

A PLM components monitoring framework for SMEs based on a PLM maturity model and FAHP methodology

Haiqing Zhang, Abdelaziz Bouras, Aicha Sekhari, Yacine Ouzrout, Suiran Yu

▶ To cite this version:

Haiqing Zhang, Abdelaziz Bouras, Aicha Sekhari, Yacine Ouzrout, Suiran Yu. A PLM components monitoring framework for SMEs based on a PLM maturity model and FAHP methodology. The Journal of Modern Project Management, 2014, 2 (1), pp.108-119. 10.3963/jmpm.v2i1.53 . hal-01356038

HAL Id: hal-01356038 https://hal.science/hal-01356038

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A PLM components monitoring framework for SMEs based on a PLM maturity model and FAHP methodology

Haiqing Zhang¹, Abdelaziz Bouras^{†1}, Aicha Sekhari¹, Yacine Ouzrout¹ and Suiran Yu²

1 DISP laboratory, University Lumi ère Lyon 2, France

160 Bd de l'Universit é 69676 Bron Cedex

† ictQATAR chair, Computer Science Dept., Faculty of Engineering

Qatar University, Box. 2731, Doha, Qatar

2 School of Mechanical and Power Engineering, Shanghai Jiao Tong University, China

{haizhang, aicha.sekhari, yacine.ouzrout}@univ-lyon2.fr

abdelaziz.bouras@qu.edu.qa

Abstract-Right PLM components selection and investments enlarge business' benefits. This paper develops a PLM components monitoring framework to assess and guide PLM implementation in small and middle enterprises (SMEs). The framework builds upon PLM maturity models and decision-making methodology. PLM maturity model has the capability to analyze PLM functionalities and evaluate PLM components. A proposed PLM components maturity assessment (PCMA) model can obtain general maturity levels of PLM components based on key performance indicators. Investment decisions should be made from the relative weaker PLM components based on the results of PCMA. One developed method of the fuzzy analytical hierarchy process (Fuzzy AHP) is applied to extract the premier needed improvement component. The results of a first empirical assessment in a swimming industry are presented, which could be as benchmark data for the other Small and Medium sized Enterprises (SMEs) to develop their own PLM components monitoring framework to increase the success of their PLM implementation.

Keywords—PLM components monitoring framework; PLM maturity model; Fuzzy AHP methodology; PLM components maturity assessment; PLM benefits

1 INTRODUCTION

PLM is an improving important business and strategic approach for enterprises. It supplies sets of solutions for collaboration, data management, and requirements management from a product's beginning of life to end-of-life. However, PLM is rather a concept than a system. Enterprises cannot adopt and implement PLM well at the right time. PLM maturity models have been developed and used to assess the PLM implementation situation and determine the relative position of the enterprise by comparing PLM maturity levels with other enterprises. The paper gives an overview of PLM maturity models and studies the benefits and restrictions of these maturity models in section 1.1. Then it defines the maturity dimensions based on PLM functionalities in section 1.2. In section 1.3, multi-criteria decision making methodologies are studied to aid selecting the optimal PLM components among various PLM functionalities, in the right context, at the right time.

1.1 PLM maturity models

The success of PLM motivates a significant number of companies to adopt and implement PLM. PLM maturity models can make the implementation of PLM more accessible and better planned. Evaluation of PLM maturity is essential and advantageous. The objective of this section is to review the important works, and analyze the strengths and weaknesses of these models.

Several important maturity models are worth analyzing. CMMI [7, 9-12] for instance aims to improve the usability of maturity models by integrating several maturity models into one framework. The detail maturity levels and key process areas of CMMI are shown in Table 1. PDM (Product Data Management) maturity models [1] define the activities that a company needs to carry out at each stage and define a generic five-step process per stage, which related to the as-is situation and to-be situation of the studied company. CPI (Collaborative Product Innovation) maturity model [2] proposes three unique stages of CPI based on collaborative maturity of People, Processes and Data. Batenburg [3] developed a PLM framework which supported by a PLM maturity and alignment model to assess and guide PLM implementations. Sääksvuori Model [4] determines the maturity of a large international corporation for a corporate-wide PLM development program and develops business and PLM related issues. This model is a one-dimensional maturity model, which mixes different organizational aspects into one general dimension. Bensiek & Kuehn model [5] focuses on virtual engineering and aims to evaluate performance and improvement in SMEs. This model proposes a step by step improvement strategy to SMEs based on specialized SMEs' requirements. Other PLM maturity models include PLMIG [6], PCMA model [14], and BPMM [8]. Next, we discuss and compare five important works according to several aspects (aim area, target users, etc.) in Table 2.

