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Abstract

We present a novel, non-intrusive approach for estimat-
ing contact forces during hand-object interactions relying
solely on visual input provided by a single RGB-D camera.
We consider a manipulated object with known geometrical
and physical properties. First, we rely on model-based vi-
sual tracking to estimate the object’s pose together with that
of the hand manipulating it throughout the motion. Fol-
lowing this, we compute the object’s first and second order
kinematics using a new class of numerical differentiation
operators. The estimated kinematics is then instantly fed
into a second-order cone program that returns a minimal
force distribution explaining the observed motion. However,
humans typically apply more forces than mechanically re-
quired when manipulating objects. Thus, we complete our
estimation method by learning these excessive forces and
their distribution among the fingers in contact. We provide
a full validity analysis of the proposed method by evaluating
it based on ground truth data from additional sensors such
as accelerometers, gyroscopes and pressure sensors. Exper-
imental results show that force sensing from vision (FSV) is
indeed feasible.

1. Introduction

Reliably capturing and reproducing human haptic in-
teraction with surrounding objects by means of a cheap
and simple set-up (e.g., a single RGB-D camera) would
open considerable possibilities in computer vision, robotics,
graphics, and rehabilitation. Computer vision research has
resulted in several successful methods for capturing motion
information. A challenging question is: to what extent can
vision also capture haptic interaction? The latter is key for
learning and understanding tasks, such as holding an object,
pushing a chair or table, as well as enabling its reproduction
from either virtual characters or physical (e.g., robotic) em-
bodiments.

Contact forces are usually measured by means of hap-

Figure 1: Using a single RGB-D camera, we track marker-
less hand-object manipulation tasks and estimate with high
accuracy contact forces that are applied by human grasping
throughout the motion.

tic technologies such as force transducers. The main draw-
back of such technologies is that they are obtrusive. Com-
puter vision techniques would therefore be an ideal alterna-
tive to circumvent this issue. Yet, is it possible to estimate
forces from visual observation? There is evidence that hap-
tic perception can be induced through illusion and substi-
tution dominated by vision, e.g. [24]. We aim at exploring
computer vision to infer the forces exerted by humans on
surrounding objects. In particular, we consider hand-object
grasping and manipulation. The problem is extremely com-
plex. Indeed, establishing that a hand-object contact has oc-
curred is difficult because of occlusions and tracking inac-
curacies. Nevertheless, the detection of events like an object
being lifted or discontinuities in body motion may provide
useful hints towards disambiguating discrete events. Addi-
tionally, even if contact positions can be determined effi-
ciently, the estimation of the applied forces is still challeng-
ing because of the inherent multiplicity of solutions.

We demonstrate that, by solely using computer vision, it
is possible to compute interaction forces occurring in hand-
object manipulation scenarios where object properties such
as shape, contact friction, mass and inertia are known, along
with human hand geometry. First, we monitor both the hand



and the object motions by using model-based 3D tracking
(other visual tracking techniques can also be used if they
meet performance requirements). From the tracking data,
we estimate hand-object contact points through proximity
detection. Algebraic filtering computes the object’s kine-
matics, i.e. velocity and acceleration. Contact force distri-
butions explaining the kinematic observations are then re-
solved using conic optimization. When manipulating ob-
jects, humans typically apply more (internal) forces than
what is required from the Newton-Euler dynamics. Thus,
we improve our estimation method by using neural net-
works to learn the amount and distribution of these inter-
nal forces among the fingers in contact. The experimental
results obtained on datasets annotated with sensors’ ground-
truth show the potential of the proposed method to infer
hand-object contact forces that are both physically realistic
and in agreement with the actual forces exerted by humans
during grasping. To the best of our knowledge, this is the
first time that this problem is addressed and solved based
solely on markerless visual observations.

2. Related Work
Applications of force sensing in robotics, virtual reality

and human physiological studies result in challenging re-
quirements for transduction technologies [7, 8]. Common
drawbacks of mechatronic force sensing devices reside in
their extensive need for calibration, time-varying accuracy
(e.g., hysteresis) and cost. Additionally, they are required
to be mounted onto the manipulated objects, thus impacting
their shape or other physical properties, or onto the opera-
tor (e.g., force sensing gloves), thus obstructing the human
haptic senses and limiting the natural range of motion.

An alternative to pressure sensors proposed in [26] con-
sists in instrumenting fingers with miniature LEDs and pho-
todetectors to measure changes in fingernails coloration,
that are then correlated to the touch force applied at fin-
gertips. Later, this technology evolved to predict normal
and shear forces, and even changes in posture, that appear
to have different blood volume patterns [27]. In [43], fin-
gernail color and surrounding skin changes are monitored
and processed using an external camera system to estimate
contact fingertip forces [44, 16, 47]. Conversely, computer
graphics models were developed to simulate fingertip ap-
pearance changes based on simulated forces [2]. This re-
sult illustrates that computer vision can be used effectively
to measure touch forces on fingertips. This approach is,
however, limited to fingertip contacts and requires exten-
sive calibration for each individual user. It is also limited
by the necessity of having fingernails visible at all time and
at high resolution, hence requiring appropriately mounted
miniature cameras.

