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Abstract

In this paper we study time-inhomogeneous versions of one-dimensional Stochastic Differential Equations

(SDE) involving the Local Time of the unknown process on curves. After proving existence and uniqueness

for these SDE under mild assumptions, we explore their link with Parabolic Differential Equations (PDE)

with transmission conditions. We study the regularity of solutions of such PDE and ensure the validity of

a Feynman-Kac representation formula. These results are then used to characterize the solutions of these

SDE as time-inhomogeneous Markov Feller processes.

Keywords: Stochastic Differential Equations with Local Time; time inhomogeneous Skew Brownian

Motion; Divergence Form Operators ; Feynman-Kac representation formula ; time inhomogeneous Markov

processes

1. Introduction

1.1. Presentation

In a seminal paper on the subject [1], J.-F. Le Gall gives necessary and sufficient conditions for pathwise

uniqueness property of time-homogeneous one-dimensional Stochastic Differential Equations involving the

Local Time (SDELT) of the unknown process, namely

dXt = σ(Xt)dWt +

∫

R

Lx
t (X)ν(dx), t ∈ [0, T ], X0 = x0. (1)

Here T > 0 denotes the time horizon, x0 ∈ R is the starting point, σ : R → R∗
+ is a given bounded

measurable function, ν(dx) is a given bounded measure on R, and (Lx
t (X))t∈[0,T ] stands for the symmetric

local time of the unknown process (Xt)t∈[0,T ] at point x. Together with results on the existence of weak5

solutions for (1), these results on pathwise uniqueness allow to assert that (1) possesses a unique strong

solution.
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Note that when the measure ν(dx) is sufficiently regular and can be decomposed into ν(dx) = b(x)
σ2(x)dx+

∑I
i=1 βiδxi

(dx) (for some integer I and coefficients βi ∈ R and a bounded measurable function b : R → R),

the stochastic differential equation (1) simplifies to

dXt = σ(Xt)dWt + b(Xt)dt+

I
∑

i=1

βidL
xi

t (X), t ∈ [0, T ], X0 = x0 (2)

thanks to the occupation time formula. In the case where σ ≡ 1, b ≡ 0, I = 1, x1 = 0, and β1 ∈ (−1, 1), we

recover the celebrated Skew Brownian motion, which has been an endless subject of study on its own right

over the recent past years (see the survey [2]; see [3] for an example of application).10

Solutions of one-dimensional SDELTs such as (2) are known to be related to operators of the form

ρ

2
∇ · (a∇) + b∇ (3)

where ρa = σ2 and the jumps a(xi+) − a(xi−) are proportional to βi, for 1 ≤ i ≤ I (see the forthcoming

Subsection 5.1 for details on the value of the coefficients). Note that in (3) the ∇-sign can stand either for

the weak derivative, for example when one studies the problem in a L2-context with the help of Dirichlet

forms (see for instance [4]), or for the classical derivative, when one works with Feller semigroups. Note that

both approaches require to carefully specify the domain of the operator, guaranteeing that for any function ϕ15

in this domain, the weak derivative of a∇ϕ exists.

Further, assuming the coefficients σ and b are smooth outside the points of singularity xi, 1 ≤ i ≤ I, one

can establish, via a Feynman-Kac formula, the link between the processX and the classical solution u(t, x) of

some parabolic Partial Differential Equation (PDE) with transmission conditions (the so-called Diffraction

or transmission parabolic problem): the PDE satisfied by u(t, x) involves the operator (3), and u(t, x) has to

satisfy at any time t the transmission condition

a(xi+)u′x(t, xi+) = a(xi−)u′x(t, xi−)

for any 1 ≤ i ≤ I. In particular, this link opens an extended broadcast of applications such as dispersion

across interfaces [5], diffusions in porous media [6], magneto-electroencephalography [7] (see also [2] and the

references therein).

For proofs stating - in a time-homogeneous context - the link between solutions of (2), operators of the20

form (3), and solutions of PDE involving transmission conditions, one may refer to the seminal papers [8][9],

the overviews [2], [10], and also to the series of works [11], [12], [13], [14], [15], where numerical schemes are

presented and studied. Note that this kind of questions still seems to rise a lot of interest (see the recent

papers [16], [17]).

This paper is a first attempt to generalize this family of results in a time-inhomogeneous context. First
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we have a look to a time-inhomogeneous version of (2), namely

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I
∑

i=1

βi(t)dL
xi

t (X), t ∈ [0, T ], X0 = x0. (4)

Here the generalization is three fold : first the coefficients σ and b are now allowed to depend on time, second25

the coefficients βi are no longer constant but are also allowed to depend on time, and third the functions

xi : t 7→ xi(t) are now time-curves, so that (Lxi

t (X))t∈[0,T ] stands for the (symmetric) local time of the

unknown process (Xt)t∈[0,T ] along the time-curve xi (see the next subsection for a precise definition).

For the study of this equation we follow the lines of Le Gall in [1]. The idea is to use a space transform

in order to get rid of the local times. But as the local times are now taken on curves and the βi’s are30

time-dependent, we have to use the recent Itô-Peskir formula (see [18]), at places where Le Gall uses the

classical Itô-Tanaka formula. Of course we have also to assume that the curves xi are sufficiently smooth

and well-separated (we do not allow intersection of the curves). We are then able to state existence and

uniqueness results for (4). Note that, in the case of smooth functions βi’s, this generalizes very recent results

concerning the Inhomogeneous Skew Brownian motion (case I = 1, σ = 1, b = 0, x1 = 0), see [19],[20].35

Then, in a second time, we easily establish the connection between the solution of (4) and a parabolic

transmission problem, assuming that there exists a sufficiently smooth classical solution of this parabolic

transmission problem. Afterwards, the problem becomes to prove that such a classical solution actually

exists and the whole matter becomes a PDE analysis problem, which constitutes the third main topic of our

paper. To adress this question, we rely on the reference article [21] and the monograph [22], where closely40

related PDEs with time-dependent coefficients are studied. But in these references, results are given in the

case where the coefficient ρ in (3) is constantly equal to one, and with non-moving interfaces (cylindrical

domains). Again, the one-dimensional context allows us to use space-time transformations, in order to reduce

our problem to the form studied in [21].

Finally, we manage to characterize fully the generator of the solutions of (4) in the simple case where45

xi = i, 1 ≤ i ≤ I, and the coefficients σ and b are smooth outside these interfaces. Indeed, due to the lack of

smoothness of the time derivative of the solution of the parabolic transmission problem in the general case

of moving curves (the time derivative is discontinuous), it seems hard to fully characterize the generator in

this case, although the process remains Markovian.

In this paper we strongly rely on space transform tricks that are only available because the space dimension50

is one. Besides, when turning to PDE issues, and the link with PDE, we have to require smoothness of the

coefficients outside the interfaces, in order to deal with classical solutions of PDE (and not only weak ones).

Recall also that we do not allow the curves to cross, nor to touch.

If one is satisfied with the link between the process and weak solutions of PDE, it would be quite natural

to try to use the framework of generalized Dirichlet forms ([23]) in order to relax these assumptions. However,55
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for the time being, it is not clear for us that we could overcome all the issues that we would encounter in

this direction: for only reference on this approach and up to our knowledge we mention [24], where the

authors work with an assumption of monotonicity of the space-time subdomains that is not required in our

approach. Note that in [24] the authors work in a multidimensional framework. In our opinion this topic

surely requires further investigations (see also our comments in Subsection 5.2).60

The paper is organized as follows.

In Section 2, we give preliminary material for the study of equation (4). This includes, results on the

related martingale problem, recalls on some pathwise uniqueness results to be found in [1] (available in

a time-inhomogeneous context), and a slight adaptation of the Itô-Peskir formula (in the case where the

curves are C1 functions). Since we aim at studying the generator of the solutions of equation (4), we also65

give introductory material to the semigroups associated to time inhomogeneous Markov processes and Feller

evolution systems.

In Section 3 we use the result of Peskir ([18]) to prove a change of variable formula, that will be of crucial

use in the rest of the paper. Then we give conditions for the equation (4) to admit a weak or strong solution,

to enjoy pathwise uniqueness. The method follows closely Le Gall [1] by means of a space transform.70

Section 4 is devoted to the proof of the Feynman-Kac representation linking the solution of (4) and the

solution of a parabolic partial differential equation with transmission conditions along the curves xi’s. It is

assumed that the solution of the parabolic PDE with transmission conditions is smooth enough in order to

apply the change of variable formula of Section 3.

Section 5 is naturally devoted to the study of the parabolic PDE with transmission conditions appearing in75

the previous section. We first study its weak interpretation and manage to show, by adapting the arguments

in [25], that a weak solution exists. As regarding classical solutions, we rely on the main result of the

reference article [21], where ρ ≡ 1 and the sub-domains are cylindrical. For the sake of completeness, we give

hints of the main steps of the proof given in [21]. Again, using the one-dimensional context of the equation,

we manage to generalize the result to the solution of the parabolic PDE with transmissions conditions, with80

ρ 6= 1 and moving interfaces. Thus, we fully prove that the solution of the parabolic PDE with transmission

conditions is smooth enough to assert the validity of the Feynman-Kac representation given in the previous

section (see the conclusion at the end of Section 5).

Section 6 is an attempt to characterize the Markov generator of (Xt)t∈[0,T ] solution of (4). We manage to

do it fully in the case of non-moving interfaces. The case of moving interfaces seems more difficult to handle85

since we do no longer have the continuity of the time derivative of the associated parabolic transmission

problem.

An Appendix contains detailed material regarding the Itô-Peskir formula and PDE technical aspects.

Some notations frequently used in the paper are introduced in the next subsection.
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1.2. Notations90

In the following notations an interval [0, T ] ⊂ R+ is given and kept fixed (with 0 < T <∞).

We denote by (C, C) the space of R-valued continuous functions of [0, T ], equipped with the σ-field C
endowed by the supremum norm, and (Ct) the canonical filtration.

For any semi-martingale X the process L0
. (X) = (L0

t (X))t∈[0,T ] is the symmetric local time at point 0

of X . And for any continuous function of bounded variation γ : [0, T ] → R we denote by Lγ
. (X) the process

defined by

Lγ
t (X) = L0

t (X − γ), ∀t ∈ [0, T ].

So that

∀t ∈ [0, T ], Lγ
t (X) = P− lim

ε↓0

1

2ε

∫ t

0

1|Xs−γ(s)|<ε d〈X〉s,

(see [26], Exercise VI-1-25, and [18]).

For any topological spaces U, V we denote by C(U) the set of continuous R-valued functions on U , and95

by C(U, V ) the set of continuous functions from U to V .

Cb(U) denotes the set of continuous bounded functions on U .

Cp(U), p ∈ N̄, denotes the set of continuous functions on U with continuous derivatives up to order p.

C0(R) denotes the set on continuous functions on R vanishing at infinity.

We denote E = [0, T ]× R and E◦ = [0, T )× R.100

Let F ⊂ E an open subset of E. We denote by Cp,q(F ) the set of continuous functions on F , with

continuous derivatives up to order p in the time variable, and up to order q in the space variable (with the

convention that for example q = 0 corresponds to the continuity w.r.t. the space variable).

We denote by C0(E) the space of R-valued continuous functions of E, vanishing at infinity, i.e. when

|x| → ∞, (t, x) ∈ E. We will denote this space C0 in short when this causes no ambiguity. The spaces C0(R)105

and C0(E) are endowed with the corresponding supremum norm, for which we use the common notation

|| · ||∞ (which norm is meant will be made clear from the context ).

We denote by C∞,∞
c (E) the set of R-valued functions of E that are C∞,∞(E), and of compact support

with respect to the space variable (i.e. for f ∈ C∞,∞
c (E), for any t ∈ [0, T ], the function f(t, ·) is of compact

support).110

We denote by C∞,∞
c,c (E) the set of R-valued functions of E that are in C∞,∞(E), and of compact support

K ⊂ (0, T )× R.

For a function in L2(R) we denote by df
dx its first derivative in the distribution sense. We denote by

H1(R) the usual Sobolev space of those functions f in L2(R) such that df
dx belongs to L2(R). We denote by

H−1(R) the usual dual space of H1(R).115
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We denote L2(0, T ;L2(R)) the set of measurable functions f(t, x) s.t.

∫ T

0

∫

R

|f(t, x)|2dxdt <∞.

For f ∈ L2(0, T ;L2(R)) we denote by ||f ||2 the above quantity.

We denote by L2(0, T ;H1(R)) the set of mesurable functions f(t, x) such that for any t ∈ [0, T ] the

function f(t, ·) is in H1(R) and

∫ T

0

∫

R

|f(t, x)|2dxdt +
∫ T

0

∫

R

∣

∣

df

dx
(t, x)

∣

∣

2
dxdt <∞.

For a function f ∈ L2(0, T ;L2(R)) we denote by df
dt its first derivative with respect to time in the

distribution sense (see Remark 5.7 for some details).

We will denote byH1,1(E) the set of functions in L2(0, T ;H1(R)) such that df
dt belongs to L2(0, T ;L2(R)).

It is equipped with the norm f 7→
(

||f ||2 +
∣

∣

∣

∣

df
dx

∣

∣

∣

∣

2
+
∣

∣

∣

∣

df
dt

∣

∣

∣

∣

2
)1/2

.120

Finally we will denote by H1,1
0 (E) the closure in H1,1(E) of C∞,∞

c,c (E) with respect to the just above

defined norm. Note that for ϕ ∈ H1,1
0 (E) we have ϕ(0, ·) = ϕ(T, ·) = 0, and lim|x|→∞ ϕ(t, x) = 0, t ∈ [0, T ].

For 0 < m < M < ∞ we denote by Θ(m,M) the set of functions σ : [0, T ] × R → [m,M ] that are

measurable. We denote by Ξ(M) the set of functions b : [0, T ]× R → [−M,M ] that are measurable.

Let I ∈ N∗. For each 1 ≤ i ≤ I, let xi : [0, T ] → R be a continuous function of bounded variation, and125

assume that xi(t) < xj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Given such a family (xi)
I
i=1 we will denote Dx

0 = {(t, z) ∈ [0, T ] × R : z < x1(t)}, Dx
I = {(t, z) ∈

[0, T ]× R : z > xI(t)} and, for any 1 ≤ i ≤ I − 1, Dx
i = {(t, z) ∈ [0, T ]× R : xi(t) < z < xi+1(t)}.

We will denote

∆x = {(t, xi(t)) : 0 ≤ t ≤ T }Ii=1 ⊂ E (5)

(this will be clear from the context which family (xi)
I
i=1 is dealt with).

We define now the H(xi)-hypothesis for functions in Θ(m,M) in the following way:

(H(xi)) : g ∈ Θ(m,M) ∩ C0,1(E \∆x), max
1≤i≤I

sup
t∈[0,T ]

sup
xi(t)<x<xi+1(t)

|g′x(t, x)| <∞

and sup
t∈[0,T ]

sup
x<x1(t)

|g′x(t, x)| <∞, sup
t∈[0,T ]

sup
x>xI(t)

|g′x(t, x)| <∞.

We define the AJ(xi)-hypothesis (AJ for Average Jumps) in the following way

(AJ(xi)) : ∃0 < C <∞, ∞ > C

∫ T

0

∑

x≤z≤y

|g2(s, z+)− g2(s, z−)|ds ≥
∑

x≤z≤y

|g2(t, z+)− g2(t, z−)|,

for all x, y ∈ R, t ∈ [0, T ].130
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Remark 1.1. This roughly speaking, means that the size of the jumps of g are not allowed to go too far from

a kind of time-averaged size jump. See Remark 2.5 below for a comment on why this technical hypothesis is

needed.

For the study of the PDE aspects we define the H(t)-hypothesis for functions in Θ(m,M), in Ξ(M) or in

Cc(E), by

(H(t)) : g ∈ C1,0(E \∆x), max
1≤i≤I

sup
t∈[0,T ]

sup
xi(t)<x<xi+1(t)

|g′t(t, x)| <∞

and sup
t∈[0,T ]

sup
x<x1(t)

|g′t(t, x)| <∞, sup
t∈[0,T ]

sup
x>xI(t)

|g′t(t, x)| <∞.

Note that the same kind of notations will be used for a family yi : [0, T ] → R, 1 ≤ i ≤ I, satisfying the

same assumptions (for example in Corollary 2.8 below).135

Finally, we fix notations for two sets of type ∆x that play a special role in the sequel. Those are

∆ = {(t, i) : 0 ≤ t ≤ T }Ii=1 ⊂ E and ∆0 = {(t, 0) : 0 ≤ t ≤ T }. (6)

For any function f : R → R and any x ∈ R such that f(x+) = limy↓x f(y) and f(x−) = limy↑x f(y) both

exist, we will sometimes use the following notations :

f±(x) :=
f(x+) + f(x−)

2
and △ f(x) =

f(x+)− f(x−)

2
.

In particular if f : R → R is differentiable, except on a finite number of points x1 < . . . < xI , where f
′(xi±),

1 ≤ i ≤ I exist, note that the function f ′
± is defined on the whole real line and represents the absolute part

of f ′(dx), the derivative of f in the generalized sense; in other words,

f ′(dx) = f ′
±(x)dx +

I
∑

i=1

2 △ f(xi)δxi
(dx).

2. Preliminaries and known results concerning the stochastic aspects of the problem

2.1. Well-posedness of the martingale problem associated to discontinuous coefficients

Of crucial importance is the following result, to be found in [27].

