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Abstract We derive a general formulation of the time domain random walk (TDRW) approach to model
the hydrodynamic transport of inert solutes in complex geometries and heterogeneous media. We demon-
strate its formal equivalence with the discretized advection-dispersion equation and show that the TDRW is
equivalent to a continuous time random walk (CTRW) characterized by space-dependent transition times
and transition probabilities. The transition times are exponentially distributed. We discuss the implementa-
tion of different concentration boundary conditions and initial conditions as well as the occurrence of
numerical dispersion. Furthermore, we propose an extension of the TDRW scheme to account for mobile-
immobile multirate mass transfer. Finally, the proposed TDRW scheme is validated by comparison to
analytical solutions for spatially homogeneous and heterogeneous transport scenarios.

1. Introduction

Hydrodynamic transport in heterogeneous media is a ubiquitous process in natural and engineered envi-
ronments ranging from solute transport in geological media to the transport of charge carriers in amor-
phous semiconductors. Spatial inhomogeneity of the media and resulting flow fluctuations prohibit closed
form analytical solutions for the distribution of the transported quantities. Here we focus on numerical ran-
dom walk particle tracking methods for the solution of advective-dispersive transport in heterogeneous
flow fields. In this framework the solute concentration is represented by the density distribution of noninter-
acting point-like solute particles which move due to advection and dispersion. Classical random walk parti-
cle schemes [Kinzelbach, 1988; Salamon et al., 2006] rely on the strict equivalence between the Langevin
equation, which describes the movement of noninteracting point particles, due to advection and an uncor-
related random velocity (noise), and the advection-dispersion equation. Note that the independence of sin-
gle particles make random walk methods intrinsically adapted to massively parallel computations, which
often represents a noticeable advantage in terms of computation time. Classical random walk particle track-
ing methods discretize the Langevin equation in time so that particle motion occurs at discrete time steps
with variable spatial increment that depends on the local velocity given by the flow field and the random
noise. This classical approach could be termed discrete time random walk.

Generalization of this approach moves particles by spatial steps of variable length during variable time
increments or transition times. This approach is generally known as the continuous time random walk
(CTRW) [e.g., Metzler and Klafter, 2000; Berkowitz et al., 2006]. The particle density, or equivalently the solute
distribution, obeys a generalized Master equation [Kenkre et al., 1973] and, when localizable in space, a gen-
eralized advection-dispersion equation [Berkowitz et al., 2002; Dentz and Berkowitz, 2003]. The CTRW has
been used to model anomalous transport behaviors in heterogeneous media at pore, Darcy and regional
scales [e.g., Berkowitz and Scher, 1997; Berkowitz et al., 2006; Le Borgne et al., 2008; Dentz and Castro, 2009;
De Anna et al., 2013; Edery et al., 2014]. The heterogeneous medium or flow properties are mapped onto the
coupled distribution of transition length and time which renders an ensemble average transport picture.

Here we focus on the modeling of hydrodynamic transport in deterministic media and flow fields with a
well-defined spatial variability, which can be given by the mapping of the pore structure or the porosity dis-
tribution extracted from X-ray microtomography images [Gjetvaj et al., 2015; Gouze et al., 2008] or computed
from spatially variable hydraulic conductivity fields or fracture network geometries. Classical random walk
particle tracking methods may induce high computational costs in media that display a broad range of
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velocity values because particles may spend a large number of random walk steps in low velocity areas due
to the constant time discretization. The efficiency of particle tracking can be noticeably enhanced by mov-
ing a particle over a fixed distance imposed by the computational mesh, for example, in a time that corre-
sponds to the transit time over this distance [e.g., Pollock, 1988; McCarthy, 1993; Banton et al., 1997;
Noetinger and Estebenet, 2000]. Variants of this general methodology have been known in the literature
under the terms time domain random walk (TDRW) [Banton et al., 1997; Delay et al., 2002; Cvetkovic et al.,
2014; Bodin, 2015] and CTRW [McCarthy, 1993; Noetinger and Estebenet, 2000]. As a general concept, the
TDRW moves particles on a lattice with jumps of fixed distance whose direction and transition times are
determined by the local advection and dispersion (or diffusion). However, we have found that there is a cer-
tain ambiguity in the modeling of the distribution of local time increments. For instance McCarthy [1993];
Noetinger and Estebenet [2000], and Delay et al. [2002] used exponential transition time distributions, whose
mean is given by the local advection dispersion properties, James and Chrysikolpoulos [2001] and Delay and
Bodin [2001] propose to use a log-normal transition time distribution, while Reimus and James [2002] associ-
ated the local transition time to the first passage time to cross the transition distance by diffusion. Dentz
et al. [2012] have shown for heterogeneous diffusion problems, the equivalence between the TDRW and
the diffusion equation requires an exponential distribution of local transition times. This is an expression of
local memorylessness because the local transport details are fully resolved. Furthermore, it has been
pointed out in the literature [Delay et al., 2002; Dentz et al., 2012] that the TDRW is equivalent to discretized
versions of the dispersion equation.