Used in conjunction with force sensing technologies,
motion tracking can provide information on body dynam-

ics to explain how humans interact with their environment.
A setup combining marker-based motion capture and me-
chanical force sensors was used in [21] to estimate hand
joint compliance and synthesize interaction animations. Al-
though precise, marker-based motion capture is invasive
and hardly applicable to real-world contexts.

Alternative tracking techniques were therefore devel-
oped to circumvent markers’ intrusiveness. The markerless
vision-based tracking of a hand was first treated in [38] and
has lately received renewed attention [32, 9, 20, 36, 45, 46].
While these works show impressive results for tracking a
hand in isolation, they are not applicable to our scenario,
mostly due to severe mutual occlusions from strong hand-
object interaction, resulting in missing observations of both.
For the 3D tracking of a hand in interaction with object(s),
the existing methods can be classified into mostly bottom
up, mostly top-down or hybrid, depending on the rela-
tive strength of the discriminative and the generative pro-
cesses involved. The method in [39] performed 3D track-
ing of a hand-object interaction by synthesizing its appear-
ance based on a non-parametric discriminative model and
by treating hand pose estimation as a classification problem.

In general, top-down methods do not treat occlusions as
a distractor but rather as a source of information [33, 3,
34, 41]. A generative process creates hypotheses of a joint
hand-object model that are then evaluated against actual ob-
servations by solving a multi-parameter optimization prob-
lem. In the representative approach presented in [33] the
availability of a joint 3D model facilitates the consideration
of possible hand-object occlusions. Additionally, it makes
possible the incorporation of strong priors in the optimiza-
tion process, e.g., the fact that two different objects cannot
share the same physical space. In this manner, even more
complex problems such as tracking two strongly interact-
ing hands [34] or tracking two hands in interaction with an
object [3] have been successfully addressed. To cope with
hand-object occlusions, even stronger priors resulting from
a physics-based simulation of the scene have also been in-
corporated [22].

The scalability issues of generative methods are dealt
with in [23], where it is shown that the 3D tracking of the
interaction of two hands with several rigid objects can be
performed accurately and efficiently. The approach taken in
our work to support visual tracking of hand-object interac-
tions is based on a variant of the method presented in [23].
A representative hybrid method is proposed in [17]. In that
work, the 3D tracking of a hand manipulating an object
is achieved by using bottom-up evidence to directly guide
(rather than simply support) the formulation of hand pose
hypotheses that is performed by generative means.

An inspiring use of motion tracking for force estimation
is presented in [6], where whole body contact forces and
internal joint torques are estimated by solving an optimiza-



tion problem linking contact dynamics and human kinemat-
ics. The goal of the work in [49] is the realistic synthesis of
detailed hand manipulations. Towards this direction, mo-
tion capture data is used to formulate the synthesis problem
taking into account contact points and contact forces. This
method would benefit a lot from the unobtrusive vision-
based estimation of actual contact forces we propose. Also
aiming at realistic synthesis and motion reconstruction, the
work in [51, 48] estimates the motion of a hand in inter-
action with an object together with contact points and ex-
erted forces. Though this method successfully tracks chal-
lenging manipulation scenarios, the manipulation forces are
only constructed to be compatible with visual observations,
without aiming at matching the forces humans actually ap-
ply, as happens with the method we propose in this work.

3. Force Sensing from Vision (FSV)
Let S be a rigid body with mass m and inertia matrix

J relative to its center of mass C. For any element e of
its contacting environment (e.g. human hand, table), let µe

denote the corresponding Coulomb friction coefficient. We
assume these quantities to be known as they can be obtained
from the object of interest’s CAD model or existing iden-
tification techniques [40]. Interestingly, it has been shown
that aspects of such information (e.g., mass distribution) can
also be estimated by visual means [30]. We then consider
a scenario where S is grasped and manipulated by a hand,
with possible contacts with the environment. Observing the
scene with a sole RGB-D camera, which we suppose cali-
brated with the vertical direction known, our goal is to esti-
mate the interaction forces between S and the user’s hand,
and between S and its environment when applicable. We
decompose FSV into four subproblems as follows:

1. Track S and the hand and perform, for each step,
vision-based proximity or collision detection to iden-
tify contacting fingers and corresponding contact
points (Section 3.1).

2. Let Xi be the estimated pose for S at instant i. Based
on sequence (Xi)i∈[0,N ], estimate for each frame the
body’s first and second-order kinematics, i.e. trans-
lational (resp. rotational) velocity vi (resp. ωi) and
acceleration ai (resp. αi) (Section 3.2).

3. Compute a force distribution explaining the object’s
state computed at step 2 following Newton-Euler’s
laws of motion and Coulomb’s friction model, using
the contact points identified at step 1 (Section 3.4).

