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Abstract

The aim of this paper is to propose a simple accelerated spectral gradient flow formulation for solving the
Gross-Pitaevskii Equation (GPE) when computing the stationary states of Bose-Einstein Condensates.
The new algorithm, based on the recent iPiano minimization algorithm [35], converges three to four
times faster than the standard implicit gradient scheme. To support the method, we provide a complete
numerical study for 1d-2d-3d GPEs, including rotation and dipolar terms.

Keywords: Bose-Einstein condensation; rotating Gross-Pitaevskii equation; stationary states;
imaginary time formulation; accelerated gradient; pseudospectral approximation.

1. Introduction

At temperatures T which are smaller than the critical temperature Tc, the Gross-Pitaevskii equation
(GPE) can be used to model the behavior of Bose-Einstein Condensates (BECs). The first experimental
realization of BECs was in 1995 [4, 8, 16, 23, 26] while they were theoretically predicted seventy years
before by S.N. Bose and A. Einstein. This state of matter leads to the possibility of studying quantum
physics at the macroscopic scale. Later, the nucleation of quantum vortices was observed [1, 17, 30, 31,
32, 36, 40] leading to the understanding of such BECs, modeled by the rotating GPE. More precisely,
for a given initial data ψ(t = 0,x) = ψ0(x), a rotating BEC is represented by a wave function ψ(t,x)
solution to the dimensionless time-dependent GPE [8, 11]

i∂tψ(t,x) = −1

2
∆ψ(t,x) + V (x)ψ(t,x) + β|ψ(t,x)|2ψ(t,x)−Ω · Lψ(t,x), (1)

for x ∈ Rd, d = 1, 2, 3, t > 0 and ∆ :=
∑d
j=1 ∂

2
xj

. The function V is the confining potential. The
parameter β is the nonlinearity strength that describes the (attractive or repulsive) interactions between
atoms within the condensate. Essentially, we consider a cubic nonlinearity but the case of dipolar gases
[8, 11] is also analyzed at the end of the paper to show that our contribution is general. In order to
obtain the nucleation of vortices [1, 17, 30, 31, 32, 36, 40], the following rotating term is added

Ω · L = ΩLz = −iΩ(x∂y − y∂x), (2)

assuming Ω = (0, 0,Ω)t, Ω being called the rotational velocity.
In this paper, we wish to compute the stationary states of the GPE, i.e. a solution of the form

ψ(t,x) = e−iµtφ(x), (3)

where µ is the chemical potential and φ is a function that only depends on x. By using equation (1), we
deduce a nonlinear elliptic equation which reads as

µφ(x) = −1

2
∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x)− ΩLzφ(x), (4)
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under the normalization constraint

||φ||20 =

∫
Rd

|φ(x)|2dx = 1, (5)

where || · ||0 is the L2(Rd)-norm. If φ is given, we can compute directly µ through

µβ,Ω(φ) = Eβ,Ω(φ) +
β

2

∫
Rd

|φ(x)|4dx, (6)

by defining the energy Eβ,Ω as

Eβ,Ω(φ) =

∫
Rd

1

2
|∇φ|2 + V |φ|2 +

β

2
|φ|4 − Ω< (φ∗Lzφ) dx, (7)

where φ∗ is the complex conjugate function of φ. Another interpretation is to say that eigenfunctions are
the critical points of the energy functional Eβ,Ω over the unit sphere: S := {||φ||0 = 1}. Then, (4) can be
seen as the Euler-Lagrange equation related to the minimization problem of the energy functional under
constraint [13].

Various numerical methods [8, 11] have been designed to compute the stationary states of GPEs, most
particularly to get the ground state and the excited state solutions. It is admitted that deriving robust
and efficient numerical approaches for the stationary state computation is difficult, most particularly
when the nonlinearity is large and the rotation velocity is high. More generally, methods are based either
on solving the nonlinear eigenvalue problem [27, 37, 38] or deriving nonlinear optimization techniques
under constraints [14, 18, 19, 24, 25]. A standard alternative approach is the Imaginary Time Method
(ITM) also called Continuous Normalized Gradient Flow (CNGF) [2, 6, 8, 11, 13, 15, 21, 22, 41]. In this
paper we propose a modified version of the so-called BESP (Backward Euler pseudoSPectral) scheme for
the CNGF that is known to be well-adapted to the computation of steady state solutions. Starting from
the standard imaginary time method, we speed up its convergence using accelerated gradient techniques
[20, 33, 34]. We exploit the recent iPiano method [35], proven to be effective in other contexts like image
processing. Starting from its definition, we develop a new implicit version which is more adapted to our
purposes and only requires almost no modification of BESP. We thus put together the benefits of both
the common BESP scheme and acceleration techniques. The resulting scheme is much more efficient
than the initial BESP scheme. It is also more robust and has better stability properties than directly
appliying the iPiano algorithm. Our numerical study in 1d-2d-3d for nontrivial situations shows that the
gain in efficiency is really important for a simple modification of BESP. Let us remark that this general
idea may be applicable to other recent techniques for computing the stationary states, like for example
for the regularized Newton method proposed in [39].

