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Abstract

A binary CSP instance satisfying the broken-triangle property (BTP) can be
solved in polynomial time. Unfortunately, in practice, few instances satisfy
the BTP. We show that a local version of the BTP allows the merging of domain
values in arbitrary instances of binary CSP, thus providing a novel polynomial-
time reduction operation. Extensive experimental trials on benchmark instances
demonstrate a significant decrease in instance size for certain classes of prob-
lems. We show that BTP-merging can be generalised to instances with con-
straints of arbitrary arity and we investigate the theoretical relationship with
resolution in SAT. A directional version of general-arity BTP-merging then al-
lows us to extend the BTP tractable class previously defined only for binary
CSP. We investigate the complexity of several related problems including the
recognition problem for the general-arity BTP class when the variable order is
unknown, finding an optimal order in which to apply BTP merges and detect-
ing BTP-merges in the presence of global constraints such as AllDifferent.

Keywords: CSP, constraint satisfaction, domain reduction, tractable class,
hybrid tractability, NP-completeness, global constraints

1. Introduction

At first sight one could assume that the discipline of constraint program-
ming has come of age. On the one hand, efficient solvers are regularly used to
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solve real-world problems in diverse application domains while, on the other
hand, a rich theory has been developed concerning, among other things, global
constraints, tractable classes, reduction operations and symmetry. However,
there often remains a large gap between theory and practice which is perhaps
most evident when we look at the large number of deep results concerning
tractable classes which have yet to find any practical application. The research
reported in this paper is part of a long-term project to bridge the gap between
theory and practice. Our aim is not only to develop new tools but also to ex-
plain why present tools work so well.

Most research on tractable classes has been based on classes defined by
placing restrictions either on the types of constraints [1, 2] or on the constraint
hyper-graph whose vertices are the variables and whose hyper-edges are the
constraint scopes [3, 4]. Another way of defining classes of binary CSP in-
stances consists in imposing conditions on the microstructure, a graph whose
vertices are the possible variable-value assignments with an edge linking each
pair of compatible assignments [5, 6]. If each vertex of the microstructure, cor-
responding to a variable-value assignment 〈x, a〉, is labelled by the variable
x, then this so-called coloured microstructure retains all information from the
original instance. The broken-triangle property (BTP) is a simple local condi-
tion on the coloured microstructure which defines a tractable class of binary
CSP [7]. The BTP corresponds to forbidding a simple pattern, known as a
broken triangle, in the coloured microstructure for a given variable order. In-
spired by the BTP, investigation of other forbidden patterns in the coloured
microstructure has led to the discovery of new tractable classes [8–10] as well
as new reduction operations based on variable or value elimination [11, 12].
The BTP itself has also been directly generalised in several different ways. For
example, it has been shown that under an assumption of strong path consis-
tency, the BTP can be considerably relaxed since not all broken triangles need
be forbidden to define a tractable class [13–15]. Indeed, even without any as-
sumptions of consistency, it is not necessary to forbid all broken triangles [12].
Imposing the BTP in the dual problem leads directly to a tractable class of
general-arity CSPs [16]. The BTP has also been generalised to the Broken Angle
Property which defines a tractable class of Quantified Constraint Satisfaction
Problems [17].

In this paper we show that the absence of broken triangles on a pair of
values in a domain allows us to merge these two values while preserving the
satisfiability of the instance. Furthermore, given a solution to the reduced in-
stance, it is possible to find a solution to the original instance in linear time
(Section 3). We then investigate the interactions between arc consistency and
BTP-merging operations (Section 4) and show that it is NP-hard to find the
best sequence of BTP-merging (and arc consistency) operations (Section 5). The
effectiveness of BTP-merging in reducing domains in binary CSP benchmark
problems is investigated in Section 6. In the second half of the paper we con-
sider general-arity CSPs. Section 7 shows how to generalise BTP-merging to
instances containing constraints of any arity (where all constraints are given in
the form of either tables, lists of compatible tuples or lists of incompatible tu-
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ples). We then go on to consider global constraints, and in particular the AllDif-
ferent constraint, in Section 8. Finally, a directional version of the general-arity
BTP allows us to define a tractable class of general-arity CSP instances (Sec-
tion 9). However, on the negative side, we then show that it is NP-complete to
determine the existence of a variable order for which an instance falls into this
tractable class. The results of Sections 3, 6, 7, 9 and Sections 4, 5 first appeared
in two conference papers (respectively [18] and [19]).

2. The Constraint Satisfaction Problem

For simplicity of presentation we use two different representations of con-
straint satisfaction problems. In the binary case, our notation is fairly standard,
whereas in the general-arity case we use a notation close to the representation
of SAT instances. This is for presentation only, though, and our algorithms do
not need instances to be represented in this manner.

Definition 1. A binary CSP instance I consists of

• a set X of n variables,

• a domain D(x) of possible values for each variable x ∈ X ,

• a relation Rxy ⊆ D(x)×D(y), for each pair of distinct variables x, y ∈ X ,
which consists of the set of compatible pairs of values (a, b) for variables
(x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉}
such that ∀i, j ∈ [1, r], (ai, aj) ∈ Ryiyj

. A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables. The number of constraints e is the
number of pairs of variables x, y such that Rxy 6= D(x)×D(y). An instance I is
arc consistent if for each pair of distinct variables x, y ∈ X , each value a ∈ D(x)
has an AC-support at y, i.e. a value b ∈ D(y) such that (a, b) ∈ Rxy .

In our representation of general-arity CSP instances, we require the notion
of tuple which is simply a set of variable-value assignments. For example, in the
binary case, the tuple {〈x, a〉, 〈y, b〉} is compatible if (a, b) ∈ Rxy and incompatible
otherwise.

Definition 2. A (general-arity) CSP instance I consists of

• a set X of n variables,

• a domain D(x) of possible values for each variable x ∈ X ,

• a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a tuple t = {〈y1, a1〉, . . . , 〈yr, ar〉}
such that no subset of t belongs to NoGoods(I). A solution is a partial solution
on X .
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Figure 1: A broken triangle on two values a, b for a given variable x.

3. Value merging in binary CSP based on the BTP

In this section we consider a method, based on the BTP, for reducing do-
main size while preserving satisfiability. Instead of eliminating a value, as in
classic reduction operations such as arc consistency or neighbourhood substi-
tution, we merge two values. We show that the absence of broken-triangles [7]
on two values for a variable x in a binary CSP instance allows us to merge these
two values in the domain of x while preserving satisfiability. This rule gener-
alises the notion of virtual interchangeability [20] as well as neighbourhood
substitution [21].

It is known that if for a given variable x in an arc-consistent binary CSP
instance I , the set of (in)compatibilities (known as a broken-triangle) shown
in Figure 1 occurs for no two values a, b ∈ D(x) and no two assignments
to two other variables, then the variable x can be eliminated from I with-
out changing the satisfiability of I [7, 11]. In figures, each bullet represents
a variable-value assignment, assignments to the same variable are grouped to-
gether within the same oval and compatible pairs of assignments are linked
by solid lines. In Figure 1 (and in other figures illustrating forbidden patterns)
incompatible pairs of assignments are linked by broken lines. Even when this
variable-elimination rule cannot be applied, it may be the case that for a given
pair of values a, b ∈ D(x), no broken triangle occurs. We will show that if this
is the case, then we can perform a domain-reduction operation which consists
in merging the values a and b.

Definition 3. Merging values a, b ∈ D(x) in a binary CSP consists in replacing
a, b in D(x) by a new value c which is compatible with all variable-value as-
signments compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉. A
value-merging condition is a polytime-computable property P (x, a, b) of assign-
ments 〈x, a〉, 〈x, b〉 in a binary CSP instance I such that when P (x, a, b) holds,
the instance I ′ obtained from I by merging a, b ∈ D(x) is satisfiable if and only
if I is satisfiable.

We now formally define the value-merging condition based on the BTP.

Definition 4. A broken triangle on the pair of variable-value assignments a, b ∈
D(x) consists of a pair of assignments d ∈ D(y), e ∈ D(z) to distinct variables
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y, z ∈ X \ {x} such that (a, d) /∈ Rxy , (b, d) ∈ Rxy , (a, e) ∈ Rxz , (b, e) /∈ Rxz

and (d, e) ∈ Ryz . The pair of values a, b ∈ D(x) is BT-free if there is no broken
triangle on a, b.

Proposition 5 In a binary CSP instance, being BT-free is a value-merging condition.
Furthermore, given a solution to the instance resulting from the merging of two values,
we can find a solution to the original instance in linear time.