Here we formally derive a general formulation of the time domain random walk (TDRW) approach to model
the hydrodynamic transport of inert solutes in heterogeneous systems following the approach proposed by
Dentz et al. [2012]. Section 2 establishes the formal equivalence between the discretized advection-
dispersion equation and the TDRW scheme using the CTRW formalism. Then we extend the numerical
scheme to model mobile-immobile multirate mass transfer (MRMT). Section 3 provides details on the
numerical implementation of boundary conditions in the TDRW and investigates the issue of numerical dis-
persion. Indeed, it is well-known that numerical methods that rely on discrete versions of the advection-
dispersion equation suffer from numerical dispersion. Thus, the TDRW method, even though particle based,
may suffer from similar effects. Notice that numerical dispersion in classical random walk methods is elimi-
nated in the scale limit of infinitesimal constant transit times. Here the finite spatial discretization imprints
also a dispersion scale. Thus, the issues of the choice of the local transit time distribution and of the pres-
ence of numerical dispersion must be addressed for reliable TDRW modeling of the hydrodynamic transport
in heterogeneous media.

Section 4 illustrates the accuracy of the proposed TDRW scheme by comparing the results with analytical
solutions for different diffusion-advection scenarios in homogeneous and heterogeneous velocity fields and
under multirate mass transfer.

2. Theoretical Development

The transport of a nonreactive solute at pore scale can be described by the advection-diffusion equa-
tion. At the Darcy scale, transport may be described by the advection-dispersion equation [Bear,
1972]. The validity of such (asymptotic) Fickian transport descriptions for solute transport in heteroge-
neous media at practically relevant spatial and temporal scales has been a debated issue [Berkowitz
et al., 2006; Neuman and Tartakovsky, 2009], but is not the scope to the present paper. Nevertheless,
we will show in section 2.2 that the TDRW approach can be extended for modeling non-Fickian
transport.

We consider the general advection-dispersion equation for passive transport in a heterogeneous medium,
which is characterized by spatial variability in the transport velocity vðxÞ and the dispersion coefficient D(x).
It is given by

@cðx; tÞ
@t

1r � ½vðxÞcðx; tÞ�2r � DðxÞrcðx; tÞ50 (1)

with suitable initial and boundary conditions.
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2.1. Derivation of the Time-Domain Random Walk
The derivation of the advective TDRW scheme starts from the finite volume discretization of (1), which can
be written as [Delay et al., 2002]

Vi
@ciðtÞ
@t

5
X
½ij�

bij Vj cjðtÞ2
X
½ij�

bjiVi ciðtÞ; (2)

where ci(t) is the concentration at voxel i. The notation [ij] indicates the summation over the nearest neigh-
bors of voxel i and bij defined as

bij5
SijD̂ij

Vjjnijj
1

Sijjvijj
2Vj

vij

jvijj
11

� �
; (3)

where Sij denotes the surface area between voxels i and j and Vj denotes the volume of voxel j. The vector nij

points from voxel j to voxel i; its absolute value is denoted by |nij|. Accordingly, the velocity component vij of vj

denotes the velocity at voxel j in direction of voxel i and is equal to vj � nij=jnijj. If vij> 0, voxel i is downstream
from voxel j, and correspondingly, if vij< 0 voxel i is upstream from voxel j. Note that here bij6¼bji whereas
bij 5 bji for the pure-diffusion problem. D̂ij is the effective diffusion coefficient between voxel i and voxel j. In a
d 5 1 dimensional medium the inter-voxel diffusion coefficient D̂ij is given by the harmonic mean while the
geometric mean is required for d 5 2 [Noetinger and Estebenet, 2000; Dentz et al., 2012]. For the general case
(d 5 3) the inter-voxel diffusion coefficient D̂ij is not constrained by theoretical demonstrations so far.

In order to establish the particle based numerical TDRW scheme, we formulate (2) as a Master equation. To
this end, we first define the density gi(t) of particles at node i as

giðtÞ5ViciðtÞ: (4)

We furthermore define the transition probabilities wij from node j to node i and the time sj for the transition
of a particle from node j to one of the next neighbor nodes as

wij5
bijX
½jk�

bkj

; sj5
1X

½jk�
bkj

: (5)

Note that, in general, the transition probabilities are not symmetric, wij 6¼wji. By definition they fulfill the nor-
malization condition

X
½ji�

wij51. With these definitions, we identify (2) with the Master equation [Kenkre
et al., 1973]:

dgiðtÞ
dt

5
X
½ij�

wijs
21
j gjðtÞ2s21

i giðtÞ: (6)

This Master equation describes the evolution of the particle density gi(t) in the following lattice random
walk. The random walkers or particles move between the vertices of a lattice which are located at the
center-point of the voxels (which accordingly form a meshed representation of the studied media). The par-
ticles move according to the following recursion relations:

xiðn11Þ5xjðnÞ1nij; tðn11Þ5tðnÞ1hj : (7)

The probability for the spatial transition of the particle from the vertex at xj to the neighboring vertex xi5xj

1nij is given by the wij defined in (5). The transition times hj are distributed according to the exponential
transition time PDF

wjðtÞ5
exp ð2t=sjÞ

sj
; (8)

where sj is given by (5).