The plan of the paper is the following. In Section 2, we first present the imaginary time method and
its CNGF formulation. This allows us to next introduce a well-adapted accelerated formulation of the
CNGF formulation by adapting the Backward Euler scheme and the iPiano method. The pseudospectral
discretization in space is then given. In Section 3, we present a thorough numerical study for 1d, 2d
and 3d problems, with rotational term and for dipolar gases. This study shows that the new accelerated
method provides an important gain in terms of computational efficiency, for a slight modification of the
BESP scheme. Finally, we conclude in Section 4.

2. Accelerating the imaginary time method

2.1. Imaginary time method: standard gradient-type schemes

The Imaginary Time Method (ITM) is a commonly used method in the physics literature to compute
the stationary state solutions to the GPE [2, 3, 15, 13, 21, 22, 28, 29]. The approach consists in obtaining
a reformulation of the Equation (4) as a complex time-dependent GPE. This also corresponds to the
evolution of the gradient flow with discrete normalization (GFDN). Fixing uniformly sampled discrete
times 0 = t0 < t1 < . . . < tn < . . . (with time step δt > 0), the ITM leads to solving, in each
time interval [tn, tn+1], the gradient flow and then projecting the solution (i.e. L2-normalization). The
resulting algorithm writes

∂tφ(t, x) = −∇φ∗Eβ,Ω(φ) =
1

2
∆φ− V φ− β|φ|2φ+ ΩLzφ, t ∈]tn, tn+1[,

φ(tn+1,x) = lim
t→tn+1

φ(t,x)

‖φ(t,x)‖0
.

(8)
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From the mathematical point of view, the ITM has been studied for the non rotating case in [13]
by being written as a Conjugate Normalized Gradient Flow (CNGF) formulation. In particular, the
authors show that the time discretization of the CNGF must be carefully considered. They prove that
the semi-implicit Backward Euler scheme is particularly well-adapted since it indeed leads to an energy
diminishing formulation without any constraint on the time step δt for the linear operator. Concretely,
being given an initial state φ0, the semi-implicit Backward Euler (BE) time discretization of the ITM
leads to: ∀n ∈ N, compute φn+1 such that

φ0 = φn − δt∇φ∗ Ẽβ,Ω(φn, φ0),

φn+1 =
φ0

‖φ0‖0
,

(9)

where

∇φ∗ Ẽβ,Ω(u,w) =
1

2
∆w − V w − β|u|2w + ΩLzw. (10)

The semi-implicit feature of the scheme appears in the nonlinear term.
If a Forward Euler (FE) scheme is used, then a CFL-like stability constraint appears on δt [13] and

involves the extrema of the potential, affecting hence the robustness of the scheme (as for the Crank-
Nicolson scheme for the ITM). The resulting linear scheme then writes: ∀n ∈ N, compute φn+1 such
that  φ0 = φn − δt∇φ∗Eβ,Ω(φn),

φn+1 =
φ0

‖φ0‖0
,

(11)

which is nothing else than a standard (explicit) projected gradient in terms of optimization method.
This is a difference with the BE scheme (9) which rather consists in an implicit version of the projected
gradient method with a linearization step. The time step δt is then the step of the gradient method.

2.2. Imaginary time method: accelerated gradient-type schemes

Accelerated gradients schemes were first introduced by Nesterov in the eighties [33, 34]. The main idea
behind the acceleration of the gradient is to add a momentum term in the gradient flow. For our problem,
since we wish to compute a stationary state of the GPE with a mass constraint, we need to include an
extra L2-normalization step into the algorithm. An important feature of the accelerated gradient-type
methods is that their efficiency and stability strongly depends on some tuning parameters. Improvements
and extensions of the accelerated gradient schemes can be found e.g. in [20]. We extensively tested such
approaches in our context with both the explicit/semi-implicit implementation of the gradient terms.
Despite the apparent improvement in terms of efficiency of these methods to reach a given state, it turns
out that they are usually unstable in the context of the GPE. Indeed, there is no clear rule to fix the
tuning parameters. Therefore, the efficiency/robustness of the corresponding accelerated scheme can be
easily lost.