CMMI Maturity Levels	Focus	Key Process Areas
1: Initial	Basic project	Requirements management; Project planning; Project monitoring
2. Repeatable	management	and control; Supplier agreement management; Process and product quality assurance; Configuration management
3.Defined	Process standardization	Requirements development; Technical solution; Product integration; Verification; Validation; Organizational process focus; Organizational process definition; Organizational training; Risk management; Decision analysis and resolution
4. Quantitative	Quantitative management	Organizational process performance; Quantitative project management;
5.Optimizing	Continuous process improvement	Organizational innovation and deployment; Causal analysis and resolution

Table 2	Comparison	of Some	PLM	Maturity	Models

Maturity Models	CMMI [7,9-12]	Batenburg model [3]	PLMIG model [6]	S ääksvuori & Immonen model[4]	Bensiek& Kuehn model [5]
Aim area	Process Improvement	PLM	PLM	PLM	Virtual engineering

Target users	Managers/ clients	managers	Mar clier	nagers/ nts	man	agers	SN	ИEs
Distribute	Open	Open	Rest	tricted	Ope	n	Ol	pen
	CMMI: various p	process areas (S	See Ta	able 1)	I			
	Batenburg model	: 5 dimensions	s (strat	tegy and j	policy	, managen	nent	and
	control, organiza	tion and proces	sses, p	people and	d cultu	ure and info	orma	ation
Dimensions	technology)							
	PLMIG model: 5	dimensions (d	lata, p	eople, pr	ocesse	es, technolo	ogy a	and
	knowledge)							
	S ääksvuori & Im	monen model:	1 dim	nension (PLM	generic ma	turi	ty)
	Bensiek& Kuehn	model: 5 action	on fiel	ds (data 1	nanag	gement, re-	use,	
	documentation, p	oroduct analysi	s, cult	ure)				
Levels (short	5 levels	4 levels		5 levels		5 levels		4 levels
descriptions)								
	CMMI: separates organizational functions, sets process improvement goals							
	and priorities, provides guidance for quality processes, and provides a point of							
	reference for appraising current processes							
	Batenburg model: Balance between dimensions, easier to understand and							
	apply, provides benchmark data to other maturity models.							
Benefits	PLMIG model: Advices to next steps, identifies gaps among levels,							
	coordinates betw	een different d	imens	sions.				
	S ääksvuori & Im	monen model:	Defin	nes criteri	a for 1	eaching ea	ich l	evel
	requirements, evolves from level 1 to level 5 while PLM maturity grows.							
	Bensiek& Kuehn	model: Offers	s a stej	p by step	perfor	rmance imp	prov	ement to
	SMEs, applicatio	n can be finish	ied in	short tim	e.			
	CMMI: SMEs les	ss likely to ben	efit fr	om CMN	4I, tin	ne consumi	ng	
	questionnaires, CMMI deals with which processes should be implemented,							
	but not so much with how processes can be implemented.							
Restrictions	Batenburg model: focuses on improvement towards inter-organizational level.							
11050110115	PLMIG model: a	PLMIG model: application areas quite narrow.						
	S ääksvuori & Im	monen model:	shoul	d be refir	ned by	more elab	orat	ed PLM
	maturity assessm	ent framework	such	as Baten	burg n	nodel.		
	Bensiek& Kuehn	model: applic	ation	areas qui	te narı	ow.		
2 Demand strategies to achieve To-Be PLM								

After studying these PLM maturity models, we can conclude as follows:

- 2 Demand strategies to achieve To-Be PLM implementation: these models have not proposed strategies on how to go to the To-Be level.
 3 Relative importance of dimensions to the overall
- Assess As-Is PLM implementation: most of these PLM maturity models have been applied to assess the As-Is situation of a company.
- Relative importance of dimensions to the overall PLM maturity level: fewer works discussed about how to allocate structural weights of

different dimensions to balance different business needs.