Theorem 2.1 ([27], Exercise 7.3.3). Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄) (for some 0 < m̄ < M̄ < ∞). Then

the martingale problem associated to σ̄2 and b̄ is well-posed.140

The first important consequence of this result is that the for any (s, y) ∈ E the SDE

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, t ∈ [s, T ], Ys = y

has a weak solution ([27], Theorem 4.5.1), unique in law ([27], Theorem 5.3.2). The second one is that this

weak solution is (time-inhomogeneous) Markov ([27], Theorem 6.2.2; see also the forthcoming Subsection 2.4

for comments on time-inhomogeneous Markov processes).
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Remark 2.2. Note that the result of Theorem 2.1 is available for time-dependent coefficients, only because

the dimension of the space variable is d = 1. For d = 2, up to our knowledge, such results exist but with a145

time-homogeneous diffusion matrix ([27], Exercise 7.3.4).

2.2. Pathwise uniqueness results and strong solutions of time-inhomogeneous SDEs with discontinuous coef-

ficients

We have the following results.

Theorem 2.3 (J.-F. Le Gall, [1]). Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄ ) for some 0 < m̄ < M̄ < ∞. Assume

further that there exists a strictly increasing function f : R → R such that

|σ̄(t, x)− σ̄(t, y)|2 ≤ |f(x)− f(y)|, ∀(t, x, y) ∈ [0, T ]× R× R. (7)

Then the SDE

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, t ∈ [0, T ], Y0 = y0 (8)

enjoys pathwise uniqueness.150

As an immediate consequence we get the following corollary.

Corollary 2.4. Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R be a continuous function of bounded

variation, and assume that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄ ) for some 0 < m̄ < M̄ <∞.

The SDE (8) has a weak solution.155

Assume further that σ̄ satisfies the H(yi) and AJ(yi)-hypothesis.

Then the SDE (8) enjoys pathwise uniqueness and has in fact a unique strong solution.

Proof. As already pointed in Subsection 2.1 Equation (8) has weak solutions. We aim now at using Theo-

rem 2.3. Then the well known results of Yamada and Watanabe ([28]) will provide the desired conclusion.

First we notice that for all (t, x, y) ∈ [0, T ]× R× R,

|σ̄(t, x)− σ̄(t, y)|2 ≤ σ̄2(t, x) + σ̄2(t, y)− 2(σ̄2(t, x) ∧ σ̄2(t, y)) = |σ̄2(t, y)− σ̄2(t, x)|.

Thus, to get the result by Theorem 2.3 it suffices to find a stricly increasing function f : R → R such that

|σ̄2(t, x)− σ̄2(t, y)| ≤ |f(x)− f(y)|, ∀(t, x, y) ∈ [0, T ]× R× R. (9)

Using the H(yi)-hypothesis, we set

K = max
{

sup
t∈[0,T ]

sup
x<y1(t)

|(σ̄2)′x(t, x)|, max
1≤i≤I

sup
t∈[0,T ]

sup
yi(t)≤x<yi+1(t)

|(σ̄2)′x(t, x)|, sup
t∈[0,T ]

sup
x≥yI(t)

|(σ̄2)′x(t, x)|
}

<∞.
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One can define a strictly increasing function f : R → R by

f(x) = Kx+ C
∑

z≤x

∫ T

0

|σ̄2(s, z+)− σ̄2(s, z−)|ds,

where C is the constant involved in the AJ(yi)-hypothesis (note that as
∑

z≤x |σ̄2(s, z+)− σ̄2(s, z−)| is finite
and bounded -for any s-, Fubuni’s Theorem ensures that f take finite values). Then one can use the H(yi)

and AJ(yi)-hypotheses to check that for x < y,

|σ̄2(t, x)− σ̄2(t, y)| ≤ K(y − x) +
∑

x≤z≤y |σ̄2(t, z+)− σ̄2(t, z−)|

≤ K(y − x) + C
∫ T

0

∑

x≤z≤y |σ̄2(s, z+)− σ̄2(s, z−)|ds

= f(y)− f(x) = |f(y)− f(x)|.

Thus f satisfies (9).160

Remark 2.5. It would be tempting to set f(x) = Kx+
∑

z≤x sups∈[0,T ] |σ̄2(s, z+)− σ̄2(s, z−)| in order to

try to check (7). But as sups∈[0,T ] |σ̄2(s, z+)− σ̄2(s, z−)| could be non zero for non countable values of z the

function f could be not well defined as a function from R to R. This justifies our assumption AJ(yi).

2.3. The Itô-Peskir formula

Our fundamental tool is the following result due to G. Peskir (see [18]).165

Theorem 2.6 (Time inhomogeneous symmetric Itô-Tanaka formula ([18])). Let Y a continuous R-valued

semimartingale. Let γ : [0, T ] → R be a continuous function of bounded variation.

Denote C = {(t, x) ∈ [0, T ]× R : x < γ(t)} and D = {(t, x) ∈ [0, T ]× R : x > γ(t)}.
Let r ∈ C(E) ∩ C1,2(C) ∩ C1,2(D). Then, for any 0 ≤ t < T ,

r(t, Yt) = r(0, Y0) +

∫ t

0

1

2
(r′t(s, Ys+) + r′t(s, Ys−))ds+

∫ t

0

1

2
(r′y(s, Ys+) + r′y(s, Ys−))dYs

+
1

2

∫ t

0

r′′yy(s, Ys)1Ys 6=γ(s)d〈Y 〉s +
1

2

∫ t

0

(r′y(s, Ys+)− r′y(s, Ys−))dLγ
s (Y ).

(10)

Note that in the above Theorem, the assumption r ∈ C1,2(C) ∩ C1,2(D) means that r restricted to C

coincides with a function r0 laying in the whole space C1,2(E), and r restricted to D coincides with a170

function r1 laying in the whole space C1,2(E).

However, when dealing with PDE aspects (Sections 4, 5 and 6), we will need to apply the Itô-Peskir for-

mula to functions that have less smoothness: these functions will only possess continuous partial derivatives

(of order one in time and at least two in the space variable) with limits all the way up to the boundary

9



∆γ = {(t, x) ∈ [0, T ]× R : x = γ(t)}. The price to pay, in order to get the same formula (10), is then to175

require additional smoothness of the curve γ(t): we require it to be of class C1.

In Theorem 2.7 below, we give the adaptation of the Itô-Peskir formula that will be used in Sections 4,

5 and 6 (in fact the formula is the key the forthcoming Proposition 3.1, that will be used repeatedly in the

sequel). Note that the assumptions on the function r in Theorem 2.6 imply the ones in Theorem 2.7. But

of course, on the opposite, the fact that γ is C1 implies the fact that it is continuous of bounded variation.180

For the sake of completeness, we will give hints for a full proof of Theorem 2.7 in the Appendix along

the same lines as [18].

Theorem 2.7. Let Y a continuous R-valued semimartingale. Let γ : [0, T ] → R be a function of class C1,

and consider ∆γ = {(t, x) ∈ [0, T ] × R : x = γ(t)}. Let r ∈ C(E) ∩ C1,2(E◦ \ ∆γ) such that the limits

r′t(t, γ(t)±), r′y(t, γ(t)±), and r
′′

yy(t, γ(t)±) exist and are continuous as functions of t ∈ [0, T ). Then, for any185

0 ≤ t < T , we have (10).

For our purpose we need a more general formula, valid for multiple curves and local times. Such an

extension of the result of Theorem 2.7 was announced in [18] (see the Remark 2.3 therein) without proof.

Corollary 2.8. Let Y a continuous R-valued semimartingale.

Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R be a continuous function of bounded variation, and190

assume that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let r ∈ C(E) ∩
(

∩I
i=0 C

1,2(Dy
i )
)

. Then, for any 0 ≤ t < T ,

r(t, Yt) = r(0, Y0) +

∫ t

0

1

2
(r′t(s, Ys+) + r′t(s, Ys−))ds+

∫ t

0

1

2
(r′y(s, Ys+) + r′y(s, Ys−))dYs

+
1

2

∫ t

0

r′′yy(s, Ys)1{Ys 6=yi(s), ∀1≤i≤I}d〈Y 〉s +
1

2

I
∑

i=1

∫ t

0

(r′y(s, Ys+)− r′y(s, Ys−))dLyi

s (Y ).

The result remains valid if the curves yi’s are of class C1 and if r ∈ C(E) ∩ C1,2(E◦ \∆y) is such that for

all 1 ≤ i ≤ I, the limits r′t(t, yi(t)±), r′y(t, yi(t)±), and r
′′

yy(t, yi(t)±) exist and are continuous as functions

of t ∈ [0, T ).

Proof. The proof is postponed to the Appendix.195

2.4. Time-inhomogeneous Markov processes, infinitesimal generator of the associated space-time process

The presentation of Markov processes, especially when coming to the time-inhomogeneous case, varies

slightly from one book to the other. Here we precise some definitions and concepts. We follow mainly [26]

but we are also inspired by other references ([29], [30]; see also [31]).
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Let (Ω,F ,P) a probability space, (Ft)t∈[0,T ] a filtration (Ft ⊂ F for any t ∈ [0, T ]) and consider Z =200

(Zt)t∈[0,T ] an adapted process defined on this probability space, taking values in a measurable space (U,U).
We will say that Z is a (Ft)-Markov process if for any 0 ≤ s ≤ t ≤ T , and any f ∈ Cb(U) we have

E[f(Zt) | Fs] = E[f(Zt) |Zs].

Denoting Es,x(·) = E(· |Zs = x) and defining the operator Ps,t by Ps,tf(x) = Es,x[f(Zt)], for any f ∈ Cb(U),

any x ∈ U , we clearly have E[f(Zt) | Fs] = Ps,tf(Zs). The family (Ps,t)0≤s≤t≤T is called the transition

function of Z. We will say that Z is a time-homogeneous Markov process if Ps,t = P0,t−s. In the opposite

case it is called time-inhomogeneous.205

Now to fix ideas suppose the Markov process Z is R-valued, and denote (Ps,t) its transition function.

Consider the associated E-valued space-time process Z̃ = ((t, Zt))t∈[0,T ]. It is an exercise ([26], Exercise

III.1.10) to check that for any ϕ ∈ Cb(E) and any 0 ≤ s ≤ t ≤ T ,

E[ϕ(Z̃t) | Fs] = Pt−sϕ(Z̃s)

with

∀(s, x) ∈ E, ∀ϕ ∈ Cb(E), ∀ 0 ≤ t ≤ T − s, Ptϕ(s, x) = Ps,t+sϕ(t+ s, x) = Es,x[ϕ(s+ t, Zs+t)] (11)

(the value of Ptϕ(s, x) for t + s > T is arbitrarily set to zero; see the forthcoming Remark 6.3). Thus the

space-time process Z̃ is always a time-homogeneous Markov process (Z being time-homogeneous or not),

with transition function given by (11).

Note that the family (Ps,t) satisfies Pt,t = Id and, thanks to the Markov property on Z, the evolution

property

Ps,u ◦ Pu,t = Ps,t, ∀0 ≤ s ≤ u ≤ t ≤ T. (12)

The family (Pt) satisfies P0 = Id, and thanks to the time-homogeneous Markov property on Z̃, the

semigroup property

Ps ◦ Pt = Pt+s, ∀0 ≤ s ≤ T, ∀ 0 ≤ t ≤ T − s. (13)

If the family (Ps,t) satisfies, in addition to (12), that for any f ∈ C0(R) we have Ps,tf ∈ C0(R),

||Ps,tf ||∞ ≤ ||f ||∞, Ps,tf ≥ 0 if f ≥ 0, and

lim
(s,t)→(v,w)

s≤t

||Ps,tf − Pv,wf ||∞ = 0 (14)

it is called a Feller evolution system.

If the family (Pt) satisfies, in addition to (13), that for any ϕ ∈ C0(E), we have Ptϕ ∈ C0(E), ||Ptϕ||∞ ≤210

||ϕ||∞, Ptϕ ≥ 0 if ϕ ≥ 0, and limt↓0 ||Ptϕ− ϕ||∞ = 0, then it is called a Feller semigroup.

We have the following result.

11



Theorem 2.9 ([31]). Let Z be a Markov process with corresponding transitions (Ps,t). Let (Pt) the semigroup

associated to the corresponding space-time process Z̃. Then the following statements are equivalent:

i) (Ps,t) is a Feller evolution system.215

ii) (Pt) is a Feller semigroup.

Proof. Note that our definition of the space-time process, which follows [26], is a bit different from the one in

[31],[30], which is more canonical. But in fact, the families of operators (Ps,t) and (Pt) that we have defined

above, are exactly the same than the ones in [31],[30]. Therefore is suffices to adapt the proof if [31], which

is written on a infinite time interval, to the finite time interval case.220

We will say that Z is a Feller time-inhomogeneous Markov process if its corresponding evolution system

(Ps,t) is Feller, or equivalently if the semigroup (Pt) of the corresponding space-time process Z̃ is Feller (note

that Z̃ is therefore a Feller process in the sense of [26]). We will focus on this latter point of view, because

we believe it provides a more synthetic setting in order to describe the operators associated to a Feller

time-inhomogeneous Markov process Z. More precisely we will work at identifying the parabolic operator225

that is the infinitesimal generator of the space-time process Z̃.

At this point we recall the following definition.

Definition 2.10. Let Z̃ a E-valued Feller process, with associated Feller semigroup (Pt). A function ϕ in

C0 = C0(E) is said the belong to the domain D(L) of the infinitesimal generator of Z̃ if the limit

Lϕ = lim
t↓0

1

t
(Ptϕ− ϕ) (15)

exists in C0. The operator L : D(L) → C0 thus defined is called the infinitesimal generator of the process Z̃

or of the semigroup (Pt).

In order to identify such infinitesimal generators we will use the following proposition.230

Proposition 2.11. Let Z = (Zt)t∈[0,T ] a R-valued Feller time-inhomogeneous (Ft)-Markov process and let

Z̃ = ((t, Zt))t∈[0,T ] the E-valued corresponding space-time process. Assume Z̃ has generator (L, D(L)).
If ϕ ∈ C0, and if there exists a function g ∈ C0 such that Mϕ,g = (Mϕ,g

t )t∈[s,T ] defined by

∀t ∈ [s, T ], Mϕ,g
t = ϕ(Z̃t)− ϕ(Z̃s)−

∫ t

s

g(Z̃u)du

is a (Ft)-martingale under Ps,x (for any (s, x) ∈ E), then ϕ ∈ D(L) and Lϕ = g.

Proof. Here we adapt the proof of Proposition VII.1.7 in [26] to the inhomogeneous case. Recall that the

semigroup (Pt) associated to Z̃ is defined by

∀(s, x) ∈ E, ∀ϕ ∈ C0(E), ∀ 0 ≤ t ≤ T − s, Ptϕ(s, x) = Es,x[ϕ(s+ t, Zs+t)].
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Let (s, x) ∈ E. Thanks to the hypothesis the process M = (Mt)t∈[0,T−s] defined by

∀t ∈ [0, T − s], Mt = ϕ(s+ t, Zs+t)− ϕ(s, Zs)−
∫ t

0

g(s+ u, Zs+u)du

is a (Ct)-martingale under Ps,x. Taking the expectation under Ps,x we get

Ptϕ(s, x) − ϕ(s, x)−
∫ t

0

Pug(s, x)du = 0.

Thus we get
∣

∣

∣

∣

1

t
(Ptϕ− ϕ)− g

∣

∣

∣

∣

∞
=

∣

∣

∣

∣

1

t

∫ t

0

(Pug − g)du
∣

∣

∣

∣

∞
≤ 1

t

∫ t

0

||Pug − g||∞du

which goes to zero as t goes to zero.

Remark 2.12. In the sequel, for any R-valued Markov process Z the family (Pt) will denote the semigroup235

associated with the space-time process Z̃. This will be clear from the context, and there will be no risk to

take this semigroup for the one associated to Z, should this process be time-homogeneous Markov (as Pt will

act on functions from E to R).

Remark 2.13. For a time-inhomogeneous diffusion we can expect that Lϕ(t, ·) = (∂t + Lt)ϕ(t, ·), with Lt

a second order elliptic operator in the space variable. But in our case, with discontinuous coefficients and240

singular terms, D(L) will not contain C1,2(E) functions (cf Section 6).

3. Getting solutions by the mean of a space transform

3.1. Main results

A probability measure P is given on (C, C), together with a (Ct)-brownian motionW = (Wt)t∈[0,T ] defined

on (C, C,P).245

We will have the following main results: the first one (Proposition 3.1) is a change of variable formula for

time-inhomogeneous SDEs with local time (it is thus more general than the formula stated in Theorem 3.1

of [18], but our assumptions are more restrictive). Assuming a solution Y exists to the time-inhomogeneous

SDE with local time (16) Proposition 3.1 gives the form of some transformed process φ(t, Yt). This formula

will be used extensively in the sequel. To start with, it allows to prove Theorem 3.5, that gives existence and250

uniqueness results for the solution X = (Xt)t∈[0,T ] to Equation (4), under some conditions on the coefficients

σ(t, x), b(t, x), βi(t), 1 ≤ i ≤ I, and the curves xi(t). But Proposition 3.1 will be again used in Sections 5

and 6.

Proposition 3.1. Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R a function of class C1, and assume

that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.255
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Let Y = (Yt)0≤t≤T a continuous R-valued semimartingale satisfying

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt+

I
∑

i=1

β̄i(t)dL
yi

t (Y ) (16)

where σ̄, b̄ : [0, T ]× R → R are some bounded functions, and the functions β̄i : [0, T ] → (−1, 1), 1 ≤ i ≤ I,

are of class C1.

Let φ ∈ C(E) ∩ C1,2(E◦ \ ∆y) such that for all 1 ≤ i ≤ I, the limits φ′t(t, yi(t)±), φ′y(t, yi(t)±), and

φ
′′

yy(t, yi(t)±) exist and are continuous as functions of t ∈ [0, T ).