Nevertheless, among all these techniques, a class of accelerated gradient-type methods appears to
be stable for our problem, i.e. the resulting efficiency is stable for a well-chosen tuning parameter that
weakly depends on the physical/discretization problem parameters. The very recent method, called
iPiano, was presented in [35] for computer vision problems (image denoising). The aim of the present
paper is 1) to propose a stable adaptation of the iPiano method to the computation of the stationary
states of the GPE and 2) to confirm its efficiency for the 1d-2d-3d rotating GPE when a spectral spatial
discretization is used.

The iPiano method is a minimization technique which is convergent when the objective function is
the sum of a non-convex smooth function and a convex non-smooth function. More explicitly, the class
of non-convex problems that can be solved writes down as

min
x∈Rp

f(x) + g(x),

where g is a convex (possibly non-smooth) function and f is a smooth (possibly non-convex) function,
from Rp onto R. The scheme then produces a sequence (xn)n∈N which converges to the solution of the
minimization problem and given by the following iterative procedure

xn+1 = (I − α∂g)−1
(
xn − α∇f(xn) + βiPiano(xn − xn−1)

)
, (12)
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where α > 0 and 0 ≤ βiPiano < 1 are respectively the step size and the inertial parameter. The inertial
force term βiPiano(xn−xn−1) ensures the acceleration of the scheme. In Eq. (12), we directly remark that
the method is explicit for the non-convex part of the objective function but implicit for the non-smooth
part via a proximal map. For the computation of the stationary states of the GPE, the energy functional
is smooth. Therefore, we consider the following functions f and g in our situation

f(φ) = Eβ,Ω(φ) and g(φ) = 0,

leading to the scheme φ0 = φn − δt∇φ∗Eβ,Ω(φn) + βiPiano(φn − φn−1),

φn+1 =
φ0

‖φ0‖0
.

(13)

where α = δt. With g = 0, the iPiano scheme is usually called the Heavy-ball method. This indeed
corresponds to an explicit finite difference scheme of the well-known Heavy-ball friction dynamical system

φ̈(t) + γφ̇(t) +∇f(φ(t)) = 0,

which should be compared to the usual gradient flow approach

φ̇(t) +∇f(φ(t)) = 0.

Hence, applying the iPiano technique can be interpreted as an accelerated explicit gradient method for
(11) that reduces to (11) for βiPiano = 0. Based on this remark, it is clear that the explicit scheme (13)
inherits the stability problems from the explicitation of the gradient. This is even true when a costly
optimal time step procedure is used to adapt α(= δt). To overcome this problem, we propose to use a
semi-implicit version of iPiano in the spirit of the BE scheme (9). Therefore, the resulting scheme writes:
∀n ∈ N, compute φn+1 such that

φ0 = φn − δt∇φ∗ Ẽβ,Ω(φn, φ0) + βiPiano(φn − φn−1),

φn+1 =
φ0

‖φ0‖0
,

(14)

where φ0 is a given initial data, δt is the time step, βiPiano ∈ [0, 1) is the inertial parameter and φ−1 = φ0.
In practice we separate the first line of the algorithm (14) into the two following steps: ∀n ∈ N, compute
φn+1 such that

φ0 = φn + βiPiano(φn − φn−1),

φ1 = φ0 − δt∇φ∗Ẽβ,Ω(φ0, φ1),

φn+1 =
φ1

‖φ1‖0
.

(15)

Trivially, βiPiano = 0 corresponds to the BE scheme (9) which lets to think that the resulting scheme
is much more stable than (13). In terms of implementation and computational cost, the scheme (15)
requires almost no additional effort compared with BE. Concerning the parameter βiPiano, there is no
explicit formula to determine its optimal value which is supposed to be problem dependent. Nevertheless,
the extensive numerical study in Section 3 shows that an almost optimal value corresponds to βiPiano '
0.75 − 0.8 and is weakly sensitive to the physical and discretization parameters. This value which is
obtained for our specific problem seems to be more general for the application range since for instance
in [35] a nearly optimal value seems to be βiPiano ' 0.8 for problems in image processing.