Our previous works [13-15] focus on proposing strategies to help companies to achieve To-Be PLM implementation, and figure out the relative importance of PLM dimensions. This work will give a detailed description of PLM Components Maturity Model (PCMA) and will study the As-Is situation of the PLM components in section 2.

1.2 Maturity dimensions based on TIFOS framework

To better handle PLM functionalities which have been adopted in a company, our previous work proposed TIFOS framework [14, 15]. In figure 1, the PLM functionalities are categorized into five dimensions based on Technoware, Inforware, Functionware, Orgaware and Sustainware. For example, the functionality of product data management in Functionware is to handle tons of information and data related to products.

Fifteen PLM components have been proposed based on these functionalities. These fifteen PLM components are maturity dimensions: techniques & practices, PLM software & applications, strategy & supervision, quality management, business management, maintenance management, BOM management, PDM, financial management, people, distributed collaboration management, workflow & process management, eco-friendly & innovation, life cycle assessment and green conception.

1.3 Decision Methodology of fuzzy analytic hierarchy process

The research questions as follows: 1). which PLM component is the relative weak one; and 2). which PLM component should be improved in the first time. To solve these issues, we need to define the objective, the corresponding criteria, and the alternatives, and then calculate the relative weights of each alternative to achieve the objective. It is a typical multi-criteria decision making issue. Therefore, we study

multi-criteria decision making methodologies.

The obtained data about PLM components has the feature of uncertainty and fuzzy, which can be solved by triangular fuzzy numbers. A number of methods have been developed to handle fuzzy triangular numbers. Van Laarhoven & Pedrycz [16] suggest a fuzzy logarithmic least squares method to obtain the fuzzy weights from a triangular fuzzy comparison matrix. Buckley [17] utilizes the geometric mean method to calculate fuzzy weights. Chang [18] proposes an extent analysis method, which derives crisp weights for fuzzy comparison matrices. Xu [19] provides forward a fuzzy least squares priority method (LSM). Csutora & Buckley [20] propose a Lambda-Max method, which is the direct the fuzzification of well-known λ-max method. Mikhailov [21] develops a fuzzy preference programming method, which also derives crisp weights from fuzzy comparison matrices. Srdjevic [22] proposs a multi-criteria approach for combining prioritization methods within the AHP, including additive normalization, eigenvector, weighted least-squares, logarithmic least-squares, logarithmic goal programming and **f**uzzy preference programming (FPP). Wang et al. [23] presents a modified fuzzy logarithmic least square method. Yu & Cheng [24] develop a multiple objective programming approach for the ANP to obtain all local priorities for crisp or interval judgments at one time, even in an inconsistent situation. Huo et al. [25] propose a new parametric prioritization method to determine a priority vectors in AHP.

FPP method [21], as a reasonable and effective means, is adopted in this study. This method can obtain more precise weights of alternatives and can acquire the consistency ratios of fuzzy pairwise comparison matrices without additional study, and the local weights can be easily solved by Matlab. Besides FPP method solves the various shortcomings of different fuzzy AHP methodologies [26].

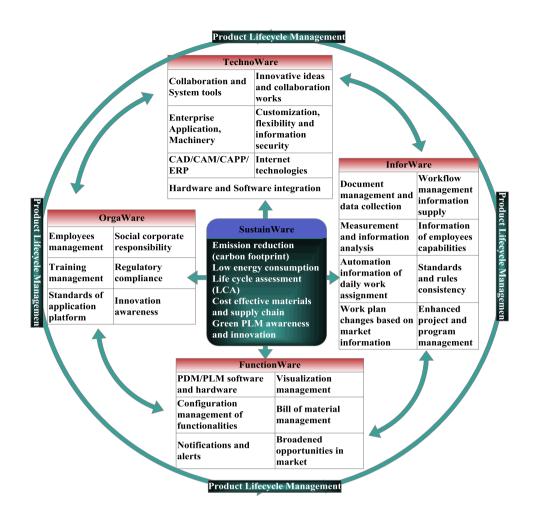


Fig. 1. TIFOS Framework and Categorized PLM functionalities

The structure of this paper is structured as follows: PLM components maturity model will be proposed in section 2, and the maturity situation of PLM components in a swimming industry will be studied as well. In section 3, FAHP methodology will be adopted to rank PLM components' weights and help a company to make decisions of investment. In section 4, five different PLM models which contain different PLM components will be discussed. Section 5 proposes a PLM components monitoring framework by combining a PLM maturity model and FAHP methodology. Section 6 concludes our work.

