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hemorrhage) [START_REF]Intercollegiate Stroke Working Party. National clinical guideline for stroke[END_REF]. Differentiating between these different types of strokes is an essential part of the initial workup of the patients because the subsequent management and treatment of each patient is vastly different. Rapid and accurate diagnosis is crucial since the only drug currently approved by the FDA for treatment of acute ischemic stroke is intravenous tissue plasminogen activator (tPA) administered within 3 hours of stroke onset. Neuroimaging has to play a vital role in the workup of acute stroke by providing information essential to accurately triage patients, and expedite clinical decisionmaking with regards to treatment. CT and MRI [START_REF] Wegener | Neuroimaging of acute ischaemic stroke: current challenges[END_REF] are actually the "gold" standards but they are bulky diagnostic instruments and cannot be used in continuous brain monitoring. A noninvasive and transportable/portable device would have clear clinical applications at the bedside in a Neurological Intensive Care Unit (NICU).

Microwave tomography is a novel, early development stage imaging modality with a large number of potential attractive medical applications. A difference between the dielectric properties (complex permittivity) of normal and diseased brain tissues is a great potential for this imaging modality. Detecting and identifying strokes is challenging as it corresponds to a small opposite variation of the permittivity values of brain tissues of about +/-10 % of the baseline tissue values for the two types of strokes (ischemic or hemorrhagic) [START_REF] Semenov | Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz[END_REF]. The rapid data acquisition time is another attractive feature of microwave tomography but rapid tomographic reconstructions are mandatory for developing a novel imaging modality with a new paradigm: detecting, identifying and monitoring stroke continuously during treatments by exposing head tissues to low-level microwave incident field and capturing the scattered signal by an array of antennas. Tomographic imaging requires the solution of an inverse problem based on a minimization algorithm. Reconstruction algorithms are computationally intensive with successive solutions of the forward problem needing efficient numerical modeling and high-performance parallel computing. A majority of works in the literature has made use of geometrically simple phantoms or with only a limited amount of tissue-mimicking materials. The modeling must have to accurately take account of the high heterogeneity and complexity of head tissues (skin, fat, skull, bone marrow, brain/white matter, brain/grey matter, cerebrospinal fluid, arteries, etc.) for normal cases and for different possible brain pathology cases (ischemic and hemorrhagic strokes, brain injuries, etc.). Another major point refers to the accurate modeling of the incident field from transmitting and receiving antennas. This interaction is very complex, as it must be seen as a coupling problem between the antennas and the head rather than a simple scattering problem. In addition, the electric field is measured by means of receiving antennas (sensors). Therefore, we do not have access directly to the electric field but only via antenna S parameters. The purpose of this work is to solve the inverse problem associated to a prototype developed by EMTensor GmbH (Vienna, Austria) [START_REF] Semenov | Electromagnetic tomography for brain imaging: from virtual to human brain[END_REF] using state-of-the-art modeling, high-performance and massively parallel computing.

II. TOMOGRAPHIC SYSTEM

The model of microwave imaging is based on BRain IMaging Generation1 (BRIMG1), a tomographic microwave system developed by EMTensor GmbH [START_REF] Semenov | Electromagnetic tomography for brain imaging: from virtual to human brain[END_REF]. The system consists of a cylindrical metallic chamber composed of 5 rings of 32 Transmitting/Receiving antennas (Fig. 1). The antennas are ceramic (ε r = 59) loaded open-ended waveguides. The diameter of the chamber is 285 mm with a height of 280 mm. The rings are 30 mm equally spaced, the first one being located at 40 mm from the top of the chamber. The chamber is filled with a matching liquid medium during measurements. The operating frequency of the system is 0.9 GHz to 1.8 GHz. The data acquisition cycle of the system is fully electronically controlled, allowing for a total data acquisition of about 30 s. The imaging chamber is in horizontal position, allowing easy positioning a human head within an imaging domain (Fig. 2). The head of the patient is introduced in the chamber as shown in Fig. 2. A special thin membrane is used for isolating the human head from the matching liquid and keeping the liquid within the chamber. A carbon loaded silicon rubber (CLSR) is also used for reducing reflection from boundary conditions (Fig. 3). A switching matrix connected to a network analyzer selects the transmitting and receiving antennas. The system is potentially delivering a 160 × 160 matrix of S parameters. The measured S parameters due to the scattered field of an object under investigation are obtained by complex subtraction between two measurements with empty chamber and with the head, respectively. The raw data can be wirelessly transferred to a remote computing center. The HPC machine will compute the tomographic images, which can be quickly transferred from the computing center to the hospital.

