
low. In the opposite case, a little number of links is 
used. 

• The traffic to nodes with high degrees is unpredictable. 

• Low values of entropy show that the traffic is 
concentrated. It is more distributed and logically more 
robust when the entropy is higher. 

In [18], Van Dyke Parunak and Brueckner try to show that 
the relationship between self-organization in multi-agent 
systems and the second law of thermodynamics is not a 
metaphor and that this relation can provide analytic and 
quantitative directives in the aim of the conception and the 
deployment of these systems. The self-organizing model is 
inspired from [19], which suggests that the key idea permitting 
to reduce the disorder in a multi-agents system is to copulate it 
with an another where the disorder increase. For a system, the 
self-organization is done at macroscopic level. Considering 
this, such behaviour contradicts the second law of 
thermodynamics. Nevertheless, the system includes a 
microscopic level which dynamic increase the disorder. To 
reproduce a system with the two levels, the example of the 
pheromones used by ants is considered. The movements of ants 
constitute the macroscopic level while the molecules of 
pheromones represent the microscopic level. The movements 
of ants permit to define a little number of ways between the 
nest and the source of food. The disorder at macroscopic level 
is inconspicuous. The latter observation is the result of 
coupling macroscopic level agents with microscopic level, 
where the evaporation of molecules of pheromones takes place 
according to random mobility which increases the disorder. 

The entropy, inspired from Shannon entropy and 
thermodynamic entropy, defines a disorder measure describing 
the trend of a system to be chaotic. This measure is applied at 



two levels: localisation (microscopic level) and direction 
(macroscopic level). The results show that the two measures 
are antagonist which confirms that the second law of 
thermodynamics can be applied to multi-agent systems. 

Another approach [20] tries to provide a schema able to 
classify a connection by three categories: Ethernet, WLAN or 
connexion with low bandwidth. An algorithm is proposed to 
identify the connection type using the sending of packets pairs. 
This choice is led by the motivation to follow the random 
aspect at the reception of the pairs and use this aspect to 
identify the type of connection. The measure of random aspect 
is done by Shannon entropy. The major reason of this recourse 
instead the use of variance is that entropy is a better metric 
catching the random aspect of a random variable.  

As final note, it is interesting to mention that some works 
have used entropy to determine path stability in MANET and 
wireless sensor networks for their respective routing protocols. 
EQMGA (Entropy-based model to support QoS Multicast 
routing Genetic Algorithm) [21], ERPM (Entropy-based 
Routing Protocol using Mobility) [22], the An and 
Papavassiliou model [23], ELMR (Entropy-based Long-life 
Multipath Routing algorithm) [24] and QARPE (QoS-Aware 
Routing Protocol based on Entropy) [25] share the same idea of 
constructing a new entropy and select the most stable path 
relying on the entropy to reduce the number of route 
reconstruction when the topology is continuously changing. 

To understand these approaches, we expose the reasoning 
followed by them. Indeed, to a node m is associated a set of 
variable features am,n, where node n is a neighbour of node m. 
These variable features express the relative speed among two 
nodes. With changing networks, changes of am,n values are 
expected. Considering v(m,t) and v(n,t) respectively the 
velocity vectors (expressed by direction and speed) of nodes m 
and n, the relative velocity between the two nodes at time t is: 

  

In [22] and [23], an expression of variable features am,n is 
proposed according to the relative speed: 

 

Where N is the number of discrete times ti that velocity 
information can be calculated and disseminated to other 
neighbouring nodes within time interval Δt. 

However, in [21], [24] and [25], am,n variables take also the 
relative position p(m,n,t) expressed by: 

 

Where p(m,t) and p(n,t) are respectively the position vector of 
nodes m and n at time t. 

The expression of am,n variables is given by: 

 

Where R is the radio range. 

From this, the definition of entropy Hm(t,Δt) at node m 
during time interval Δt is expressed as follows: 

 

Where  

In this expression, Fm denotes the set or any subset of 
neighbors of node m. The parameter C(Fm) is the cardinality of 
the set Fm. It is clear that Hm(t,Δt) is normalized so its values 
vary between 0 and 1. Low values of the entropy express that 
the change of the variable values is important. The contrary 
signifies that this change is limited. 

With this finding, some measures of route stability between 
two nodes have been proposed: 

 

V. PERSPECTIVES 
Our objective in the future works is to exploit the results 

exposed in the related work and to propose the entropy as 
stability indicator. In the one hand, the works of Cerpa et al. [5] 
and, Zuniga and Krishnamachari [7, 8] give to us interesting 
spatial and temporal properties. On the other hand, we will try 
to use entropy to guess the degree of stability in the spatial side 
(stability of the neighbourhood, mobility …) and in the 
temporal side (stability of measures, neighbourhood…). 

The objective is to present an entropy measure that gives an 
idea on spatiotemporal stability of a node in the network. These 
measures will be done as by the biased link sampling (BLS) 
viewed in [11] or as in LOF [10]. 