2.3. Pseudo-spectral discretization in space

To correctly capture the nucleation of vortices, high-order discretizations in space are needed. High-
order finite difference or finite element schemes could be used with e.g. adaptive mesh techniques.
However, in some situations like for dipolar interactions [11, 12] or multi-components BECs [9, 10,
11], these approaches may be complicate to implement and lead to huge computational costs. The
direction that we follow here uses pseudo-spectral (SP) discretization techniques based on the Fast
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Fourier Transform (FFT) [5, 7, 11]. We present now this approach in the two-dimensional case, the
extension to the 1d and 3d cases being direct.

We introduce the spatial bounded computational domain D =] − ax; ax[×] − ay; ay[. The physics
of BECs modeled by the GPE evolves inside the finite box D. This naturally lets us the possibility
to enforce periodic boundary conditions on φ at the boundary ∂D (even if homogeneous Dirichlet or
Neumann boundary conditions could also be imposed). We introduce now the discrete grid with uniformly
sampled points: DNxNy

:= {xk1,k2 = (xk1 , yk2)}(k1,k2)∈ONxNy
, where

ONxNy
:= {(k1, k2) ∈ N2 such that k1 = 0, . . . , Nx − 1, k2 = 0, . . . , Ny − 1}

for Nx and Ny two even positive integers. We define

xk1+1 − xk1 = hx = 2ax/Nx, yk2+1 − yk2 = hy = 2ay/Ny.

Let ζpq = (ξp, ηq), with ξp = pπ/ax,−Nx/2 ≤ p ≤ Nx/2 − 1, and ηq = qπ/ay,−Ny/2 ≤ q ≤ Ny/2 − 1,

be the associated discrete Fourier frequencies. The partial Fourier pseudo-spectral approximations φ̃ of
the function φ in the x- and y-directions are then

φ̃(t, x, y) =
1

Nx

Nx/2−1∑
p=−Nx/2

̂̃
φp(t, y)eiξp(x+ax), φ̃(t, x, y) =

1

Ny

Ny/2−1∑
q=−Ny/2

̂̃
φq(t, x)eiηq(y+ay),

where
̂̃
φp and

̂̃
φq respectively designate the Fourier coefficients in the x- and y-directions

̂̃
φp(t, y) =

Nx−1∑
k1=0

φ̃k1(t, y)e−iξp(xk1
+ax),

̂̃
φq(t, x) =

Ny−1∑
k2=0

φ̃k2(t, x)e−iηq(yk2
+ay).

The following notations are used: φ̃k1(t, y) = φ̃(t, xk1 , y) and φ̃k2(t, x) = φ̃(t, x, yk2). To evaluate the
operators, we define the matrices I, V and [[f(φ)]] that apply pointwise in the physical space

Ik1,k2 := δk1,k2 , Vk1,k2 := V (xk1,k2), [[f(φ)]]k1,k2 = f(φk1,k2),

for (k1, k2) ∈ ONxNy . The symbol δk1,k2 is the Dirac delta symbol which is equal to 1 if and only if
k1 = k2 and 0 otherwise. We also define the four operators [[∂2

x]], [[∂2
y ]], y[[∂x]] and x[[∂y]] which are

applied to φ̃ that approximates the continuous function φ for (k1, k2) ∈ ONxNy

∂2
xφ(xk1,k2) ≈ ([[∂2

x]]φ̃)k1,k2 := − 1

Nx

Nx/2−1∑
p=−Nx/2

ξ2
p (̂φ̃k2)pe

iξp(xk1
+ax),

∂2
yφ(xk1,k2) ≈ ([[∂2

y ]]φ̃)k1,k2 := − 1

Ny

Ny/2−1∑
q=−Ny/2

η2
q (̂φ̃k1)qe

iηq(yk2
+ay),

(x∂yφ)(xk1,k2) ≈ (x[[∂y]]φ̃)k1,k2 :=
1

Ny

Ny/2−1∑
q=−Ny/2

ixk1ηq (̂φ̃k1)qe
iηq(yk2

+ay),

(y∂xφ)(xk1,k2) ≈ (y[[∂x]]φ̃)k1,k2 :=
1

Nx

Nx/2−1∑
p=−Nx/2

iyk2ξp(̂φ̃k2)pe
iξp(xk1

+ax).