PROOF. Let I be the original instance and I ′ the new instance in which a,b
have been merged into a new value c. Clearly, if I is satisfiable then so is
I ′. It suffices to show that if I ′ has a solution s which assigns c to x, then I
has a solution. Let sa, sb be identical to s except that sa assigns a to x and sb
assigns b to x. Suppose that neither sa nor sb are solutions to I . Then, there
are variables y, z ∈ X \ {x} such that 〈a, s(y)〉 /∈ Rxy and 〈b, s(z)〉 /∈ Rxz . By
definition of the merging of a, b to produce c, and since s is a solution to I ′

containing 〈x, c〉, we must have (b, s(y)) ∈ Rxy and (a, s(z)) ∈ Rxz . Finally,
(s(y), s(z)) ∈ Ryz since s is a solution to I ′. Hence, 〈y, s(y)〉, 〈z, s(z)〉, 〈x, a〉,
〈x, b〉 forms a broken-triangle, which contradicts our assumption. Hence, the
absence of broken triangles on assignments 〈x, a〉, 〈x, b〉 allows us to merge
these assignments while preserving satisfiability.

Reconstructing a solution to I from a solution s to I ′ simply requires check-
ing which of sa or sb is a solution to I . Checking if sa or sb is a solution only
requires checking the (at most) n − 1 binary constraints that include x. Thus
finding a solution to the original instance can be achieved in linear time. 2

We can see that the BTP-merging rule, given by Proposition 5, generalises
neighbourhood substitution [21]: if b is neighbourhood substitutable by a, then
no broken triangle occurs on a, b and merging a and b produces a CSP instance
which is identical (except for the renaming of the value a as c) to the instance
obtained by simply eliminating b from D(x). BTP-merging also generalises
the merging rule proposed by Likitvivatanavong and Yap [20]. The basic idea
behind their rule is that if the two assignments 〈x, a〉, 〈x, b〉 have identical com-
patibilities with all assignments to all other variables except concerning at most
one other variable, then we can merge a and b. This is clearly subsumed by
BTP-merging.

The BTP-merging operation is not only satisfiability-preserving but, from
Proposition 5, we know that we can also reconstruct a solution in polynomial
time to the original instance I from a solution to an instance Im to which we
have applied a sequence of merging operations until convergence. It is known
that for the weaker operation of neighbourhood substitutability, all solutions
to the original instance can be generated in O(N(de + n2)) time, where N is
the number of solutions to the original instance, n is the number of variables, d
the maximum domain size and e the number of constraints [22]. We now show
that a similar result also holds for the more general rule of BTP-merging.

Proposition 6 Let I be a binary CSP instance and suppose that we are given
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Figure 2: (a) A broken triangle (shown in bold) exists on values a′, b′ at variable z. (b) After
BTP-merging of values a and b in D(x), this broken triangle has disappeared.

• a sequence of m triples of the form (xi, ai, bi)
m−1
i=0 , implicitly defining a sequence

of instances I0 = I, I1, · · · , Im such that Ii+1 is obtained from Ii by BTP-
merging values ai, bi for xi (i = 0, . . . ,m− 1),

• the set of all N solutions to the instance Im.

All solutions to I can then be enumerated with delay O(mn) after a preprocessing step
in O(mnd2) (hence in total time O(n2d + Nn2d)).

PROOF. We start by computing, for each constraint Rxy in the original instance
I , its successive versions Rt1

xy, . . . , R
tmxy
xy , where t1, . . . , tmxy ∈ {1, . . . ,m} record

by which BTP-merging operation this version was produced. Since each BTP-
merging operation can change only O(n) constraints (those involving xi), this
preprocessing step requires time O(mnd2).

Now given a solution s to Ii we proceed inductively as follows. If i = 0
then we output s, otherwise we test whether sa or sb (or both) are solutions to
Ii−1, where sa (resp. sb) is obtained from s by setting xi to ai (resp. to bi), as
in the proof of Proposition 5. For each of them found to be a solution to Ii−1,
we recurse with Ii−1. This requires O(n) time per step, since again there are at
most n − 1 constraints to be checked (those involving xi) and these have been
precomputed. Finally, since at each step either sa or sb is guaranteed to be a
solution to Ii−1, we indeed generate solutions to I with delay O(mn). 2

The weaker operation of neighbourhood substitution has the property that
two different convergent sequences of eliminations by neighbourhood substi-
tution necessarily produce isomorphic instances Im1 , Im2 [22] . This is not the
case for BTP-merging. Firstly, and perhaps rather surprisingly, BTP-merging
can have as a side-effect to eliminate broken triangles. This is illustrated in the
3-variable instance shown in Figure 2. In order to avoid cluttering up figures
with broken lines linking each pair of incompatible assignments, in all figures
illustrating binary CSP instances, we use the convention that those pairs of
assignments which are not explicitly linked with a solid line are incompati-
ble. The instance in Figure 2(a) contains a broken triangle on values a′, b′ for
variable z, but after BTP-merging of values a, b ∈ D(x) into a new value c, as
shown in Figure 2(b), there are no broken triangles in the instance. Secondly,
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Figure 3: (a) This instance contains no broken triangle. (b) After BTP-merging of values a and b in
D(x), a broken triangle (shown in bold) has appeared on values a′, b′ ∈ D(z).

BTP-merging of two values in D(x) can introduce a broken triangle on a vari-
able z 6= x, as illustrated in Figure 3. The instance in Figure 3(a) contains no
broken triangle, but after the BTP-merging of a, b ∈ D(x) into a new value c, a
broken triangle has been created on values a′, b′ ∈ D(z).

4. Mixing Arc Consistency and BTP-merging

Given the omnipresence of arc consistency in constraint solvers, it is natural
to investigate its relationship and interaction with BTP-merging. Values which
can be BTP-merged may or may not be arc consistent. Trivially, two values
a, b ∈ D(x) which are compatible with all assignments to all other variables can
be BTP-merged, but cannot be eliminated by arc consistency. Conversely, if a ∈
D(x) has no AC-support at y but otherwise is compatible with all assignments
to all other variables, b ∈ D(x) has no AC-support at z 6= y but otherwise
is compatible with all assignments to all other variables, and Ryz 6= ∅, then
a, b can both be eliminated by arc consistency but a, b cannot be BTP-merged.
Having established the incomparability of arc consistency and BTP-merging,
we now investigate their possible interactions.

We have already observed that BTP-merging is a generalisation of neigh-
bourhood substitutability, since if a ∈ D(x) is neighbourhood substitutable for
b ∈ D(x) then a, b can be BTP-merged. The possible interactions between arc
consistency (AC) and neighbourhood substitution (NS) are relatively simple
and can be summarised as follows [22]:

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains in-
variant after the elimination of any other value b (in D(x) \ {a} or in the
domain D(z) of any variable z 6= x) by neighbourhood substitution.

2. An arc-consistent value a ∈ D(x) that is neighbourhood substitutable
remains neighbourhood substitutable after the elimination of any other
value by arc consistency.

3. On the other hand, a value a ∈ D(x) may become neighbourhood substi-
tutable after the elimination of a value c ∈ D(y) (y 6= x) by arc consistency.
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Figure 4: (a) An instance in which applying AC leads to the elimination of all values (starting with
the values a and b), but applying BTP merging leads to just one elimination, namely the merging
of a with b (with the resulting instance shown in (b)).

Indeed, it has been shown that the maximum cumulated number of elimina-
tions by arc consistency and neighbourhood substitution can be achieved by
first establishing arc consistency and then applying any convergent sequence
of NS eliminations (i.e. any valid sequence of eliminations by neighbourhood
substitution until no more NS eliminations are possible) [22].

The interaction between arc consistency and BTP-merging is not so simple
and can be summarised as follows:

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains in-
variant after the BTP-merging of any other pair of other values b, c (in
D(x) \ {a} or in the domain D(z) of any variable z 6= x). However, af-
ter the BTP-merging of two arc-inconsistent values the resulting merged
value may be arc consistent. An example is given in Figure 4(a). In this
3-variable instance, the two values a, b ∈ D(x) can be eliminated by arc
consistency (which in turn leads to the elimination of all values), or alter-
natively they can be BTP-merged (to produce the new value c) resulting
in the instance shown in Figure 4(b) in which no more eliminations are
possible by AC or BTP-merging.

2. A single elimination by AC may prevent a sequence of several BTP-mergings.
An example is given in Figure 5(a). In this 4-variable instance, if the value
b is eliminated by AC, then no other eliminations are possible by AC or
BTP-merging in the resulting instance (shown in Figure 5(b)), whereas if
a and b are BTP-merged into a new value d (as shown in Figure 5(c)) this
destroys a broken triangle thus allowing c to be BTP-merged with d (as
shown in Figure 5(d)).