III. FORWARD MODELING

We consider the domain Ω ⊂ R 3 for representing the wholechamber (Fig. 1) as an inhomogeneous dissipative nonmagnetic medium of complex permittivity ε(x) . For each transmitting antenna j = 1, . . . N at radial frequency ω, the wave equation for the electric field vector E j (x) with an e iωt time-dependence is

∇ × (∇ × E j ) -k 2 E j = 0 in Ω (1)
with k 2 = k 2 (x) = ω 2 ε r (x)ε 0 µ 0 , where k(x) is the complex wavenumber of the inhomogeneous medium, ε 0 and μ 0 the permittivity and permeability of free space, respectively. The boundary conditions on the perfectly conducting parts Γ c of the walls of the chamber are
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where n is the unit outward normal to ∂Ω.

The impedance boundary conditions on the aperture of transmitting open-ended waveguide j and receiving waveguide i = 1,..., N, j ≠ i are

(∇ × E j ) × n + iβn × (E j × n) = g j on Γ j (2) (∇ × E j ) × n + iβn × (E j × n) = 0 on Γ i , i ≠ j (3)
where β is the propagation constant of the TE 10 fundamental mode of the waveguide. In equation [START_REF]Intercollegiate Stroke Working Party. National clinical guideline for stroke[END_REF] we impose an incident wave corresponding to the excitation of the fundamental mode E j 0 of the j-th waveguide with

g j = (∇ × E j 0 ) × n + iβn × (E j 0 × n) (4)
On the other hand, equation (3) corresponds to a first order Silver-Müller absorbing boundary condition, approximating a transparent boundary condition on the aperture of the receiving waveguide antenna i = 1,..., N, i ≠ j. On the bottom of the chamber we impose a metallic boundary condition, whereas we impose an impedance boundary condition on the top of the chamber. As a result, the whole boundary value problem for each transmitting antenna t = 1, . . . , N is to find

E j such that ∇ × (∇ × E j ) -k 2 E j = 0 in Ω E j × n = 0 on Γ c (∇ × E j ) × n + iβn × (E j × n) = g j on Γ j (∇ × E j ) × n + iβn × (E j × n) = 0 on Γ i , i ≠ j ⎧ ⎨ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ (5) Now, let V = v ∈ H (curl,Ω),v × n = 0 on Γ c { } , where H (curl,Ω) = v ∈ L 2 (Ω) 3 ,∇ × v ∈ L 2 (Ω) 3
{ } is the space of square integrable functions whose curl is also square integrable. For each transmitting antenna j = 1,..., N, the variational form of problem ( 5) is : find

E j ∈ V such that ∇ × E j ( ) . ∇ × v ( ) -k 2 E j .v ⎡ ⎣ ⎤ ⎦ Ω ∫ + iβ E j × n ( ) Γ i 1=1 N ∪ ∫ . v × n ( ) = g j Γ j ∫ .v ∀v ∈ V (6)

IV. HIGH-ORDER EDGE FINITE ELEMENTS

For using a finite element discretization of the variational problem, we introduce a tetrahedral mesh T h of the domain Ω and a finite dimensional subspace V h ⊂ H (curl,Ω) . A simple conformal discretization for space H (curl,Ω) is given by low order Nédélec edge finite elements of polynomial degree r = 1 [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. In order to have a higher numerical accuracy with the same total number of unknowns, we consider a high order edge element discretization, choosing the high order extension of Nédélec elements presented in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF] and [START_REF] Rapetti | Whitney forms of higher degree[END_REF]. We implemented edge elements of degrees 2 and 3 in FreeFem++, an open source domain specific language (DSL) specialized for solving boundary value problems by using variational discretizations (finite elements, discontinuous Galerkin, hybrid methods,...) [START_REF] Hecht | New development in FreeFem++[END_REF]. High order elements can be used by loading the plugin Element Mixte3d and declaring the finite element space fespace using the keywords Edge13d, Edge23d, respectively (standard edge elements of degree 1 are already present in FreeFem++ and called Edge03d).