(16)

We introduce the discrete operators acting from CM to C, with M = NxNy (in 2d), by

[[∆]] := [[∂2
x]] + [[∂2

y ]], [[Lz]] := −i(x[[∂y]]− y[[∂x]]). (17)

The matrix [[∆]] is diagonal in the Fourier space but not Lz. We set

φ := (φ̃(xk1,k2))(k1,k2)∈ONxNy

as the discrete unknown vector in CM . For the sake of conciseness, we do not make any distinction
between an array φ in MNx×Ny

(C) (storage according to the 2d grid) and the corresponding reshaped
column vector in CM . We denote by MNx×Ny

(C) the vector space of 2d complex-valued arrays.
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Let us introduce the complex-valued matrix

Anβ,Ω =
1

2
[[∆]]− [[V ]]− β[[|φn|2]] + Ω[[Lz]].

Applying the pseudo-spectral approximation scheme, system (15) writes down
φ0 = φn + βiPiano(φn − φn−1),
(I− δtAnβ,Ω)φ1 = φ0,

φn+1 =
φ1

‖φ1‖0
,

(18)

where ‖φ‖0 is the discrete L2-norm of a complex-valued vector field φ and the initial data φ−1,0 is
fixed by evaluating φ−1,0 on the spatial grid DNxNy

. The resulting scheme given in (18) is called
BESP(βiPiano). The stopping criterion for the convergence of the minimization procedure is based on
the residual computed for the discrete L∞-norm between two successive iterates, i.e.

‖φn − φn+1‖∞ < τδt, (19)

where ‖φ‖∞ := sup(k1,k2)∈ONxNy
|φ(xk1,k2)| and the small value of τ is a priori fixed by the user.

Solving (18) requires to iterate on n sufficiently so that (19) is fulfilled. However, each iteration needs
the solution to a complex-valued linear system with matrix (I − δtAnβ,Ω). To obtain the solution to
the linear system in (18) and since we do not have access explicitly to the matrix [[Anβ,Ω]], we use the
BiCGStab iterative solver which only requires some matrix-vector products evaluations that are the
main computational contributions for one iteration of BiCGStab (with a computational cost related
to the 1d FFT evaluations). In addition, the acceleration of the BiCGStab is realized through the
(Fourier) diagonal Laplace preconditioner (I− δt[[∆]]/2)−1 in the spirit of [6]. All along the paper, the
convergence criterion of the preconditioned BiCGStab is fixed to 10−14 since we are using a spectral
approximation. Let us call Nout the number of outer iterations of the BESP(βiPiano) algorithm (18)
to converge according to (19), with given β, Ω, βiPiano and τ . Each outer iteration requires N in

n inner
iterations of the preconditioned BiCGStab to converge (with a residual equal to 10−14). As a consequence,
a suitable way to understand the improved efficiency of BESP(βiPiano) is to represent the total number

of iterations ntot
βiPiano

:=
∑Nout

n=1 N
in
n .

3. Numerical results

3.1. The one-dimensional case

We first analyze BESP(βiPiano) for the 1d case, i.e. without rotational term. The GPE involves a
cubic nonlinearity and 1) a quadratic potential or 2) a quadratic-plus-quartic potential. The reference
solution φref is based on BESP(0) with Nx = 212 and δt = 10−4. This allows us to study the accuracy of
the method and most particularly the fact that the method converges towards the correct stationary state
φcomputed through the error between the reference energy and the computed energy for BESP(βiPiano)
given by

δEβ,Ω := |Eβ,Ω(φref)− Eβ,Ω(φcomputed)|.

To measure the gain of efficiency, we represent the ratio rβiPiano
:= ntot

βiPiano
/ntot

0 (%).

Let us consider the harmonic potential V (x) = x2/2. The numerical parameters are the following:
ax = 30, Nx = 210, δt = 10−2, τ = 10−10 and β ∈ [0, 3000]. We report on Figure 1 (left) the error
δEβ,0 between the energy of the reference and computed solutions. Since the difference on the energy
is uniformly small, we deduce that the BESP(βiPiano) scheme leads to the correct solution as long as
βiPiano is not too close from 1, which can also be checked on the stationary states computation. In Figure
1 (right), we see that BESP(βiPiano) leads to an improved convergence with a nearly optimal value of
βiPiano equal to 0.75, yielding then to a ratio rβiPiano ' 25− 30%, which means a gain in computational
cost of about 70− 75%. This value is independent of the nonlinearity strength β.