3. On the other hand, two values in the domain of a variable x may become
BTP-mergeable after an elimination of a value d ∈ D(z) (z 6= x) by arc
consistency. An example is given in Figure 6. In this 4-variable instance,
initially a and b cannot be BTP-merged (Figure 6(a)), but after value d is
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Figure 5: (a) An instance in which applying AC leads to one elimination (the value b) (as shown in
(b)), but applying BTP merging leads to two eliminations, namely a with b (shown in (c)) and then
d with c (shown in (d)).

eliminated from D(z) by AC, the broken triangle has disappeared and
a, b can be BTP merged (Figure 6(b)).

5. The order of BTP-mergings

We saw in Section 3 that BTP-merging can both create and destroy broken
triangles. This implies that the choice of the order in which BTP-mergings are
applied may affect the total number of merges that can be performed. Unfortu-
nately, maximising the total number of merges in a binary CSP instance turns
out to be NP-hard, even when bounding the maximum size of the domains d
by a constant as small as 3. For simplicity of presentation, we first prove this
for the case in which the instance is not necessarily arc consistent. We will then
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Figure 6: (a) A broken triangle (shown in bold) exists on values a, b at variable x. (b) After remov-
ing value d from D(z) by AC, this broken triangle has disappeared.

prove a tighter version, namely NP-hardness of maximising the total number
of merges even in arc-consistent instances.

Theorem 7 The problem of determining if it is possible to perform k BTP-mergings
in a boolean binary CSP instance is NP-complete.

PROOF. For a given sequence of k BTP-mergings, verifying if this sequence is
correct can be performed in O(kn2d2) time because looking for broken trian-
gles for a given couple of values takes O(n2d2). As we can verify a solution
in polynomial time, the problem of determining if it is possible to perform
k BTP-mergings in a binary CSP instance is in NP. So to complete the proof
of NP-completeness it suffices to give a polynomial-time reduction from the
well-known 3-SAT problem. Let I3SAT be an instance of 3-SAT (SAT in which
each clause contains exactly 3 literals) with variables X1, . . . , XN and clauses
C1, . . . , CM . We will create a boolean binary CSP instance ICSP which has a
sequence of k = 3×M mergings if and only if I3SAT is satisfiable.

For each variable Xi of I3SAT , we add a new variable zi to ICSP . For each
occurrence of Xi in the clause Cj of I3SAT , we add two more variables xij

and yij to ICSP . Each D(zi) contains only one value ci and each D(xij) (resp.
D(yij)) contains only two values ai and bi (resp. a′i and b′i). The roles of vari-
ables xij and yij are the following:

Xi = true ⇔ ∀j, ai, bi can be merged in D(xij) (1)
Xi = false ⇔ ∀j, a′i, b′i can be merged in D(yij) (2)

In order to prevent the possibility of merging both (ai, bi) and (a′i, b
′
i), we

define the following constraints for zi, xij and yij : ∀j Rxijzi = {(bi, ci)} and
Ryijzi = {(b′i, ci)}; ∀j ∀ k Rxijyik

= {(ai, a′i)}. These constraints are shown in
Figure 7(a) for a single j (where a pair of points not joined by a solid line are
incompatible). By this gadget, we create a broken triangle on each yij when
merging values in the xij and vice versa.

The idea is that BTP-merging ai and bi prevents from BTP-merging a′i and
b′i, that is, prevents Xi from being assigned to false. If Xi is prevented from
being assigned to false and to true (because of other gadgets), then I3SAT will
be detected as unsatisfiable.
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Then for each clause Ci = (Xj , Xk, Xl), we add the following constraints in
order to have at least one of the literals Xj , Xk, Xl true: Ryijyik

= {(a′j , b′k)},
Ryikyil

= {(a′k, b′l)} and Ryilyij
= {(a′l, b′j)}. This construction, shown in Fig-

ure 7(b), is such that it allows two mergings on the variables yij , yik, yil before
a broken triangle is created. For example, merging a′j , b′j and then a′k, b′k creates
a broken triangle on a′i, b

′
i. So a third merging is not possible.

If the clause Ci contains a negated literal Xj instead of Xj , it suffices to
replace yij by xij . Indeed, Figure 8 shows the construction for the clause (Xj ∨
Xk ∨Xl) together with the gadgets for each variable.

The maximum number of mergings that can be performed are one per oc-
currence of each variable in a clause, which is exactly 3×M . Given a sequence
of 3 × M mergings in the CSP instance, there is a corresponding solution to
I3SAT given by (1) and (2). The above reduction allows us to code I3SAT as the
problem of testing the existence of a sequence of k = 3×M mergings in the cor-
responding instance ICSP . This reduction being polynomial, we have proved
the NP-completeness of the problem of determining whether k BTP merges are
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Figure 9: Ensuring arc consistency between the variables zi, yij , xij by addition of new values di.

possible in a boolean binary CSP instance. 2

The reduction given in the proof of Theorem 7 supposes that no arc-consistency
operations are used. We will now show that it is possible to modify the reduc-
tion so as to prevent the elimination of any values in the instance ICSP by
arc-consistency, even when the maximum size of the domains d is bounded
by a constant as small as 3. Recall that an arc-consistent instance remains arc-
consistent after any number of BTP-mergings.

Theorem 8 The problem of determining if it is possible to perform k BTP-mergings
in an arc-consistent binary CSP instance is NP-complete, even when only considering
binary CSP instances where the size of the domains is bounded by 3.

PROOF. In order to ensure arc-consistency of the instance ICSP , we add a new
value di to the domain of each of the variables xij , yij , zi. However, we cannot
simply make di compatible with all values in all other domains, because this
would allow all values to be merged with di, destroying in the process the
semantics of the reduction.

In the three binary constraints concerning the triple of variables xij , yij , zi,
we make di compatible with all values in the other two domains except di. In
other words, we add the following tuples to constraint relations, as illustrated
in Figure 9:

• ∀i∀j, (ai, di), (bi, di), (di, ci) ∈ Rxijzi

• ∀i∀j, (a′i, di), (b′i, di), (di, ci) ∈ Ryijzi

• ∀i∀j, (ai, di), (bi, di), (di, a
′
i), (di, b

′
i) ∈ Rxijyij

This ensures arc consistency, without creating new broken triangles on ai, bi
or a′i, b

′
i, while at the same time preventing BTP-merging with the new value

di. It is important to note that even after BTP-merging of one of the pairs ai, bi
or a′i, b

′
i, no BTP-merging is possible with di in D(xij), D(yij) or D(zi) due to

the presence of broken triangles on this triple of variables. For example, the
pair of values ai, di ∈ D(xij) belongs to a broken triangle on ci ∈ D(zi) and
di ∈ D(yij), and this broken triangle still exists if the values a′i, b

′
i ∈ D(yij) are

merged.
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We can then simply make di compatible with all values in the domain of
all variables outside this triple of variables. With these constraints we ensure
arc consistency without changing any of the properties of ICSP used in the
reduction from 3-SAT described in the proof of Theorem 7. For each pair of
values ai, bi ∈ D(xij) and a′i, b

′
i ∈ D(yij), no new broken triangle is created

since these two values always have the same compatibility with all the new
values dk. As we have seen, the constraints shown in Figure 9 prevent any
merging of the new values dk. 2

Corollary 9 The problem of determining if it is possible to perform k value elimina-
tions by arc consistency and BTP-merging in a binary CSP instance is NP-complete,
even when only considering binary CSP instances where the size of the domains is
bounded by 3.

A related question concerns the complexity of finding the optimal order of
BTP-mergings within the domain of a single variable. It turns out that this too
is NP-Complete [19].

Theorem 10 The problem of determining if it is possible to perform k BTP-mergings
within a same domain in a binary CSP instance is NP-Complete.

6. Experimental trials

To test the utility of BTP-merging we performed extensive experimental tri-
als on benchmark instances from the International CP Competition1. For each
instance including only binary constraints (in particular, including no global
constraint), we performed BTP-mergings until convergence with a time-out of
one hour. In total, we obtained results for 2,547 instances out of 3,811 bench-
mark instances. In the other instances the search for all BTP-mergings did not
terminate within a time-out of one hour.

All instances from the benchmark-domain hanoi satisfy the broken-triangle
property and BTP-merging reduced all variable domains to singletons. Af-
ter establishing arc consistency, 38 instances from diverse benchmark-domains
satisfy the BTP, including all instances from the benchmark-domain domino.
We did not count those instances for which arc consistency detects inconsis-
tency by producing a trivial instance with empty variable domains (and which
trivially satisfies the BTP). In all instances from the pigeons benchmark-domain
with a suffix -ord, BTP-merging again reduced all domains to singletons.
This is because BTP-merging can eliminate broken triangles, as pointed out
in Section 3, and hence can render an instance BTP even though initially it
was not BTP. The same phenomenon occurred in a 680-variable instance from
the benchmark-domain rlfapGraphsMod as well as the 3-variable instance
ogdPuzzle.