2 THE PROPOSED PLM COMPONENTS MATURITY ASSESSMENT MODEL

PLM Components Maturity Assessment model (PCMA) [14] considered viewpoints of different maturity models and analyzed key performance indicators of PLM components. This maturity model follows the principle structure of CMMI by using the same maturity levels and structured questionnaires. CMMI defined process maturity is developed incrementally from one level to the next level and it does not allow for skipping levels. This limitation of CMMI will result in misleading interpretations for small and middle enterprises (SMEs). PCMA model concerns the limitation and provides clearly gap among each level. Our previous work gives detailed information of fifteen components in each maturity level in which the maturity is assessed separately, and the items of maturity level descriptions are outlined in Table 3.

We give an example in Table 4 for how to evaluate the PLM components maturity level by using PCMA model. Two PLM components (C1 and C2) are selected in Technoware, several KPIs (C1_K1 to C1_K5) are selected for each component, and an evaluator can put the value of each level. The maturity level is gotten by calculating the average value of all KPIs' value which belonging to a specific PLM component.

The issue is how to make the industries understand KPIs which are proposed and get the accuracy value of these KPIs. The solution is to categorize these KPIs by considering their contribution to return on investment. The categories are cost, time, quality, defects, safety, integrity, and ownership. We give an example in Table 5. The component of product data management is selected, and takes the 'cost' category as an example. Four KPIs are proposed based on 'cost' category, and then the detail content is explained for each KPI, and specific questions are proposed based on the contents. These specific questions can help the companies obtain the exact value of each KPI.

Table 6 gives an example of calculations in the final maturity level of the product data management based on the information proposed in Table 3, Table 4, and Table 5. The data is gotten from a swimming industry, which is located in Chengdu (south of China). This company focuses on three categories: cost, time, and quality. KPIs are proposed based on these three categories. Questions are made to help the company to get the values of these KPIs. Maturity level is gotten based on KPIs. The final maturity level is the average score of all KPIs, and product data management is level 2 for this company. The maturity level of all PLM components for this swimming industry is shown in Figure 2.

Maturity	
Levels	Our Work (Items for PLM components Maturity Levels)
	• The activity is done with expediency
1 ad-hoc	Nobody is responsible for PLM
1 44 100	• Documentation is at the lowest point to satisfy operational needs
	• PLM software system and processes have deficiencies
	• The activity is defined and managed, but it is repetitious
	Documentation and record is carefully studied
2 Managed	• Mutual actions are finished in processes and departments
	• PLM systems are involved and used in the proper places.
	• No effort has been made to consider about recycling
	The activity is formalized and supported by standards
	Documentation and record is studied and shared
3 Defined	• Personal actions and mutual actions are carried out efficiently
	• PLM systems are easily implemented
	Environmental awareness occurs
4	Activities run smoothly
	• PLM systems cooperate with other enterprise systems
Quantitatively	• The products run efficiently and are effective
managed	Progressively eliminates errors and failures
5 optimized	The activity runs optimally

Table 3. PCMA Maturity Level and Corresponding Content

•	PLM system helps company make improved decisions
•	Best practices and innovative ideas are considered

TIFOS	PLM Components	KPIs	Levels				
Framework			1	2	3	4	5
	C1: Techniques	C1_K1: %of new products C1_K2: Produce					
	&Practices	products accuracy					
TechnoWare		C1_K3: Running cycle time				-	
	C2: PLM software &	C1_K4: Installation Planning costs			•		
	Applications	C1_K5: % of Waste			•		

Table 4. PLM components and corresponding key performance indicators

Table 5. Product Data Management component and its' corresponding key performance indicators