Set Xt = φ(t, Yt) for any t ∈ [0, T ]. Then

dXt = (σ̄φ′y,±)(t, Yt)dWt + [φ′t,± + b̄φ′y,±](t, Yt)dt+
1
2 (σ̄

2φ′′yy)(t, Yt)1{Yt 6=yi(t), ∀1≤i≤I}dt

+
∑I

i=1[△ φ′y(t, yi(t)) + β̄i(t)φ
′
y,±(t, yi(t))] dL

yi

t (Y ).

(17)

Assume further that φ ∈ C(E) ∩
(

∩I
i=0 C

1,2(Dy
i )
)

and

φ′y(t, y) > 0 ∀(t, y) ∈ E \∆y (18)

and denote, for any t ∈ [0, T ], Φ(t, ·) = [φ(t, ·)]−1 and

xi(t) = φ(t, yi(t)) (19)

for all 1 ≤ i ≤ I. Then

dXt = σ(t,Xt)dWt + b(t,Xt)dt+
I

∑

i=1

βi(t)dL
xi

t (X) (20)

with

σ(t, x) = (σ̄φ′y,±)(t,Φ(t, x))

b(t, x) = [φ′t,± + b̄φ′y,±](t,Φ(t, x)) +
1
2 (σ̄

2φ′′yy)(t,Φ(t, x))1{x 6=xi(t), ∀1≤i≤I}

and

βi(t) =
△ φ′y(t, yi(t)) + β̄i(t)φ

′
y,±(t, yi(t))

φ′y,±(t, yi(t)) + β̄i(t) △ φ′y(t, yi(t))
(21)

for all t ∈ [0, T ] and all x ∈ R.260

Remark 3.2. Note that the curves xi’s defined by (19) are continuous themselves of class C1, so that the

local times terms in (20) are still well defined.

In order to see that, let us focus on x1(t) = φ(t, y1(t)). As φ is in C(E) ∩
(

∩I
i=0 C

1,2(Dy
i )
)

one has

that φ restricted to Dy
0 coincides with a function φ0 ∈ C1,2(E), and that φ restricted to Dy

1 coincides with a

function φ1 ∈ C1,2(E). Thus, as φ is continuous, one has

φ0(t, y1(t)) = φ(t, y1(t)) = φ1(t, y1(t)), ∀t ∈ [0, T ].

Thus in particular x1(t) = φ0(t, y1(t)), and one sees by composition that x1 is of class C1.
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Remark 3.3. Note that

△ φ′y(t, yi(t)) + β̄i(t)φ
′
y,±(t, yi(t)) = φ′y(t, yi(t)+)(1 + β̄i(t))− φ′y(t, yi(t)−)(1 − β̄i(t)) (22)

and that φ′y,±(t, yi(t)) + β̄i(t) △ φ′y(t, yi(t)) = φ′y(t, yi(t)+)(1 + β̄i(t)) + φ′y(t, yi(t)−)(1 − β̄i(t)), so that the

new coefficients βi(t) in Proposition 3.1 may be rewritten

βi(t) =
φ′y(t, yi(t)+)(1 + β̄i(t))− φ′y(t, yi(t)−)(1 − β̄i(t))

φ′y(t, yi(t)+)(1 + β̄i(t)) + φ′y(t, yi(t)−)(1 − β̄i(t))
. (23)

Remark 3.4. Note that the result of Proposition 3.1 is a time-inhomogeneous version of Proposition 3.1 in

[13] (or equivalently Proposition 2.2.1 in [14]).265

Theorem 3.5. Let I ∈ N∗. For each 1 ≤ i ≤ I, let xi : [0, T ] → R be a function of class C1, and assume

that xi(t) < xj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let σ ∈ Θ(m,M) and b ∈ Ξ(M) for some 0 < m < M <∞.

Assume that for each 1 ≤ i ≤ I, the function βi : [0, T ] → [k, κ] (−1 < k ≤ κ < 1) is of class C1, and

that |β′
i(t)| ≤M for any t ∈ [0, T ].270

Then the time inhomogeneous SDE with local time

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I
∑

i=1

βi(t)dL
xi

t (X), t ∈ [0, T ], X0 = x0

(i.e. Equation (4)) has a weak solution.

Assume further that σ satisfies the H(xi) and AJ(xi)-hypotheses.

Then the SDE (4) has a unique strong solution (as it enjoys pathwise uniqueness).

Remark 3.6. The conditions of Theorem 3.5 have to be compared to the conditions in [1]. In particular, as

in [1], it is required that the βi’s stay in (−1, 1).275

3.2. Proofs

Proof of Proposition 3.1. Applying Corollary 2.8 we get

dXt = φ′t,±(t, Yt)dt+ φ′y,±(t, Yt)dYt +
1
2φ

′′
yy(t, Yt)σ̄

2(t, Yt)1{Yt 6=yi(t), 1≤i≤I}dt

+
∑I

i=1 △ φ′y(t, Yt)dL
yi

t (Y )

= (σ̄φ′y,±)(t, Yt)dWt + [φ′t,± + b̄φ′y,±](t, Yt)dt+
1
2 (σ̄

2φ′′yy)(t, Yt)1{Yt 6=yi(t), ∀1≤i≤I}dt

+
∑I

i=1[△ φ′y(t, yi(t)) + β̄i(t)φ
′
y,±(t, yi(t))] dL

yi

t (Y ),

where we have used the fact that dLyi

t (Y ) = 1Yt=yi(t)dL
yi

t (Y ), for any 1 ≤ i ≤ I.

Thus, the first part of Proposition 3.1 is proved. To prove the second part it suffices to use the following

lemma.
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Lemma 3.7. In the above context and under (18) we have

dLyi

t (Y ) =
dLxi

t (X)

φ′y,±(t, yi(t)) + β̄i(t) △ φ′y(t, yi(t))
, ∀1 ≤ i ≤ I.

Proof. Let 1 ≤ i ≤ I. On one side we apply the symmetric Tanaka formula to the process X − xi. We get

d|Xt − xi(t)| = sgn(Xt − xi(t))d(Xt − xi(t)) + dL0
t (X − xi)

= dLxi

t (X)− sgn(Yt − yi(t))dxi(t)

+sgn(Yt − yi(t))σ(t, φ(t, Yt))dWt + sgn(Yt − yi(t))b(t, φ(t, Yt))dt

+
∑

j 6=i sgn(Yt − yi(t))[△ φ′y(t, yj(t)) + β̄j(t)φ
′
y,±(t, yj(t))] dL

yj

t (Y ).

(24)

In the above expression we have first used the fact that sgn(Xt − xi(t)) = sgn(Yt − yi(t)) for any t ∈ [0, T ]

(as φ(t, ·) is stricly increasing). Second we have used the fact that with the symmetric sign function we have

sgn(Xt − xi(t)) = sgn(Yt − yi(t)) = 0 for any t ∈ [0, T ] s.t. Yt = yi(t).

Third we have used dL
yj

t (Y ) = 1Yt=yj(t)dL
yj

t (Y ), for any 1 ≤ j ≤ I.280

On the other side we may apply the first part of Proposition 3.1 (that is Equation (17); we stress that at

this stage this part is already proved) with the semimartingale Y and the function ζ : (t, y) 7→ |φ(t, y)−xi(t)|.
We get

d|Xt − xi(t)| = d|φ(t, Yt)− xi(t)|

= (σ̄ζ′y,±)(t, Yt)dWt + [ζ′t,± + b̄ζ′y,±](t, Yt)dt+
1
2 (σ̄

2ζ′′yy)(t, Yt)1{Yt 6=yj(t), ∀1≤j≤I}dt

+
∑I

j=1[△ ζ′y(t, yj(t)) + β̄j(t)ζ
′
y,±(t, yj(t))] dL

yj

t (Y )

= −sgn(Yt − yi(t))dxi(t) + sgn(Yt − yi(t))σ(t, φ(t, Yt))dWt + sgn(Yt − yi(t))b(t, φ(t, Yt))dt

+
∑

j 6=i sgn(Yt − yi(t))[△ φ′y(t, yj(t)) + β̄j(t)φ
′
y,±(t, yj(t))] dL

yj

t (Y )

+[φ′y,±(t, yi(t)) + β̄i(t) △ φ′y(t, yi(t))]dL
yi

t (Y ).

(25)

In (25) we have used several facts.

First, as xi(t) is of class C
1 (Remark 3.2), we have

ζ′t,±(t, y) = −sgn(y − yi(t))x
′
i(t) +

1

2
(sgn+(y − yi(t))φ

′
t(t, y+) + sgn−(y − yi(t))φ

′
t(t, y−)),
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where sgn± denote the right and left sign functions.

In the same manner we have that

ζ′y,±(t, y) =
1

2

(

sgn+(y − yi(t))φ
′
y(t, y+) + sgn−(y − yi(t))φ

′
y(t, y−)

)

and

ζ′′yy(t, y)1{y 6=yj(t), ∀1≤j≤I} = sgn(y − yi(t))φ
′′
yy(t, y)1{y 6=yj(t), ∀1≤j≤I}

Second, focusing for a while on (b̄ζ′y,±)(t, Yt)dt, we claim that this is equal to sgn(Yt − yi(t))(b̄φ
′
y,±)(t, Yt)dt

(we recall that sgn denotes the symmetric sign function). Indeed, using Exercise VI.1.15 in [26] (some

extension of the occupation times formula), to the semimartingale Y − yi, one may show that

∫ T

0

1Yt=yi(t)dt = 0 P− a.s. (26)

So that (a.s.)

(b̄ζ′y,±)(t, Yt)dt = 1
2 b̄(t, Yt)

(

sgn+(Yt − yi(t))φ
′
y(t, Yt+) + sgn−(Yt − yi(t))φ

′
y(t, Yt−)

)

1Yt 6=yi(t)dt

= sgn(Yt − yi(t))(b̄φ
′
y,±)(t, Yt)1Yt 6=yi(t)dt = sgn(Yt − yi(t))(b̄φ

′
y,±)(t, Yt)dt.

In the same manner one may see that

1

2
(σ̄2ζ′′yy)(t, Yt)1{Yt 6=yj(t), ∀1≤j≤I}dt =

1

2
sgn(Yt − yi(t))(σ̄

2φ′′yy)(t, Yt)1{Yt 6=yj(t), ∀1≤j≤I}dt,

and, using dxi(t) = x′i(t)dt, that

ζ′t,±(t, Yt)dt = sgn(Yt − yi(t))φ
′
t,±(t, Yt)dt− sgn(Yt − yi(t))dxi(t).

Third, using Itô isometry in order to use the above arguments one may also show that (σ̄ζ′y,±)(t, Yt)dWt =

sgn(Yt − yi(t))(σ̄φ
′
y,±)(t, Yt)dWt.

To sum up, using the definition of b(t, x), σ(t, x) we have that

(σ̄ζ′y,±)(t, Yt)dWt + [ζ′t,± + b̄ζ′y,±](t, Yt)dt+
1
2 (σ̄

2ζ′′yy)(t, Yt)1{Yt 6=yj(t), ∀1≤j≤I}dt

= −sgn(Yt − yi(t))dxi(t) + sgn(Yt − yi(t))σ(t, φ(t, Yt))dWt + sgn(Yt − yi(t))b(t, φ(t, Yt))dt.

Fourth (we are now turning to the local time terms) for j < i, we have yj(t) < yi(t) and thus φ(t, yj(t)) < xi(t)

for any t ∈ [0, T ], which leads to

[△ ζ′y(t, yj(t)) + β̄j(t)ζ
′
y,±(t, yj(t))] = −[△ φ′y(t, yj(t)) + β̄j(t)φ

′
y,±(t, yj(t))].

Using dL
yj

t (Y ) = 1Yt=yj(t)dL
yj

t (Y ) we then get that

[△ ζ′y(t, yj(t)) + β̄j(t)ζ
′
y,±(t, yj(t))] dL

yj

t (Y ) = sgn(Yt − yi(t))[△ φ′y(t, yj(t)) + β̄j(t)φ
′
y,±(t, yj(t))] dL

yj

t (Y )
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We have the same result for j > i (plus sign replaces minus sign).285

Fifth, we now examine what happens for j = i. The crucial fact is that because of the different sign of

φ(t, yi(t)±)− xi(t) we have

[△ ζ′y(t, yi(t)) + β̄j(t)ζ
′
y,±(t, yi(t))] = [φ′y,±(t, yi(t)) + β̄i(t) △ φ′y(t, yi(t))].

Therefore (25).

Comparing (24) and (25) we get the desired result.

Proof of Theorem 3.5. Inspired by [1], we will use the following bijection in space r(t, ·) (for any

t ∈ [0, T ]), that we now define.

For any t ∈ [0, T ] we define

µ(t, x) =
∏

xi(t)≤x

1− βi(t)

1 + βi(t)
(27)

(with the convention that µ(t, x) = 1 for any x < x1(t)).290

Let then

R(t, x) =

∫ x

x1(t)

µ(t, z)dz. (28)

As µ(t, z) is strictly positive for any z ∈ R the function R(t, ·) is strictly increasing. Thus we can define

r(t, y) =
[

R(t, ·)
]−1

(y). (29)

For any 1 ≤ i ≤ I we define

yi(t) = R(t, xi(t)) (30)

(note that y1 ≡ 0). It is easy to check that

r(t, y) =

∫ y

0

α(t, z)dz + x1(t) (31)

with

α(t, y) =
∏

yi(t)≤y

1 + βi(t)

1− βi(t)
(32)

(with α(t, y) = 1 for any y < y1(t)). Note that the function r(t, ·) is strictly increasing too.

Let us check that R is in C(E) ∩
(

∩I
i=0 C

1,2(Dx
i )
)

and that r is in C(E) ∩
(

∩I
i=0 C

1,2(Dy
i )
)

. We focus

on R(t, x), as the computations are similar for r(t, y).

Using (27)(28) it is easy to check that R(t, x) coincides on Dx
0 with the function R0(t, x) = x − x1(t).

On Dx
i , 1 ≤ i ≤ I, it coincides with the function

Ri(t, x) =

i−1
∑

j=1

{

∏

k≤j

1− βk(t)

1 + βk(t)

}

(xj+1(t)− xj(t)) +
{

∏

k≤i

1− βk(t)

1 + βk(t)

}

(x− xi(t)).

18



Obviously, all the functions Ri(t, x), 0 ≤ i ≤ I are in C1,2(E), and thus we see that R(t, x) is in ∩I
i=0C

1,2(Dx
i ).

To see that R(t, x) is in C(E) it remains to prove that it is continuous at any point (t0, x0) ∈ ∆x. For

such a point we have (t0, x0) = (t0, xi(t0)), for some t0 ∈ [0, T ] and some 1 ≤ i ≤ I. But, together with the

relationship

R(t0, xi(t0)) = Ri−1(t0, xi(t0)) = Ri(t0, xi(t0))

the continuity of Ri−1 and Ri then yields the desired result. Thus, R is indeed in C(E)∩
(

∩I
i=0 C

1,2(Dx
i )
)

.295

Note that this implies that the yi’s defined by (30) are of class C1 (by the same arguments as in Remark 3.2).

We then set

σ̄(t, y) =
σ(t, r(t, y))

r′y,±(t, y)
and b̄(t, y) =

b(t, r(t, y))

r′y,±(t, y)
−
r′t,±(t, y)

r′y,±(t, y)
(33)

It is easy to check that σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄ ) for some 0 < m̄ < M̄ <∞.

From now on the starting point x0 ∈ R is fixed. By Corollary 2.4 we have the existence of a weak

solution Y to

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, Y0 = R(0, x0). (34)

We wish now to use the second part of Proposition 3.1, with the function r(t, y) and the process Y (and the

curves yi’s). Note that by construction we have

(σ̄r′y,±)(t, R(t, x)) = σ(t, x),

[r′t,± + b̄r′y,±](t, R(t, x)) +
1

2
(σ̄2r′′yy)(t, R(t, x))1{x 6=xi(t), ∀1≤i≤I} = b(t, x),

(we have used in particular r′′yy ≡ 0 in the above expression) and

△ r′y(t, yi(t))

r′y,±(t, yi(t))
=

∏

j<i
1+βj(t)
1−βj(t)

1
2

( 1+βi(t)
1−βi(t)

− 1
)

∏

j<i
1+βj(t)
1−βj(t)

1
2

( 1+βi(t)
1−βi(t)

+ 1
)

=

2βi(t)
1−βi(t)

2
1−βi(t)

= βi(t)

(here we have computed (21) using the fact that there is no local time term in (34)).

So that by setting

Xt = r(t, Yt), ∀t ∈ [0, T ] (35)

we immediately see by Proposition 3.1 that X is a weak solution to (4).

In order to prove the last part of the theorem, we first notice that σ̄ satisfies the H(yi) and AJ(xi)-300

hypotheses. Thus (34) enjoys pathwise uniqueness (Corollary 2.4). Assume X ′ is a second solution to (4),

then we could show that Y ′
t = R(t,X ′

t) is a solution to (34). Thus, using the pathwise uniqueness property

of (34), we would show that pathwise uniqueness holds for (4). Therefore Theorem 3.5 is proved.
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4. Feynman-Kac formula: link with a parabolic transmission problem

Assume the curves xi, 1 ≤ i ≤ I and the coefficients βi, 1 ≤ i ≤ I are as in Theorem 3.5, b is in305

Ξ(M) ∩ C(E \∆x), and σ is in Θ(m,M) ∩C(E \∆x).

For λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R) ∩ L2(R), we will call a

classical solution of the parabolic transmission problem (Pλ
∆x

(σ, b, β)) a function u(t, x) that is of class

C(E) ∩C1,2(E◦ \∆x), is such that for all 1 ≤ i ≤ I the limits u′t(t, xi(t)±), u′x(t, xi(t)±) and u′′xx(t, xi(t)±)

exist and are continuous as functions of t ∈ [0, T ), and that satisfies

(Pλ
∆x

(σ, b, β))



































































[

u′t +
1
2σ

2u′′xx + b u′x − λu
]

(t, x) = g(t, x) ∀(t, x) ∈ E◦ \∆x

(1 + βi(t))u
′
x(t, xi(t)+) = (1− βi(t))u

′
x(t, xi(t)−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (⋆)

u(T, x) = f(x) ∀x ∈ R.

lim|x|→∞ |u(t, x)| = 0 ∀t ∈ [0, T ].

In particular we stress that the first and second line of this system of equations are satisfied in the classical

sense.

The question whether a classical solution u(t, x) exists to (Pλ
∆x

(σ, b, β)) will be discussed in Section 5,

with the help of an equivalent formulation of this parabolic transmission problem, in a more divergence-like310

form (Subsection 5.1). The condition (⋆) will be called the transmission condition in the sequel.

For the moment, assuming in this section the existence of such a solution u(t, x), we draw some con-

sequences on the solution X of (4): we have a Feynman-Kac formula linking X and u(t, x). We will see

in Section 6 that the properties of u(t, x) allow to say more on X : we can prove that X is a Feller time-

inhomogeneous Markov process and identify the infinitesimal generator of the space-time process X̃.315

We have the following result.

Theorem 4.1. Any classical solution u(t, x) of (Pλ
∆x

(σ, b, β)) admits the stochastic representation

u(t, x) = Et,x
[

f(XT )e
−λ(T−t) −

∫ T

t

g(s,Xs)e
−λ(s−t)ds

]

where X is the solution to (4); in particular such a classical solution u(t, x) is unique.

Remark 4.2. In this theorem the unicity of u(t, x) comes from the uniqueness in law of the weak solution X

(see Subsection 2.1).

Proof. We will follow the lines of the proof of Theorem 5.7.6 in [29], and use our Proposition 3.1 in the
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computations. Let t ∈ [0, T ). Applying Proposition 3.1 and Equation (22) we get for any s ∈ [t, T ),

u(s,Xs)e
−λ(s−t) − u(t,Xt) =

∫ s

t u
′
x,±(v,Xv)e

−λ(v−t)σ(v,Xv)dWv

+
∫ s

t e
−λ(v−t)

[

u′t,± + bu′x,± − λu
]

(v,Xv)dv

+ 1
2

∫ t

s
e−λ(v−s)u′′xx(v,Xv)σ

2(v,Xv)1{Xv 6=xi(v),1≤i≤I}dv

+ 1
2

∑I
i=1

∫ s

t

[

(1 + βi(v))u
′
x(v,Xv+)− (1 − βi(v))u

′
x(v,Xv−)

]

dLxi
v (X)

=
∫ s

t
u′x,±(v,Xv)e

−λ(v−t)σ(v,Xv)dWv +
∫ s

t
e−λ(v−t)g(v,Xv)dv

(36)

where we have first used the transmission condition (⋆) satisfied by u(t, x).320

Second we have used the fact that

∀1 ≤ i ≤ I,

∫ T

0

1Xt=xi(t)dt = 0 P− a.s. (37)

so that for example (P-a.s.)

e−λ(v−t)u′t,±(v,Xv)dv = 1{Xv 6=xi(v), ∀1≤i≤I}e
−λ(v−t)u′t(v,Xv)dv. (38)

To see that (37) holds for some 1 ≤ i ≤ I, one uses the same arguments than in the proof of Proposi-

tion 3.1. Then to get (38) it suffices to notice that 1{Xt 6=xi(t), ∀1≤i≤I} =
∏I

i=1 1Xt 6=xi(t) and that (37) implies

H(t)1Xt 6=xi(t)dt = H(t)dt (a.s.) for any integrable process H and any 1 ≤ i ≤ I. By the same arguments

one may see that

e−λ(v−t)
[

u′t,± + bu′x,± − λu
]

(v,Xv)dv + e−λ(v−t)(σ
2

2 u
′′
xx)(v,Xv)1{Xv 6=xi(v),1≤i≤I}dv

= e−λ(v−t)g(v,Xv)1{Xv 6=xi(v),1≤i≤I}dv

= e−λ(v−t)g(v,Xv)dv.

Therefore (36).

We introduce the sequence of stopping times (τn) defined by τn = inf{s ≥ t : |Xs| ≥ n} for any n ∈ N.

Taking the expectation Et,x(·) of (36) with s = (T − δ) ∧ τn (δ > 0 is sufficiently small) we get

u(t, x) = Et,x
[

u(T − δ,XT−δ)e
−λ(T−δ−t) 1τn>T−δ

]

+ Et,x
[

u(τn, Xτn)e
−λ(τn−t) 1τn≤T−δ

]

−Et,x
[

∫ (T−δ)∧τn
t g(s,Xs)e

−λ(s−t) ds
]

.

(39)
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To conclude the proof we may show by dominated convergence that, as n → ∞ and δ ↓ 0 the quantity

Et,x
[

u(T−δ,XT−δ)e
−λ(T−δ−t) 1τn>T−δ

]

converges to Et,x
[

f(XT )e
−λ(T−t)

]

, Et,x
[

∫ (T−δ)∧τn
t

g(s,Xs)e
−λ(s−t) ds

]

converges to Et,x
[

∫ T

t
g(s,Xs)e

−λ(s−t) ds
]

, and finally Et,x
[

u(τn, Xτn)e
−λ(τn−t) 1τn≤T−δ

]

converges to zero

(we stress the fact that here, as u is in C0(E) it is bounded; this is because we have chosen to deal in the325

parabolic problem with a terminal condition vanishing at infinity; this lightens some technical aspects of the

proof of Theorem 5.7.6 in [29]).

5. Parabolic transmission problem with time-dependent coefficients

5.1. Equivalent formulation in divergence like form and getting cylindrical subdomains by the mean of a

space transform330

Assume that we have curves xi, 1 ≤ i ≤ I satisfy the same assumptions than in Theorem 3.5. Let us

consider coefficients ρ, a ∈ Θ(m′,M ′) ∩ C(E \ ∆x), and a coefficient B ∈ Ξ(M ′) ∩ C(E \ ∆x) (for some

0 < m′ < M ′ <∞).

For λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R) ∩ L2(R), we will call a classical

solution of the transmission problem in divergence form (Pλ
div,∆x

(ρ, a,B)), a function u(t, x) that is of class

C(E) ∩C1,2(E◦ \∆x), is such that for all 1 ≤ i ≤ I the limits u′t(t, xi(t)±), u′x(t, xi(t)±) and u′′xx(t, xi(t)±)

exist and are continuous as functions of t ∈ [0, T ), and that satisfies

(Pλ
div,∆x

(ρ, a,B))



































































[

u′t +
ρ

2

(

au′x
)′

x
+B u′x − λu

]

(t, x) = g(t, x) ∀(t, x) ∈ E◦ \∆x

a(t, xi(t)+)u′x(t, xi(t)+) = a(t, xi(t)−)u′x(t, xi(t)−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (⋆)

u(T, x) = f(x) ∀x ∈ R.

lim|x|→∞ |u(t, x)| = 0 ∀t ∈ [0, T ].

For any ρ, a,B with ρa = σ2, a(t, xi(t)±) = pi(t)(1 ± βi(t)), 1 ≤ i ≤ I, t ∈ [0, T ) and B = b − ρ a′x,±/2,

it is clear that a classical solution to (Pλ
div,∆x

(ρ, a,B)) is a classical solution to (Pλ
∆x

(σ, b, β)) (here pi(t) is

a non zero multiplicative factor that depends on 1 ≤ i ≤ I, t ∈ [0, T )). One may for example choose for any

(t, x) ∈ E

a(t, x) =
∏

xi(t)≤x

1 + βi(t)

1− βi(t)
, ρ(t, x) =

σ2(t, x)

a(t, x)
, B(t, x) = b(t, x) (40)

(Note that here pi(t) =). Note that the presence of the variable coefficient ρ(t, x) is due to the fact that the

coefficient σ(t, x) has been chosen independently from the βi(t)’s. Note also that a convenient triple (ρ, a,B)335

is not unique.
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Conversely, it is always possible to pass from a transmission problem in the form (Pλ
div,∆x

(ρ, a,B)) to

another one in the form (Pλ
∆x

(σ, b, β)), by setting in particular

βi(t) =
a(t, xi(t)+)− a(t, xi(t)−)

a(t, xi(t)+) + a(t, xi(t)−)
. (41)

In fact, in the PDE litterature, parabolic transmission problems are classically studied in the purely

divergence-like form of (Pλ
div,∆x

(ρ ≡ 1, a, B)). Up to our knowledge fewer studies exist in the non divergence

form (Pλ
∆x

(σ, b, β)). The aim of this section is to present some known results on the problem

(Pλ
div,∆(ρ ≡ 1, a, B)), and to derive new ones for the general case.340

In the case ρ ≡ 1, the transmission problem in divergence form (Pλ
div,∆x

(ρ, a,B)) is well studied in the

PDE litterature, concerning the existence and unicity of weak solutions (see the forthcoming Subsection 5.2

for a definition of weak solutions). We can refer for instance to [22], [25], [32], for the study of weak solutions

under the general assumption of uniform ellipticity and boundedness of the coefficient a(t, x), boundedness

of B(t, x) and non-negativity of λ.345

Concerning classical solutions in the presence of a discontinuous coefficient a(t, x) like in our case, it

seems that less references are available. In the fundamental paper [21] it is shown that, still with ρ ≡ 1, and

in the case of cylindrical space-time subdomains (that is to say xi(t) = xi for all 1 ≤ i ≤ I, 0 ≤ t ≤ T ) every

weak solution to (Pλ
div,∆x

(ρ ≡ 1, a, B)) is in fact classical. As a consequence there exists a classical solution

to (Pλ
div,∆x

(ρ ≡ 1, a, B)).350

In the case ρ 6= 1 and in the presence of non-cylindrical subdomains some results are announced in [21]

and [22]. However they are stated without any complete proof (with the notable exception of the proof of

the existence of a unique weak solution in the case of cylindrical subdomains, but with ρ 6= 1, pp 229-232 of

[22]; see Subsection 5.2 for further comments).

We continue this subsection by noticing that in fact we can get rid of the difficulty of having non-355

cylindrical subdomains, by applying a space transform trick, available only because the space dimension is

one. We choose to present things on the problem in its non-divergence form (Pλ
∆x

(σ, b, β)) again.

From now on we assume I ≥ 3 and set

∀(t, x̂) ∈ E, ψ(t, x̂) =


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





































x1(t) + (x2(t)− x1(t))(x̂ − 1) if x̂ < 1

xj(t) + (xj+1(t)− xj(t))(x̂ − j) if j ≤ x̂ < j + 1, j = 1, . . . , I − 2

xI−1(t) + (xI(t)− xI−1(t))(x̂ − I + 1) if x̂ ≥ I − 1

For any t ∈ [0, T ] we note Ψ(t, ·) = [ψ(t, ·)]−1(·). Notice that

∆ = Ψ(∆x)
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and that E \∆ appears as the union of some open cylindrical space-time domains.

We have the following result.

Proposition 5.1. A fonction u(t, x) is a classical solution to (Pλ
∆x

)(σ, b, β) if and only if û(t, x̂) :=

u(t, ψ(t, x̂)) is a classical solution to

((P̂λ
∆)(σ̂, b̂, β̂))


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
















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
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




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





















[

û′t +
1
2 σ̂

2û′′x̂x̂ + b̂ û′x̂ − λû
]

(t, x̂) = ĝ(t, x̂) ∀(t, x̂) ∈ E \∆

(1 + β̂i(t))û
′
x̂(t, i+) = (1 − β̂i(t))û

′
x̂(t, i−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (⋆̂)

û(T, x̂) = f̂(x̂) ∀x̂ ∈ R.

lim|x̂|→∞ |û(t, x̂)| = 0 ∀t ∈ [0, T ],

where

σ̂(t, x̂) = σ(t, ψ(t, x̂))×Ψ′
x,±(t, ψ(t, x̂)), b̂(t, x̂) = b(t, ψ(t, x̂))×Ψ′

x,±(t, ψ(t, x̂)) + Ψ′
t,±(t, ψ(t, x̂)), (42)

ĝ(t, x̂) = g(t, ψ(t, x̂)), f̂(x̂) = f(ψ(T, x̂)) and

β̂i(t) =
(1 + βi(t))Ψ

′
x(t, xi(t)+)− (1− βi(t))Ψ

′
x(t, xi(t)−)

(1 + βi(t))Ψ′
x(t, xi(t)+) + (1− βi(t))Ψ′

x(t, xi(t)−)
. (43)

Remark 5.2. Note that

∀(t, x) ∈ E, Ψ(t, x) =


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





































(x− x1(t))/(x2(t)− x1(t)) + 1 if x < x1(t)

(x− xj(t))/(xj+1(t)− xj(t)) + j if xj(t) ≤ x < xj+1(t), j = 1, . . . , I − 2

(x− xI−1(t))/(xI(t)− xI−1(t)) + I − 1 if x ≥ xI−1(t)

(44)

and that this function is of class C(E)∩C1,2(E \∆x). Besides, choosing ε < inf1≤j≤I−1 infs∈[0,T ](xj+1(s)−360

xj(s)) and using the fact that ε < xj+1(t) − xj(t) ≤ sups∈[0,T ](xj+1(s) − xj(s)) we can see that there exist

constants 0 < m̂ < M̂ < ∞ such that Ψ′
x,± ∈ Θ(m̂, M̂). In addition Ψ′

t,± remains bounded (thanks in

particular to the fact that the xi : [0, T ] → R, 1 ≤ i ≤ I are of class C1). Thus the coefficients σ̂(t, x̂), b̂(t, x̂)

and β̂i(t), 1 ≤ i ≤ I, still satisfy the hypotheses of Section 4.

Proof of Proposition 5.1. We only prove the sufficient condition, the converse being proved in the same365

manner.

First for any (t, x) ∈ E \∆x we have

u′x(t, x) = û′x̂(t,Ψ(t, x))×Ψ′
x(t, x), (45)
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and, as Ψ′′
xx(t, x) = 0,

u′′xx(t, x) = û′′x̂x̂(t,Ψ(t, x))× [Ψ′
x(t, x)]

2. (46)

We also have

u′t(t, x) = û′t(t,Ψ(t, x)) + û′x̂(t,Ψ(t, x)) ×Ψ′
t(t, x). (47)

So that for any (t, x̂) ∈ E \∆ we may use this with (t, x) = (t, ψ(t, x̂)) in the first line of (Pλ
∆x

(σ, b, β))

and thus we get the first line of (P̂λ
∆(σ̂, b̂, β̂)), with the newly defined coefficients σ̂, b̂ and ĝ.

Concerning the transmission condition (⋆̂), we notice that we have from (⋆) in (Pλ
∆x

(σ, b, β))

∀t ∈ [0, T ], (1 + βi(t))Ψ
′
x(t, xi(t)+)û′x̂(t,Ψ(t, xi(t))+) = (1 − βi(t))Ψ

′
x(t, xi(t)−)û′x̂(t,Ψ(t, xi(t))−)

for any 1 ≤ i ≤ I. As Ψ(t, xi(t)) = i for any 1 ≤ i ≤ I, an easy computation shows that this is equivalent to

(⋆̂), with the newly defined β̂i(t), 1 ≤ i ≤ I.370

The third and fourth lines of (P̂λ
∆(σ̂, b̂, β̂)) are straightforward.

We can sum up the preceding discussions in the following proposition.

Proposition 5.3. Assume the curves xi, and the coefficients βi, 1 ≤ i ≤ I, are as in Theorem 3.5, and

that b is in Ξ(M) ∩ C(E \∆x), and σ is in Θ(m,M) ∩C(E \∆x).

Let σ̂, b̂, β̂i, 1 ≤ i ≤ I, defined by (42) (43). Let ρ̂, â, B̂ defined by (40), but with σ̂, b̂, β̂i, 1 ≤ i ≤ I375

instead of σ, b, βi, 1 ≤ i ≤ I.

Then (Pλ
∆x

(σ, b, β)) has a classical solution if and only if (Pλ
div,∆(ρ̂, â, B̂)) has a classical solution û(t, x̂).

This classical solution of (Pλ
∆x

(σ, b, β)) is given by u(t, x) = û(t,Ψ(t, x)) with Ψ(t, x) defined by (44).

Without loss of generality we shall investigate the problem (Pλ
div,∆(ρ, a,B)) (i.e. with xi ≡ i, 1 ≤ i ≤ I):

in Subsection 5.2 we deal with weak solutions, and in Subsection 5.3 with classical solutions but in the case380

ρ ≡ 1 (we sum up the results of [21]). In Subsection 5.4 we present a way to get classical solutions in the

case ρ 6= 1, using the results of Subsection 5.3, and again (different) space transform tricks.

5.2. Weak solutions

In this subsection it is assumed ρ, a ∈ Θ(m′,M ′) and B ∈ Ξ(M ′) for some 0 < m′ < M ′ < ∞, and that

the coefficient ρ satisfies the H(t)-hypothesis.385

We will call a weak solution of the parabolic problem (Pλ
div,∆(ρ, a,B)) a function u(t, x) in the space

L2(0, T ;H1(R)) ∩ C([0, T ];L2(R)), with u(T, ·) = f a.e., and satisfying for any test function ϕ ∈ H1,1
0 (E)
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the relation
∫ T

0

∫

R

u
dϕ

dt
ρ−1 dxdt

+
1

2

∫ T

0

∫

R

a
du

dx

dϕ

dx
dxdt−

∫ T

0

∫

R

B
du

dx
ϕρ−1dxdt+

∫ T

0

∫

R

u(λ− ρ′t
ρ
)ϕρ−1dxdt = −

∫ T

0

∫

R

gϕρ−1 dxdt.