4. Learn and reproduce human internal force distribu-
tions among the fingers in contact (Section 3.6).

Each of these subproblems presents a number of chal-
lenges. First, the observation of manipulation tasks may
be subject to hand-object occlusions. To overcome this is-
sue, we address step 1 by means of model-based tracking

as inspired by [23]. Second, the limited camera acquisition
frequency along with tracking errors can make the differ-
entiation process of step 2 unstable. We tackle this issue
by estimating derivatives using algebraic filtering derived
from [29]. Algebraic filtering was chosen for the sake of
robustness, as it relies on no statistical assumption on the
signal’s noise. We then address step 3 by computing min-
imal force closure distributions as solutions of a second-
order cone program. Finally, step 4 stems from the fact that
in contrast with [43] where multiple photodetectors monitor
each fingernail’s blood flow individually, such microscopic
features cannot be observed by a single RGB-D camera ob-
serving the whole scene. The object may indeed be grasped
with more or less intensity without this being visible at a
macroscopic scale. We tackle this statical indeterminacy
with machine learning on usual human grasping practices.

3.1. Hand-object tracking

Our approach requires a good 3D pose estimate of the
manipulated object together with that of the user’s hand. To
achieve this, we rely on a variant of the method proposed
in [23] that is tailored to our needs. In [23], the model-based
hand-object 3D tracking is formulated as an optimization
problem, which seeks out the 3D object(s) pose and hand
configuration that minimizes the discrepancy between hy-
potheses and actual observations. The optimization prob-
lem is solved based on PSO [10].

Since this method estimates the generalized pose of a
hand interacting with an object, it is straightforward to com-
pute the 3D positions of the estimated fingertips in relation
to the object’s surface (i.e., contact points). Still, in our im-
plementation of [23], we have incorporated one important
modification. The original 3D hand-object tracking frame-
work provides solutions that are compatible with visual ob-
servations and are physically plausible in the sense that the
hand and the object do not share the same physical space
(i.e., the hand does not penetrate the modeled volume of
the object). However, occluded fingers may have different
poses that respect the above constraints, making the esti-
mation of contact points an under-constrained problem. To
overcome this issue, we assume that contact points do not
change significantly when they cannot be observed. Time
and space coherency is thus enforced by penalizing solu-
tions in which hidden contact points are far from their last
observed position.

3.2. Numerical differentiation for kinematics

In theory, velocity and acceleration can be estimated by
numerical differentiation of poses obtained from tracking.
However, this process is highly dependent on two factors:
(a) the acquisition frequency of the RGB-D frames, and
(b) the quality of the motion tracking. First, even a per-
fect tracking would result in poor velocity and acceleration



estimates if performed over time steps far apart from each
other, also depending on the way the hand moves. However,
this is not a freely controllable parameter, as most commer-
cial RGB-D cameras offer acquisition frame-rates capped
between 30 and 60 fps. We present our results on a 30 fps
SoftKinetic DepthSense 325 camera. Second, acceleration
profiles occurring in manipulation tasks are naturally spiky
(see for example Fig. 4). Therefore, numerical differentia-
tion is challenging in that while the number of samples used
for each derivative estimate must be sufficient to alleviate
tracking errors, it must also be kept minimal to discern the
sudden variations that acceleration profiles are subject to.

As an alternative to existing numerical differentiation
methods, algebraic parameter estimation approaches [12]
led to a new class of derivative estimators called algebraic
numerical differentiators [29]. The tracking errors resulting
from the employed model-based tracking framework seem
to follow a Gaussian distribution, yet they are not indepen-
dent of one another, which rules out the white noise formal-
ism. Subsequently, and in order to keep the kinematics esti-
mation process unbiased by the use of a particular tracking
method, we implement the so-called minimal (κ, µ) alge-
braic numerical differentiators, which do not assume prior
knowledge of the signal errors’ statistical properties.

3.3. From kinematics to dynamics

We suppose the rigid body S subject to nd non-contact
forces (Fd

k)k∈[1,nd] applied at points (Pd
k)k∈{1,...,nd} (e.g.,

gravitation, electromagnetism). We consider them fully
known based on the object’s properties. We seek to estimate
nc contact forces (Fc

k)k∈[1,nc] applied at contact points with
the hand or the environment (Pc

k)k∈[1,nc] that are obtained
from tracking (Section 3.1). Using the object’s kinemat-
ics as estimated in Section 3.2, its motion is governed by
Newton-Euler equations. Therefore, the resulting net force
F c and torque τ c due to the contact forces are such that:{

F c = ma−Fd

τ c = Jq ·α+ ω × (Jq · ω)− τ d,
(1)

with Fd and τ d the resulting force and torque due to non-
contact forces, and Jq the inertia matrix with orientation q.