In order to see this equivalence, we consider the inhomogeneous continuous time random walk (CTRW)
defined by the recursion relation (7) and characterized by a general location-dependent transition time PDF
wj(t). It has been shown [Scher and Lax, 1973; Berkowitz et al., 2006; Dentz et al., 2012] that the gi(t) satisfies
the generalized Master equation [Kenkre et al., 1973]
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dgiðtÞ
dt

5

ðt
0

dt0
X
½ij�

wij Mjðt2t0Þgjðt0Þ2
ðt
0

dt0Miðt2t0Þgiðt0Þ; (9)

where the memory kernel is defined by its Laplace transform as

M�j ðkÞ5
kw�j ðkÞ

12w�j ðkÞ
: (10)

The Laplace transform [Abramowitz and Stegun, 1972] is denoted here by an asterisk and the Laplace vari-
able by k. For the transition time distribution (8), the memory function reduces to

MjðtÞ5
1
sj

dðtÞ: (11)

Note that the function Mj(t) is similar to the memory function defined in CTRW, see for example Berkowitz
et al. [2006], but here it is space dependent through the dependence on the site specific transition time dis-
tribution wj(t). Inserting this expression into (9) gives directly the Master equation (6) and thus shows the
equivalence of the discrete advection-dispersion equation (2) and the TDRW scheme characterized by the
recursion relations (7), the transition probabilities (5) and the transition time PDF (8).

2.2. Modeling of Multirate Mass Transfer
Here we briefly detail the generalization of the advective-dispersive TDRW scheme to account for multi-
rate mass transfer (MRMT) [e.g., Haggerty and Gorelick, 1995; Carrera et al., 1998]. The methodology fol-
lows closely the one described in Dentz et al. [2012]. The MRMT approach accounts for transport
combined with retardation mechanisms due to particle or solute traps, or immobile zones. The immobili-
zation mechanisms can be chemical, such as adsorption, and physical, such as diffusion into dead end
pores, immobile microporosity, and slow advection in low permeability inclusions. The modeling of
advective-dispersion transport through TDRW and its combination with MRMT is based on the works of
Dentz and Berkowitz [2003] and Benson and Meerschaert [2009], who formulated the MRMT approach in
the CTRW framework, and the work of Margolin et al. [2003], who establish a transition time PDF for the
CTRW approach that accounts for multirate particle trapping. A similar CTRW-based approach for model-
ing MRMT was used by Zhang et al. [2015].

In the TDRW (7) advective-dispersive particle transitions are reflected by the transition time hj, which is
exponentially distributed according to (8). In the presence of particle traps, the transition time is given by
the sum of the exponential transition time hj and the total time of the trapping events that occur during an
advective-dispersive transition. Thus, the total transition time Hj is given by

Hj5hj1
Xnhj

l51

#jl; (12)

with the trapping times #jl , which are distributed according to pj(t). The trapping process occurs at constant
rate aj during the advective-dispersive transition such that the number of trapping events nhj is a Poisson-
distributed random variable. Thus, the total transition time PDF wðtÞ describes a compound Poisson process
and can be expressed in Laplace space as [Margolin et al., 2003; Dentz et al., 2012]

w�j ðkÞ5
1

11ksj1ajsj½12p�j ðkÞ�
: (13)

Inserting (13) into the Laplace transform of the generalized Master equation (9) and using the definition (5)
of the transition probabilities wij and the characteristic transition time sj, we obtain

kVic�i ðkÞ5qi1
X
½ij�

bij
kVj c�j ðkÞ

k1aj ½12p�j ðkÞ�
2
X
½ij�

bji
kVi c�i ðkÞ

k1ai½12p�i ðkÞ�
; (14)

where qi denotes the initial concentration distribution. Note that we used (4) to substitute the number den-
sity g�i ðkÞ by the concentration c�i ðkÞ. We define now the mobile concentration ci,m(t) through the Laplace
transform
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c�i;mðkÞ5
kc�i ðkÞ

k1ai½12p�i ðkÞ�
; (15)

and the trapped concentration ci,t(t) through

c�i;tðkÞ5c�i ðkÞ2c�i;mðkÞ5u�i ðkÞc�i;mðkÞ; (16)

with the transfer function defined as:

u�i ðkÞ5
ai

k
½12p�i ðkÞ�: (17)

Using these definitions in (14) and performing the inverse Laplace transform gives

dVi ci;mðtÞ
dt

1
d
dt

ðt
0

dt0uðt2t0ÞVici;mðt2t0Þ5
X
½ij�

bij Vjcj;mðtÞ2
X
½ij�

bjiVi ci;mðtÞ: (18)

In the spatial continuum limit, this equation becomes

@cmðx; tÞ
dt

1
@

@t

ðt
0

dt0uðx; t2t0Þcmðx; t2t0Þ52r � vðxÞcmðx; tÞ1r � DðxÞrcmðx; tÞ: (19)

with the transfer or memory function

u�ðx; kÞ5 aðxÞ
k
½12p�ðx; kÞ�: (20)

A key parameter of MRMT models is the dimensionless capacity coefficient b which is the ratio of mass
in the immobile domain to mass in the mobile domain at equilibrium [Haggerty et al., 2000]. According
to the op. cit. authors the capacity coefficient can be defined as the time integral of the memory
function

b5

ð1
0

uðtÞdt: (21)