Let us now analyse the sensitivity of BESP(βiPiano) regarding the discretization parameters in time
δt and space Nx. Numerical simulations show that there is an optimal set of parameters (β∗iPiano, δt

∗)
(see Figure 2, left) which reduces drastically the total number ntot

βiPiano
of BiCGStab iterations. We can

infer (β∗iPiano, δt
∗) ∈ (10−3, 10−2) × (0.7, 0.9). Indeed, if the time step δt is not small enough, then the

6
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Figure 1: BESP(βiPiano) for the 1d harmonic potential: error δEβ,0 (left figure, log10 scale) and gain rβiPiano
(right figure,

%) vs. the inertial parameter βiPiano and nonlinearity strength β.
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Figure 2: Influence of the parameters δt and βiPiano on ntot
βiPiano

(left figure, log10 scale) and on the energy Eβ,Ω(φcomputed)

(right figure). In both simulations, we have taken Nx = 29.

energy corresponds to a local minima and not a global minima (see Figure 2, right). This property was
already observed for the standard BESP scheme.

Concerning the influence of Nx, there is a minimal value to ensure that the computed solution
is actually a ground state (see Figure 3, right). In our test, this threshold value is Nx = 28. This
characteristic was also observed before for the classical BESP scheme. Furthermore, the optimal βiPiano

parameters belongs to (0.7, 0.8) (see Figure 3, left) which is in good agreement with our previous results
(Figure 2). As a conclusion, the choice of βiPiano mainly depends on δt.

We consider now a more confining potentiel called quadratic-plus-quartic potential, i.e.

V (x) =
1− α

2
x2 +

κ

4
x4,

with α = 1.2 and κ = 0.3. The numerical parameters are the same as in the harmonic case. We report
rβiPiano

with respect to βiPiano and β on Figure 4 (we do not plot the error δEβ,Ω on the energy since
the results are about the same as for the quadratic case). Concerning the computational cost, one gets
rβiPiano ' 30% as previously with the quasi-optimal value of the inertial term βiPiano ' 0.75 − 0.8. The
results are only weakly affected by the value of β which means that BESP(βiPiano) is relatively stable
thanks to the physical/numerical parameters.

3.2. The two-dimensional case

We analyze now the results for the two-dimensional case for a non-rotating and next a rotating BEC.
We first consider the quadratic potential: V (x) = ||x||2/2 and β ∈ [0, 3000]. The numerical parameters
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(left figure, log10 scale) and on the energy Eβ,Ω(φcomputed)

(right figure). In both simulations, we have taken δt = 10−2.
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Figure 4: BESP(βiPiano) for the 1d quadratic-plus-quartic potential: rβiPiano
(%) vs. the inertial parameter βiPiano and

nonlinearity strength β.

are fixed to: ax = ay = 10, Nx = Ny = 27, δt = 10−2 and τ = 10−10. From Figure 5 (left), we can see
that the conclusion is very similar to the 1d case. Indeed, the computational cost of the global procedure
is divided by a factor 4 for a value βiPiano which is approximately 0.75, this value being almost not
sensitive according to the nonlinearity strength β. We next perform a numerical study of the influence
of the parameter δt on the choice of the optimal value of the inertial parameter βiPiano. We do not
report the influence of Nx ×Ny which is weak as for the 1d case. We draw similar conclusions: optimal
parameters correspond to (β∗iPiano, δt

∗) ∈ (0.6, 0.8)× (10−3, 10−2) (see Figure 5, right).
We consider now the optical potential

V (x) =
||x||2

2
+ 25 sin2

(
π

4
x

)
+ 25 sin2

(
π

4
y

)
.

The nonlinearity strength β varies in [0, 3000]. The parameters for the numerical simulation are: ax =
ay = 16, Nx = Ny = 27, δt = 10−2 and τ = 10−10. The results presented in Figure 6 (left) show that
the quasi-optimal parameter βiPiano varies slightly with respect to β. This may be related to the fact
that the condensate needs to spread out in the optical lattice to reach the ground state. Nevertheless,
the computational gain remains very interesting considering the small modification of an existing BESP
code that is required. The range of optimal parameters (β∗iPiano, δt

∗) to get the correct energy is similar
to the harmonic case (Figure 6, right).