(48)

Indeed, imagine for a while that we have a classical solution u(t, x) of (Pλ
div,∆(ρ, a,B)). If we formally multiply

the first line of (Pλ
div,∆(ρ, a,B)) by a test function ϕ vanishing at infinity and with ϕ(0, ·) = ϕ(T, ·) = 0, and

integrate the resulting equation against ρ−1dxdt on [0, T ]×R we recover (48), using in particular (⋆) in the

integration by parts formula.

We first aim at proving the following result.390

Proposition 5.4. The parabolic problem (Pλ
div,∆(ρ, a,B)) has a unique weak solution.

In fact this result is in essence contained in the discussion p 229-232 of [22], but we want here to give

our own, new and different proof, using the tools proposed in [25]. They differ from the ones used in [22][32]

but provide an elegant framework to handle the problem, and could be the starting point for the use of

Generalized Dirichlet forms in these questions (on this point see Remark 5.11 below). We believe that395

studying directly the weak solutions of (Pλ
div,∆(ρ, a,B)) with these tools has an interest per se, and paves

the way for future research in the presence of coefficients having even less smoothness.

In order to use the tools in [25] we denote H = L2(0, T ;L2(R); ρ−1) the set of measurable functions

f(t, x) such that
∫ T

0

∫

R

|f(t, x)|2ρ−1(t, x)dxdt <∞,

equipped with the scalar product

∀u, v ∈ H, 〈u, v〉H =

∫ T

0

∫

R

u(t, x)v(t, x)ρ−1(t, x)dxdt.

We denote V = L2(0, T ;H1(R); ρ−1) the set of mesurable functions f(t, x) such that for any t ∈ [0, T ]

the function f(t, ·) is in H1(R) and

∫ T

0

∫

R

|f(t, x)|2ρ−1(t, x)dxdt +

∫ T

0

∫

R

|df
dx

(t, x)|2ρ−1(t, x)dxdt <∞,

equipped with the scalar product

∀u, v ∈ V , 〈u, v〉V = 〈u, v〉H + 〈du
dx
,
dv

dx
〉H.

We will denote by || · ||H and || · ||V the norms corresponding to the above defined scalar products. We

denote by V ′ the dual of V . Note that we have V ⊂ H ⊂ V ′ with dense inclusions.
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Remark 5.5. Note that as ρ ∈ Θ(m′,M ′), of course H (resp. V) is, as a set, just equal to L2(0, T ;L2(R))400

(resp. L2(0, T ;H1(R))). Besides, as a set, V ′ is equal to L2(0, T ;H−1(R)).

We define a semigroup (Ut)t∈[0,T ] of contraction on V ′ by

Utf(s, ·) =







f(s+ t, ·) if 0 < s < T − t

0 otherwise.

We denote (Λ, D(Λ;V ′)) the infinitesimal generator of (Ut). We have the following elementary fact.

Lemma 5.6. We have

D(Λ,V ′) =
{

u | u ∈ V ′,
du

dt
∈ V ′, u(T, ·) = 0

}

and Λu =
du

dt
for any u ∈ D(Λ,V ′).

Remark 5.7. In Lemma 5.6, the time derivative
du

dt
is understood in the distribution sense. For example,

in the case u ∈ V ∩D(Λ,V ′), we have 〈u, v〉V′,V = 〈u, v〉H for any v ∈ V, and for any ϕ ∈ C∞,∞
c,c (E)

〈du
dt
, ϕ〉V′,V = −

∫ T

0

∫

R

u(ϕρ−1)′tdxdt = −〈u, ϕ′
t − ϕ

ρ′t
ρ
〉H.

Besides, for u ∈ V ∩D(Λ,V ′) and ϕ ∈ H1,1
0 (E) we have

〈du
dt
, ϕ〉V′,V = −〈u, dϕ

dt
− ϕ

ρ′t
ρ
〉H (49)

(using the fact that C∞,∞
c,c (E) is dense in H1,1

0 (E)). Note that ρ′t exists in the classical sense, even if it is

not continuous, thanks to the fact that the subdomains are cylindrical. Besides, ρ′t is bounded thanks to the405

H(t)-hypothesis.

Proof. See [25], Section 3.4.3.

As ρ 6= 1 we cannot use directly Theorem 3.4.1 in [25]. We will use a natural generalization of this result,

that we now state (besides note that we deal here with backward problems with terminal condition). The

proof is provided in the Appendix for the sake of completeness.410

Theorem 5.8. Assume A is a bilinear form on V satisfying

i) |A(u, v)| ≤ C||u||V ||v||V for all u, v ∈ V, where 0 < C <∞.

ii) A(v, v) + λ0||v||2H ≥ α0||v||2V for all v ∈ V (for some λ0, α0 > 0).

Then for any G ∈ V ′ and any f ∈ H there exists a unique u ∈ L2(0, T ;H1(R)) ∩ C([0;T ];L2(R)) (in

particular u is in V) such that u(T, ·) = f , and with
du

dt
∈ L2(0, T ;H−1(R)) and

〈

− du

dt
, v
〉

V′,V
+A(u, v) =

〈

G, v
〉

V′,V
∀v ∈ V . (50)
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In order to apply Theorem 5.8 we now define for any u, v ∈ V

A(u, v) =
1

2

∫ T

0

∫

R

a(t, x)
du

dx
(t, x)

dv

dx
(t, x)dxdt −

∫ T

0

∫

R

B(t, x)
du

dx
(t, x)v(t, x)ρ−1(t, x)dxdt + λ〈u, v〉H (51)

and for any λ0 > 0

Aλ0
(u, v) = A(u, v) + λ0〈u, v〉H. (52)

Proof. See the Appendix.

Not surprisingly, using the strict ellipticity and boundedness of ρ, a, and the boundednes of B we get the415

following result (the proof is postponed to the Appendix).

Lemma 5.9. The bilinear form A(·, ·) defined by (51) is continuous, i.e.

∀u, v ∈ V , |A(u, v)| ≤ C||u||V ||v||V , (53)

where C = C(m′,M ′, λ).

It is always possible to choose λ0 > 0 large enough such that Aλ0
(·, ·) defined by (51)(52) is coercive, i.e.

∀v ∈ V , Aλ0
(v, v) ≥ α0||v||2V . (54)

where α0 = α0(m
′,M ′).

Proof. See the Appendix.

We are now in position to prove Proposition 5.4. Indeed, thanks to Lemma 5.9 we may apply Theorem420

5.8 with A(·, ·) defined by (51) and with G ∈ V ′ defined by 〈G, v〉V′,V = −〈g, v〉H for any v ∈ V . For any

ϕ ∈ H1,1
0 (E) ⊂ V , using (49) in the computation of the term

〈

− du

dt
, ϕ

〉

V′,V
appearing in (50) (ϕ replaces

v), we get (48).

It is possible to go a bit further in the analysis of the weak solution and to prove the following lemma,

that asserts that the weak solution of (Pλ
div,∆(ρ, a,B)) is of class H1 in the time variable.425

Lemma 5.10. The weak u solution of (Pλ
div,∆(ρ, a,B)) satisfies

du

dt
∈ L2(0, T ;L2(R)).

Proof. See the Appendix.

The above result is one of the crucial steps in the study of the case ρ ≡ 1 in [21]. However, it seems

challenging to adapt all the other steps of [21] and [22] to our case ρ 6= 1, see Remark 5.15.
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Remark 5.11. If we have a look at the operator (Λ, D(Λ,V ′)) and the form A(·, ·) we have used just above,430

we can notice that those objects are very similar to the ones used to define a generalized Dirichlet form (note

that the formalism in [23] concerning the abstract operators seems inspired by [25]).

This could be the starting point of the use of generalized Dirichlet forms to handle the problem of time-

inhomogeneous SDE with local time (see the already mentionned paper [24] for some results in this direction).

This issue could be addressed in a future work.435

5.3. Classical solutions in the case ρ ≡ 1

Here we want to summarize the results of the seminal paper [21] for the problem (Pλ
div,∆z

(1,A,B)) that

we will use in Subsection 5.4. In fact, for our coming purpose, we consider a slightly more general problem,

that we denote by (Pλ
div,∆z,(l,r)

(1,A,B)) (with −∞ ≤ l < r ≤ ∞). It is defined by the following system of

equations:



























































































[

v′t +
1

2

(

Av′z
)′

z
+B v′z − λv

]

(t, z) = g(t, z) ∀(t, z) ∈ [0, T )× (l, r) \∆z

A(t, zi+)v′z(t, zi+) = A(t, zi−)v′z(t, zi−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (⋆)

v(T, z) = f(z) ∀z ∈ (l, r).

v(t, l) = fl(t) ∀t ∈ [0, T )

v(t, r) = fr(t) ∀t ∈ [0, T ).

Here we have l < z1 < . . . < zI < r and we have denoted ∆z = {(t, zi) : 0 ≤ t ≤ T }Ii=1. The functions

fl, fr giving the Dirichlet conditions are in L2(0, T ). Note that the problem (Pλ
div,∆z

(1,A,B)) corresponds

simply to l = −∞, r = ∞ and fl = fr = 0.

We should precise what we mean by a classical solution v(t, z) of (Pλ
div,∆z,(l,r)

(1,A,B)). For any compact440

K ⊂ (0, T )×(l, r) this is a function of class C(K)∩C1,2(K\∆z) such that for all 1 ≤ i ≤ I the limits v′t(t, zi±),

v′z(t, zi±) and v′′zz(t, zi±) exist and are continuous as functions of t ∈ [0, T ) (we assume for simplicity that

K contains all the zi’s). Then v(t, z) satisfies in particular the first and second line of (Pλ
div,∆z,(l,r)

(1,A,B))

in the classical sense.

Theorem 5.12 (O.A. Ladyzhenskaya et al., [21]). For any A ∈ Θ(m′,M ′) satisfying the H(xi) and H(t)-445

hypotheses, any B ∈ Ξ(M ′) satisfying the H(t)-hypothesis, and provided that g satisfies the H(t)-hypothesis,

the parabolic problem (Pλ
div,∆z,(l,r)

(1,A,B)) has a classical solution v(t, z), that is Hölder continuous (see

Remark 5.13). Besides the time derivative v′t is itself Hölder continuous.
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Remark 5.13. Here the Hölder continuity means more precisely that for any compact K ⊂ (0, T ) × (l, r)

we have

∀(t, x), (s, y) ∈ K, |v(t, x) − v(s, y)| ≤ C|(t, x)− (s, y)|ν (55)

with C, ν positive constants depending on K,m′,M ′.

Sketch of the proof of Theorem 5.12. We will give elements for the case l = −∞, r = ∞, fl = fr = 0,450

the cases with bounded domains and non-homogeneous Dirichlet boundary conditions being treated in a

similar manner.

In [21] things are studied in the forward form w′
t −

1

2

(

Ãw′
z

)′

z
− B̃w′

z − λw = −g̃, but it suffices to set

Ã(t, x) = A(T − t, x), B̃(t, x) = B(T − t, x) and g̃(t, x) = g(T − t, x), and to define v(t, x) = w(T − t, x),

in order to recover results on v(t, x) as a solution to (Pλ
div,∆z

(1,A,B)). Therefore we will explain things455

directly in the backward form of interest.

STEP1. There exists a weak solution v(t, z) to (Pλ
div,∆z

(1,A,B)). The proof of this fact can be found in

the books [22],[32]. The method of [25], that we have adapted in Subsection 5.2 to the case ρ 6= 1, provides

an alternative method. Note that v(t, z) lives in L2(0, T ; H1(R)), which provides the boundary condition at

infinity, as H1(R) = H1
0 (R).460

STEP2. This weak solution v(t, z) is Hölder continuous (the proof of this point is particularly involved;

in [32] it requires the use of a parabolic Harnack inequality, available only in the case ρ ≡ 1; see also [22]).

STEP3. One of the crucial steps in [21] is to show that

dv

dt
∈ L2(0, T ;L2(R)) (56)

(see also Theorem 6.6 in [32]; in fact these authors work in a bounded space domain D and show that

dv
dt ∈ L2(0, T ;L2(D′)) for any D′ ( D; but we claim that their computations can be easily adapted to the

case of unbounded domains. Note that (56) is provided by the more general result (possibly ρ 6= 1) stated465

in Lemma 5.10).

STEP4. In fact dv
dt has even more smoothness: it is itself Hölder continuous. In order to see that, the

authors of [21] differentiate with respect to time the initial equation, to see v′t =
dv
dt as a weak solution of

(v′t)t +
1

2
(A(v′t)

′
z)

′
z +B(v′t)

′
z − λv′t = g′t −

1

2
(a′tv

′
z)

′
z −B′

tv
′
z. (57)

Note that, as a′tv
′
z is discontinuous, the source term in (57) is a distribution, which is not a problem for

obtaining the Hölder continuity of the weak solution v′t (see p144-145 of [21]; one can then use the same

general result that has been used in Step 2).

STEP5. For fixed t, one can then see v(t, ·) as a solution of the elliptic problem

1

2

(

Av′z
)′

z
+B v′z − λv = g − v′t
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with a smooth source term g − v′t. Using results on the smoothness of elliptic problems one can then see470

that for all t ∈ [0, T ) the transmission condition (⋆) is satisfied in the classical sense. See the forthcoming

remark.

Remark 5.14. As the space dimension is one, one can easily see that the transmission condition is satisfied

in the classical sense for a.e. t ∈ [0, T ) in the following manner. Noticing that

∫ T

0

∫

R

v
dϕ

dt
dzdt = −

∫ T

0

∫

R

v′tϕdzdt

for any ϕ ∈ H1,1
0 (E) (the right hand side is a convergent integral thanks to v′t =

dv
dt ∈ L2(0, T ;L2(R))) and

using (48) with ρ ≡ 1, a = A and b = B, we get

1

2

∫ T

0

∫

R

A
dv

dz

dϕ

dz
dzdt =

∫ T

0

∫

R

(

B
dv

dz
− λv − g + v′t

)

ϕdzdt.

Then for a.e. t ∈ [0, T ) we have for any φ ∈ H1
0 (R)

∫

R

A(t, ·)dv
dz

(t, ·)dφ
dz

dz = 2

∫

R

(

B
dv

dz
− λv − g + v′t

)

(t, ·)φdz. (58)

As
[(

Bdφ
dz − λv − g + v′t

)]

(t, ·) is in L2(R) we can infer that A(t, ·)dvdz (t, ·) is in H1(R).

Let us draw some intermediate conclusions. As v(t, ·) is in H1(R) we know that v(t, ·) ∈ C(R), and more

precisely that

v(t, z)− v(t, y) =

∫ z

y

dv

dz
(t, ·)dξ, ∀z, y ∈ R (59)

([33], Theorem VIII.2). So that v′z(t, ·) exists in the classical sense and is equal a.e. to dv
dz (t, ·). Using

the same argument we see that A(t, ·)v′z(t, ·) is in C(R). As A(t, ·) is smooth on the intervals (−∞, z1),475

[zi, zi+1), i = 1, . . . , I − 1, [zI ,∞) we see that v′z(t, ·) is continuous on each of these intervals. So that

v(t, ·) ∈ C(R) ∩ C1(R \ {z1, . . . , zI}). Note that as for any i = 1, . . . , I the limits A(t, zi±) exist, the limits

v′z(t, zi±) exist too (if not A(t, ·)v′z(t, ·) would not be continuous). Besides, the continuity of A(t, ·)v′z(t, ·)
on the whole real line R implies the transmission condition (⋆).

To show that the transmission condition is satisfied for every time t ∈ [0, T ), one may then use the480

smoothness of v(t, z) outside the interfaces (forthcoming Step 6), together with uniform convergence argu-

ments.

STEP6. Using the additional smoothness of the coefficients outside the interfaces, one is able to assert

that v(t, z) satisfies the first line of (Pλ
div,∆z

(1,A,B)) in the classical sense.

Remark 5.15. In [22][21] the authors claim that this is feasible to mimic all the steps of the above sum-485

marized proof in the case ρ 6= 1 (but without writing down the proofs, except for the existence of the weak

solution as already mentionned). However, in our opinion, to prove directly that the weak solution u(t, x) is

Hölder presents difficulties in the case ρ 6= 1.
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5.4. Classical solutions in the case ρ 6= 1 by the mean of space transforms

We now aim at proving the following result.490

Proposition 5.16. Let λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R) ∩ L2(R).

Let ρ, a ∈ Θ(m′,M ′) and B ∈ Ξ(M ′) for some 0 < m′ < M ′ < ∞. We assume that ρ, a satisfy the

H(i) and H(t)-hypotheses, and that B and g satisfy the H(t)-hypothesis.

The problem (Pλ
div,∆(ρ, a,B)) has a classical solution.

Proof of Proposition 5.16.495

STEP1. The problem (Pλ
div,∆(ρ, a,B)) has a weak solution u(t, x) (see Subsection 5.2). We shall aim

at proving that u(t, x) is in fact a classical solution.

In the sequel we (arbitrarily) set δ = 1/4. We denote σ =
√
ρa.

STEP2. We treat in details what happens around the interface {(t, 1) : 0 ≤ t ≤ T }. We set

φ1(t, x) =

∫ x

1

dy

ρ(t, y)
,

A1(t, z) =
a

ρ
(t,Φ1(t, z)) (60)

and

B1(t, z) = [(φ1)
′
t,± +B(φ1)

′
x,±](t,Φ1(t, z)), (61)

where Φ1(t, ·) = [φ1(t, ·)]−1.