Accordingly, in the Laplace domain, the capacity coefficient at any location x corresponds to the Laplace
transform of the memory function u�ðkÞ given in (20) for k 5 0. If a mean trapping time exists, the distribu-
tion of trapping times can be expanded as pðkÞ ’ 12�sk1O ðk2Þ where �s denotes the mean trapping time.
Thus, by inserting the expansion of the distribution of trapping time in (20) with k 5 0, the capacity coeffi-
cient of the MRMT formulation [Haggerty et al., 2000] can be expressed as the function of the trapping
rate:

b5a�s: (22)

Conversely, the MRMT formulation of Haggerty et al. [2000] is based on the density function b(c) of the rate
coefficient c, and the memory function is given by:

uðtÞ5
ð1

0
cbðcÞexp ð2ctÞdc: (23)

In order to relate the density function b(c) to the trapping time distribution p(s) used in this paper, one can
rewrite (20) as

p�ðkÞ512
u�ðkÞk

a
(24)

or equivalently in the time domain:

pðtÞ52
1
a

duðtÞ
dt

: (25)

Using expression (23) in this expression, one obtains:
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pðtÞ5 1
a

ð1
0

c2bðcÞ e2ct dc: (26)

Equation (26) gives the equivalence of
the trapping time distribution p(t) and
the trapping rate a of the TDRW model
with the mobile-immobile transfer rate
coefficient c and the density function
of the rates b(c) for the general expres-
sion of the memory function for MRMT
derived by Haggerty et al. [2000].

3. Numerical Implementation

Here we detail the numerical imple-
mentation of the proposed TDRW
scheme for modeling hydrodynamic
transport. In a discretized domain par-
ticle position is updated according to
(7) with the transition probabilities wij

given in (5). The transition time is
drawn for each particle from the expo-
nential distribution (8) with mean tran-
sition time sj given by (5). Thus, time
increment may be re-written as

tn115tn1hj; hj52sj ln ðgnÞ; (27)

where hj is the random time increment and gn is a random variable uniformly distributed in (0, 1]. In the fol-
lowing, we discuss the implementation of boundary conditions. We study the occurrence of numerical dis-
persion in the advective dispersive TDRW scheme and finally report in the implementation of MRMT.

3.1. Boundary Conditions
For simplicity, we discuss the boundary conditions for d 5 1 dimensional scenarios. The generalization to d
dimensions is straightforward.
3.1.1. Concentration Boundary Condition
An instantaneous constant concentration boundary is defined by

cðx50; tÞ5k0dðtÞ; (28)

where k0 is the boundary concentration multiplied by a characteristic injection time scale, see also below.
The boundary of the domain is located between the 2nd and 3rd voxels of the computational mesh, which
have the size |n|. We assign to the 1st, 2nd and 3rd voxels the same values for the diffusion coefficients, D0,
and the velocities, v0. Then Np particles are place in the 2nd voxel. At the first jump each particle moves
according to the corresponding transition probabilities. The particles that transition to the 1st voxel are
removed from the system. At subsequent jumps, particles that arrive at the 2nd voxel are removed, which
simulates the absorbing boundary condition for times t> 0. With this implementation, the numerical
boundary concentration ĉðx50; tÞ, i.e., the concentration in the boundary voxel is actually given by

ĉðx50; tÞ5 exp ð2t=sbÞ
n

(29)

because the residence time is exponentially distributed. The characteristic residence time sb in the bound-
ary voxel is given by

sb5
sv0

112�0
; (30)

where sv0 5jnj=v0 and �05D0=ðv0jnjÞ. We can rewrite (29) as

Figure 1. Temporal evolution of residence concentration observed at different
observation points for a semiinfinite d 5 1 dimensional domain with constant
concentration BC at the inlet. Lines: analytical solution given in (52), symbols:
TDRW simulations. Parameters (all values are expressed in consistent arbitrary
length and time units): D 5 1, v 5 2, observation points: x 5 10 (squares), x 5 20
(circles), x 5 50 (rhombus) and x 5 100 (triangles). Parameters for the TDRW
simulations: number of particles Np5107, voxel size: n 5 0.05.
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ĉðx50; tÞ5 sb

n
exp ð2t=sbÞ

sb
� sb

n
dðtÞ: (31)

in the limit of sb much smaller than the observation time. Thus, the desired concentration c(x, t) with the
boundary condition (28) is given by

cðx; tÞ5 k0n
sb

ĉðx; tÞ (32)

Note that sb=n5v21
0 =ð112�0Þ, and in the absence of diffusion at the boundary, that is D0 5 0, we simply

have that sb=n5v21
0 .

For a finite concentration pulse at the boundary, i.e., for

cðx50; tÞ5cbðtÞ (33)

the concentration c(x, t) can be expressed according to Duhamel’s theorem in terms of the concentration
g(x, t) for the pulse boundary condition gðx50; tÞ5dðtÞ as

cðx; tÞ5
ðt
0

dt0gðx; t2t0Þcbðt0Þ: (34)

Thus, the solution c(x, t) can be obtained by the solution for a pulse boundary condition through the
convolution (34). The Green function g(x, t) is obtained by setting k0 5 1 in (28).