We present now the case of a two-dimensional rotating GPE (Ω = 0.5) with the harmonic potential
and for the two nonlinearity strengths β = 500 (Figure 7, top row) and 750 (Figure 7, bottom row).
The parameters for the discretization/convergence are ax = ay = 10, Nx = Ny = 27, δt = 10−3 and
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Figure 6: BESP(βiPiano) for the 2d quadratic-plus-quartic potential (Ω = 0): rβiPiano
(left, %) and energy Eβ,Ω(φcomputed)

(right) vs. the inertial parameter βiPiano and nonlinearity strength β.

τ = 10−6. We report in Fig. 7 the results concerning the computed energy Eβ,Ω(φcomputed) (left column,
red line, the blue line being the energy for BESP with the same discretization parameters) and rβiPiano

(right column) vs. βiPiano for the two values of β. In this case, a quasi-optimal value of βiPiano is rather
0.8 − 0.85 and the associated gain is about 70% of the whole computational time. We remark that for
values of βiPiano close to 1, the computed energy is inaccurate (e.g. the energy for βiPiano = 0.97 is
8.02800836), otherwise the value of the energy for BESP(βiPiano) is less than the one for BESP.

3.3. The three-dimensional case

We report now in Figure 8 the results for the three-dimensional quadratic case, i.e. V (x) = ||x||2/2,
without rotation (Ω = 0) and for β = 100. The computational domain is ]− 10, 10[3 which is discretized
with 26 Fourier modes in each direction. The time step is δt = 10−2 and τ = 10−6. The quasi-optimal
value of βiPiano is 0.8 which leads to a gain of 80% of the computational time compared with BESP. This
gain is very interesting since each iteration is quite expensive in the three-dimensional situation. As we
can see, the computed energy of BESP(βiPiano) is correct for 0 ≤ βiPiano ≤ 0.85 but may be incorrect for
values of βiPiano too close to 1.

To end the paper, we present some results for a GPE with a rotation term Ω = 0.7 and with a
quadratic potential V . In addition, the GPE includes a dipolar interaction termd2

∫
R3

1− 3 cos2 (̂a, x̃)

‖x− x̃‖3
|φ(t, x̃)|2dx̃

φ(t,x),
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Figure 7: BESP(βiPiano) for the 2d quadratic potential and with Ω = 0.5 (top: β = 500; bottom β = 750): energy
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(right, %) vs. βiPiano.
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Figure 8: BESP(βiPiano) for the 3d quadratic potential (Ω = 0) and β = 100: energy Eβ,Ω(φcomputed) (left) and rβiPiano

(right, %) vs. βiPiano.

added to the cubic nonlinearity. The physical parameters are β = 500, d = 0.5 and a = t(0, 0, 1). The
computational domain is ]− 10, 10[3 discretized with 27 Fourier modes in each direction. The time step
is δt = 10−2 and τ = 10−6. We consider BESP(βiPiano = 0.7) which requires Nout = 2973 iterations
(for ntot

βiPiano
= 27503 BiCGStab iterations) compared with BESP(=BESP(0)) which needs Nout = 6396

iterations (for ntot
0 = 59250 BiCGStab iterations). The computed energy is equal to 5.374118. We

draw on Figure 9 the 10−3.5 and 10−3 isovalues of |φ(t,x)|2. We present on Figure 10 the (x, y)-slice of
|φ(t,x)|2 and of the angle of φ(t,x) showing the placement of the vortex lines.

4. Conclusion

The aim of this paper was to introduce and test a slight modification of the standard BESP scheme
for spectrally computing the stationary states of GPEs that model BEC. The new scheme, called
BESP(βiPiano), is based on an implicit version of the iPiano optimization algorithm recently intro-
duced in [35] for image processing, combined with FFT pseudospectral approximation schemes in space.
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Figure 9: 10−3.5 (left) and 10−3 (right) isovalues of |φ(t,x)|2.
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Figure 10: (x, y)-slice of |φ(t,x)|2 (left) and of the angle of φ (right).

While the new algorithm can be trivially integrated in an existing BESP code, the global computational
cost of the standard BESP algorithm (e.g. βiPiano = 0) is divided by a factor 3 to 4. To validate the
method, we reported a thorough numerical study for 1d-2d-3d GPEs, with possible rotation and dipolar
interaction. We then conclude that an nearly optimal value of βiPiano is 0.75− 0.8, and weakly depends
on the problem parameters.
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