We set z1 = inft∈[0,T ] φ1(t, 2−δ). We will show that u(t, x) satisfies (Pλ
div,∆(ρ, a,B)) in the classical sense500

in the subregion {(t, x) ∈ E : x ≤ Φ1(t, z1)}.
Note that for any t ∈ [0, T ] we have φ1(t, 1) = 0 and Φ1(t, 0) = 1, and that for any z ≤ z1, any t ∈ [0, T ]

we have Φ1(t, z) ≤ Φ1(t, z1) ≤ 2 − δ. So that the sole singularity of the coefficients A1(t, z) and B1(t, z) in

the region {(t, z) ∈ E : 0 ≤ t ≤ T, z ≤ z1} is for z = 0.

We consider the function v1(t, z) = u(t,Φ1(t, z)), 0 ≤ t ≤ T , z ≤ z1. We claim that this is a weak solution
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to the problem (Pλ
div,∆0,(−∞,z1)

(1,A1,B1)) defined by the system of equations



























































































[

(v1)
′
t +

1

2

(

A1(v1)
′
z

)′

z
+B1 (v1)

′
z − λv1

]

(t, z) = g(t,Φ1(t, z)) ∀(t, z) ∈ [0, T )× (−∞, z1) \∆0

A1(t, 0+)(v1)
′
z(t, 0+) = A1(t, 0−)(v1)

′
z(t, 0−) ∀t ∈ [0, T ) (⋆)

v1(T, z) = f(Φ1(T, z)) ∀z ∈ (−∞, z1)

limz→−∞ v1(t, z) = 0 ∀t ∈ [0, T )

v1(t, z1) = u(t,Φ1(t, z1)) ∀t ∈ [0, T )

(here, note that as u(t, x) lives in particular in L2(0, T ;L2(R)), the function t 7→ u(t,Φ1(t, z1)) is in L
2(0, T ),505

as required for the Dirichlet boundary condition).

Indeed the restriction of u(t, x) to the region {(t, x) ∈ E : x ≤ Φ1(t, z1)} is in particular such that for

any t ∈ [0, T ], u(t, ·) ∈ H1((−∞,Φ1(t, z1)), with
∫ T

0

∫ Φ1(t,z1)

−∞ u dxdt+
∫ T

0

∫ Φ1(t,z1)

−∞
du
dx dxdt <∞, and satisfies

∫ T

0

∫ Φ1(t,z1)

−∞

u
dϕ

dt
ρ−1 dxdt +

1

2

∫ T

0

∫ Φ1(t,z1)

−∞

a
du

dx

dϕ

dx
dxdt

−
∫ T

0

∫ Φ1(t,z1)

−∞

B
du

dx
ϕρ−1dxdt+

∫ T

0

∫ Φ1(t,z1)

−∞

u(λ− ρ′t
ρ
)ϕρ−1dxdt = −

∫ T

0

∫ Φ1(t,z1)

−∞

gϕρ−1 dxdt,

for any test function ϕ living inH1,1
0 (E) and satisfying in addition ϕ(t, x) = 0, for any t ∈ [0, T ], x ≥ Φ1(t, z1).

In fact, using Lemma 5.10, we can rewrite the above equation as

−
∫ T

0

∫ Φ1(t,z1)

−∞

du

dt
ϕρ−1 dxdt+

1

2

∫ T

0

∫ Φ1(t,z1)

−∞

a
du

dx

dϕ

dx
dxdt

−
∫ T

0

∫ Φ1(t,z1)

−∞

B
du

dx
ϕρ−1dxdt + λ

∫ T

0

∫ Φ1(t,z1)

−∞

uϕρ−1dxdt = −
∫ T

0

∫ Φ1(t,z1)

−∞

gϕρ−1 dxdt,

(62)

Note that u(t, x) = v1(t, φ1(t, x)) for (t, x) with x ≤ Φ1(t, z1), and

du

dx
(t, x) =

dv1
dz

(t, φ1(t, x))
1

ρ(t, x)
, t ∈ [0, T ], x ≤ Φ1(t, z1)

(see Corollary VIII.10 in [33]). For any test function ϕ as above we set ϕ̄(t, z) = ϕ(t,Φ1(t, z)), t ∈ [0, T ], z ≤
z1. Note that

dϕ̄
dz (t, z) =

dϕ
dx (t,Φ1(t, z))ρ(t,Φ1(t, z)). Then, performing the change of variable x = Φ1(t, z) in
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(62), we get, using in particular dx = ρ(t,Φ1(t, z))dz, t ∈ [0, T ],

−
∫ T

0

∫ z1

−∞

du

dt
(t,Φ1(t, z))ϕ̄(t, z) dzdt+

1

2

∫ T

0

∫ z1

−∞

a(t,Φ1(t, z))
dv1
dz

(t, z)ρ−1(t,Φ1(t, z))
dϕ̄

dz
(t, z) dzdt

−
∫ T

0

∫ z1

−∞

B(t,Φ1(t, z))
dv1
dz

(t, z)ρ−1(t,Φ1(t, z))ϕ̄(t, z) dzdt+ λ

∫ T

0

∫ z1

−∞

v1ϕ̄dzdt

= −
∫ T

0

∫ z1

−∞

g(t,Φ1(t, z))ϕ̄(t, z) dzdt.

Using now
du

dt
(t, x) =

dv1
dt

(t, φ1(t, x)) +
dv1
dz

(t, φ1(t, x))(φ1)
′
t,±(t, x)

(see Proposition IX.6 in [33]) and (60) (61) we can claim that we have

−
∫ T

0

∫ z1

−∞

dv1
dt

ϕ̄ dzdt+
1

2

∫ T

0

∫ z1

−∞

A1
dv1
dz

dϕ̄

dz
dzdt

−
∫ T

0

∫ z1

−∞

B1
dv1
dz

ϕ̄ dzdt+ λ

∫ T

0

∫ z1

−∞

v1ϕ̄dzdt = −
∫ T

0

∫ z1

−∞

g(t,Φ1(t, z))ϕ̄(t, z) dzdt,

for any ϕ̄ ∈ H1,1
0 ((0, T )×(−∞, z1)). As −

∫ T

0

∫ z1

−∞

dv1
dt

ϕ̄ dzdt =

∫ T

0

∫ z1

−∞

v1
dϕ̄

dt
dzdt, this means that v1 is in-

deed a weak solution of (Pλ
div,∆0,(−∞,z1)

(1,A1,B1)) (one could easily check that v1 ∈ L2(0, T ;H1((−∞, z1)))∩
C([0, T ];L2((−∞, z1)))).

But according to the proof of Theorem 5.12, the function v1(t, z) is in fact also a classical solution of

(Pλ
div,∆0,(−∞,z1)

(1,A1,B1)). We draw the consequences on the PDE problem solved by u(t, x) in the classical

sense, using again u(t, x) = v1(t, φ1(t, x)) and the expression of the classical derivatives (for t ∈ [0, T ], x ≤
Φ1(t, z1), x 6= 1)

u′x(t, x) = (v1)
′
z(t, φ1(t, x))(φ1)

′
x(t, x) (63)

u′t(t, x) = (v1)
′
t(t, φ1(t, x)) + (v1)

′
z(t, φ1(t, x))(φ1)

′
t(t, x) (64)

u′′xx(t, x) = (v1)
′′
zz(t, φ1(t, x))((φ1)

′
x)

2(t, x) + (v1)
′
z(t, φ1(t, x))(φ1)

′′
xx(t, x). (65)

We first identify the transmission condition at the interface {(t, 1) : 0 ≤ t ≤ T }. We have, using in particular

(φ1)
′
x(t, x) =

1

ρ(t, x)
and (63),

a(t, 1+)u′x(t, 1+) = A1(t, 0+)ρ(t, 1+)u′x(t, 1+) = A1(t, 0+)(v1)
′
z(t, 0+)

= A1(t, 0−)(v1)
′
z(t, 0−) = A1(t, 0−)ρ(t, 1−)u′x(t, 1−) = a(t, 1−)u′x(t, 1−).

(66)
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Second, for t ∈ [0, T ), x ≤ Φ1(t, z1), x 6= 1, we have

[

u′t +
ρ

2

(

au′x
)′

x
+B u′x − λu

]

(t, x)

=
[

u′t +
σ2

2
u′′xx +

(

B +
ρa′x
2

)

u′x − λu
]

(t, x)

= (v1)
′
t(t, φ1(t, x)) + (v1)

′
z(t, φ1(t, x))(φ1)

′
t(t, x) +

(

B +
ρa′x
2

)

(t, x)(v1)
′
z(t, φ1(t, x))(φ1)

′
x(t, x)

+σ2(t,x)
2

(

(v1)
′′
zz(t, φ1(t, x))((φ1)

′
x)

2(t, x) + v′z(t, φ1(t, x))(φ1)
′′
xx(t, x)

)

− λv1(t, φ1(t, x))

= (v1)
′
t(t, φ1(t, x)) +

σ2(t,x)
2ρ2(t,x)(v1)

′′
zz(t, φ1(t, x)) − λv1(t, φ1(t, x))

+(v1)
′
z(t, φ1(t, x))

[

(φ1)
′
t(t, x) +

(

B +
ρa′x
2

)

(t, x)(φ1)
′
x(t, x) +

σ2(t,x)
2 (φ1)

′′
xx(t, x)

]

=
[

(v1)
′
t +

1
2 (A1(v1)

′
z)

′
z − λv1

]

(t, φ1(t, x))

+
[

(v1)
′
z

(

(φ1)
′
t ◦ Φ1 +

(

B(φ1)
′
x +

a′x
2

)

◦ Φ1 +
σ2(φ1)

′′
xx

2
◦ Φ1 −

(A1)
′
z

2

)]

(t, φ1(t, x))

=
[

(v1)
′
t +

1
2 (A1(v1)

′
z)

′
z +B1 (v1)

′
z − λv1

]

(t, φ1(t, x)) = g(t,Φ1(t, φ1(t, x)) = g(t, x).

(67)

Here we have used

(A1)
′
z(t, z) =

(a′x
ρ

− aρ′x
ρ2

)

(t,Φ1(t, z))ρ(t,Φ1(t, z)) = a′x(t,Φ1(t, z)) + σ2(t,Φ1(t, z))(φ1)
′′
xx(t,Φ1(t, z)).

In view of (66) and (67) we have proved that that u(t, x) satisfies (Pλ
div,∆(ρ, a,B)) in the classical sense510

in the subregion {(t, x) ∈ E : x ≤ Φ1(t, z1)} (we can easily that u(t, x) has the required smoothness and

satisfies the terminal condition).

STEP3. We repeat Step 2 around each interface {(t, i) : 0 ≤ t ≤ T }, 2 ≤ i ≤ I. More precisely we define

for any 2 ≤ i ≤ I

φi(t, x) =

∫ x

i

dy

ρ(t, y)
, (68)

and

zi,d = sup
t∈[0,T ]

φi(t, i− 1 + δ).

For 2 ≤ i ≤ I − 1 we define

zi = inf
t∈[0,T ]

φi(t, i + 1− δ).
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By computations similar to Step 2 we will then prove that u(t, x) satisfies (Pλ
div,∆(ρ, a,B)) in the classical

sense in each of the subregions {(t, x) ∈ E : Φi(t, zi,d) ≤ x ≤ Φi(t, zi)}, 2 ≤ i ≤ I − 1, and in the region

{(t, x) ∈ E : ΦI(t, zI,d) ≤ x}.515

In particular, at this stage, u(t, x) satisfies the transmission condition (⋆) in (Pλ
div,∆(ρ, a,B)) in the

classical sense, at each interface (for 1 ≤ i ≤ I).

STEP4. The trouble is that we cannot say for the moment that the first line of (Pλ
div,∆(ρ, a,B)) holds true

in the whole domain E◦\∆. Indeed let us examine what happens in the subregion {(t, x) ∈ E : 1 < x < 2}. It
could happen that we do not have Φ2(t, z2,d) ≤ Φ1(t, z1) for any t ∈ [0, T ) (we recall that 1 ≤ Φ1(t, z1) ≤ 2−δ520

and note that 2 ≥ Φ2(t, z2,d) ≥ 1 + δ). Indeed it depends on the variations of the coefficient ρ. So that the

results of Steps 2 and 3 do not allow to say that the first line of (Pλ
div,∆(ρ, a,B)) is satisfied in the whole

region {(t, x) ∈ E : 1 < x < 2}.
Thus, we are led to use Theorem 5.12 again, but in a different manner. We consider the restriction

of u(t, x) on the region {(t, x) ∈ E : 1 < x < 2}. We claim that this is a weak solution of the problem

(Pλ
div,∆,(1,2)(1, σ

2, B − aρ′

x

2 )) defined by the system of equations



































































[

w′
t +

1

2

(

σ2w′
x

)′

x
+ (B − aρ′

x

2 )w′
x − λw

]

(t, x) = g(t, x) ∀(t, x) ∈ [0, T )× (1, 2)

w(T, x) = f(x) ∀x ∈ (1, 2)

w(t, 1) = u(t, 1) ∀t ∈ [0, T )

w(t, 2) = u(t, 2) ∀t ∈ [0, T ).

Note that there is no transmission condition in (Pλ
div,∆,(1,2)(1, σ

2, B − aρ′

x

2 )), as there is no interface in the

considered domain.525

To see that the restriction of u(t, x) solves (Pλ
div,∆,(1,2)(1, σ

2, B − aρ′

x

2 )) it suffices to start from the weak

formulation

∫ T

0

∫ 2

1

u
dϕ

dt
ρ−1 dxdt+

1

2

∫ T

0

∫ 2

1

a
du

dx

dϕ

dx
dxdt

−
∫ T

0

∫ 2

1

B
du

dx
ϕρ−1dxdt+

∫ T

0

∫ 2

1

u(λ− ρ′t
ρ
)ϕρ−1dxdt = −

∫ T

0

∫ 2

1

gϕρ−1 dxdt,

stated for any ϕ ∈ H1,1
0 ((0, T ) × (1, 2)). Then, setting ϕ̄ = ϕρ−1, using

dϕ

dt
ρ−1 − ϕρ′t

ρ2
=

dϕ̄

dt
,
dϕ

dx
=

ρ
dϕ̄

dx
+ ϕ̄ρ′x (note that ρ is differentiable w.r.t. x in the classical sense in the considered subregion), and easy
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computations, we get

∫ T

0

∫ 2

1

u
dϕ̄

dt
dxdt+

1

2

∫ T

0

∫ 2

1

σ2 du

dx

dϕ̄

dx
dxdt

−
∫ T

0

∫ 2

1

(B − aρ′x
2

)
du

dx
ϕ̄ dxdt + λ

∫ T

0

∫ 2

1

uϕ̄ dxdt = −
∫ T

0

∫ 2

1

gϕ̄ dxdt,

for any ϕ̄ ∈ H1,1
0 ((0, T )×(1, 2)). Thus the restriction of u(t, x) is also a classical solution to (Pλ

div,∆,(1,2)(1, σ
2, B−

aρ′

x

2 )) and we have for any (t, x) ∈ [0, T )× (1, 2),

g(t, x) =
[

u′t +
1

2

(

σ2u′x
)′

x
+ (B − aρ′

x

2 )u′x − λu
]

(t, x)

=
[

u′t +
1

2
σ2u′′xx + (B +

(σ2)′x
2 − aρ′

x

2 )u′x − λu
]

(t, x)

=
[

u′t +
1

2
σ2u′′xx + (B +

ρa′

x

2 )u′x − λu
]

(t, x)

=
[

u′t +
ρ

2

(

au′x
)′

x
+B u′x − λu

]

(t, x).

Proceeding in the same way for the other subregions, and taking into account Steps 2 and 3 we can say that

the first line of (Pλ
div,∆(ρ, a,B)) is verified by u(t, x) in the classical sense on E◦ \∆. Note that we clearly

have u ∈ C(E), as the continuity on E has a local character, and for any (t0, x0) ∈ E it is clear that u is

continuous at (t0, x0) (even if (t0, x0) ∈ ∆, using the continuity of vi(t, z) and φi(t, x)).

Therefore Proposition 5.16 is proved.530

We now give further properties of the solution u(t, x) considered in Proposition 5.16.

Lemma 5.17. In the above context the classical time derivative u′t is continuous.

Proof. That u′t is continuous at any point (t, x) /∈ ∆ is clear, by definition of a classical solution. Let

(t, x) ∈ ∆, i.e. we have (t, x) = (t, i) for some 1 ≤ i ≤ I. Considering (64) we have

u′t(t±, i±) = (vi)
′
t(t±, 0±) + (vi)

′
z(t±, 0±)(φi)

′
t(t±, 0±).

But by taking the time derivative of (68), and inverting this derivative and the integral sign, we see that we

simply have (φi)
′
t(t±, 0±) = 0. And thus

u′t(t±, i±) = (vi)
′
t(t±, 0±).

But as (vi)
′
t is continuous (Theorem 5.12) we see that u′t(t±, i±) = (vi)

′
t(t, 0) = u′t(t, i).
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Remark 5.18. Note that the result of Lemma 5.17 is true because the interfaces are not moving. In the

case of moving interfaces u′t will not be continuous in general, because there is no reason the second RHS535

term in (47) vanishes at the interface (contrary to what happens in (64)).

Conclusion of Section 5. In view of Propositions 5.3 and 5.16, it is now clear that if we have the xi’s

and βi’s as in Theorem 3.5, σ ∈ Θ(m,M), b ∈ Ξ(M), with σ satisfiying the H(xi) and H(t)-hypotheses, and

b and g satisfying the H(t)-hypothesis, then (Pλ
∆x

(σ, b, β)) has indeed a classical solution (unique thanks to

Theorem 4.1).540

6. Markov property, Feller semigroup and generator in the strong sense

We first have the following result.