Alternatively, the solution c(x, t) can be obtained by placing particles at random times t0 > 0, which are dis-
tributed according to

Pbðt0Þ5
cbðt0Þð1

0

dscbðsÞ

: (35)

Thus, the numerical concentration
ĉðx50; tÞ at the boundary then is
given by

ĉðx50; tÞ5
ð1
0

dt0
sb

n
pbðt0Þ

exp ½2ðt2t0Þ=sb�
sb

:

(36)

Thus, the desired concentration c(x, t)
is obtained from the numerical con-
centration as

cðx; tÞ5

n
ð1
0

dscbðsÞ

sb
ĉðx; tÞ: (37)

Note that for a finite-duration constant
concentration initial condition (or for a
constant continuous injection), the
particle are placed at random time t0

uniformly distributed between 0 and
the end time of the injection time (or
till the end time of the simulation in
case of a continuous injection).
3.1.2. Flux Boundary Condition
An instantaneous flux boundary condi-
tion is expressed as

Figure 2. Temporal evolution of the cumulative concentration for different values
of velocities and diffusivity. Lines indicate the computed inverse Laplace trans-
form of the analytical solution given in equation (54). Symbols are result of the
TDRW simulations: (squares) D 5 1, v 5 1, (circles) D 5 0.5, v 5 1, (triangles)
D 5 0.2, v 5 1, (crosses) D 5 1, v 5 5, (rhombus) D 5 5, v 5 10. Parameters: d 5 1
dimensional domain; domain size L 5 250, observation points: x 5 20, number of
particles Np5106, voxel size n 5 0.1. All values are expressed in consistent
arbitrary length and time units.
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j0ðtÞ5 vcðx; tÞ2D
@cðx; tÞ
@x

� �
x50

5dðtÞ:

(38)

This boundary condition is simulated
numerically by placing particles at time
t 5 0 at the second voxel of the computa-
tional domain. The boundary is located
between the 1st and 2nd voxels. The diffu-
sion coefficient and velocity in the 1st voxel
are 0, in the 2nd voxel they are given by
D0 and v0. Thus, the numerical flux ĵ 0ðtÞ,
i.e., the distribution of times needed to
cross the boundary voxel is simply given
by the residence time distribution

ĵ 0ðtÞ5
exp ð2t=sbÞ

sb
: (39)

In the limit of sb much smaller than
the observation time, it approximates
well the boundary condition (38).

In order to model a continuous injec-
tion at the boundary,

j0ðtÞ5jbðtÞ (40)

we proceed in the same way as for the concentration boundary in the previous section. We note that the
concentration c(x, t) is given by Duhamel’s theorem in terms of the Green function g(x, t), which satisfies the
boundary condition (38), as

cðx; tÞ5
ðt
0

dt0gðx; t2t0Þjbðt0Þ: (41)

Thus, c(x, t) can be simply obtained by convolution of the solution of the instantaneous flux boundary condition.

Alternatively, it can be obtained, as above, by injection of particles at random times t0 distributed according to

vðt0Þ5 jbðt0Þð1
0

ds jbðsÞ

: (42)

Thus, the numerical flux ĵ 0ðtÞ at the boundary is given by

ĵ 0ðtÞ5
ð1
0

dt0vðt0Þ exp ½2ðt2t0Þ=sb�
sb

(43)

and the desired concentration c(x, t) is obtained from the numerical concentration ĉðx; tÞ as

cðx; tÞ5
ð1
0

ds cbðsÞ

2
4

3
5ĉðx; tÞ: (44)

3.2. Numerical Dispersion
The TDRW is based on a finite volume discretization of the advection-dispersion equation. Thus, even
though it represents a particle scheme, it is susceptible to numerical dispersion. This is owed to the fact that
the TDRW is based on a lattice random walk. Here we quantify the numerical dispersion. For simplicity, we
present the derivation here for d 5 1 dimension and a constant dispersion coefficient. We start from the
Master equation (6) for d 5 1, which we write as

Figure 3. Temporal evolution of the resident concentration observed at different
observation points in a semiinfinitive d 5 1 dimensional domain. Lines: analytical
solution given in (56), symbols: TDRW simulations. Parameters (all values are
expressed in consistent arbitrary length and time units): D 5 1, v 5 5, observation
points: x 5 10 (squares), x 5 20 (circles), x 5 50 (rhombus) and x 5 100 (triangles).
Parameters TDRW simulations: number of particles Np5106, voxel size: n 5 0.05.
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dcðxi; tÞ
dt

5
Dðx2nÞ

n2 cðxi2n; tÞ1 Dðxi1nÞ
n2 cðxi1n; tÞ2 Dðxi2nÞ1Dðxi1nÞ

n2 cðxi ; tÞ1 vðxi2nÞcðxi2nÞ2vðxiÞcðxi; tÞ
n

;

(45)

We substitute here vj ! vðxi2nÞ; D̂ii21 ! Dðxi2nÞ and D̂ii11 accordingly. In the limit of n! 0, we obtain
by expanding up to order n

@cðx; tÞ
@t

52
@

@x
vðxÞ2 n

2
dvðxÞ

dx

� �
cðx; tÞ1 @

@x
DðxÞ1 vðxÞn

2

� �
@cðx; tÞ
@x

1 . . . ; (46)

where the dots denote contributions of order n2. Thus, the TDRW scheme exhibits numerical dispersion as
well as an artificial drift that is proportional to the derivative of the flow velocity v(x). As the flow fields
under consideration are typically smooth, the latter effect can be disregarded. In order to suppress the
impact of numerical dispersion, the coefficient v(x)|n|/2 should be smaller than the actual dispersion coeffi-
cient D(x), the discretization n should be chosen such that the condition

jnj < 2DðxÞ
jvðxÞj (47)

is fulfilled.