	Product Data Managem	ent		
	KPIs	Description	Questions	Value
	1. Average Data storage cost	Measure of all data storage/ number of documents (categories)	 How much you pay for information storage (including hardware and software)? How many documents you have to manage? How much memory you need to manage information? (GB) 	
Cost	2. Average Document using frequency per day	Number of document using frequency/ number of all documents using frequency	How many documents you used more than 30 minutes per day?	
	3. Average Document finding time-to-cost	How many time it takes for users to find it in seconds/minutes	How long you spend to find the documents you use every day?	
	4. Average using cost per document	Average cost for printing and creating the .pdf per document	How much you spend to use these documents (including printing, creating the .pdf,)	

	Product Data Management					
Categories	KPIs				Level	
KPIs for cost KPIs for Time	 Average Data storage cost Acceptance necessary time: 	2. AverageDocument usingfrequency per day2. Average numberof training hoursper employee	3. AverageDocument findingtime-to-cost3. Average time fordata change version	4. Averageusing cost perdocument4. Average timefor data creation	4	
KPIs for Quality	1. Data Accuracy Ratio	2. Data Duplication Ratio	3. Potential same data (data cleaning)	-	2	
Final Level	-	-	-	-	2	

Table 6. Product Data Management component and its' maturity level

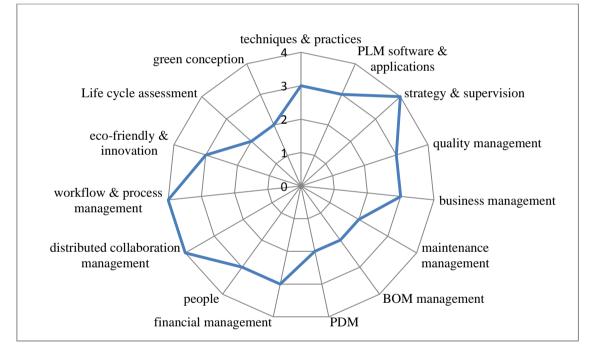


Fig. 2. Maturity Level for fifteen PLM components in a swimming industry

3 PLM COMPONENTS SELECTION BASED ON FAHP METHODOLOGY

3.1 Adopt fuzzy triangular numbers to express linguistic terms

We can get the As-Is situation by using the maturity model PCMA, then the issue is how to help company to improve to the expected To-Be situation by proposing specific strategies. Define the maturity level of PCMA from level 1 to level 5 is: very low, low, middle, high, and very high. Then define the value range for each level. The Linguistic terms (very low, etc.) can better explain the uncertainty of each level. The membership function of triangular fuzzy numbers is used to express linguistic terms and has the feature of piece-wise continuous and strictly monotone. The definition and membership function from 'very low' to 'very high' is shown in Table 7. Figure 3 is used to describe the structure of membership function. The aim to set a range of each level is to help questionnaire responders when they do not know the exact value of the corresponding KPIs.

Fuzzy numbers	Definition	Membership function
0.1	Very Low (VL)	(0, 0.1, 0.3)
0.3	Low (L)	(0.1, 0.3, 0.5)
0.5	Middle (M)	(0.3, 0.5, 0.7)
0.7	High (H)	(0.5, 0.7, 0.9)
0.9	Very High (VH)	(0.7, 0.9, 1)

 Table 7. Definition and membership function of fuzzy scale

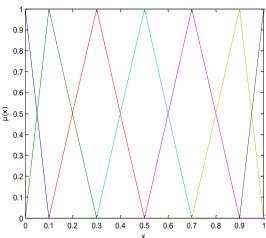


Fig.3. Structure of Fuzzy triangular numbers

3.2 FPP Methodology calculation steps

FPP is an approach which can guarantee the preservation of the preference intensities and provide a well interpretive consistency index. The steps of this methodology as follows:

Step 1. Develop the fundamental objective hierarchy. Group the related criteria, and structure the hierarchy in Figure 4. The objective is to find the optimal PLM component to invest based on several criteria (cost, time, urgent, and expected income). The alternatives are PLM components. It is not necessary for a company to own all fifteen components. This study just focuses on the specific situation of a company.