V. DOMAIN DECOMPOSITION PRECONDITIONING

The discretization of the problem presented in Section III using the high order edge finite elements described in Section IV produces a linear system Au j = b j [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] for each transmitting antenna j. Direct solvers are not suited for such large linear systems arising from complex three dimensional models because of their high memory cost. On the other hand, matrices resulting from high order discretizations are ill conditioned as shown numerically in [START_REF] Rapetti | High order edge elements on simplicial meshes[END_REF] for similar problems, and preconditioning becomes necessary when using iterative solvers. Domain decomposition preconditioners are naturally suited to parallel computing and make it possible to deal with smaller subproblems [START_REF] Dolean | An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation[END_REF]. The domain decomposition preconditioner we employ is called Optimized Restricted Additive Schwarz (ORAS)

M ORAS -1 = R s T D s A s -1 R s s=1 N sub ∑ ( 8 
)
where N sub is the number of overlapping subdomains Ω s into which the domain Ω is decomposed (Fig. 4). Here, the matrices A s are the local matrices of the subproblems with impedance boundary conditions

(∇ × E) × n + iϖ n × (E × n) as
transmission conditions at the interfaces between subdomains. This preconditioner is an extension of the restricted additive Schwarz method proposed by Cai and Sarkis [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF], but with more efficient transmission conditions between subdomains than Dirichlet conditions [START_REF] Dolean | Optimized Schwarz methods for Maxwell's equations[END_REF].

In order to describe the matrices R s , D s , let N be an ordered set of the unknowns of the whole domain and let

N = N s s=1 N sub ∪ be its decomposition into the (non disjoint)
ordered subsets corresponding to the different (overlapping) subdomains Ω s . The matrix R s is the restriction matrix from Ω to the subdomain Ω s : it is a #N s × #N Boolean matrix and its (i, j) entry is equal to 1 if the i-th unknown in N s is the j-th one in N. Notice that R s T is then the extension matrix from the subdomain Ω s to Ω. The matrix D s is a #N s × #N s diagonal matrix that gives a discrete partition of unity, i.e. 

M ORAS -1 = R s T D s A s -1 R s s=1 N sub ∑ which is called Optimized
Additive Schwarz (OAS), would be symmetric for symmetric problems, but in practice it gives a slower convergence with respect to M ORAS -1 [START_REF] Bonazzoli | Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging[END_REF].These domain decomposition preconditioners are implemented in the HPDDM library [START_REF] Jolivet | Scalable domain decomposition preconditioners for heterogeneous elliptic problems[END_REF], an open source high-performance unified framework for domain decomposition methods. HPDDM can be interfaced with various programming languages and open source finite element libraries such as FreeFem++, which we use in the simulations. 

VI. NUMERICAL RESULTS

A. Comparison with Experimental Measurements

The measured physical quantities are the S parameters of the scattering matrix, which are the complex reflection and transmission coefficients measured by the 160 receiving antennas when a signal is transmitted by one of the 160 transmitting antennas. A set of measurements then consists in a complex matrix of size 160 × 160. In order to compute the numerical counterparts of these reflection and transmission coefficients, we use the following formula, which is appropriate in the case of open-ended waveguides

S ij = E j .E i 0 Γ i ∫ E i 0 2 Γ i ∫ , i ≠ j (9)
where E j is the solution of the (5) when the j-th waveguide antenna transmits the signal, and E i 0 is the TE 10 fundamental mode of the i-th receiving waveguide ( E j denotes the complex conjugate of E j ). The S ij with i ≠ j denote the transmission coefficients, and S ii the reflection coefficients.

For a comparison of the computed coefficients S ij with the measured ones, the imaging chamber is filled with a homogenous matching solution in order to reduce the return loss of the ceramic-loaded waveguide antennas and to match with the average brain tissues. The relative complex permittivity of the matching solution chosen for the experiments and numerical solution at frequency f = 1 GHz is ε matching = 44 -i20. The relative permittivity inside the ceramic-loaded waveguides is ε ceramics = 59, assuming a lossless ceramic material. For this test case, the set of experimental data consists in S parameters from the 160 receiving antennas when each antenna from the second ring from the top is transmitting. Figure 4 shows the normalized magnitude (dB) and phase (degree) of the complex coefficients S ij corresponding to a transmitting antenna in the second ring from the top and to the 31 receiving antennas in the middle ring (note that measured coefficients are available only for 17 receiving antennas). The computed coefficients are obtained by solving the direct problem with edge finite elements of polynomial degree r = 2. The normalization is done by dividing every transmission coefficient by the transmission coefficient corresponding to the receiving antenna directly opposite to the transmitting antenna, which is thus set to 1. Since we normalize with respect to the coefficient having the lowest expected magnitude, the magnitude of the transmission coefficients shown in Fig. 5 is larger than 0 dB. We can see that the transmission coefficients computed from the simulation are in very good agreement with the measurements.