1http://www.cril.univ-artois.fr/CPAI08
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domain no. no. no. values percentage
instances values deleted deleted

BH-4-13 6 7,334 3,201 44%
BH-4-4 10 674 322 48%
BH-4-7 20 2,102 883 42%
ehi-85 98 2,079 891 43%
ehi-90 100 2,205 945 43%
graph-coloring/school 8 4,473 104 2%
graph-coloring/sgb/book 26 1,887 534 28%
jobShop 45 6,033 388 6%
marc 1 6400 6,240 98%
os-taillard-4 30 2,932 1,820 62%
os-taillard-5 28 6,383 2,713 43%
rlfapGraphsMod 5 14,189 5,035 35%
rlfapScens 5 12,727 821 6%
rlfapScensMod 9 9,398 1,927 21%
others 1919 1,396 28 0.02%

Table 1: Results of experiments on CSP benchmark problems.

Table 1 gives a summary of the results of the experimental trials. We do not
include those instances mentioned above which are entirely solved by BTP-
merging. We give details about those benchmark-domains where BTP-merging
was most effective. All other benchmark-domains are grouped together in
the last line of the table. The table shows the number of instances in the
benchmark-domain, the average number of values (i.e. variable-value assign-
ments) in the instances from this benchmark-domain, the average number of
values deleted (i.e. the number of BTP-merging operations performed) and fi-
nally this average represented as a percentage of the average number of values.

We can see that for certain types of problem, BTP-merging is very effective,
whereas for others (grouped together in the last line of the table) hardly any
merging of values occurred.

7. Generalising BTP-merging to constraints of arbitrary arity

In the remainder of the paper, we assume that the constraints of a general-
arity CSP instance I are given in the form described in Definition 2, i.e. as a
set of incompatible tuples NoGoods(I), where a tuple is a set of variable-value
assignments. For simplicity of presentation, we use the predicate Good(I, t)
which is true iff the tuple t is a partial solution, i.e. t does not contain any
pair of distinct assignments to the same variable and @t′ ⊆ t such that t′ ∈
NoGoods(I). We first generalise the notion of broken triangle and merging to
the general-arity case, before showing that absence of broken triangles allows
merging.
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Definition 11. A general-arity broken triangle (GABT) on values a, b ∈ D(x) con-
sists of a pair of tuples t, u (containing no assignments to variable x) satisfying
the following conditions:

1. Good(I, t ∪ u) ∧ Good(I, t ∪ {〈x, a〉}) ∧ Good(I, u ∪ {〈x, b〉})
2. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

The pair of values a, b ∈ D(x) is GABT-free if there is no broken triangle on a, b.

A general-arity broken triangle is illustrated in Figure 10. This figure is
identical to Figure 1 except that Y ,Z are now sets of variables and t,u are tu-
ples. Note that the sets Y and Z may overlap. As in the binary case, a dashed
line represents a nogood (i.e. a tuple not in to the constraint relation on its
variables). A solid line now represents a partial solution.

Note that in Definition 11 we could have used t ∪ u /∈ NoGoods(I) instead
of Good(I, t∪u), ¬Good(I, t∪{〈x, b〉} instead of t∪{〈x, b〉} ∈NoGoods(I), etc.
Subsequent proofs would go through with these definitions. Nevertheless, we
chose the most restrictive version of the definition, that is, the one according to
which the fewest instances have a GABT and hence, the one allowing the most
values to be merged.

Observe that Good(I, t∪{〈x, a〉}) entails t∪{〈x, a〉} /∈NoGoods(I). Hence to
decide whether there is a GABT on a, b in a CSP instance, one can either explore
all pairs t ∪ {〈x, b〉}, u ∪ {〈x, a〉} ∈ NoGoods(I), as suggested by Definition 11,
or, equivalently, explore all pairs t ∪ {〈x, a〉}, u ∪ {〈x, b〉} of tuples explicitly
allowed by the constraints in I . Whatever the representation, a pair t, u can be
checked to be a GABT on a, b by evaluating the properties of Definition 11, all
of which involve only constraint checks. Hence deciding whether a pair a, b is
GABT-free is polytime for constraints given in extension (as the set of satisfying
assignments) as well as for those given by nogoods (the set of assignments
violating the constraint).

Definition 12. Merging values a, b ∈ D(x) in a general-arity CSP instance I
consists in replacing a, b in D(x) by a new value c which is compatible with
all variable-value assignments compatible with at least one of the assignments
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〈x, a〉 or 〈x, b〉, thus producing an instance I ′ with the new set of nogoods de-
fined as follows:

NoGoods(I ′) = {t ∈ NoGoods(I) | 〈x, a〉, 〈x, b〉 /∈ t}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, b〉}}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, a〉}}

A value-merging condition is a polytime-computable property P (x, a, b) of as-
signments 〈x, a〉, 〈x, b〉 in a CSP instance I such that when P (x, a, b) holds, the
instance I ′ is satisfiable if and only if I is satisfiable.

Clearly, this merging operation can be performed in polynomial time whether
constraints are represented positively in extension or negatively as nogoods.
For representations using nogoods this is clear from Definition 12. For repre-
sentations in extension, simply observe that as in the binary case, the operation
amounts to gathering together tuples which satisfy Good(I, ·) and containing
〈x, a〉 or 〈x, b〉, and setting x to c in them.

Proposition 13 In a general-arity CSP instance, being GABT-free is a value-merging
condition. Furthermore, given a solution to the instance resulting from the merging of
two values, we can find a solution to the original instance in linear time.

PROOF. In order to prove that satisfiability is preserved by this merging oper-
ation, it suffices to show that if s is a solution to I ′ containing 〈x, c〉, then either
sa = (s\{〈x, c〉})∪{〈x, a〉} or sb = (s\{〈x, c〉})∪{〈x, b〉} is a solution to I . Sup-
pose, for a contradiction that this is not the case. Then there are tuples t, u ⊆
s \ {〈x, c〉} such that t ∪ {〈x, b〉} ∈NoGoods(I) and u ∪ {〈x, a〉} ∈NoGoods(I).
Since t, u are subsets of the solution s to I ′ and t, u contain no assignments to
x, we have Good(I, t∪u). Since t∪{〈x, c〉} is a subset of the solution s to I ′, we
have t∪{〈x, c〉} /∈NoGoods(I ′). By the definition of NoGoods(I ′) given in Def-
inition 12, and since t∪{〈x, b〉} ∈NoGoods(I), we know that @t′ ∈NoGoods(I)
such that t′ ⊆ t ∪ {〈x, a〉}. But then Good(I, t ∪ {〈x, a〉}). By a symmetric ar-
gument, we can deduce Good(I, u ∪ {〈x, b〉}). This provides the contradiction
we were looking for, since we have shown that a general-arity broken triangle
occurs on t, u, 〈x, a〉, 〈x, b〉.

Reconstructing a solution to the original instance can be achieved in linear
time, since it suffices to verify which (or both) of sa or sb is a solution to I . 2

Relationship with Resolution in SAT
We now show that in the case of Boolean domains, there is a close relation-

ship between merging two values a, b on which no GABT occurs and a common
preprocessing operation used by SAT solvers. Given a propositional CNF for-
mula ϕ in the form of a set of clauses (each clause Ci being represented as a set
of literals) and a variable x occurring in ϕ, recall that resolution is the process
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of inferring the clause (C0 ∪ C1) from the two clauses ({x̄} ∪ C0), ({x} ∪ C1).
Define the formula Res(x, ϕ) to be the result of performing all such resolutions
on ϕ, removing all clauses containing x or x̄, and removing subsumed clauses:

Res(x, ϕ) = min
⊂

({C | C ∈ ϕ;x, x̄ /∈ C}∪{(C0∪C1) | ({x̄}∪C0), ({x}∪C1) ∈ ϕ})

It is a well-known fact that Res(x, ϕ) is satisfiable if and only if ϕ is.
Eliminating variables in this manner from SAT instances, to get an equi-

satisfiable formula with less variables, is a common preprocessing step in SAT
solving, and is typically performed provided it does not increase the size of
the formula [23]. A particular case is when it amounts to simply removing all
occurrences of x, which is the case, for instance, if x or x̄ is unit or pure in ϕ, or
if all resolutions on x yield a tautological clause.

Definition 14. A variable x is said to be erasable from a CNF ϕ if

Res(x, ϕ) ⊆ {C | C ∈ ϕ;x, x̄ /∈ C} ∪ {C0 | ({x̄}∪C0) ∈ ϕ} ∪ {C1 | ({x}∪C1) ∈ ϕ}

A CNF ϕ can be seen as the CSP instance Iϕ on the set X of variables occur-
ring in ϕ, with D(x) = {>,⊥} for all x ∈ X , and NoGoods(Iϕ) = {C | C ∈ ϕ},
where ({x1, · · ·xp, x̄p+1, · · · , x̄q}) = {〈x1,⊥〉, . . . , 〈xp,⊥〉, 〈xp+1,>〉, . . . , 〈xq,>〉}.