3.3. Implementation of Multirate Mass Transfer
As explained in section 2.2, a particle can get trapped a number nj of times during its transition time hj and
remain trapped during a time #jl . Therefore the total transition time is given by the mobile transition time hj plus
the sum over the trapping times #jl given in (12). Thus the particle time is updated as

tn115tn1hj1
Xnhj

l51

#jl: (48)

Figure 4. Distribution of solute particles evolving from a line source in a d 5 2 dimensional domain with Newtonian velocity profile and
line Figure top: from left to right distribution of particles for times t510, 200 and 1000. Figure down: from left to right distribution of
particles for times t510, 200, 1000, 2500, 5000 and 10,000, or rather for time t51023sD; t52 � 1022sD; t50:1sD , t50:25sD; t50:5sD and
t 5 sD. Parameters: D 5 1, vm 5 10, ‘y 5 100. All values are expressed in consistent arbitrary length and time units.
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As outlined in section 2.2, trapping
events occur at a constant rate aj dur-
ing a particle transition characterized
by a mobile time hj, which is given by
(27). Thus, the number of trapping
event nhj drawn from the Poisson
distribution

mðnjhjÞ5
ðajhjÞn

n!
exp ð2ajhjÞ: (49)

The trapping times #jl are drawn from
the distribution pj(t).

4. Validation

In this section, we validate the pro-
posed TDRW approach for a series of
homogeneous and inhomogeneous
advection-dispersion scenarios under
multirate mass transfer.

4.1. Homogeneous Semiinfinite
Domain
As the simplest case, we consider a
d 5 1 homogeneous domain, where
ADE equation reads:

@cðx; tÞ
@t

1v
@cðx; tÞ
@x

2D
@2cðx; tÞ
@x2

50 (50)

with diffusivity D and velocity v homogeneous and constant. For the first example we record the temporal
evolution of the resident concentration at given distances from the inlet where the condition is a constant
resident concentration. For the second example the inlet boundary condition is a constant flux and we
record both the temporal evolution of the resident concentration and the first arrival time at given distan-
ces from the inlet.
4.1.1. Dirichlet Boundary Condition: Instantaneous Injection
Firstly we consider the temporal evolution of concentration in a semi-infinite domain with instantaneous
constant concentration at the inlet:

cð0; tÞ5j0dðtÞ

cðx; 0Þ50 x > 0

lim
x!1

cðx; tÞ50

(51)

The analytical solution of (50) with conditions (51) is given in Kreft and Zuber [1978]:

cðx; tÞ5j0
xffiffiffiffiffiffiffiffiffiffiffiffi

4pDt3
p exp 2

ðx2vtÞ2

4Dt

" #
: (52)

Numerically, the boundary conditions (51) are approximated as explained in section 3.1. Thus, the constant
j0 is equal to sb/n with sb the residence time of the initial boundary voxel.

In the particle tracking framework the normalized concentration is given by the number of particles arriving at
the observation voxel, np, divided by the total number of particles of the simulation Np and by the voxel size n,
thus: cðx; tÞ5npðx; tÞ=Np n. Figure 1 successfully compares the results of the numerical simulations with the
analytical solution. Parameter of the simulations are given in the caption of the figure.

Notice that the problem of computing the temporal evolution of resident concentration with boundar-
ires conditions (51) is equivalent to the problem of injection in flux and detection in flux, or rather in

Figure 5. Temporal evolution of the mean squared displacement for a d 5 2
dimensional domain considering a Newtonian velocity profile. Parameters (all
values are expressed in consistent arbitrary length and time units): vm 5 10
‘y 5 100, D 5 1 (circles), vm 5 10 ‘y 5 10, D 5 1 (triangles) and D 5 0.1 (squares).
Straight lines indicate the second centered moment for Taylor dispersion given
by equation (59).

Water Resources Research 10.1002/2015WR018511

RUSSIAN ET AL. TDRW FOR HYDRODYNAMIC TRANSPORT 3318



the computation of the first passage
time distribution for an istantaneous
flux injection [Kreft and Zuber, 1978].
4.1.2. Dirichlet Boundary Condition:
Continuous Injection
Here we considered a fixed constant
concentration as inlet boundary
condition

cð0; tÞ5c0

lim
x!1

cðx; tÞ50;
(53)

and we compute the cumulative con-
centration at a given observation
point. As mentioned before, notice
that this problem is equivalent to com-
pute the first passage time distribution
for a continuous flux injection at the
inlet boundary.