B. High-Order Element Efficiency

The goal of the following numerical experiments is to assess the efficiency of the high order finite elements described in Section IV compared to the classical lowest order edge elements in terms of accuracy and computing time, which are of great importance for such an application for brain imaging. For this test case, a non dissipative plastic-filled cylinder of diameter 6 cm and relative permittivity ε cyl = 3 is inserted in the imaging chamber with same background matching medium as defined in Section A. We consider the 32 antennas of the second ring as transmitting antennas at frequency f = 1 GHz, and all the 160 antennas are receiving. Fig. 6. Cross-Section of the chamber showing the magnitude of the real part of the total field E in the chamber with the plastic tube.

We evaluate the error on the reflection and transmission coefficients S ij with respect to the coefficients S ij ref computed from a reference solution. The error is calculated with the following formula

err = S ij -S ij ref 2 j,i ∑ S ij ref 2 j,i ∑ (10) 
The reference solution is computed on a fine mesh of approximately 18 million tetrahedra using edge finite elements of degree r = 2, resulting in 114 million unknowns. The section in Fig. 6 shows the computational domain and the magnitude of the real part of the total field E over the cross-section when one antenna of the second ring from the top is transmitting. We compare the computing time and the relative error [START_REF] Bonazzoli | Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging[END_REF] for different numbers of unknowns corresponding to several mesh sizes, for approximation degrees r = 1 (15 pts/λ) and 2 (10 pts/λ) (Table I). We report the results on Fig. 7 As we can see, the higher order approximation (r = 2) allows a given accuracy with much fewer unknowns and much less computation time than the lowest order approximation (r=1).

For example, at a given accuracy err of E ≈ 0.1, the finite element discretization of degree r=1 requires 21 million unknowns and a computing time of 130 seconds, while the high order finite element discretization (r=2) only needs 5 million unknowns, with a corresponding computing time of 62 seconds. It turns out we obtain the same accuracy with 10 points per wavelength with degree r=2 than with 20 points per wavelength with degree r =1.

VII. INVERSE PROBLEM

A. Mathematical Formulation

The inverse problem that we consider consists in finding the unknown complex dielectric permittivity ε(x) in Ω, such that the solutions E j (x) , j = 1,...,N of problem (4) lead to corresponding scattering parameters S ( 14) that coincide with the measured scattering parameters S ij meas , for i, j = 1, . . . , N.

Let κ = k 2 be the unknown complex parameter of the inverse problem, and let us denote by E j (κ ) the solution of the direct problem ( 5) with the complex dielectric permittivity ε.

The corresponding scattering parameters will be denoted by S ij (κ ) for i, j = 1, . . . , N.

The misfit of the parameter κ to the data can be defined with the following cost functional

J (κ ) = 1 2 S ij (κ ) -S ij meas 2 i=1 N ∑ j=1 N ∑ = 1 2 E j (κ ).E i 0 Γ i ∫ E i 0 2 Γ i ∫ -S ij meas 2 i=1 N ∑ j=1 N ∑ (11) 
In a classical way, solving the inverse problem consists in minimizing the functional J with respect to the parameter κ .

Computing the differential of J in a given arbitrary direction

δκ yields DJ (κ,δκ ) = Re (S ij (κ ) -S ij meas ) δ E j (κ ).E i 0 Γ i ∫ E i 0 2 Γ i ∫ ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ i=1 N ∑ j=1 N ∑ (12) 
for δκ ∈ C and where δ E j (κ ) is the solution of the following linearized problem

∇ × ∇ ×δ E j ( ) -κδ E j = δκ E j in Ω δ E j × n = 0 on Γ c ∇ ×δ E j ( ) × n + iβn × δ E j × n ( ) = 0 on Γ i ,i = 1,..., N ⎧ ⎨ ⎪ ⎪ ⎩ ⎪ ⎪ (13) 
We now use the adjoint approach in order to simplify the expression of DJ. This will allow us to compute the gradient efficiently after discretization, with a number of computations independent of the size of the parameter space.