Proposition 15 Assume that no GABT occurs on values ⊥,> for x in Iϕ. Assume
moreover that no clause in ϕ is subsumed by another one2. Then x is erasable from ϕ.

PROOF. Rephrasing Definition 11 (1) in terms of clauses, for any two clauses
({x̄} ∪ C0), ({x} ∪ C1) ∈ ϕ we have one of (i) ∃C ∈ ϕ,C ⊆ (C0 ∪ C1), (ii) ∃C ′ ∈
ϕ,C ′ ⊆ (C0 ∪ {x}), or (iii) ∃C ′′ ∈ ϕ,C ′′ ⊆ (C1 ∪ {x̄}). Moreover, in Case (ii) C ′

must contain x, for otherwise the clause ({x̄} ∪ C0) would be subsumed in ϕ,
contradicting our assumption. Similarly, in Case (iii) C ′′ must contain x̄.

In Case (i) the resolvent (C0 ∪ C1) of ({x̄} ∪ C0), ({x} ∪ C1) is subsumed
by C in Res(x, ϕ), and hence does not occur in it. Similarly, in the second case
(C0 ∪C1) is subsumed by the resolvent of ({x̄}∪C0) and C ′, which is precisely
C0. The third case is dual. We finally have that the only resolvents added are
of the form C0 (resp. C1) for some clause ({x̄} ∪ C0) (resp. ({x} ∪ C1)) of ϕ, as
required. 2

We can show the converse is also true provided that a very reasonable prop-
erty holds.

Proposition 16 Assume that ϕ satisfies: ∀({x} ∪C) ∈ ϕ, @C ′ ⊆ C, ({x̄} ∪C ′) ∈ ϕ
and dually ∀({x̄} ∪ C) ∈ ϕ,@C ′ ⊆ C, ({x} ∪ C ′) ∈ ϕ. If x is erasable from ϕ, then
no GABT occurs on values ⊥,> for x in Iϕ.

2This is without loss of generality since such clauses can be removed in polytime and such
removal preserves logical equivalence.
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PROOF. Assume for a contradiction that there is a GABT on values ⊥,> for x
in Iϕ, let t, u be witnesses to this, and write t∪{〈x,>〉} = ({x̄} ∪ C0), u∪{〈x,⊥
〉} = ({x} ∪ C1). Then the clause (C0∪C1) is produced by resolution on x. Since
x is erasable, (C0∪C1) is equal to or subsumed by a clause C ∈ Res(x, ϕ), where
(applying Definition 14 in reverse) either C, or ({x} ∪ C), or ({x̄} ∪ C) is in ϕ.
The first case contradicts Good(Iϕ, t∪u), so assume by symmetry ({x}∪C) ∈ ϕ.
From C /∈ ϕ and C ∈ Res(x, ϕ) we get ∃C ′ ⊆ C, ({x̄} ∪ C ′) ∈ ϕ. But then the
pair of clauses ({x} ∪ C), ({x̄} ∪ C ′) ∈ ϕ violates the assumption of the claim.
2

8. BTP-merging in the presence of global constraints

Global constraints are an important feature of constraint programming. They
not only facilitate modelling of complex problems but many global constraints
also have dedicated efficient filtering algorithms [24]. In the presence of global
constraints there are specifc questions which need to be addressed to know
whether BTP-merging is useful. The first thing to verify is that mergings are
possible in the presence of one or more global constraints. A second important
point is whether these BTP-mergings can be detected in polynomial time. A
third point is to determine whether the semantics of the global constraint(s) are
preserved by the operation of merging two values. For those global constraints
that are decomposable into the conjunction of low-arity constraints, we can
also ask whether BTP-merging applied to the decomposed version is equiva-
lent to BTP-merging applied to the original global constraint(s). The answers
to these questions depend on the global constraints. This section presents re-
sults concerning the important global constraint AllDifferent. These results are
both negative and positive.

Proposition 17 Determining whether two values can be GABTP-merged in a CSP
instance consisting of two AllDifferent constraints is coNP-complete.

PROOF. It suffices to show that the problem of testing the existence of a general-
arity broken triangle (GABT) in a CSP instance consisting of two AllDiffer-
ent constraints is NP-complete. We denote this problem by ∃GABT(2AllDiff).
Clearly, the validity of a GABT can be checked in polynomial time. Testing
the satisfiability of a CSP instance consisting of two AllDifferent constraints (a
problem which we denote by CSP(2AllDiff)) is known to be NP-complete [25].
Thus to complete the proof it suffices to exhibit a polynomial reduction from
CSP(2AllDiff) to ∃GABT(2AllDiff).

Let I be an instance, over variables X , consisting of two AllDifferent con-
straints with scopes S1, S2. Without loss of generality, we suppose that S1 ∪
S2 = X . Let x, y, z be three variables not in X with domains containing
only values not occurring in the domains of the variables in X , including
a, b ∈ D(x) with a ∈ D(y), a /∈ D(z), b ∈ D(z), b /∈ D(z). We construct a
new instance I ′ with variables X ∪ {x, y, z}, with domains as in I for variables
in X and the domains of variables x, y, z as just described. The instance I ′
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has just two constraints: AllDifferent constraints with scopes S1 ∪ {y, x} and
S2 ∪ {z, x}. We will show that I ′ has a GABT on a, b ∈ D(x) if and only if I
has a solution. A GABT on a, b ∈ D(x) consists of tuples t, u (containing no
assignments to variable x) satisfying the following conditions: Good(I ′, t ∪ u),
Good(I ′, t ∪ {〈x, a〉}), Good(I ′, u ∪ {〈x, b〉}), t ∪ {〈x, b〉} ∈ NoGoods(I ′) and
u ∪ {〈x, a〉} ∈ NoGoods(I ′). Since u ∪ {〈x, a〉} ∈ NoGoods(I ′), but Good(I ′, u),
we must have 〈y, a〉 ∈ u, since y is the only variable other than x containing a in
its domain. Similarly, we can deduce that 〈z, b〉 ∈ t. Now Good(I ′, t∪u) implies
that (t \ {〈z, b〉}) ∪ (u \ {〈y, a〉}) is a solution to I . On the other hand, suppose
that s is a solution to I . Let u = s[S1] ∪ {〈y, a〉} and t = s[S2] ∪ {〈z, b〉}
(where s[S] represents the subset of s corresponding to assignments to vari-
ables in S). Then the tuples t and u satisfy the conditions: Good(I ′, t ∪ u),
Good(I ′, t ∪ {〈x, a〉}), Good(I ′, u ∪ {〈x, b〉}), t ∪ {〈x, b〉} ∈ NoGoods(I ′) and
u ∪ {〈x, a〉} ∈ NoGoods(I ′). Thus t, u form a GABT on a, b ∈ D(x).

We have shown that I ′ has a GABT on a, b ∈ D(x) if and only if I has a
solution. Since the reduction from CSP(2AllDiff) to ∃GABT(2AllDiff) is clearly
polynomial, this completes the proof. 2

Another problem with merging values in the presence of global constraints
is that the global constraint may lose its semantics when values are merged.
To give an example, consider an instance I in which a variable x (with domain
D(x) = A) occurs in the scope of a single constraint, an AllDifferent constraint
on variables X . Since there is only one constraint on variable x, there can be
no GABT on any pair of values in D(x). It is easy to see that we can, in fact,
GABTP-merge all the values in D(x). When the domain of x becomes a sin-
gleton, we can clearly eliminate x. However, the resulting constraint on the
variables X \ {x} combines both an AllDifferent constraint on X \ {x} and a
constraint which says that the set of values assigned to these variables does not
contain all of A. This constraint clearly does not have the same semantics as an
AllDifferent constraint. In general, merging values can transform global con-
straints which have efficient filtering algorithms into new global constraints
which do not have efficient filtering algorithms.

After these negative results, we now give some positive results. It turns out
that we can take advantage of the semantics of (global) constraints to reduce
the complexity of searching for broken triangles. Suppose that instance I con-
tains only AllDifferent constraints. Instead of looking for GABTP-merges, we
can decompose the AllDifferent constraints into binary constraints and look
for BTP-merges in the resulting instance Ibin. The presence of a general-arity
broken triangle on a, b ∈ D(x) in I implies the presence of a broken triangle
on a, b ∈ D(x) in Ibin, but the converse is not true. Thus BT-merging in Ibin
is a strictly weaker operation than GABT-merging in I . The advantages of BT-
merging in Ibin is that (1) it can be detected in linear time, and (2) it conserves
the semantics of the AllDifferent constraints, as we will now show.