Proposition 6.1. In the context of Theorem 3.5, assume that σ satisfies the H(xi) and H(t)-hypotheses and

that b satisfies the H(t)-hypothesis.

Let X = (Xt)t∈[0,T ] a weak solution of (4).545

Then X is a Feller time-inhomogeneous (Ct)-Markov process.

Proof. Remember that for any t ∈ [0, T ], Xt = r(t, Yt) where Y is the solution of (8) with the coefficients

defined by (33). As these coefficients satisfy the hypotheses of Theorem 2.1 we can see from Theorem 6.2.2

in [27] that Y is Markov, as already pointed in Subsection 2.1.

Therefore we can easily see that X is Markov and that the associated family (PX
s,t) satisfies (12). Thus550

the family (PX
t ) (associated to the space time process X̃) satisfies (13). The only point that requires special

attention is to show that (PX
t ) is a Feller semigroup. Indeed, as the coefficients σ̄, b̄ in (8) are not smooth,

we cannot apply directly Corollary 3.1.2 in [27], to get the Feller property for the family (P Y
s,t) associated

to Y , and deduce the Feller property for (PX
s,t).

Thus we will focus on (P Y
t ), and prove by our means that this is a Feller semigroup. We recall that

∀(s, y) ∈ E, ∀ϕ ∈ C0(E), ∀ 0 ≤ t ≤ T − s, P Y
t ϕ(s, y) = P Y

s,t+sϕ(t+ s, y) = Es,y [ϕ(s+ t, Ys+t)]. (69)

Then, one may show that (PX
t ) inherits the Feller property of (P Y

t ). To that aim, one may denote now

r̃(t, y) = (t, r(t, y)), R̃(t, x) = (t, R(t, x)), use the relationship

∀(s, x) ∈ E, ∀ϕ ∈ C0(E), ∀t ∈ [0, T − s], PX
t ϕ(s, x) = P Y

t (ϕ ◦ r̃)(R̃(s, x)),

the continuity of r(t, z), R(t, x), and limy→±∞ r(t, y) = ±∞, limx→±∞R(t, x) = ±∞, for any t ∈ [0, T ].555

That being said, we now prove that (P Y
t ) is Feller. We denote ∆y = R̃(∆x). Note that, thanks to the

assumptions on the coefficients, and Proposition 5.16, we have that (Pλ
∆y

(σ̄, b̄, 0)) has a classical solution
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for any finite time horizon, terminal condition f ∈ C0(R) ∩ L2(R), and g ≡ 0. Note that (Pλ
∆y

(σ̄, b̄, 0)) is

a parabolic transmission problem with discontinuous coefficients, but with no transmission condition (more

precisely the transmission condition is simply of type u′y(t, yi(t)+) = u′y(t, yi(t)−) for any t ∈ [0, T )).560

STEP1. Pick ϕ ∈ C∞,∞
c (E). We will show that P Y

t ϕ is in C0 = C0(E).

a) Let (s, y) ∈ E fixed. We first show that PY
t ϕ is continuous at point (s, y). Let δ > 0. For any

(r, z) ∈ E (we suppose that t+ s, t+ r < T ) we have

|PY
t ϕ(s, y)− P Y

t ϕ(r, z)| ≤
∣

∣Es,y [ϕ(t+ s, Yt+s)]− Er,z[ϕ(t + s, Yt+s)]
∣

∣

+
∣

∣Er,z [ϕ(t+ s, Yt+s)]− Er,z[ϕ(t + s, Yt+r)]
∣

∣+ |P Y
r,t+rϕ(t+ s, z)− PY

r,t+rϕ(t+ r, z)|.

(70)

Note that by virtue of Theorem 4.1, for any (r, z) we may regard Er,z[ϕ(t+s, Yt+s)] as ut+s(r, z), where ut+s

is the classical solution of the parabolic problem (P0
∆y

(σ̄, b̄, 0)) (with time horizon t+ s ≤ T ), with terminal

condition ϕ(t+ s, ·) ∈ C∞
c (R) ⊂ C0(R) ∩ L2(R) and source term g ≡ 0.

As the function ut+s is continuous on E we may find η1 such that for any (r, z) with |(s, y)− (r, z)| < η1

we have
∣

∣Es,y [ϕ(t+ s, Yt+s)]− Er,z [ϕ(t+ s, Yt+s)]
∣

∣ <
δ

3
.

We now turn to the second RHS term in (70). We have,

∣

∣Er,z[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+r)]
∣

∣ ≤ ||ϕ′
x||∞Er,z |Yt+s − Yt+r|.

Further, we have

Er,z |Yt+s − Yt+r|2 ≤ 4
(

Er,z
∣

∣

∫ t+r

t+s

σ̄(u, Yu)dWu

∣

∣

2
+ Er,z

∣

∣

∫ t+r

t+s

b̄(u, Yu)du
∣

∣

2) ≤ 4M̄2(|r − s|+ |r − s|2),

where we have used |a+ b|2 ≤ 4(|a|2 + |b|2) and the fact that σ̄, b̄ ∈ θ(m̄, M̄). Thus by Jensen inequality we

see that

Er,z|Yt+s − Yt+r| ≤ C(T )|r − s|1/2.

To sum up we may find η2 > 0 such that for any |(s, y)− (r, z)| < η1 ∧ η2 we have

∣

∣Er,z[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+r)]
∣

∣ <
δ

3
.

To finish with, we turn to the third RHS term in (70). It is clear that we have

|P Y
r,t+rϕ(t+ s, z)− PY

r,t+rϕ(t+ r, z)| ≤ ||ϕ(t+ s, ·)− ϕ(t+ r, ·)||∞ ≤ ||ϕ′
t||∞ |r − s|,

so that we may find η3 > 0 such that for any |(r, z)− (s, x)| < η3 we have

|P Y
r,t+rϕ(t+ s, z)− PY

r,t+rϕ(t+ r, z)| < δ

3
.
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Thus, setting η = η1 ∧ η2 ∧ η3, we have

|P Y
t ϕ(s, x) − P Y

t ϕ(r, z)| < δ

for any |(r, z)− (s, x)| < η. Therefore the continuity of P Y
t ϕ is established.565

b) We now show that lim|y|→∞ P Y
t ϕ(s, y) → 0 (for any s ∈ [0, T ]). Again we may see P Y

t ϕ(s, ·) as the

solution ut+s(s, ·) (at time s ∈ [0, t + s]) of (P0
∆y

(σ̄, b̄, 0)) with terminal condition ϕ(t + s, ·) (again time

horizon is t+s and the source term is zero). The result then follows from the boundary condition in problem

(P0
∆y

(σ̄, b̄, 0)).

STEP2. Pick ϕ ∈ C0. We may construct a sequence (ϕn) in C∞,∞
c (E) such that ||ϕn − ϕ||∞ → 0 as570

n→ ∞. As ||P Y
t f ||∞ ≤ ||f ||∞ for any f ∈ Cb(E), we get ||PY

t ϕ− P Y
t ϕn||∞ ≤ ||ϕ− ϕn||∞, and we see that

the sequence (P Y
t ϕn) in Cb(E) converges uniformly to P Y

t ϕ. Therefore PY
t ϕ is in C0, as each P Y

t ϕn is in

C0 by Step 1. This shows that for any t ∈ [0, T ], P Y
t C0 ⊂ C0.

STEP3. Let (s, y) ∈ E and ϕ ∈ C0. From (69) and the continuity of Y , we easily see by dominated

convergence that P Y
t ϕ(s, y) → ϕ(s, y) as t ↓ 0. Using this and the conclusion of Step 2, we deduce from575

Proposition III.2.4 in [26] that (P Y
t ) is a Feller semigroup.

Therefore the corresponding space-time process X̃ = ((t,Xt))t∈[0,T ] is a E-valued Feller homogeneous

(Ct)-Markov process (cf Subsection 2.4). We wish to identify the infinitesimal generator of X̃ . For technical

reasons we only treat the case ∆x = ∆ (see Remark 6.4). To that aim we have to introduce further notations.

With the same assumptions on the coefficients βi’s as in Theorem 3.5, we define

SX =
{

ϕ ∈ C(E) ∩ C1,2(E \∆) : with ϕ(T, ·) = 0, t 7→ ϕ′
t(t, i) is continuous on [0, T ),

∀(t, i) ∈ ∆, ϕ′
t(t, i±) = ϕ′

t(t, i) and ϕ
′
x(t, i±) and ϕ′′

xx(t, i±) exist with

σ2

2 (t, i+)ϕ′′
xx(t, i+) + b(t, x+)ϕ′

x(t, i+) = σ2

2 (t, i−)ϕ′′
xx(t, i−) + b(t, i−)ϕ′

x(t, i−).

Besides (1 + βi(t))ϕ
′
x(t, i+) = (1− βi(t))ϕ

′
x(t, i−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (⋆)

∀1 ≤ i ≤ I, ϕ′
x(t, i±) and ϕ′′

xx(t, i±) are continuous functions of t ∈ [0, T )

and lim|x|→∞

(

ϕ′
t(t, x) +

1
2σ

2(t, x)ϕ′′
xx(t, x) + b(t, x)ϕ′

x(t, x)
)

= 0 ∀t ∈ [0, T ]
}

.
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For any ϕ ∈ SX we define LXϕ by

∀(t, x) ∈ E \∆, LXϕ(t, x) = ϕ′
t(t, x) +

1
2σ

2(t, x)ϕ′′
xx(t, x) + b(t, x)ϕ′

x(t, x)

∀(t, i) ∈ ∆, LXϕ(t, i) = ϕ′
t(t, i) +

σ2

2 (t, i+)ϕ′′
xx(t, i+) + b(t, i+)ϕ′

x(t, i+)

= ϕ′
t(t, i) +

σ2

2 (t, i−)ϕ′′
xx(t, i−) + b(t, i−)ϕ′

x(t, i−).

We will have the following result.580

Theorem 6.2. In the context of Proposition 6.1 let X = (Xt)t∈[0,T ] the solution of (4).

We then denote by (LX , D(LX)) the infinitesimal generator of the Feller space-time process X̃.

Then the operator (LX , D(LX)) is the closure of (LX ,SX).

Remark 6.3. Note that the condition ϕ(T, ·) = 0 in the definition of SX is here because we already know

that the functions ϕ in D(LX) have to satisfy ϕ(T, ·) = 0. Indeed, as we have set PX
t ϕ(s, x) = 0 for t+s > T ,585

this is needed in order to have the existence of the limit in (15) for s = T . This is somehow the same issue

than in the definition of the domain D(Λ,V ′) in Lemma 5.6.

Proof of Theorem 6.2. Take ϕ ∈ SX ⊂ C0 and notice that LXϕ is in C0. Then, using Proposition 3.1,

Equation (22) and condition (⋆), we have for any 0 ≤ s ≤ t ≤ T ,

ϕ(X̃t)− ϕ(X̃s)−
∫ t

s

LXϕ(X̃u)du =

∫ t

s

ϕ′
x,±(u,Xu)σ(u,Xu)dWu.

The above t-indexed process being a martingale we see by Proposition 2.11 that SX ⊂ D(LX) and that

LX coincides with LX on SX .

We shall now prove that the closure of (LX ,SX) is the generator of a Feller semigroup on C0. Indeed the590

result will then follow from Exercise VII.1.18 in [26] (note that in the language of [34] we have (LX ,SX) ⊂
(LX , D(LX)), and that (LX , D(LX)) is closed, see Proposition VII.1.3 in [26]).

The idea is to apply Theorem 1.2.12 in [34], which is an Hille-Yosida type theorem, in the Banach space

C0 (see also their Theorem 4.2.2).

STEP1. Let g ∈ C1,0
c (E) ⊂ C0, and λ > 0. The equation

λu− LXu = −g (71)

with terminal condition u(T, ·) = 0 and with lim|x|→∞ u(t, x) = 0, has a classical solution u(t, x) satisfying595

(⋆), living in C0(E) ∩ C1,2(E \ ∆), and satisfying all the other requirements for being in SX , thanks to

the results of Subsection 5.4 (see in particular Proposition 5.16, Lemma 5.17 and the Conclusion). Note in

particular that as (LXu)(t, x) = (g + λu)(t, x) for x great enough, and as g ∈ Cc(E) and u ∈ C0(E), we

clearly have that (LXu)(t, x) → 0 as x→ ∞ (for any t ∈ [0, T ]).
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Remember that C1,0
c (E) is dense in C0. Thus, denoting by R(λI −LX) the image of SX by the operator

λI − LX , we have

C1,0
c (E) ⊂ R(λI − LX) ⊂ C0,

and taking closures we see that R(λI − LX) is dense in C0.600

STEP2. The domain SX is obviously dense in C0.

STEP3. We show now that (LX ,SX) is dissipative. Let λ > 0 and pick ϕ ∈ SX .

a) Assume ϕ reaches a positive maximum at a point (t0, x0) ∈ [0, T )× R.

If (t0, x0) /∈ ∆ it is clear that ϕ′
t(t0, x0) ≤ 0, ϕ′

x(t0, x0) = 0 and ϕ′′
xx(t0, x0) ≤ 0, thus LXϕ(t0, x0) ≤ 0.

If (t0, x0) ∈ ∆ (i.e. x0 = i for some 1 ≤ i ≤ I) things are not so clear because of the lack of smoothness605

of ϕ on ∆. But because (1+ βi0(t0)), (1− βi0(t0)) > 0, ϕ′
x(t0, x0+) and ϕ′

x(t0, x0−) share the same sign and

this implies ϕ′
x(t0, x0±) = 0.

Let us now prove that ϕ′
t(t0, x0) ≤ 0. Indeed, since t 7→ ϕ(t, x0) is a C1 function, we may apply the

mean value theorem ensuring that for h > 0 there exists θ ∈ (0, 1) such that 1
h(ϕ(t0 + h, x0) − ϕ(t0, x0)) =

ϕ′
t(t0, x0) + (ϕ′

t(t0 + θh, x0) − ϕ′
t(t0, x0)). Now, since ϕ reaches a positive maximum at a point (t0, x0) ∈610

[0, T )× R, the left hand side of the equality is negative. Then, letting h tend to zero in the right hand side

ensures that necessarily ϕ′
t(t0, x0) ≤ 0.

Therefore we must have ϕ′′
xx(t0, x0±) ≤ 0 and consequently LXϕ(t0, x0) ≤ 0.

Thus we have

||λϕ− LXϕ||∞ ≥ λϕ(t0, x0)− LXϕ(t0, x0) ≥ λϕ(t0, x0) = λ||ϕ||∞.

b) Assume now ϕ reaches a positive maximum at a point (T, x0), x0 ∈ R, therefore this positive maximum

is in fact zero. Thus, either ϕ is the null function and we have automatically λ||ϕ||∞ ≤ ||λϕ − LXϕ||∞.615

Either this is not the case and ϕ reaches a strictly negative minimum on [0, T )× R. Thus considering −ϕ
and applying Subset a) we get the desired inequality.

c) If it is −ϕ that reaches a positive maximum, we may repeat Substeps a)-b) to get λ||ϕ||∞ ≤ ||λϕ −
LXϕ||∞.

STEP4. We apply Theorem 1.2.12 in [34] to see that the closure of (LX ,SX) generates a strongly620

continuous, contraction semigroup (Tt) on C0.

STEP5. It remains to see that (Tt) is positive, but this can be accomplished in the same manner than in

the proof of Theorem 4.2.2 in [34] (note that (Tt) is conservative, thanks to Proposition III.2.2 in [26]).

Remark 6.4. In fact, if we do not have ∆x = ∆, to prove that ϕ′
t(t0, x0) ≤ 0 in Step 3-b) (case (t0, x0) ∈ ∆)

seems more difficult. Besides, note that we would have to define the domain SX in a different manner, as625

we would no more have the continuity of u′t for u solving the resolvent equation (71) (see Remark 5.18).
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Appendix A. The Itô-Peskir formula

The assumption of the Itô-Peskir formula in [18] is difficult to check in general and does not seem to be

valid for the solution u(t, x) of a problem of type (Pλ
∆x

(σ, b, β)), which is our main purpose.

The first object of this section is to prove the slight modifications (stated in our Subsection 2.3 in Theorem630

2.7) of the result stated in [18]. We recall that we use a stronger assumption on the curve γ but with a

somewhat weakened assumption on the function r. The method of proof is similar to that of [18] (see the

second proof in [18] p. 17) and uses the famous trick of T. Kurtz. Such a trick has already been used in other

works in order to relax the assumptions of the Itô-Peskir formula in the case where γ(t) ≡ 0 and applied for

a particular semimartingale in [35].635

For notational convenience, a function r satisfying the assumptions of Theorem 2.7 will be denoted to

belong to the class C1,2
− (C) ∪ C1,2

+ (D). Note that though also quite strong this set of assumptions does not

in general guarantee r to be C1,2(C) ∩ C1,2(D) in the sense of [18].

Proof of Theorem 2.7. We begin first to reduce the study to the case where the frontier is the straight line

x = 0. To this end, let us set for (t, x) ∈ E

G(t, x) = r(t, x + γ(t))

and

Yt = Xt − γ(t).

We have that

r(t,Xt) = r(t,X − γ(t) + γ(t)) = G(t, Yt)

Moreover, we see that

G′
x(t, x) = r′x(t, x+γ(t)) ; G

′′
xx(t, x) = r′′xx(t, x+γ(t)) ; G

′
t(t, x) = r′t(t, x+γ(t))+γ

′(t)r′x(t, x+γ(t)) (A.1)

where we have used the crucial fact that γ ∈ C1 for the partial derivative w.r.t the time variable. Note also

that Y is a semimartingale.640

We see that r ∈ C1,2
− (C) ∪ C1,2

+ (D) transfers to G ∈ C1,2
− (R∗

−) ∪ C1,2
+ (R∗

+).