The numerical procedure for computing
the first passage time distribution using
TDRW consists simply in removing the
particles that reach the observation
point. The analytical solution is given by
Kreft and Zuber [1978]:

cðx; tÞ5 1
2

erfc
x2vtffiffiffiffiffiffiffiffi

4Dt
p
� �

1
1
2

exp
vx
D

� �
erfc

x1vtffiffiffiffiffiffiffiffi
4Dt
p
� �

(54)

Figure 2 displays the successful comparison between the TDRW simulations and the analytical solution (54) for
different values of (spatially constant) diffusivity and velocity (parameters are given in the caption of the figure).
4.1.3. Robin Boundary Condition: Instantaneous Injection
Here we consider Eq. (50) with the following boundary conditions:

v cðx; tÞ2D
@cðx; tÞ
@x

� �
x50

5dðtÞ; lim
x!1

cðx; tÞ50 (55)

The solution of (50) for a semiinfinite domain expressed in term of resident concentration was given by Kreft
and Zuber [1978]:

cðx; tÞ5 2ffiffiffiffiffiffiffiffiffiffi
4pDt
p exp 2

ðx2vtÞ2

4Dt

" #
2

v
2D

exp
vx
D

� �
erfc

x1vtffiffiffiffiffiffiffiffi
4Dt
p
� �

: (56)

Figure 3 shows that TDRW numerical simulations coincide with the analytical solution (56). The simulation
parameters are given in the caption of the figure.

In order to test the algorithm for any d dimension, we performed TDRW for d 5 2 and d 5 3 dimension
computing temporal evolution of concentration of a observation line and observation plane, respec-
tively. Numerical simulations fully overlap the d 5 1 simulations and consequently the d 5 1 analytical
solutions.

4.2. Newtonian Velocity Profile: Taylor Dispersion
In the following we consider a d 5 2 dimensional medium x 5 (x,y) and we use a Newtonian velocity profile
along the y direction given by:

vðyÞ5vm 12
y2

‘y

2

� �2

‘y

2

� �2

2
64

3
75 (57)

Figure 6. Temporal evolution of concentration at given observation planes for a
linear shear flow. Parameters (all values are expressed in consistent arbitrary
length and time units): D 5 0.1, r 5 1, x1 5 100 (squares), x2 5 200 (triangles) and
x3 5 500 (circles).
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where vm is the maximum velocity reached in the middle of the domain and ‘y is the vertical dimension of
the domain.

Figure 4 illustrates the distribution of the random walkers (or particles) issuing from a line source at different
observation times. We take a semiinfinite domain with reflecting inlet boundary. As observable quantity we
considered the second centered moment jx(t) given by the difference of the second and the first squared
moment of the concentration along the x direction:

jxðtÞ5hx2ðtÞi2hxðtÞi2; (58)

where the squared brackets indicate the ensemble average over all the particles of the simulation. Figure 5
shows the second centered moment computed for different values of diffusivity in a d 5 2 dimensional
domain with a Newtonian velocity profile.

As it is shown in Figure 5 j(t) increases following a ballistic regime for t< sD with sD5‘2
y=D the mean diffu-

sion time over the vertical direction and for t> sD j(t) increases linearly with time following the effective
Taylor dispersion:

jðtÞ52D 11
1

210

�v 2‘2
y

D2

 !
t; (59)

where �v is the average velocity �v52vm=3.

4.3. Linear Shear Flow
Here we consider a d 5 2 dimensional linear shear flow in an unbounded domain. The x axis of the coordi-
nate system is aligned with the flow direction and y axis is perpendicular to x. The flow velocity is composed
of a pure shear contribution ay, in which r is the shear rate. Transport is given by:

@cðx; tÞ
@t

1ry
@cðx; tÞ
@x

2r � Drcðx; tÞ50: (60)

We assume dispersion spatially uni-
form and isotropic thus the dispersion
tensor is Dij 5 D. The solution of (60)
for a pulse injection is given by Bolster
et al. [2011]:

cðx; tÞ5 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjjðtÞjj

p exp 2
xT j21ðtÞx

2

� �
(61)

with jjjðtÞjj the determinant of the
variance matrix jðtÞ:

j11ðtÞ52Dt1
2
3

Dr2t3j12ðtÞ5Drt2

(62)

j21ðtÞ5Drt2j22ðtÞ52Dt (63)

As observable quantity we choose the
temporal evolution of the concentra-
tion arriving at a given observation
plane perpendicular to the flow direc-
tion x. By integrating equation (61)
along the y direction we obtain:

cðx0;tÞ5
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pj11
p exp

x2
0

2jjjðtÞjj
j2

12

j11
2j22

� �� �
(64)

Figure 7. Temporal evolution of the flux observed at x 5 20 with D 5 1, v 5 2
computed using the TDRW-MRMT solver (symbols) compared with analytical
solutions (colored lines, (67)). The concentration curve without trapping (blue
circles: TDRW simulation, blue line: analytical solution) is given for comparison.
The characteristic time of the power low distribution of trapping time,(65), is
sc 5 0.1, trapping rate: a 5 0.1 with b 5 0.5 (crosses) and b 5 0.8 (triangles). All
values are expressed in consistent arbitrary length and time units.
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Figure 6 shows the temporal evolution
of the integrated concentration at dif-
ferent distances. Results of TDRW sim-
ulations coincide with analytical
solution (64).