Introducing the solution F j (κ ) of the following adjoint problem

∇ × ∇ × F j ( ) -κ F j = 0 in Ω F j × n = 0 on Γ c ∇ × F j ( ) × n + iβn × F j × n ( ) = S ij (κ ) -S ij meas ( ) E i 0 2 Γ i ∫ E i 0 on Γ i ,i = 1,..., N (14) 
we get after some integration by parts (not detailed here)

δκ E j .F j Ω ∫ = (S ij (κ ) -S ij meas ) E i 0 .δ E j Γ i ∫ E i 0 2 Γ i ∫ ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ i=1 N ∑ (15)
Finally, the differential of J can be computed as

DJ (κ,δκ ) = Re δκ E j .F j Ω ∫ ⎡ ⎣ ⎤ ⎦ j=1 N ∑ (16) 
We can then compute the gradient to use in a gradient-based local optimization algorithm. The numerical results presented in Section B are obtained using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Note that every evaluation of J requires the solution of the state problem (5) while the computation of the gradient requires the solution of (5) as well as the solution of the adjoint problem [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]. Moreover, the state and adjoint problems use the same operator. Therefore, the computation of the gradient only needs the assembly of one matrix and its associated domain decomposition preconditioner. Numerical results for the reconstruction of a hemorrhagic stroke from synthetic data are presented in the next section. The cost functional J considered in the numerical results is slightly different from [START_REF] Jolivet | High-performance domain decomposition methods on massively parallel architectures with FreeFem++[END_REF], as we add a normalization term for each pair (i,j) as well as a Tikhonov regularization term

J (κ ) = 1 2 S ij (κ ) -S ij meas 2 S ij empty 2 + α 2 i=1 N ∑ j=1 N ∑ ∇κ 2 Ω ∫ ( 17 
)
where the S ij empty refer to the coefficients computed from the simulation with empty chamber, which is the chamber filled only with the homogeneous matching solution as described in the previous section, with no object inside. In this way, the contribution of each (i,j) pair in the cost functional is normalized and does not depend on the amplitude of the coefficient, which can vary greatly between (i,j) pairs as shown in Fig. 5. The Tikhonov regularization term aims at reducing the effects of noise in the data. For now, the regularization parameter α is chosen empirically so as to obtain a visually good compromise between reducing the effects of noise and keeping the reconstructed image pertinent. All calculations carried out in this section can be accommodated in a straightforward manner to the definition (17) of the cost functional.

As is usually the case with most medical imaging techniques, the reconstruction is performed cross-section by cross-section.

For the study, one cross-section corresponds to one of the five rings of 32 antennas. This allows exhibiting another level of parallelism, by solving an inverse problem independently for each of the five rings in parallel. More precisely, each of these inverse problems is solved in a domain truncated around the corresponding ring of antennas, containing at most two other rings (one ring above and one ring below). We impose absorbing boundary conditions on the artificial boundaries of the truncated computational domain.

VIII. NUMERICAL RESULTS

Results in this paper were obtained on Curie supercomputer (http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm), a system composed of 5,040 nodes composed of two eight-core Intel Sandy Bridge processors clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree and the MPI implementation used was BullxMPI version 1.2.8.4. Intel compilers and Math Kernel Library in their version 16.0.2.181 were used for all binaries and shared libraries, and as the linear algebra backend for dense computations. One-level preconditioners such as (8) assembled by HPDDM require the use of a sparse direct solver. In the following experiments, we have used either PARDISO [START_REF] Schenk | Solving unsymmetric sparse systems of linear equations with PARDISO[END_REF] from Intel MKL or MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF]. All linear systems resulting from the edge finite elements discretization are solved by GMRES right-preconditioned with ORAS (8) as implemented in HPDDM. The GMRES algorithm is stopped once the unpreconditioned relative residual is lower than 10 -8 . First, we developed a very accurate virtual model of a human head. Second, we solved the inverse problem with corrupted synthetic data generated using the virtual brain model simulating a hemorrhagic stroke.

1) Virtual Head Model

We want to assess the feasibility of the microwave imaging technique presented in this paper for stroke detection and monitoring through a numerical example in a realistic configuration.

We use synthetic data corresponding to an accurate numerical model of a human head with a simulated hemorrhagic stroke as input for the inverse problem. The numerical model of the virtual head comes from CT and MRI scans and consists of a complex permittivity map of 362 × 434 × 362 data points with a spatial resolution of 500 µm. In the simulation, the head is immersed in the imaging chamber as shown in Fig. 9.