We will now prove the Itô-Peskir formula applied to G and Y with t 7→ γ̃(t) ≡ 0 as the frontier.

Let us now introduce two functions G1 and G2 that will play a similar role as r1 and r2 in the original

assumptions of [18]. We define G1 as the symmetrization of G restricted to R−, namely

G1(t, x) =







G(t, x) if x < 0

2G(t, 0)−G(t,−x) if x ≥ 0
(A.2)
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and G2 as the symmetrization of G restricted to R+, namely

G2(t, x) =







G(t, x) if x > 0

2G(t, 0)−G(t,−x) if x ≤ 0
(A.3)

Note that these functions are continuous and that since G ∈ C1,2
− (R∗

−) ∪ C1,2
+ (R∗

+), and because of the

symmetry in the definition, we see that G1 and G2 belong to C1,1(E). For the second space derivatives, the

partial functions x 7→ G1(t, x) and x 7→ G2(t, x) are shown to lay in C2(R \ {0}). In particular G1 and G2645

belong to C1,2([0, T ]× R \ {0}) with the partial derivatives having limits as x tends to 0.

We now claim that it is possible to apply a (almost) classical Itô formula to G1 and G2. In order to

prove this fact, one may use a regularization technique, the dominated convergence theorems for classical

and stochastic integrals in order to handle the first order partial derivatives, and finally that

∫ t

0

G′′
ixx

(s, Ys)1Ys=0d〈Y 〉s = 0, i = 1, 2,

as a consequence of the generalized occupation-time formula (see again Exercise VI.1.15 in [26]). Since the

proof would be long but without difficulties, we decide to omit it.

We are now in position to follow the second proof in [18] - Section 3. Another proof and extensions.

Set Z1
t = Yt ∧ 0 = 1

2 (Yt − |Yt|) and Z2
t = Yt ∨ 0 = 1

2 (Yt + |Yt|). We use the trick due to T. Kurtz :

G(t, Yt) = G1

(

t, Z1
t

)

+G2(t, Z
2
t )−G(t, 0). (A.4)

The rest of the proof now may follow exactly the same lines as [18] - Section 3. Another proof and extensions.650

Namely, we differentiate Z1 and Z2 with the use of the Itô-Tanaka formula and apply the classical Itô formula

to G1 and G2 and semimartingales Z1 and Z2. The remaining difficulty in the proof is to identify the terms.

Hence, we prove that

G(t, Yt) =G(0, Y0) +

∫ t

0

1

2
(Gt(s, Ys+) +Gt(s, Ys−)) ds

+

∫ t

0

1

2
(Gx(s, Ys+) +Gx(s, Ys−)) dYs +

1

2

∫ t

0

G′′
xx(s, Ys)1Ys 6=0d〈Y 〉s

+
1

2

∫ t

0

(Gx(s, Ys+)−Gx(s, Ys−))1Ys=0dL
0
s(Y ).

Now recalling that G(t, Yt) = r(t,Xt), Yt = Xt − γ(t) and the relations (A.1), we get

r(t,Xt) =r(0, X0) +

∫ t

0

1

2
(rt(s,Xs+) + rt(s,Xs−)) ds+

∫ t

0

1

2
(rx(s,Xs+) + rx(s,Xs−)) γ′(s)ds

+

∫ t

0

1

2
(rx(s,Xs+) + rx(s,Xs−)) dXs −

∫ t

0

1

2
(rx(s,Xs+) + rx(s,Xs−)) dγ(s)

+
1

2

∫ t

0

r′′xx(s,Xs)1Xs 6=γ(s)d〈Y 〉s +
1

2

∫ t

0

(rx(s,Xs+)− rx(s,Xs−))1Xs=γ(s)dL
γ
s (X),

and since dγ(s) = γ′(s)ds, we get the formula.

44



We end this section by proving Corollary 2.8.

Proof of Corollary 2.8. We denote εy = inf1≤i≤I−1 inft∈[0,T ](yi+1(t) − yi(t)). We can construct continuous655

functions ri : [0, T ]× R → R, 1 ≤ i ≤ I, in the following way:

For any t ∈ [0, T ], we require that r1(t, y) = r(t, y) for all y < y1(t) + εy/4 and r1(t, y) = 0 for y ≥
y2(t)−εy/4 and choose arbitrarily the restriction of r1 on {(t, z) ∈ [0, T ]×R : y1(t)+ε/4 ≤ z < y2(t)−εy/4}
in order to have r1 ∈ C1,2(Dy

0 ) ∩ C1,2(Dy
1).

Then for 1 < i < I, for any t ∈ [0, T ], we set ri(t, y) = 0 for y < yi−1(t) + εy/4 and y ≥ yi+1(t) − εy/4,660

ri(t, y) = r(t, y) − ri−1(t, y) for yi−1(t) + ε/4 ≤ z < yi(t)− εy/4, ri(t, y) = r(t, y) for all yi(t) − εy/4 ≤ y <

yi(t)+εy/4. We choose arbitrarily the restriction of ri on {(t, z) ∈ [0, T ]×R : yi(t)+εy/4 ≤ z < yi+1(t)−εy/4}
in order to have ri ∈ C1,2(Dy

i−1) ∩ C1,2(Dy
i ).

Finally, for any t ∈ [0, T ], rI(t, y) = 0 for all y < yI−1(t) + εy/4, rI(t, y) = r(t, y) − rI−1(t, y) for

yI−1(t) + εy/4 ≤ y < yI(t)− εy/4 and rI(t, y) = r(t, y) for all y ≥ yI(t)− εy/4.665

Notice that this construction ensures that ri ∈ C1,2(Dy
i−1) ∩C1,2(Dy

i ) for any 1 ≤ i ≤ I and

r =

I
∑

i=1

ri.

Therefore the result, by summation of formula (10) in Theorem 2.7, and linearity of the derivatives. The

second part of the corollary is proved in a similar manner.

Appendix B. Partial Differential Equations aspects

Proof of Theorem 5.8. STEP1. We first treat the case f ≡ 0, and deal for the moment with a source term

G∗ ∈ V ′.670

a) With the constant λ0 > 0 of Condition ii) we denote Aλ0
(u, v) = A(u, v)+λ0〈u, v〉H, for any u, v ∈ V .

Using the triangular inequality, the Cauchy-Schwarz inequality, and || · ||H ≤ || · ||V we get from i)

∀u, v ∈ V , |Aλ0
(u, v)| ≤ C′||u||V ||v||V , (B.1)

with C′ = max(C, λ0). For any w ∈ V the map v 7→ Aλ0
(w, v), v ∈ V , is a continuous linear form (thanks to

(B.1)), which we denote by −Aλ0
w. In other words −Aλ0

: V → V ′ is defined by

〈

−Aλ0
w, v

〉

V′,V
= Aλ0

(w, v), ∀w, v ∈ V .

Again thanks to (B.1) it can be seen that the linear application −Aλ0
is continuous. Further, thanks to ii),

it satisfies

〈−Aλ0
v, v〉V′,V ≥ α0||v||2V , ∀v ∈ V .
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Theorem 3.1.1 in [25] asserts then that −Λ−Aλ0
is an isomorphism from V ∩D(Λ,V ′) to V ′, so that for

any Gλ0
∗ ∈ V ′ there exists a unique w ∈ V ∩D(Λ,V ′) (in particular w(T, ·) = 0) such that,

〈

− dw

dt
, v
〉

V′,V
+Aλ0

(w, v) =
〈

Gλ0

∗ , v
〉

V′,V
∀v ∈ V . (B.2)

b) We denote now eλ0· the function t 7→ eλ0t, and define Gλ0
∗ ∈ V ′ by

〈

Gλ0

∗ , v
〉

V′,V
=

〈

G∗, e
λ0·v

〉

V′,V
, ∀v ∈ V .

We set u∗(t, x) = e−λ0tw(t, x) with the function w ∈ V satisfying (B.2). Note that u∗ ∈ V ∩D(Λ,V ′) (in

particular
du∗
dt

∈ V ′ and u∗(T, ·) = 0). We have

−dw

dt
= −λ0w − eλ0·

du∗
dt

.

So that we deduce from (B.2) that

〈

− du∗
dt

, eλ0·v
〉

V′,V
+A(u∗, e

λ0·v) =
〈

G∗, e
λ0·v

〉

V′,V
, ∀v ∈ V ,

and thus
〈

− du∗
dt

, v
〉

V′,V
+A(u∗, v) =

〈

G∗, v
〉

V′,V
, ∀v ∈ V . (B.3)

STEP2. We go back to the general case f ∈ L2(R). Applying a trace theorem, we get the existence of

ur ∈ L2(0, T ;H1(R)), with
dur
dt

∈ L2(0, T ;H−1(R)), s.t. ur(T, ·) = f (cf [25] Chap. 1, N◦ 3). We define

G∗ ∈ V ′ by

〈G∗, v〉V′,V = 〈G, v〉V′,V −A(ur, v) + 〈dur
dt

, v〉V′,V , ∀v ∈ V .

Considering the function u∗ of Step 1 we set u = u∗ + ur. Note that u ∈ L2(0, T ;H1(R)) (because u ∈ V),
that

du

dt
∈ L2(0, T ;H−1(R)) (because du∗

dt ∈ V ′) and that u(T, ·) = f .

From (B.3) we get for any v ∈ V ,

〈

− du

dt
, v
〉

V′,V
= 〈G∗, v〉V′,V −A(u∗, v)−

〈dur
dt

, v
〉

V′,V
= 〈G, v〉V′,V −A(u∗ + ur, v),

and therefore (50). Besides, as
du

dt
∈ L2(0, T ;H−1(R)), we can see from Theorem 1.3.1 and Proposition 1.2.1

in [25] that u ∈ C([0, T ];L2(R)).

STEP3: unicity. Suppose that ū is another element of L2(0, T ;H1(R))∩C([0;T ];L2(R)) with ū(T, ·) =675

f and
dū

dt
∈ L2(0, T ;H−1(R)) that satisfies (50). Then u − ū is an element of V ∩ D(Λ,V ′) (note that in

particular (u − ū)(T, ·) = 0), that satisfies (B.3) with G∗ = 0. If we set w = eλ0·(u − ū) we will see that

w ∈ V ∩D(Λ,V ′) solves (B.2) with Gλ0
∗ = 0. But −Λ−Aλ0

is an isomorphism, as stated in Step 1-a). Thus

w = 0 and therefore u− ū = 0.
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Proof of Lemma 5.9. First, recall that ρ, a ∈ Θ(m′,M ′), m′ < M ′, and note that we have for any v ∈ H,

1

M ′
||v|| ≤ ||v||H ≤ 1

m′
||v||. (B.4)

Taking u, v ∈ V , we have, using Schwarz’s inequality and (B.4)

|A(u, v)| ≤ M ′
∣

∣

∣

∣

du
dx

∣

∣

∣

∣×
∣

∣

∣

∣

dv
dx

∣

∣

∣

∣+ M ′

m′

∣

∣

∣

∣

du
dx

∣

∣

∣

∣× ||v||+ λ
m′

||u|| × ||v||

≤ C3||u||V ||v||V ,

where C3 depends an m′,M ′, λ. Therefore (53) is proven.680

Taking now v ∈ V we have

Aλ0
(v, v) ≥ m′

∣

∣

∣

∣

dv

dx

∣

∣

∣

∣

2
+ (λ + λ0)||v||2H −

∫ T

0

∫

R

(

B
dv

dx
vρ−1

)

(t, x)dxdt.

But, using Young’s inequality we get for δ > 0,

∣

∣

∣

∫ T

0

∫

R

(

B
dv

dx
vρ−1

)

(t, x)dxdt
∣

∣

∣
≤ M ′

m′

∫ T

0

∫

R

( 1

2δ

∣

∣

dv

dx

∣

∣

2
+
δ

2
|v|2

)

(t, x)dxdt.

Choosing δ =M ′/m′2 we get

Aλ0
(v, v) ≥ m′

2

∣

∣

∣

∣

dv

dx

∣

∣

∣

∣

2
+ (λ+ λ0)||v||2H − M ′2

2m′3
||v||2,

and then, again by (B.4),

Aλ0
(v, v) ≥ m′3

2

∣

∣

∣

∣

dv

dx

∣

∣

∣

∣

2

H
+
(

λ+ λ0 −
M ′4

2m′3

)

||v||2H.

Therefore it suffices to choose λ0 > 0 s.t. λ+λ0 > M ′4/2m′3 in order to define α0 = min{m′3

2 , λ+λ0− M ′4

2m′3 }
that satisfies (54).

Proof of Lemma 5.10. We consider a mollification uτ (t, x) = u(t, x, τ) of u(t, x) (see for instance p22 in [32]).

We will show that
∫ T

0

∫

R

|(uτ )′t|2 dxdt ≤ C5 (B.5)

with a constant C5 not depending on τ . Using a compactness argument this implies that there is an

element w ∈ L2(0, T ;L2(R)) such that for any ϕ ∈ C∞,∞
c,c (E) the quantity

∫ T

0

∫

R
(uτ )

′
tϕρ

−1 dxdt converges to
∫ T

0

∫

R
wϕρ−1 dxdt, as τ ↓ 0. But using integration by parts with respect to the time variable we have

∫ T

0

∫

R

(uτ )
′
tϕρ

−1 dxdt = −
∫ T

0

∫

R

uτϕ
′
tρ

−1 dxdt+

∫ T

0

∫

R

uτϕ
ρ′t
ρ
ρ−1 dxdt.

But the right hand side term in the above expression converges (as τ ↓ 0) to

−
∫ T

0

∫

R

uϕ′
tρ

−1 dxdt+

∫ T

0

∫

R

uϕ
ρ′t
ρ
ρ−1 dxdt
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(see Lemma 3.2 in [32]), which is nothing else than 〈du
dt
, ϕ〉V′,V (using the notations of Subsection 5.2).

Therefore we will get the desired result.

Using Fubini type arguments and Lemma 3.3 in [32] we can see that uτ is a weak solution of (Pλ
div,T (ρτ , aτ , Bτ )),

where ρτ = ρ(·, τ) (resp. aτ , Bτ ) is a mollified version of ρ (resp. a, B). Following [21] the idea is to use

ϕ = (uτ )
′
tζ

2
n ∈ H1,1(E) as a test function in (48), where ζn is some element of a sequence of cut-off functions

(ζn) (this sequence can be defined for example in the same spirit than in the proof of Theorem VIII.6 in [33]).

In the following computations we drop any reference to the subscripts τ and n. But the function denoted

by u is smooth so that u′t and u
′
x exist in the classical sense. So that using integration by parts w.r.t. the

time variable in (48) we first get

−
∫ T

0

∫

R
|u′t|2ζ2ρ−1 + 1

2

∫ T

0

∫

R
au′x(u

′′
txζ

2 + 2u′tζζ
′
x)−

∫ T

0

∫

R
Bu′xu

′
tζ

2ρ−1 + λ
∫ T

0

∫

R
uu′tζ

2ρ−1

= −
∫ T

0

∫

R
gu′tζ

2ρ−1.

Using the relation au′xu
′′
xtζ

2 = 1
2

(

a|u′x|2ζ2
)′

t
− 1

2a
′
t|u′x|2ζ2 − a|u′x|2ζζ′t and ζ(0, ·) = ζ(T, ·) = 0 we get

∫ T

0

∫

R
|u′t|2ζ2ρ−1 = − 1

4

∫ T

0

∫

R
a′t|u′x|2ζ2 − 1

2

∫ T

0

∫

R
a|u′x|2ζζ′t +

∫ T

0

∫

R
au′xu

′
tζζ

′
x −

∫ T

0

∫

R
Bu′xu

′
tζ

2ρ−1

+λ
∫ T

0

∫

R
uu′tζ

2ρ−1 +
∫ T

0

∫

R
gu′tζ

2ρ−1.

Remembering now that ρ, a ∈ Θ(m′,M ′), B ∈ Ξ(M ′) and |a′t| ≤ C3(k, κ,M), we get, using triangular and

Young inequalities, that

1
M ′

∫ T

0

∫

R
|u′t|2ζ2 ≤ 1

4C3

∫ T

0

∫

R
|u′x|2ζ2 + M ′

2

∫ T

0

∫

R
|u′x|2ζζ′t +M ′δ

∫ T

0

∫

R
|u′t|2ζ2 + M ′

δ

∫ T

0

∫

R
|u′x|2|ζ′x|2

+M ′

m′
δ
∫ T

0

∫

R
|u′t|2ζ2 + M ′

m′

1
δ

∫ T

0

∫

R
|u′x|2ζ2 + λ

m′
δ
∫ T

0

∫

R
|u′t|2ζ2 + λ

m′

1
δ

∫ T

0

∫

R
u2ζ2

+ δ
m′

∫ T

0

∫

R
|u′t|2ζ2 + 1

m′δ

∫ T

0

∫

R
g2ζ2

for any δ > 0. Adjusting now δ we get

∫ T

0

∫

R

|ut|2ζ2 ≤ C4

∫ T

0

∫

R

(

|u′x|2 + u2 + g2
)

ζ2 + C4

∫ T

0

∫

R

|u′x|2(ζζ′t + |ζ′x|2)

with a constant C4 depending on m′,M ′,M, k, κ, δ, λ. Using now u, u′x, g ∈ L2(0, T ;L2(R)), Lemmas 3.2685

and 3.3 in [32], and the fact that |ζ′t| ≤ c4
1
n and |ζ′x| ≤ c4

1
n (c4 > 0 is some constant), we get (B.5) with a

constant C5 not depending on τ > 0, by letting n tend to infinity.
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