Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Fluid Mechanics Année : 2016

Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions

Résumé

This work is focused on the modelling of the shear and normal stresses in fibre suspensions that are subjected to a simple shear flow in the presence of short-range lubrication forces, van der Waals and electrostatic forces, as well as solid friction forces between fibres. All these forces are weighed by the contact probability. The theory is developed for attractive fibres with van der Waals interaction dominating over electrostatic repulsion. The model predicts a simple Bingham law for both the shear stress and the first normal stress difference with the apparent shear and normal yield stresses proportional, respectively, to the second and the third power of particle volume fraction. The model is applied to the experimental data of Rakatekar et al. Adv. Mater 21, 874-878 (2009) and Natale et al. AIChE J. 60, 1476-1487 (2014) on the suspensions of carbon nanotubes dispersed in a Newtonian epoxy resin. It reproduces well the quadratic dependency of the apparent yield stress on particle volume fraction (σ Y ∝φ^2) for average particle aspect ratios of r=160 and 1200, while it underpredicts the power-law exponent for rD80 (always predicting φ^2 behaviour instead of φ^3.2)
Fichier principal
Vignette du fichier
JFluidMech-802-601.pdf (468.13 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01356268 , version 1 (25-08-2016)

Identifiants

Citer

S. Bounoua, E. Lemaire, J. Férec, G. Ausias, A. Zubarev, et al.. Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions. Journal of Fluid Mechanics, 2016, 802, pp.611-633. ⟨10.1017/jfm.2016.475⟩. ⟨hal-01356268⟩
204 Consultations
169 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More