Lemma 18 Suppose that instance I contains only binary difference constraints x 6=
y. For each variable x, let Sx denote the set of variables constrained by x. Two distinct
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values a, b in the domain of a variable x can be BTP-merged if and only if one of the
following conditions holds:

1. there is at most one variable y ∈ Sx such that {a, b} ∩Dy 6= ∅
2. either ∀y ∈ Sx, a /∈ Dy or ∀y ∈ Sx, b /∈ Dy .

PROOF. Since I contains only difference constraints, if y, z are two distinct vari-
ables in Sx, then the pair of assignments 〈y, a〉, 〈z, b〉 are necessarily compatible.
Furthermore, from Definition 4, a broken triangle on a, b ∈ D(x) necessarily
consists of assignments 〈y, a〉, 〈z, b〉 where x, y, z are distinct variables. Ab-
sence of a broken triangle on a, b ∈ D(x) is thus equivalent to there being at
most one variable y ∈ Sx such that {a, b} ∩ Dy 6= ∅, or ∀y ∈ Sx, a /∈ Dy or
∀y ∈ Sx, b /∈ Dy . 2

Lemma 19 Suppose that instance I contains only binary difference constraints and
that a, b ∈ D(x) are BT-free. After BT-merging of a, b ∈ D(x), the variable x can
be eliminated without the introduction of new constraints, producing an instance I ′

which is satisfiable if and only if I is satisfiable.

PROOF. If y 6= x, then ∀d ∈ D(y), 〈y, d〉 is either compatible with 〈x, a〉 or
〈x, b〉, since the only possible constraint between y and x is y 6= x. Hence,
once a, b ∈ D(x) are merged, the resulting new value c is compatible with
all assignments to all other variables. It follows immediately that x and all
binary constraints with x in their scope can be eliminated while preserving the
satisfiability of the instance. 2

Proposition 20 If I is an instance containing only binary difference constraints, then
the result of applying BTP-merges (and eliminating the corresponding variables) until
convergence is unique and can be found in O(n2d2) time and O(nd2) space, where d
is the maximum domain size.

PROOF. For each variable x and for each pair of distinct values a, b ∈ D(x), we
can establish in O(n) time three counters Nx

{a}, N
x
{b}, N

x
{ab}, where Nx

A = |{y |
y ∈ Sx ∧ A ∩ D(y) 6= ∅}|.

By Lemma 18, to determine whether a, b can be BTP-merged, it suffices to
check whether Nx

{a,b} ≤ 1 or Nx
{a} = 0 or Nx

{b} = 0. After each BTP-merge, and
the elimination of the corresponding variable, the constraints on the remaining
variables remain unchanged. Thus, when a variable y is eliminated, due to the
BT-merging of two values in its domain, for each variable x ∈ Sy : for each
a ∈ D(y) ∩ D(x), we decrement the counter Nx

{a} and for each pair a, b ∈ D(x)

such that a ∈ D(y) or b ∈ D(y), we decrement the counter Nx
{ab}. Updating

these data structures can be achieved in O(nd2) each time a variable y is elimi-
nated. Since at most n variables can be eliminated, the total time complexity is
O(n2d2). The space complexity required to store the counters is O(nd2).

We now show that all maximal sequences of BTP-merges result in the same
instance. For this we observe that if a, b ∈ D(x) can be BTP-merged in an in-
stance I , and c, d can also be BTP-merged in I , then a, b can be BTP-merged
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in the instance I ′ obtained from I by BTP-merging c, d ∈ D(y). Indeed, by
Lemma 19, the BTP-merge of c, d ∈ D(y) leads immediately to the elimination
of the variable y, and clearly, such elimination cannot invalidate the character-
ization of Lemma 18. By symmetry it also holds that c, d can be BTP-merged
in the instance obtained from I by BTP-merging a, b, hence the order of BTP-
merges does not matter. 2

We have seen that applying the definition of GABT-merging to CSP in-
stances containing AllDifferent constraints is coNP-complete and can also alter
the semantics of the global constraints. However, Lemma 18 provides a weaker
form of merging (which is equivalent to BT-merging if the instance contains
only AllDifferent constraints that have been decomposed into an equivalent
set of binary difference constraints) which can be applied in O(n2d2) time. It is
worth pointing out that this is much more efficient than a brute-force applica-
tion of the definition of BT-merging in a binary CSP instance until convergence,
which has worst-case time complexity O(n4d5).

9. A tractable class of general-arity CSP

In binary CSP, the broken-triangle property defines an interesting tractable
class when broken-triangles are forbidden according to a given variable or-
dering. Unfortunately, the original definition of BTP was limited to binary
CSPs [7]. Section 7 described a general-arity version of the broken-triangle
property whose absence on two values allows these values to be merged while
preserving satisfiability. An obvious question is whether GABT-freeness can be
adapted to define a tractable class. In this section we show that this is possible
for a fixed variable ordering, but not if the ordering is unknown.

Definition 11 defined a general-arity broken triangle (GABT). What hap-
pens if we forbid GABTs according to a given variable ordering? Absence of
GABTs on two values a, b for the last variable x in the variable ordering allows
us to merge a and b while preserving satisfiability. It is possible to show that
if GABTs are absent on all pairs of values for x, then we can merge all val-
ues in the domain D(x) of x to produce a singleton domain. This is because
(as we will show later) merging a and b, to produce a merged value c, can-
not introduce a GABT on c, d for any other value d ∈ D(x). Once the domain
D(x) becomes a singleton {a}, we can clearly eliminate x from the instance,
by deleting 〈x, a〉 from all nogoods, without changing its satisfiability. It is at
this moment that GABTs may be introduced on other variables, meaning that
forbidding GABTs according to a variable ordering does not define a tractable
class.

Nevertheless, we will show that strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-arity version of BTP
(for a known variable ordering) then defines a tractable class which includes
the binary BTP tractable class as a special case.

Note that the set of general-arity CSP instances whose dual instance sat-
isfies the BTP also defines a tractable class which can be recognised in poly-
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Figure 11: Illustration of a directional general-arity broken triangle.

nomial time even if the ordering of the variables in the dual instance is un-
known [16]. This DBTP class is incomparable with the class we present in the
present paper (which is equivalent to BTP in binary CSP) since DBTP is known
to be incomparable with the BTP class already in the special case of binary
CSP [16].

9.1. Directional general-arity BTP
Recall that we assume that a CSP instance I is given in the form of a set

of incompatible tuples NoGoods(I), where a tuple is a set of variable-value
assignments, and that the predicate Good(I, t) is true iff the tuple t does not
contain any pair of distinct assignments to the same variable and @t′ ⊆ t such
that t′ ∈ NoGoods(I). We suppose given a total ordering < of the variables of
a CSP instance I . We write t<x to represent the subset of the tuple t consisting
of assignments to variables occurring before x in the order <, and V ars(t) to
denote the set of all variables assigned by t.

Definition 21. A directional general-arity (DGA) broken triangle on assignments
a, b to variable x in a CSP instance I is a pair of tuples t, u (containing no as-
signments to variable x) satisfying the following conditions:

1. t<x and u<x are non-empty
2. Good(I, t<x∪u<x) ∧ Good(I, t<x∪{〈x, a〉}) ∧ Good(I, u<x∪{〈x, b〉})

3. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<x = t<x ∧ t′ ∪{〈x, a〉} /∈NoGoods(I)
4. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<x = u<x ∧ u′ ∪ {〈x, b〉} /∈

NoGoods(I)
5. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

I satisfies the directional general-arity broken-triangle property (DGABTP) accord-
ing to the variable ordering < if no directional general-arity broken triangle
occurs on any pair of values a, b for any variable x.

Points (1), (2) and (5) of Definition 21 are illustrated by Figure 11. The two
important differences compared to a general-arity broken triangle (Figure 10)
are that there is now a variable ordering <, with y < x for all variables in

22



y ∈ Y ∪ Z, and the two dashed lines now represent nogoods u ∪ {〈x, a〉} and
t ∪ {〈x, b〉}which possibly involve assignments to variables w > x.

We will show that any instance I satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two operations: (i)
merge all values in the last remaining variable (according to the order <); (ii)
eliminate this variable when its domain becomes a singleton. We will give the
two operations (merging and variable-elimination) and show that both opera-
tions preserve satisfiability and that neither of them can introduce DGA bro-
ken triangles. Moreover, as for GABT-freeness, the DGABTP can be tested in
polynomial time for a given order whether constraints are given as tables of
satisfying assignments or as nogoods. Indeed, in the former case, using items
(3) and (4) in Definition 21 we can restrict the search for a DGA broken triangle
to pairs of tuples satisfying some constraint (there must be a constraint with
scope V ars(t′ ∪{x}) since there is a nogood on these variables by item (5), and
similarly for u′). This is sufficient to define a tractable class.