Step 2. Construct the fuzzy pairwise comparisons matrix based on Table 7 and Figure 3. In our work, we start from comparing the alternatives with their importance to each of the criteria. Then we compare the criteria with respect to their importance to the goal. The equation expression of fuzzy pairwise comparison matrix is:

$$\tilde{\mathbf{A}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
(1)

Where a_{ij} is a triangular fuzzy number to show the decision-maker's preference of i over j, and $a_{ij} = 1/a_{ji}$. The value of each variable follows Table 7. Take 'Product data management' and 'configuration management' as an example, the first level comparison from 'criteria' to 'objective' for these two PLM components is:

$$\tilde{A}_{goal} = \begin{pmatrix} Goal & Cost & Time & Urgent & Income \\ Cost & equal & VH & L & M \\ Time & 1/VH & equal & VL & M \\ Urgent & 1/L & 1/VL & equal & M \\ Income & 1/M & 1/M & 1/M & equal \end{pmatrix}$$
(2)

The value of \tilde{A}_{roal} can be defined by Table 6,

$$\tilde{A}_{goal} = \begin{pmatrix} \hat{1} & 0.9 & 0.3 & 0.5 \\ 1/0.9 & \hat{1} & 0.1 & 0.5 \\ 1/0.3 & 1/0.1 & \hat{1} & 0.5 \\ 1/0.5 & 1/0.5 & 1/0.5 & \hat{1} \end{pmatrix}$$
(3)

On the basis of fuzzy triangular numbers definition, the exactly value of \tilde{A}_{goal} is:

$$\tilde{A}_{goal} = \begin{pmatrix} (1,1,1) & (0.7, 0.9, 1) & (0.1, 0.3, 0.5) & (0.3, 0.5, 0.7) \\ (1,1.1,1.42) & (1,1,1) & (0, 0.1, 0.3) & (0.3, 0.5, 0.7) \\ (2,3.3,10) & (3.3,10,100) & (1,1,1) & (0.3, 0.5, 0.7) \\ (1.42,2,3.3) & (1.42,2,3.3) & (1.42,2,3.3) & (1,1,1) \end{pmatrix}$$
(4)

Step 3. Derive a crisp priority vector $w=(w_1, w_2, \dots, w_n)^T$ by using FPP. The problem is to derive a crisp priority vector $w=(w_1, w_2, \dots, w_n)^T$, and the

priority ratios w_i / w_j are approximately within the scopes of the initial fuzzy judgments, or equivalently:

$$l_{ij}(\alpha) \tilde{\leq} \frac{wi}{wj} \tilde{\leq} u_{ij}(\alpha)$$
 (5)

Where the symbol ' \leq ' denotes the statement "fuzzy less or equal to". α means decision maker's preference (α -cut), and $l_{ij}(\alpha), u_{ij}(\alpha)$ is the lower and upper bound of fuzzy triangular numbers.

For instance, the priority ratios w_i/w_j can be the ratios between 'product data

management'/'configuration management'.

Step 4. Propose Membership function to measure the ratio in equation 5. Each crisp priority vector *w* satisfies the double-side inequality with some degree, which can be measured by a membership function, linear with respect to the unknown ratio w_i/w_i .

$$u_{ij}(\frac{w_i}{w_j}) = \begin{cases} \frac{\frac{w_i}{w_j} - l_{ij}}{m_{ij} - l_{ij}}, \frac{w_i}{w_j} \le m_{ij} \\ -\frac{w_i}{w_j} + u_{ij}}{\frac{w_i}{-m_{ij}} + u_{ij}}, \frac{w_i}{w_j} \ge m_{ij} \end{cases}$$
(6)

The membership function takes the following values:

$$\mu_{ij}(\frac{w_i}{w_j}) \in [0,1], \text{ if } l_{ij} \le \frac{w_i}{w_j} \le u_{ij} \quad (7)$$

$$\mu_{ij}(\frac{w_i}{w_j}) \in (-\infty, 0), \text{ if } \frac{w_i}{w_j} < l_{ij} \text{ or } \frac{w_i}{w_j} > u_{ij} \quad (8)$$

It takes the maximum value of 1 when

$$\frac{w_i}{w_j} = m_{ij} \quad (9)$$

For example, this membership function can mean the function of ratio 'product data

management/configuration management'.