Fig. 9. Imaginary part of the relative complex permittivity of the virtual head model immersed in the imaging chamber with a simulated ellipsoid-shaped hemorrhagic stroke.

2) Reconstructions of a Hemorrhagic Stroke

In order to simulate the evolution of a hemorrhagic stroke, we use a synthetic ellipsoid-shaped stroke whose size (principal axes) increases over time, from 3.9 cm × 2.3 cm × 2.3 cm (small stroke) to 7.7 cm × 4.6 cm × 4.6 cm (large stroke). For this test case, the relative complex permittivity of the ellipsoid is assumed to be inhomogeneous where the relative complex permittivity at each quadrature point of the mesh is taken as the mean value between the original healthy brain permittivity values (baseline values) and the permittivity of blood ( ε r blood = 68 -i44) at f = 1 GHz. The imaging chamber is filled with the matching solution ε r matching = 44 -i20. In a real experiment, a special membrane fitting the shape of the head is used in order to isolate the head from the matching medium (Fig. 3). We do not take this membrane into account in this synthetic test case.

The synthetic data are obtained by solving the direct problem using a mesh composed of 17.6 million tetrahedra (corresponding to approximately 20 points per wavelength) and consist in the computed transmission and reflection coefficients S ij . We subsequently add noise to the real and imaginary parts of the coefficients S ij (10% multiplicative White Gaussian Noise (WGN)), with different values for real and imaginary parts, such as

S ij corrupted = S ij (1+10%AWGN ) (18) 
The corrupted data S ij corrupted are then used as input for the inverse problem. Furthermore, we do not assume any priori knowledge on the input data, and we set the initial guess for the inverse problem as the homogeneous matching solution everywhere inside the chamber. We use a piecewise linear approximation of the unknown parameter κ, defined on the same mesh used to solve the state and adjoint problems. For the purpose of parallel computations, the partitioning introduced by the domain decomposition method is also used to compute and store locally in each subdomain every entity involved in the inverse problem, such as the parameter κ and the gradient. The evolution of the stroke can be visually monitored from the real and imaginary parts of the reconstructed complex permittivity. Nevertheless, the threshold to firmly conclude must only be determined from clinical studies on a large number of patients. One important point is to discriminate a hemorrhagic from an ischemic stroke. For this study case, the reconstructed values show an increase of the complex permittivity allowing the assumption of a hemorrhagic stroke versus an ischemic one. The distribution of the relative error on the real and imaginary parts of the reconstructed complex permittivity for the small stroke case is shown in Fig. 12. We compute the relative error using [START_REF] Pellegrini | SCOTCH: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs[END_REF] for each pixel (n,m) of the reconstructed relative complex permittivity. This error can be positive or negative.

err relative (m,n) = ε r reconstructed (m,n) -ε r exact (m,n) ε r exact (m,n) (19) 
We note that lowest errors are located outside the brain and in the stroke. This can be expected as the inversion algorithm performs better for homogeneous media such as the matching liquid but also for the stroke, as the complex permittivity value of the stroke is calculated as the mean value between the healthy tissues and the blood. This process tends to average the values, which is more favorable for the inversion algorithm. But, even if the brain is highly heterogeneous, the stroke can be detected and monitored with the proposed algorithm.

We now calculate the L 2 norm of the error of the reconstructed images in such manner as [START_REF] Bonazzoli | Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging[END_REF]. Results are shown in Table III. The L 2 norm is interesting as it gives a global quantitative criterion for estimating the performance of the reconstructed values. The L 2 norm confirms the results shown in Fig. 12 for
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the small stroke. The error on the real part of the complex relative permittivity is lower than on the imaginary part. It is of the order of 10% for the real part whereas it is about 20% for the imaginary part. III. Average error on the reconstructed values (real and imaginary parts of the complex permittivity).

Although we have shown in section IV B that high order edge elements are efficient when solving the direct problem with very high accuracy, the reconstructed images differ very slightly when using different discretization orders and mesh sizes in the inverse problem. It turns out for our study case that elements of degree r=1 with 10 pts/λ are sufficient for detecting the stroke. Reconstructed images for each test case shown in Figs. 10 and 11 are obtained with a total computing time of less than 2 minutes (94 seconds for the large stroke case) using 4096 cores of Curie. These preliminary results are very encouraging as we are already able to achieve a satisfactory reconstruction time in the perspective of using such an imaging technique for monitoring. This allows clinicians to obtain almost instantaneous images 24/7 or on demand. Although the reconstructed images do not feature the complex heterogeneities of the brain, which is in accordance with what we expect from microwave imaging methods, they allow the characterization of the stroke and its monitoring.