9.2. Merging
Let x be the last variable according to the variable order <. When values

a, b in the domain of variable x do not belong to any DGA broken triangle, we
can replace a, b by a new value c to produce an instance I ′ with the new set of
nogoods given by Definition 12. Since x is the last variable in the ordering <,
DGA broken triangles on a, b ∈ D(x) are GA broken triangles (and vice versa).
Thus, from Proposition 13 we can deduce that satisfiability is preserved by this
merging operation. What remains to be shown is that merging two values in
the domain of the last variable cannot introduce the forbidden pattern.

Lemma 22 Merging two values a, b into a value c in the domain of the last variable
x (according to a DGABTP variable order <) in an instance I cannot introduce a
directional general-arity broken triangle (DGABT) in the resulting instance I ′.

PROOF. We first claim that this operation cannot introduce a DGABT on a vari-
able y < x. Indeed, assume there is a DGABT on d, e ∈ D(y) in I ′, that is, that
there are tuples v, w such that

1. v<y and w<y are non-empty
2. Good(I ′, v<y ∪ w<y) ∧ Good(I ′, v<y ∪ {〈y, d〉}) ∧ Good(I ′, w<y ∪
{〈y, e〉})

3. ∃v′ V ars(v′) = V ars(v) ∧ (v′)<y = v<y ∧ v′ ∪ {〈y, d〉} /∈NoGoods(I ′)
4. ∃w′ V ars(w′) = V ars(w) ∧ (w′)<y = w<y ∧ w′∪{〈y, e〉} /∈NoGoods(I ′)
5. v ∪ {〈y, e〉} ∈ NoGoods(I ′) ∧ w ∪ {〈y, d〉} ∈ NoGoods(I ′)

If v′ contains the assignment 〈x, c〉 then, by construction of NoGoods(I ′) (Def-
inition 12), ∃v′′ ∈ {(v′ \ 〈x, c〉) ∪ {〈x, a〉}, (v′ \ 〈x, c〉) ∪ {〈x, b〉}} such that
v′′ ∪{〈y, d〉} /∈NoGoods(I). If v′ does not contain 〈x, c〉 then let v′′ = v′. Define
w′′ in a similar way. Now considering the last item, if v contains 〈x, c〉 then
by construction of NoGoods(I ′) there is v′′′ assigning a or b to x and otherwise
equal to v, such that v′′′ ∪ {〈y, e〉} was in NoGoods(I), and if v 63 〈x, c〉 we let
v′′′ = v. We define w′′′ similarly. Then:
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1. (v′′′)<y = v<y and (w′′′)<y = w<y are non-empty
2. Good(I, (v′′′)<y∪(w′′′)<y) ∧ Good(I, (v′′′)<y∪{〈y, d〉}) ∧ Good(I, (w′′′)<y∪
{〈y, e〉}) (since x is the last variable, (v′′′)<y = v<y and (w′′′)<y = w<y)

3. V ars(v′′) = V ars(v′′′) ∧ (v′′)<y = (v′′′)<y ∧ v′′∪{〈y, d〉} /∈NoGoods(I)
4. V ars(w′′) = V ars(w′′′) ∧ (w′′)<y = (w′′′)<y ∧ w′′ ∪ {〈y, e〉} /∈

NoGoods(I))
5. v′′′ ∪ {〈y, e〉} ∈ NoGoods(I) ∧ w′′′ ∪ {〈y, d〉} ∈ NoGoods(I)

that is, there was a DGABT on d, e in I , contradicting our assumption.
We now show that a broken triangle cannot be introduced on x. Observe

that since x is the last variable, for all tuples t not containing an assignment
to x, t<x = t holds. We use this tacitly in the rest of the proof. Suppose for a
contradiction that I contained no DGABT, but that after merging a, b ∈ D(x) in
I to produce the instance I ′, in which a, b have been replaced by a new value
c, we have a DGABT on c, d. Then there is a pair of non-empty tuples t, u
(containing no assignments to variable x) satisfying in particular the following
conditions:

(1) Good(I ′, t ∪ u) (4) t ∪ {〈x, d〉} ∈ NoGoods(I ′)
(2) Good(I ′, t ∪ {〈x, c〉}) (5) u ∪ {〈x, c〉} ∈ NoGoods(I ′)
(3) Good(I ′, u ∪ {〈x, d〉})

We show that there was a DGABT in I either on a, d, on b, d or on a, b.
Since merging only affects tuples containing 〈x, a〉 or 〈x, b〉, (1) implies that

Good(I, t∪u) and hence Good(I, t∪u′) for all u′ ⊆ u. Similarly, (3) implies that
Good(I, u ∪ {〈x, d〉}) and hence Good(I, u′ ∪ {〈x, d〉}) for all u′ ⊆ u. Similarly,
(4) implies that t ∪ {〈x, d〉} ∈NoGoods(I).
There are three possible cases to consider:

(a) Good(I, t ∪ {〈x, a〉}),

(b) Good(I, t ∪ {〈x, b〉}),

(c) ∃t1, t2 ⊆ t such that t1 ∪ {〈x, a〉}, t2 ∪ {〈x, b〉} ∈ NoGoods(I).

case (a): By Definition 12 of the creation of nogoods during merging, (5) im-
plies that ∃u′ ⊆ u such that u′ ∪ {〈x, a〉} ∈ NoGoods(I). We know that u′

is non-empty since u′ ∪ {〈x, a〉} ∈ NoGoods(I) but Good(I, t ∪ {〈x, a〉}) (and
hence Good(I, {〈x, a〉})). We have Good(I, t ∪ u′), Good(I, t ∪ {〈x, a〉}) (and
hence t∪{〈x, a〉} /∈NoGoods(I)), Good(I, u′∪{〈x, d〉}) (and hence u′∪{〈x, d〉} /∈
NoGoods(I)), t∪{〈x, d〉} ∈NoGoods(I), u′∪{〈x, a〉} ∈NoGoods(I) and hence
there was a DGABT on a, d in I .
case (b): Symmetrically to case (a), there was a DGABT on b, d in I .
case (c): We claim that Good(I, t1 ∪ {〈x, b〉}). If not, then we would have
∃t3 ⊆ t1 such that t3∪{〈x, b〉} ∈NoGoods(I) which would imply t1∪{〈x, c〉} ∈
NoGoods(I ′) which is impossible since, by (2) above, we have Good(I ′, t ∪
{〈x, c〉}). By a symmetrical argument, we can deduce Good(I, t2 ∪ {〈x, a〉}).
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Since Good(I, t∪u) and t1, t2 ⊆ t, we have Good(I, t1∪ t2). Since t1∪{〈x, a〉} ∈
NoGoods(I) and Good(I, t2 ∪ {〈x, a〉}) (and hence Good(I, {〈x, a〉})), we must
have t1 6= ∅. By a symmetric argument, t2 6= ∅. We therefore have non-
empty tuples t1, t2 such that Good(I, t1 ∪ t2), Good(I, t1 ∪ {〈x, b〉} (and hence
t1 ∪ {〈x, b〉} /∈ NoGoods(I)), Good(I, t2 ∪ {〈x, a〉}) (and hence t2 ∪ {〈x, a〉} /∈
NoGoods(I)), t1∪{〈x, a〉} ∈NoGoods(I), t2∪{〈x, b〉} ∈NoGoods(I) and hence
we have a DGABT in I on a, b.

Since in each of the three possible cases, we produced a contradiction, this
completes the proof. 2

9.3. Tractability of DGABTP for a known variable ordering
We are now in a position to give a new tractable class of general-arity CSP

instances based on the DGABTP.

Theorem 23 A CSP instance I satisfying the DGABTP on a given variable ordering
can be solved in polynomial time.

PROOF. Suppose that I satisfies the DGABTP for variable ordering < and that
x is the last variable according to this ordering. Lemma 22 tells us that DGA
broken triangles cannot be introduced by merging all elements in D(x) to form
a singleton domain {a}. At this point it may be that {〈x, a〉} is a nogood. In
this case the instance is clearly unsatisfiable and the algorithm halts returning
this result. If not then we simply delete 〈x, a〉 from all nogoods in which it
occurs. This operation of variable elimination clearly preserves satisfiability. It
is polynomial time to recursively apply this merging and variable elimination
algorithm until a nogood corresponding to a singleton domain is discovered
or until all variables have been eliminated (in which case I is satisfiable).