The contact forces are subject to friction, which we
model using Coulomb’s law. Let nk be the unit contact nor-
mal oriented inwards S at contact point Pc

k. Let then txk and
tyk be two unit vectors orthogonal to each other and to the
normal nk, thus defining the tangent plane. Each contact
force Fc

k is decomposed as follows:

Fc
k = fknk + gkt

x
k + hkt

y
k, (2)

With µk the friction coefficient at Pc
k, Coulomb’s law reads:

‖gktxk + hkt
y
k‖2 ≤ µkfk, (3)

which is a strict equality in the case of dynamic friction.

3.4. Nominal forces from cone programming

We address the estimation of the minimal contact forces
responsible for the observed motion (i.e., nominal forces)
as a second-order cone program (SOCP) [25, 4, 5]:

min C(x) = 1

2
xTPx+ rTx

s. t. ‖Ajx+ bj‖2 ≤ cTx+ dj , j = 1, . . . ,m

and Fx = g.

(4)

As we track the object and the user’s hand, we can de-
termine, at each timeframe, newly established and broken
contacts, and also those that remain still and those that slide.
Therefore, we are explicitly considering static and kinetic
(i.e. dynamic) friction in the constraints formulation. With
nc,s and nc,k the respective numbers of friction forces and
nc their sum, we choose the optimization vector as follows:

x = (f1, g1, h1, . . . , fnc,s
, gnc,s

, hnc,s
,

fnc,s+1, fnc,s+2, . . . , fnc,s+nc,k
)T

(5)

The SOCP formulation in Eq. (4) then allows the direct
handling of Coulomb static friction as inequality constraints
and kinetic friction as equality constraints. Moreover, hav-
ing each normal vector nk oriented inwards S, nc additional
positivity constraints are added such that fk ≥ 0. Equality
constraints enforcing that the resulting contact force distri-
bution explains the observed kinematics stem from Newton-
Euler’s equations, as combining Eq. (1) with contact force
expressions from Eq. (2) directly yields linear equations in
x. We complete the SOCP with the objective function:

CSoS(x) =
∑
k∈F

[
f2k + g2k + h2k

]
=
∑
k∈F

‖Fc
k‖

2
2 , (6)

where F is the set of contacting fingers. As stated earlier
in Section 3, there exists an infinity of possible force dis-
tributions for a given kinematics and set of contact points.
Using the contact forces’ sum of squares as an indicator on
the grasp intensity (i.e., its L2 norm), the objective function
CSoS allows to search for the optimal grasp in that sense.
Numerical resolution is performed using CVXOPT [1].

3.5. Reproducing human grasping forces

Humans do not manipulate objects using nominal clo-
sures (i.e. minimal grasp forces). They tend to “over-grasp”
and produce workless internal forces, i.e. firmer grasps than
mechanically required. This human grasp property is de-
scribed by considering finger forces as two sets [19, 50]:
nominal forces responsible for the object’s motion, and in-
ternal forces that secure the object through a firm grip but do
not affect the object’s kinematics as they cancel each other
out [28, 31]. Studies showed that humans apply internal
forces to prevent slip [18, 11] and control their magnitude
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Figure 2: (a) Measurements from tactile sensors are used
to estimate nominal and internal force decompositions from
vision. (b) Full contact forces are reconstructed by feeding
ANN predictions into a third SOCP variant.

to avoid muscle fatigue or damaging fragile objects [15, 35].
We extend the formulation of the SOCP to this decomposi-
tion and learn from tactile sensors’ measurements how hu-
mans apply internal forces when manipulating objects.

Each finger force Fk is decomposed into a nominal com-
ponent F(n)

k and an internal component F(i)
k :

Fk = F
(n)
k + F

(i)
k

with

{
F

(n)
k = f

(n)
k nk + g

(n)
k txk + h

(n)
k tyk

F
(i)
k = f

(i)
k nk + g

(i)
k txk + h

(i)
k tyk.

(7)

It is to mention that although both forces are decomposed
along the same contact frame (nk, t

x
k, t

y
k) as in Eq. (2),

nothing constraints them to be similarly oriented. We sub-
sequently gather the nominal and internal components into
a new optimization vector x as in Eq. (5).

By definition, nominal forces are responsible for the ob-
ject’s motion through the Newton-Euler equations while in-
ternal forces are neutral regarding its state of equilibrium:

∑
k∈F

F
(n)
k = F c,

∑
k∈F

−−→
CPk × F

(n)
k = τ c∑

k∈F

F
(i)
k = 0,

∑
k∈F

−−→
CPk × F

(i)
k = 0.