IX. CONCLUSION

The idea behind this work comes from the paradigm to develop a (portable/transportable) microwave imaging system whose raw data are wirelessly transferred to a HPC. The HPC machine will then compute the 3D image of the patient's brain. Once reconstructed, the image is quickly transmitted from the computing center to the hospital for stroke detection (including ischemic/hemorrhagic discrimination) and monitoring during treatment. We have developed a tool that reconstructs a tomographic microwave image of the brain in 94 seconds on 4096 computing cores. This computational time corresponds to clinician acceptance for rapid diagnosis or medical monitoring at the hospital. These images were obtained from corrupted synthetic data from a very accurate model of the complex permittivity of the brain. To our knowledge, this is the first time that such a realistic study (operational acquisition device, highly accurate three-dimensional synthetic data, 10% noise) shows the feasibility of microwave imaging. This study has been possible by the use of massively parallel computers and facilitated by HPDDM and FreeFem++ tools that we developed. The next step will be the validation of these results on clinical data. 
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 1 Fig. 1. Left: General view of BRIMG1 (courtesy of EMTensor GmbH). Right: Computational domain.
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 2 Fig. 2. BRIMG1: Human head measurement (courtesy of EMTensor GmbH)
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  I ; in particular the matrices D deal with the unknowns that belong to the overlap between subdomains. The preconditioner without the partition of unity matrices D s ,
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 4 Fig. 4. Computational domain divided into 128 subdomains.
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 5 Fig. 5. Normalized amplitude (top) and phase (bottom) between the computed and measured S-parameters.
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 7 Fig. 7. Comparison between degrees r=1 and r=2 on empty, total and scattered fields (amplitude and phase).

Fig. 8 .

 8 Fig.8. Computation time (seconds) and relative error on computed S ij using elements of degree r=1 and r=2 for different mesh sizes and number of unknowns in millions.

Figs. 10

 10 and 11 show the real and imaginary parts of the relative permittivity, respectively, for the three evolution steps of the hemorrhagic stroke, from a healthy brain, a brain with a small and large stroke. Increasing the size of the ellipsoid simulates the evolution of the stroke. Each reconstruction corresponds to the solution of an inverse problem in the truncated domain containing only the first two rings of antennas from the top. The transmitting antennas are on the first ring and receiving antennas on first and second rings. Therefore the scattering matrix contains only 64×32 S ij coefficients. Each reconstruction starts from an initial guess consisting of the homogeneous matching solution. The solution is obtained at about 30 iteration steps when reaching the convergence criterion of 10 -2 for the value of the cost functional using the L-BFGS algorithm.

Fig. 10 .

 10 Fig.10. Transverse cross-section of the virtual brain during the evolution of a simulated hemorrhagic stroke: real part of the relative complex permittivity. Left: virtual brain model. Right: reconstructed permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.

Fig. 11 .

 11 Fig. 11. Transverse cross-section of the virtual brain during the evolution of a simulated hemorrhagic stroke: imaginary part of the relative permittivity. Left: virtual brain model. Right: reconstructed permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.

Fig. 12 .

 12 Fig. 12. Small stroke: Distribution of the relative error on the real (left) and imaginary (right) parts of the reconstructed complex permittivity. From top to bottom: healthy brain, brain with small stroke, brain with large stroke.

  and 8. All these simulations are carried out using 512 subdomains with one MPI process and two OpenMP threads per subdomain, for a total of 1024 cores on the Curie supercomputer (http://www-hpc.cea.fr/fr/complexe/tgcccurie.htm).

	Degree 1	Time	Error	Degree 2	Time	Error
		(s)			(s)	
	# unknowns			# unknowns		
	2,373,214	22	0.384	1,508,916	39	0.242
	8,513,191	53	0.184	5,181,678	62	0.099
	21,146,710	130	0.117	12,693,924	122	0.057
	42,538,268	268	0.083	26,896,130	236	0.036
	73,889,953	519	0.068	45,781,986	396	0.019

Table

I

. Total number of unknowns, computing time (seconds), and relative error on computed S ij.
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