To complete the proof of correction of this algorithm, it only remains to
show that elimination of the last variable x cannot introduce a DGA broken
triangle on another variable y. For all tuples t, u and all values c, d ∈ D(y),
none of Good(I, t<y ∪ u<y), Good(I, t<y ∪ {〈y, c〉}) and Good(I, u<y ∪ {〈y, d〉})
can become true due to the variable elimination operation described above. On
the other hand it is possible that t ∪ {〈y, d〉} or u ∪ {〈y, c〉} becomes a nogood
due to variable elimination. Without loss of generality, suppose that t∪{〈y, d〉}
becomes a nogood and that t′ ∪ {〈y, d〉} is not a nogood for some t′ such that
V ars(t′) = V ars(t) and (t′)<y = t<y . Then by construction there was a nogood
t∪{〈y, d〉}∪{〈x, a〉} before the variable x (with singleton domain {a}) was elim-
inated, and t′ ∪{〈y, d〉}∪ {〈x, a〉}was not a nogood. But then there was a DGA
broken triangle (given by tuples t ∪ {〈x, a〉}, u on values c, d ∈ D(y)) before
elimination of x. This contradiction shows that variable elimination cannot
introduce DGA broken triangles. 2

9.4. Finding a DGABTP variable ordering is NP-hard
An important question is the tractability of the recognition problem of the

class DGABTP when the variable order is not given, i.e. testing the existence
of a variable ordering for which a given instance satisfies the DGABTP. In the

25



case of binary CSP, this test can be performed in polynomial time [7]. Unfortu-
nately, as the following theorem shows, the problem becomes NP-complete in
the general-arity case.

When a DGABTP ordering exists, there is at least one variable x such that
all pairs of values a, b ∈ D(x) are GABT-free. In fact there may be several such
variables which are all candidates for being the last variable in the DGABTP
ordering. For any such variable x, after merging all values in the domain D(x)
so that it becomes a singleton {a}, we can eliminate x from the instance, by
deleting 〈x, a〉 from all nogoods, without changing its satisfiability. It is at this
moment that DGABTs may be introduced on other variables. In the binary
case, we can eliminate all such variables without the risk of introducing bro-
ken triangles. This is because deleting 〈x, a〉 from a binary nogood, such as
{〈x, a〉, 〈y, b〉}, produces the unary nogood 〈y, b〉 corresponding to the elimi-
nation of b from D(y) and the DGABTP cannot be destroyed by such domain
reductions. In the general-arity case, on the other hand, we cannot use such
a greedy algorithm since the elimination of such a variable x may destroy the
DGABTP for the as-yet-unkown variable ordering < if x is not the last variable
according to <.

Theorem 24 Testing the existence of a variable ordering for which a CSP instance
satisfies the DGABTP is NP-complete (even if the arity of constraints is at most 5).

PROOF. The problem is in NP since verifying the DGABTP is polytime for a
given order, so it suffices to give a polynomial-time reduction from the well-
known NP-complete problem 3SAT. Let I3SAT be an instance of 3SAT with
variables X1, . . . , XN and clauses C1, . . . , CM . We will create a CSP instance
ICSP which has a DGABTP variable-ordering if and only if I3SAT is satisfi-
able. For each variable Xi of I3SAT , we add two variables xi, yi to ICSP . To
complete the set of variables in ICSP , we add three special variables v, w, z.
We add constraints to ICSP in such a way that each DGABTP ordering of its
variables corresponds to a solution to I3SAT (and vice versa). The role of the
variable z is critical: a DGABTP ordering > of the variables of ICSP corre-
sponds to a solution to I3SAT in which Xi = true⇔ xi > z. The variables yi
are used to code Xi: yi > z in a DGABTP ordering if and only if Xi = false in
the corresponding solution to I3SAT . The variables v, w are necessary for our
construction and will necessarily satisfy v, w < z in a DGABTP ordering. Each
clause C = l1 ∨ l2 ∨ l3, where l1, l2, l3 are literals in I3SAT , is imposed in ICSP

by adding constraints which force one of l1, l2, l3 to be false. To give a concrete
example, if C = X1 ∨ X2 ∨ X3, then constraints are added to ICSP to force
y1 < z or y2 < z or y3 < z in a DGABTP ordering. If the clause C contains a
negated variable Xi instead of Xi, it suffices to replace yi by xi.

We now give in detail the necessary gadgets in ICSP to enforce each of the
following properties in a DGABTP ordering:

1. v, w < z

2. yi < z⇔ xi > z

3. yi < z or yj < z or yk < z
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We introduce broken triangles in order to impose these properties. However,
it is important not to inadvertently introduce other broken triangles. This can
be avoided by making all pairs of assignments 〈x, a〉, 〈x′, a′〉 from two different
gadgets incompatible (i.e. {〈x, a〉, 〈x′, a′〉} ∈NoGoods(ICSP )). We also assume
that two gadgets which use the same variable x use distinct domain values
in D(x). To avoid creating a trivial instance in which the gadgets disappear
after establishing arc consistency, we can also add extra values in each domain
which are compatible with all variable-value assignments in the gadgets.

We give the details of the three types of gadget:

1. The gadget to force v, w < z in a DGABTP ordering consists of values
a0 ∈ D(z), b0, b1 ∈ D(v), c0, c1 ∈ D(w) and three nogoods {〈z, a0〉, 〈v, b0〉},
{〈z, a0〉, 〈w, c0〉}, {〈v, b1〉, 〈w, c1〉}. The only way to satisfy the DGABTP
on this triple of variables is to have v, w < z since there are broken trian-
gles on variables v and w.

2. To force yi < z⇔ xi > z in a DGABTP ordering we use two gadgets, the
first to force yi > z ∨ xi > z and the second to force yi < z ∨ xi < z.
The first gadget is a broken triangle consisting of values a1, a2 ∈ D(z),
d0 ∈ D(xi), e0 ∈ D(yi) and two nogoods {〈z, a1〉, 〈xi, d0〉}, {〈z, a2〉, 〈yi, e0〉}.
In a DGABTP ordering we must have yi > z ∨ xi > z.
The second gadget consists of values a3, a4 ∈ D(z), b2 ∈ D(v), c2 ∈
D(w), d1 ∈ D(xi), e1 ∈ D(yi) and four nogoods {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉},
{〈z, a4〉, 〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉, 〈w, c2〉, 〈yi, e1〉}, {〈z, a3〉, 〈w, c2〉, 〈yi, e1〉}.
We assume that we have forced v, w < z using the gadget described in
point (1). The tuples t = {〈v, b2〉, 〈xi, d1〉}, u = {〈w, c2〉, 〈yi, e1〉} then
form a DGA broken triangle on assignments a3, a4 ∈ D(z) if xi, yi > z. If
either xi < z or yi < z then there is no DGA broken triangle; for exam-
ple, if xi < z, then we no longer have Good(ICSP ,t<z ∪ {〈z, a3〉}) since
t<z ∪ {〈z, a3〉 is precisely the nogood {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}. Thus this
gadget forces yi < z ∨ xi < z in a DGABTP ordering.

3. The gadget to force yi < z or yj < z or yk < z in a DGABTP ordering con-
sists of values a5, a6 ∈ D(z), b3 ∈ D(v), c3 ∈ D(w), e2 ∈ D(yi), e3 ∈ D(yj),
e4 ∈ D(yk) and five nogoods, namely {〈z, a6〉, 〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉},
{〈z, a5〉, 〈w, c3〉}, {〈z, a5〉, 〈yi, e2〉}, {〈z, a5〉, 〈yj , e3〉}, {〈z, a5〉, 〈yk, e4〉}. The
tuples t = {〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉}, u = {〈w, c3〉} form a DGA
broken triangle on a5, a6 ∈ D(a) if yi, yj , yk > z. If yi < z or yj < z or
yk < z, then there is no DGA broken triangle; for example, if yi < z, then
we no longer have Good(ICSP ,t<z ∪ {〈z, a5〉}) since {〈z, a5〉, 〈yi, e2〉} is a
nogood. Thus this gadget forces yi < z or yj < z or yk < z in a DGABTP
ordering.

The above gadgets allow us to code I3SAT as the problem of testing the exis-
tence of a DGABTP ordering in the corresponding instance ICSP . To complete
the proof it suffices to observe that this reduction is clearly polynomial. 2

Our proof of Theorem 24 used large domains. The question still remains
whether it is possible to detect in polynomial time whether a DGABTP variable
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ordering exists in the case of domains of bounded size, and in particular in the
important case of SAT.

10. Conclusion

This paper described a novel reduction operation for binary CSP, called
BTP-merging, which is strictly stronger than neighbourhood substitution. Ex-
perimental trials have shown that in several benchmark-domains applying
BTP-merging until convergence can significantly reduce the total number of
variable-value assignments. We gave a general-arity version of BTP-merging
and demonstrated a theoretical link with resolution in SAT. From a theoret-
ical point of view, we then went on to define a general-arity version of the
tractable class defined by the broken-triangle property for a known variable
ordering. Our investigation of the interaction of BTP-merging and AllDiffer-
ent constraints have shown that the semantics of binary constraints can allow
us to speed up the search for BTP-merges. An interesting avenue of future re-
search is to try to take advantage of the semantics of other types of constraints
to speed up the search for BTP-merges.
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