(8)

Equation (8) provides a new set of constraints that we
integrate into the SOCP of Section 3.4. Ensuring that the
resulting distribution still obeys Coulomb’s law of friction,
we finally compute the distribution of nominal and inter-
nal forces that best match the tactile sensors’ measurements
(f̃k)k∈F , using a new objective function:

Cdist(x) =
∑
k∈F

[∥∥∥F(n)
k

∥∥∥2
2
+
(
f
(n)
k +f

(i)
k −f̃k

)2]
. (9)

The reason why we do not directly identify internal forces
as the differences between the measurements f̃k and the
minimal forces resulting from the initial SOCP of Sec-
tion 3.4 is that possible sensor measurement errors may lead
them not to compensate each other. By integrating their
computation into the SOCP, we ensure that the resulting in-
ternal forces f (i)k bridge the gap between f (n)k and measure-
ments f̃k without perturbing the object’s observed kinemat-
ics. We illustrate the decomposition process in Fig. 2(a).

3.6. Learning internal force distributions

Recent studies attempted to build mathematical models
correlating grasp forces to kinematic data, yet limited to
cyclic movement patterns and two-finger grasps [14, 42],
hence concealing the issue of statical indeterminacy. In con-
trast, our approach learns how humans apply internal forces
by means of artificial neural networks (ANN). We first con-
struct an experimental dataset by having human operators
manipulate an instrumented box (see Section 4) over tasks
such as pick-and-place, lift and release, rotations, and un-
guided compositions of these. Experiments were conducted
over a pool of three female, including one left-handed, and
three male operators using their preferred hand on differ-
ent contact and object mass configurations. Executing 160
manipulation experiments of approximately 10 s duration,
we perform motion tracking and record the tactile sensors’
measurements to compute the best-matching decomposi-
tions

(
f
(n)
k , f

(i)
k

)
following the SOCP of Section 3.5.

The next step is to learn the variations of internal forces
f
(i)
k with motion and grasping features. We select the

learning parameters as those that directly impact the force
distributions through the Newton-Euler equations. Con-
tact forces vary with the object’s mass and acceleration,
or more accurately including the contribution of gravity
F c = m · (a − g). We can consider this dependence as
twofold: on the magnitude of F c itself, and on the relative
orientation of F c with the contact normals, as in [14]:

p1 = ‖F c‖2 (10)

p2,k = nk · uF c , with uF c =
F c

‖F c‖2
. (11)

Similarly, we consider the case of rotational kinematics
through the magnitude of the contact torque τ c of Eq. (1)
and the individual torques each finger is able to generate:

p3 = ‖τ c‖2 (12)

p4,k =
(−−→
CPk × nk

)
· uτ c , with uτ c =

τ c

‖τ c‖2
. (13)

Finally, we learn internal forces as a function of kine-
matics and grasp parameters (p1, (p2,k)k∈F , p3, (p4,k)k∈F )
using two ANNs: a first network, ANNL2 , estimates the



amount of internal forces applied, quantified as the over-
all L2 norm, while a second network, ANNdecomp, jointly
estimates the relative participation of each finger in the
grasp’s intensity. The outputs of ANNdecomp are percent-
ages constructed as the individual forces normalized with
the overall L2 norm. Note that, as that similar motions can
stem from different force distributions, using a single ANN
would mean linking similar inputs to highly varying indi-
vidual forces. Yet, we observed that different grasp inten-
sities still tend to be similarly shared among fingers, hence
two ANNs to account for natural intensity variance but con-
sistent decompositions. In order to avoid samples where
FSV or tactile sensors are not reliable, we only use as learn-
ing data those where the resulting net forces are within a
specified threshold from each other. In our experiments,
setting this threshold to 1.5N yields a final dataset of 8200
samples, which we partition into training and validation
datasets to construct and assess different ANN configura-
tions by cross-validation. Performing numerical resolution
with the neuralnet package for statistical analysis software
R [13, 37], we choose ANNL2 and ANNdecomp with logis-
tic neurons trained with resilient backpropagation and two
hidden layers, with respectively 6 and 8 neurons in the first
hidden layer, and 7 and 13 neurons in the second.

4. Experiments
In order to assess our approach, we perform manipu-

lation experiments on a rectangular cuboid of dimensions
171mm × 111mm × 60mm. The simplified shape of this
ground-truth object is chosen to meet sensing instrumenta-
tion constraints and offer several grasping possibilities. We
instrument the box with two types of sensors. The first is
an Xsens MTi-300 attitude and heading reference system
(AHRS) motion sensor measuring reference rotational ve-
locities and translational accelerations. Its purpose is to
validate the numerical differentiation of tracking data by
algebraic filtering, see Section 3.2. The second consists
of five Honeywell FSG020WNPB piezoresistive one-axis
force sensors that can be positioned at different predefined
grasp spots on the box. We finally evaluate the contact
forces estimated from the SOCP in Section 3.4 with the
force sensors’ measurements in terms of: (i) normal forces
per finger, (ii) resulting net force, and (iii) sum of squares.
We summarize the validation protocol in Fig. 3.

4.1. Kinematics from vision vs AHRS

We assess the validity of our approach by executing mo-
tions emphasizing each of the three coordinates of both
translation accelerations and rotational velocities, and com-
paring the kinematics estimated from vision to measure-
ments from the Xsens MTi-300 AHRS. Statistical analy-
sis of the estimation errors shows that algebraic numerical
differentiation is well suited for kinematics estimation (see

Figure 3: Validation protocol.