The manner that the measure of entropy would be 
computed will be defined later. Nevertheless, it will follow the 
reasoning below. We suppose that we have a network and we 
want to have an idea on the stability of a node and the 
efficiency of its links.  

    



                             
Figure 6.  Example of a node and its neighbours, with  spatiotemporal 

stability (p) and quality of links (k) parameters 

In Figure 6, we present a little example of a node A, in a 
network, with three neighbours. The node A keeps two types of 
measures: 

• The spatiotemporal stability pi with the neighbour i. 

• The link quality ki of the link between the node A and 
the node i. 

We propose, using these parameters, to compute a measure 
of entropy that gives an idea on the efficiency of a link after 
dynamic changes (spatial and temporal). A possible measure 
can be formulated as following: 

 

Where NA is the set of neighbours of the node A and N is the 
number of neighbours of node A. 

We can take the formulation of entropy, proposed in [21, 
22, 23, 24, 25] as starting formulation and we improve it. In 
our mind, it is essential, for a node, to consider neighbors 
mobility, but it is not sufficient. There are other parameters that 
must be taken into consideration, as link efficiency towards 
interferences and noises or the presence of the neighbor in the 
transitional region. The latter scenarios complicate the 
interactions between them. 

After the definition of this new formulation, we will do 
testbed experimentations to gather results in order to validate 
the efficiency of our proposal. We intend using a recent 
mobility model called TVC model [26]. It is presented as the 
first synthetic mobility model able to capture non-
homogeneous behavior jointly in space and time.  

The TVC model is constructed from WLAN traces and is 
characterized by three major contributions. First, it is the first 
model able to capture time-variant mobility characteristics 
(location visiting preferences and time-dependent mobility 
behavior). Second, it can recreate mobility behavior from the 
traces and is mathematically tractable. This is very useful for 
prediction in order to evaluate protocols performances 
(mathematic models that capture average node degree, hitting 

time and meeting time). Finally, the TVC model is not reduced 
to some scenarios but matches with qualitatively different 
traces (different WLAN traces, vehicular traces, human 
encounters traces). 

We also want to incorporate a model that reproduces the 
impact of interferences (since that Zuniga and Krishnamachari 
model does not take it into consideration). We focus on Qiu et 
al. [27] approach which models interferences.  

This approach highlights three strong advantages. Firstly, it 
permits to consider an arbitrary number of senders. Secondly, it 
takes into consideration broadcast and unicast scenarios 
(adding further events, e.g. retransmissions, exponential 
backoff, collisions concerning ACK packets…). Thirdly, it 
matches with realistic traffic demands (not only infinite traffic 
demands). 

The Qiu el al. model is based on an N-node Markov model 
(for capturing interactions among a number of senders) and on 
general and accurate sender and receiver models for both 
broadcast and unicast scenarios. It aims, among this, to 
estimate the goodput, the throughput and the loss rate between 
a pair of nodes with received signal strength (between every 
pair of nodes) and the traffic demand from each sender to each 
receiver as inputs.  

To recapitulate our roadmap, as shown in figure 7, we try to 
master and to exploit many propositions. We use the model 
given in Zuniga & Krishnamachari [7, 8] approaches for the 
computation of packet reception rate and we project ton 
combine it with Qiu et al. contribution [27] to add interference 
impacts. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Roadmap of required models for the determination and the 
evaluation of entropy metric  

The recourse to the sampling using the unicast traffic is 
accurate by referring to Zhang et al. works [10, 11] to compute 
efficiently the packet reception rate and avoid approximate 
beacons estimations. 
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We have also rise the challenge of inserting mobility. This 
task led us to adopt a mobility model that catches jointly the 
location preferences and time-variant behaviour. 

All these propositions consider spatial and temporal 
aspects. The main objective behind the use of entropy metric is 
the aggregation of all these aspects in one measure, which will 
facilitate the routing process. The measure can give an idea 
about a neighbour, the neighbouring or even for an arbitrary 
subset of nodes located in the same geographical area. Then, 
the use of entropy is interesting for the opportunistic routing, 
giving that it simplify the identification of best routes. 

VI. CONCLUSION AND FUTURE WORK 
The wireless networks and especially wireless sensor 

network present interesting spatial and temporal properties. 
The recourse to the biased link sampling through data-driven 
link estimation helps to improve the routing process. 
Nevertheless, in order to fully grasp the true behaviour of a 
mobile environment we also need to take into account the 
spatiotemporal activity of the network. The measure of the 
entropy seems to be the most suited metric to track the 
spatiotemporal stability of networks. The coming challenge 
will be so to provide an expression that enables to compute this 
entropy, to identify the analytical parameters that will be taken 
into consideration and to explain the meaning of this entropy 
measure. Then, using simulations and testbed 
experimentations, with reliable mobility and accurate 
interference models, will be done in order to validate the 
pertinence of our proposal. We can also mention that we will 
relay on swarming to improve reliability and robustness of the 
network. Such recourse affords the possibility to catch more 
efficient information for a node from its neighbours, due to 
their close cooperation. 
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