Step 5. Propose two assumptions to obtain the optimal crisp priority vector. For example, it means find the optimal value of 'product data management/configuration management'. The solution to the prioritization problem by the FPP method is based on two main assumptions. The first

one requires the existence of non-empty fuzzy feasible area P on the (n-1) dimensional simplex Q^{n-1} :

$$Q^{n-1} = \{w_i \mid \sum_{i=1}^n w_i = 1, w_i > 0\} \quad (10)$$

The membership function of the fuzzy feasible area *P* is given by:

$$\mu_p(w) = \min_{ij} \{\mu_{ij}(w) \mid i = 1, 2, ..., n-1, j = 2, 3, ..., n, j > i\}$$
(11)

The second assumption of the FPP method specifies a selection rule, which determines a priority vector, having the highest degree of membership in the aggregated membership function. It can easily be proved that $\mu_p(w)$ is a convex set, so there is always a priority vector $w^* \in Q^{n-1}$ that has a maximum degree of membership.

$$\lambda^* = \mu_p(w^*) = \max_{w \in O^{n-1}} \min\{\mu_{ij}(w)\}$$
(12)

Step 6. Transform the problem into a bilinear program based on the rule of Bellman and Zadeh [27]. The equation is in the following:

$$\max \lambda$$

s.t.
 $(m_{ij} - l_{ij})\lambda w_j - w_i + l_{ij}w_j \le 0;$
 $(u_{ij} - m_{ij})\lambda w_j + w_i - u_{ij}w_j \le 0;$
 $\sum_{k=1}^{n} w_k = 1;$
 $w_k > 0,$
 $i = 1,..., n - 1, j = 2,..., n, j > i, k = 1,..., n$
(13)

3.3 Implementation in real-word cases

Data was selected in a swimming industry from January to July. The reason we selection this company is because the security and sustainability become the first issue to be considered in China. Take three widely used PLM components as the alternatives, which are: product data management (C1), new product development (C2), and configuration management (C3). The goal is to help the manager to make the decision of which component should be first invested in. The criteria are cost to invest, time to invest, urgent to invest, and the expected income after invest.

This company is a small and middle enterprise. They need to update the product data management to afford the increasing information, at the same time, new security software should be invested to protect customers' safety and configuration management should be updated to configure new requirements. Four pair-wise comparison matrixes are established based on four criteria. The aim of these matrixes is to find the optimal components to balance the cost, time, urgent need, and expected income. The weights which are obtained from these matrixes are called local weights. After that, build a global matrix to determine the relative weights of cost, time, urgent, and income to obtain the global weights. The final weights are gotten by combining local weights and global weights.

Next, we build fuzzy comparison pairwise matrix for obtaining local weights and global weights. Table 8 gives the data of fuzzy comparison matrix based on 'cost' criterion. Table 9 shows the comparison from criteria to global goal. Apply FPP steps in section 3.2 to obtain the final weights of three components in Table 10. 'Product data management' is the optimal component for investment based on the final weights.

 Table 8. Fuzzy comparison pairwise matrix for getting local weight

Cost	C1	C2	C3
C1	Equal	Н	VH
C2	1/H	Equal	Н
C3	1/VH	1/H	Equal

 Table 9. Fuzzy comparison pairwise matrix for getting global weight

	Cost	time	urgent	income
cost	Equal	VH	L	М
time	1/VH	Equal	VL	М
urgent	1/L	1/VL	Equal	М
income	1/M	1/M	1/M	Equal

Table 10. Local weights and global weights

	C1	C2	C3	Global
				Weight
Cost	0.6286	0.2854	0.1014	0.1857
time	0.5058	0.3230	0.1676	0.1296
urgent	0.3378	0.4305	0.2317	0.3823
income	0.2485	0.4251	0.3264	0.2845
Final weight	0.3821	0.3804	0.2220	

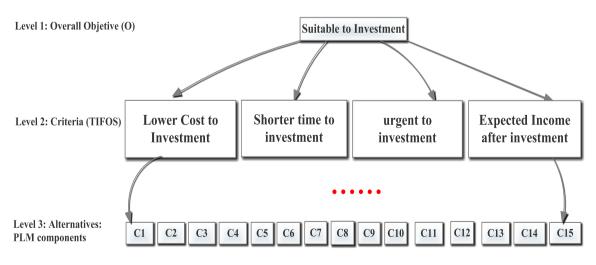


Fig.4. FAHP hierarchy towards of PLM components selection

4 NEW SWIFT OF PLM MODELS IN SMES

In the market, many companies adopt on premise PLM model which includes various PLM components. But the on premise model is too heavy for small and middle enterprises (SME). The cost of on premise PLM model is expensive and many functionalities of this model are useless for SMEs. In order to help SMEs to well-planned and implement PLM systems, the vendors swift on premise PLM mode to 'as SaaS', 'in the cloud', 'in-a-box' and 'out-of-the-box' to compromise the shortcomings of on premise mode. Work should be done to dig out how much benefits these new modes can bring to SMEs by analyzing key performance indicators. Firstly, we will discuss what the PLM modes are.