Central Gaussian Algebraic
Trans. acc. Avg. −0.029 −0.022 −0.024
[m · s−2] St.d. 1.686 1.627 0.904
Rot. vel. Avg. 0.084 0.070 0.052
[rad · s−1] St.d. 1.559 1.294 1.241

Table 1: Kinematics estimation errors for central finite dif-
ference, Gaussian filtering, and algebraic filtering.
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Figure 4: Comparison between vision-based kinematics and
AHRS-embedded accelerometer and gyroscope.

Table 1). Though on translational acceleration the error is
slightly higher than with Gaussian filtering, its variance is
also considerably lower. Its performance on rotational kine-
matics is also the best of all three tested approaches. We
summarize the results of the six-axis experiments in Fig. 4.

4.2. Nominal forces from vision-based kinematics

We now validate our vision-based force estimation
framework using Honeywell FSG020WNPB sensors placed
at pre-specified positions over the instrumented box. As
a first validation step, contact points obtained from vision
were compared to the expected contact points based on the
sensors’ locations and resulted in estimation errors of mean
−1.55mm and standard deviation 6.13mm. Furthermore,
we assessed the sensitivity of FSV to these uncertainties by
comparing the force distributions obtained using either the
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Figure 5: Contact forces from vision based on L2 criterion
are individually lower than tactile sensors’ measurements
but result in the same net force.

contact points from vision or the tactile sensors’ positions.
We found that FSV is relatively robust to such estimation
errors, resulting in force uncertainties of mean 0.216N and
standard deviation 1.548N . Therefore, we rely solely on
vision-based kinematics and contact points for the rest of
this work. When performing experiments, we also observed
that the force applied by the pinky finger was consistently
below the sensitivity threshold of our force sensors, hence
we present our results on four-finger experiments. Still,
as the force distribution problem introduced in Section 3
becomes statically indeterminate from three fingers, using
four fingers preserve the grasps’ complexity and does not
impact the generality of our results. We represent the force
sensors’ measurements along with FSV’s outputs in Fig. 5.

As mentioned in Section 3.4, the comparison of the nor-
mal components from vision and from tactile sensors shows
that the latter’s measurements are overall greater. This illus-
trates the fact that humans seize objects harder than the re-
quired force closure, in contrast with the L2-optimal grasp
estimated from vision, which is visible in the sum of squares
plot. Still, the resulting net forces are matching well, which
demonstrates that FSV can successfully capture the object’s
motion characteristics and compute a reliable force distri-
bution explaining the observed kinematics.

4.3. Reconstructing full contact force distributions

By recording new manipulation experiments, we extract
as in Section 3.6 the kinematics and grasping parameters
(p1, (p2,k)k∈F , p3, (p4,k)k∈F ) over time and use the trained
ANNs to predict the internal forces the human operator
most likely applied over the experiment, (f̃ (i)k )k∈F . We fi-
nally construct the final contact force distributions using the
variant of the SOCP described in Section 3.5 that features
an objective function which aims at matching not the full
contact forces but only their internal components:

Creconst(x) =
∑
k∈F

[∥∥∥F(n)
k

∥∥∥2
2
+
(
f
(i)
k − f̃

(i)
k

)2]
. (14)

Part. training Full training

U
se

r

M
as

s

G
ra

sp Avg. St.d. Avg. St.d.
[%] [%] [%] [%]

© © © 10.7 12.4 9.71 12.0
× © © 10.9 12.3 10.3 11.8
© × © 10.8 11.3 10.4 12.4
© © × 14.6 14.5 10.9 11.3
× × × 14.9 14.8 9.94 12.6

Table 2: Relative force estimation errors based on the ex-
haustivity of the training dataset.© and× indicate features
that respectively appear or not in the partial training dataset.

We illustrate the final estimation process in Fig. 2(b). By
feeding the internal ANNs’ predictions into the SOCP, we
ensure that the final internal forces

(
F

(i)
k

)
k∈F

are not only

consistent with natural grasping patterns but also physically
correct and do not impact the object’s observed kinematics
through the resulting net force, as shown in Fig. 6.

4.4. Robustness analysis

We investigate the robustness of our approach to features
that do not appear in the training dataset. To this end, we
train another instance of the ANNs described in Section 3.6,
not over the entire dataset but on a partial subset relative to
a single operator, on a single grasp pose, and a single mass
configuration. We then evaluate the resulting ANNs on
datasets obtained with another user, another grasp, and/or
a 10% mass increase. We report the relative errors with re-
spect to the tactile sensors’ measurements in Table 2 along
with reference results from fully-trained ANNs.