4.4. Multirate Mass Transfer
Here we illustrate the performance of
the MRMT extension to the advective-
dispersive TDRW. As explained previ-
ously, the number of trapping events
nhj at voxel j depends on the total
mobile time hj and is drawn from a
Poisson distribution (49). We consider
spatially homogeneous mass transfer
properties characterized by a constant
the trapping rate a and a single trap-
ping time distribution p(s). The trap-
ping times are drawn from the Pareto
distribution:

pðsÞ5 b
sc

s
sc

� �212b

: (65)

We set here sc51021. In the frame
of the multirate mass transfer model
such as proposed by Haggerty and
Gorelick [1995] and Carrera et al.
[1998], this corresponds to a power-

law memory function scaling as t–b and a late time concentration of the breakthrough curve scaling
as t212b, for t � sc .

We consider here an instantaneous injection into the flux at the inlet boundary at x 5 0 of a semiinfinite
domain such that

jðx50; tÞ5dðtÞ; jðx51; tÞ50: (66)

Thus, the solution for j(x, t) can be obtained straightforwardly in Laplace space as

j�ðx; kÞ5exp 2
vx
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

4D
v2

k½11u�ðkÞ�
r

21

 !" #
; (67)

where the transfer function is given by u�ðkÞ5ak21½12p�ðkÞ� according to (20). The Laplace transform of
the trapping time distribution (65) is given by

p�ðkÞ512ðkscÞbCð12b; kscÞ (68)

where c(a, x) is the incomplete gamma function. Figure 7 shows the temporal evolution of the flux at a
given observation point (the breakthrough curve) for different exponent b, Figure 8 for different trapping
rates a. Numerical simulations coincide with the numerical inverse Laplace transform of the analytical solu-
tion (67). As shown in the figure, after an initial Fickian-like regime, a tailing regime develops where the con-
centration decreases as t212b with the exponent b given by the power law distribution of the trapping time
distribution (65). For given values of sc and b, the occurrence of the power law regime is proportional to the
trapping rate: a higher value of the trapping rate corresponds to an earlier start of the power law regime.

5. Conclusions

We derived a general formulation of the TDRW in heterogeneous media and described the numerical
scheme for modeling the hydrodynamic transport of inert solutes in complex geometries with spatially

Figure 8. Temporal evolution of the flux observed at x 5 20 with D 5 1, v 5 2
computed using the TDRW-MRMT solver (symbols) compared with analytical
solutions (colored lines, (67)). The concentration curve without trapping (blue
circles: TDRW simulation, blue line: analytical solution) is given for comparison.
The characteristic time of the power low distribution of trapping time,(65), is
sc 5 0.1, trapping rate: a 5 1 (squares), a 5 0.1 (crosses) and a 5 0.01 (rhombus)
for b 5 0.5. All values are expressed in consistent arbitrary length and time units.
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distributed material properties and fluid velocities. We demonstrate that this TDRW scheme (7) is formally
equivalent to the discretized advection-dispersion equation (1) using the equivalence to the general CTRW
approach.

Then we extend the TDRW algorithm to account for mobile-immobile multirate mass transfer (TDRW-
MRMT). The occurrence of trapping events in immobile zones is taken into account by incrementing the
transition times by random trapping times according to a compound Poisson process. The occurrence of
trapping events at a given site is described by the trapping rate, which is a property of the medium and can
be spatially distributed. The multirate mass transfer extension can give rise to long tailing behavior of the
BTC curves which is controlled by the trapping rate and the distribution of trapping times.

In the second part of this paper we describe the implementation of the TDRW scheme with particular atten-
tion to the robust modeling of different boundaries and initial conditions. Considering that the TDRW is
based on a lattice random walk, the numerical scheme induces numerical dispersion. We derived an explicit
expression for the numerical dispersion effect, which yields a Peclet criterion for the spatial discretization.

We verified that the proposed TDRW approach is a computationally efficient method to model transport prob-
lems even in heterogeneous and complex geometries because of its intrinsic compliance with parallel comput-
ing due to the independence of particle displacements. Furthermore, the system matrix of transition probability
and transition time has to be calculated only once and then is stored in memory. Accordingly the only limiting
factor in terms of problem size is the size of the shared memory. For example Gjetvaj et al. [2015] solved recently
the transport of an inert solute in the porosity of a 106 cells discretized sample of Berea sandstone (i.e., about
108 computation nodes) using a 12-cores Intel Xeon (2.6 GHz) computer with 24 GB RAM using 106 particles.
The computations were done in few tens of minutes depending on the value of the Peclet number.

Furthermore we demonstrated the accuracy of the numerical implementation of the proposed TDRW and
TDRW-MRMT algorithm comparing the TDRW results with a set of analytical solutions for different configu-
rations of homogeneous and inhomogeneous flow conditions and different initial and boundary conditions.
In conclusion, TDRW provides a robust and efficient numerical method for the solution of hydrodynamic
transport in heterogeneous media under multirate mass transfer.
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