First, it appears that ANNs trained over a single operator
may be generalized to other users with no significant perfor-
mance decrease, which suggests that humans tend to apply
internal forces following similar patterns. Second, reason-
able changes in mass do not seem to significantly impact
the estimation accuracy either. This is allowed by the fact
that in our problem formulation, mass is not a training vari-
able by itself but is implicitly taken into account through
the product F c = m · (a − g). Under this formalism, ma-
nipulating a heavy object with a given kinematics is analo-
gous to manipulating a lighter object with a higher acceler-
ation. Therefore, the ANNs may accomodate mass changes
provided that they were trained over a sufficient variety of
kinematics. In the end, ANNs seem most sensitive to grasp
pose changes. This may be explained by the fact that plac-
ing fingers differently may substantially change their syn-
ergies. Still, the performance decrease remains reasonable
while force distributions, by construction, still explain the
observed motion. Eventually, the main sensitivity to grasp
poses is comforted by the fact that also changing user and
mass does not decrease the estimation accuracy further.
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Figure 6: Artificial neural networks used in conjunction with cone programming successfully predict force distributions that
both explain the observed motion and follow natural human force distribution patterns.

5. Summary and Discussion

Our work establishes that a single RGB-D camera can
be used to capture interaction forces occurring in rigid ob-
ject manipulation by a human hand without the need for
visual markers or dedicated force sensing devices. Force
sensing from vision is a novel and important contribution
since it circumvents the intrusive instrumentation of object,
environment and hands. Its exploitation can expand to the
robotics field for daily on-line human activities monitoring,
serving various purposes such as imitation learning.

Our method is validated with several experiments based
on ground truth data and is able to estimate fairly accurately
the force distributions applied during actual manipulation
experiments. Although we confirmed that tracking noise is
well mitigated by algebraic filtering, which produces truth-
ful pose derivative estimates, guessing the hand-object con-
tact points under strong occlusions remains a challenging,
open problem in computer vision. We achieved this by us-
ing a state-of-the-art model-based tracking method under
the somewhat practical assumption that occluded fingers re-
main at their last observed position until they are visible
again. While this assumption is fairly valid in numerous in-
teresting cases, it is not true when considering tasks such
as dexterous manipulation with finger repositioning or slid-
ing. Still, this limitation does not call into question the force
estimation framework per se, and could be alleviated by ex-
tending the markerless tracking method to multi-camera in-
puts, which would remain non-intrusive and keep an edge
over tactile sensors regarding usability and cost.

With respect to computational performance, SOCP and
internal force predictions are performed in real-time, and
only hand-object tracking is computationally expensive.
Given the recent developments on GPGPU implementations

of hand-object tracking [23], our framework could be em-
ployed in real-time applications. This, combined with our
reliance on a single camera, makes FSV suitable for daily
observation and learning. Still, our approach is generic
enough to accommodate any advance to the topic of 3D
hand tracking and could be seamlessly extended to other
methods, for instance when non real-time performance and
a heavier setup are possible. Conversely, our framework
could also be used as an implicit force model for physics-
based tracking and motion editing, as human-like forces
could augment the pose search with biomechanical consid-
erations such as muscle fatigue or energy expenditure.

Towards estimating contact forces from vision, we tack-
led the issue of static indeterminacy by applying machine
learning techniques to internal forces. Rather than predict-
ing new force distributions based on past observations, an
alternative approach would be to formulate the evolution of
the full contact forces following various objects and grasp
taxonomies as an inverse optimal control problem. If invari-
ants are found, they could be used to refine the cost func-
tion, which could result in more reliable contact forces than
the nominal distributions computed by minimization of the
grasp’s L2-norm. Extending the ground truth force mea-
surement setup with embedded three-axis or force-torque
miniature sensors would also benefit both learning and op-
timal control approaches. Further work could also address
the case of surface contact models in place of point con-
tacts (as the fingertip is deforming), namely for dexterous
manipulations, or make use of synergy properties of the
hand for bimanual tasks. Finally, combining our approach
with visual SLAM or automated camera calibration meth-
ods would allow it to be deployed in unknown, varying en-
vironments, e.g. on mobile robots.
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[20] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand pose
estimation and hand shape classification using multi-layered
randomized decision forests. In -ECCV, pages 852–863.
Springer, 2012.

[21] P. G. Kry and D. K. Pai. Interaction capture and synthesis.
ACM Trans. on Graphics, 25(3):872–880, 2006.

[22] N. Kyriazis and A. Argyros. Physically plausible 3d scene
tracking: The single actor hypothesis. In CVPR, 2013.

[23] N. Kyriazis and A. Argyros. Scalable 3d tracking of multiple
interacting objects. In IEEE CVPR, pages 3430–3437. IEEE,
2014.

[24] A. Lécuyer, S. Coquillart, A. Kheddar, P. Richard, and
P. Coiffet. Pseudo-haptic feedback: Can isometric input
devices simulate force feedback? In IEEE Virtual Reality
Conference, pages 83–90, New Brunswick, NJ, 18-22 March
2000. IEEE Computer Society.

[25] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Ap-
plications of second-order cone programming. Linear Alge-
bra and its Applications, 284:193–228, 1998.

[26] S. A. Mascaro and H. H. Asada. Photoplethysmograph
fingernail sensors for measuring finger forces without hap-
tic obstruction. IEEE Trans. on Robotics and Automation,
17(5):698–708, October 2001.

[27] S. A. Mascaro and H. H. Asada. Measurement of finger pos-
ture and three-axis fingertip touch force using fingernail sen-
sors. IEEE Trans. on Robotics and Automation, 20(1):26–35,
February 2004.

[28] M. T. Mason and J. K. Salisbury. Robot Hands and the Me-
chanics of Manipulation. MIT Press, Cambridge, MA, 1985.

[29] M. Mboup, C. Join, and M. Fliess. Numerical differentia-
tion with annihilators in noisy environment. Numerical Al-
gorithms, 50(4):439–467, 2009.

[30] A. Mkhitaryan and D. Burschka. Visual estimation of ob-
ject density distribution through observation of its impulse
response. In VISAPP (1), pages 586–595, 2013.

[31] R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical
Introduction to Robotic Manipulation. CRC Press, Inc., Boca
Raton, FL, USA, 1st edition, 1994.

[32] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient
model-based 3d tracking of hand articulations using kinect.
In BMVC. BMVA, 2011.

[33] I. Oikonomidis, N. Kyriazis, and A. Argyros. Full dof track-
ing of a hand interacting with an object by modeling occlu-
sions and physical constraints. In ICCV. IEEE, 2011. Oral
presentation.

[34] I. Oikonomidis, N. Kyriazis, and A. Argyros. Tracking the
articulated motion of two strongly interacting hands. In
CVPR. IEEE, June 2012.

[35] J. Park, T. Singh, V. M. Zatsiorsky, and M. L. Latash. Op-
timality versus variability: effect of fatigue in multi-finger
redundant tasks. Experimental brain research, 216(4):591–
607, 2012.

[36] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and
robust hand tracking from depth. In IEEE CVPR, 2014.

abel.ee.ucla.edu/cvxopt
http://CRAN.R-project.org/package=neuralnet
http://CRAN.R-project.org/package=neuralnet


[37] R Core Team. R: A language and environment for statistical
computing. R-project.org, 2014.

[38] J. M. Rehg and T. Kanade. Visual tracking of high dof artic-
ulated structures: an application to human hand tracking. In
ECCV, pages 35–46. Springer Berlin Heidelberg, 1994.

[39] J. Romero, H. Kjellström, C. Ek, and D. Kragic. Non-
parametric hand pose estimation with object context. Image
and Vision Computing, 2013.

[40] C. Schedlinski and M. Link. A survay of current inertia
parameter identification methods. Mechanical Systems and
Signal Processing, 15(1):189 – 211, 2001.

[41] T. Schmidt, R. Newcombe, and D. Fox. Dart: Dense articu-
lated real-time tracking. RSS, 2014.

[42] G. Slota, M. Latash, and V. Zatsiorsky. Grip forces during
object manipulation: experiment, mathematical model, and
validation. Experimental Brain Research, 213(1):125–139,
2011.

[43] Y. Sun, J. M. Hollerbach, and S. A. Mascaro. Predicting fin-
gertip forces by imaging coloration changes in the fingernail
and surrounding skin. IEEE Trans. on Biomedical Engineer-
ing, 55(10):2363–2371, October 2008.

[44] Y. Sun, J. M. Hollerbach, and S. A. Mascaro. Estimation of
fingertip force direction with computer vision. IEEE Trans.
on Robotics, 25(6):1356–1369, December 2009.

[45] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent re-
gression forest: Structured estimation of 3d articulated hand
posture. In IEEE CVPR, 2014.

[46] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time
continuous pose recovery of human hands using convolu-
tional networks. ACM Trans. on Graphics, 33(5):169, 2014.

[47] S. Urban, J. Bayer, C. Osendorfer, G. Westling, B. B. Edin,
and P. van der Smagt. Computing grip force and torque from
finger nail images using gaussian processes. In IROS, pages
4034–4039. IEEE, 2013.

[48] Y. Wang, J. Min, J. Zhang, Y. Liu, F. Xu, Q. Dai, and J. Chai.
Video-based hand manipulation capture through composite
motion control. ACM Trans. on Graphics, 32(4):43, 2013.

[49] Y. Ye and C. K. Liu. Synthesis of detailed hand manipu-
lations using contact sampling. ACM Tran. on Graphics,
31(4):41, 2012.

[50] T. Yoshikawa and K. Nagai. Manipulating and grasping
forces in manipulation by multifingered robot hands. IEEE
Trans. on Robotics and Automation, 7(1):67–77, Feb 1991.

[51] W. Zhao, J. Zhang, J. Min, and J. Chai. Robust realtime
physics-based motion control for human grasping. ACM
Trans. on Graphics, 32(6):207:1–207:12, Nov. 2013.

R-project.org