The detail information of five PLM models is in the following:

- 1 **On premise**, hosted in your company, which is the traditional PLM system.
- 2 PLM-in-the-cloud appears because on premise PLM model cannot efficiently share product data with stakeholders.
- 3 As SaaS (Software-as-a-Service) in rental mode and hosted in the Cloud. This mode has overlapping between cloud computing. Cloud computing can refer to several different service types, including Application/Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).
- 4 PLM-in-a-box is to implement and host multiple PLM instances in one Box. The idea is corporate wide PLM implementations with multiple business units and sites.
- 5 PLM-out-of-the-box typically refers to software that users install and immediately start using, with full access to all program functions and features. PLM-out-of-the-box is extended to a solution seamlessly integrates one system (eg. ERP) with another system (eg. CAD).

The future will analyze the PLM components which are needed in a company, study the PLM components in these five PLM models, and figure out which type of PLM model is the optimal option for a specific company.

5 A FRAMEWORK TO MONITOR PLM MATURITY LEVEL

In this section, we propose a PLM component monitoring framework (figure 5) to monitor PLM components' situation. This framework is combined by section 2, section 3, and section 4.

In this framework, we adopted PCMA model to evaluate the as-is maturity situation of PLM components. Next, various KPIs will be studied to help propose strategies which PLM component should be selected to invest. Then, the FPP methodology is used to determine the relative considerable PLM component. After that, a detailed report will be generated for PLM components' current maturity level, and the obtained the weights of all PLM components to determine of the optimal selection. On the basis of optimal selection, the maturity situation of a company will achieve to a higher level after improving a specific PLM component. Then, the PLM components that should be used in a specific company is determined, the suitable PLM models should be invested in this company based on cost, quality, time, etc. Finally, the feedback loop in Figure 5 indicates that is required to re-assess the PLM maturity with a certain frequency, say every six months or once in a year. By doing so we can measure whether the PLM components are on track in reaching the new maturity level, and the adopted PLM model is the optimal option in terms of cost, time, quality, etc.

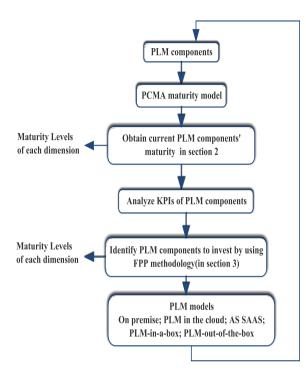


Fig.5. PLM components monitoring framework

6 CONCLUSION

Studying the features and functionalities of PLM is essential for companies and researchers. Many companies' failures are caused by lacking a clear understanding of what PLM is. Our work studies, the PLM maturity models, and functionalities of PLM seek to find out a solution for this issue. We group all PLM components into TIFOS framework based on PLM functionalities, and propose PCMA maturity model to evaluate PLM components' strength and weakness.

This work focuses on helping the SMEs to choose the right PLM model accompanying with the right PLM components at the right time by applying PLM components monitoring framework in section 5. A case study in a Chengdu swimming industry shows that PLM components in Sustainware and Functionware is relatively weak. This company has a tough decision about which component should be first invested from: 'product data management', 'new product development', and 'configuration management'. Decision results are obtained by developing FPP methodology. 'Product data management' is the optimal choice by comparing with other components in terms of lower cost, shorter time, quality, and expected income.

Key performance indicators of PLM models will be further studied. The next step of this work will focus on experiments of PLM models measurement in SMEs by using KPIs.

7 ACKNOWLEDGEMENTS:

This work has been funded by Hubert Curien Partnership with Cai Yuanpei China project 2012-2014.

8 **REFERENCES**

- Stark, J., (2005). Product Lifecycle Management-21Century Paradigm for Product Realization, Springer-Verlag, London.
- Sharma, A. (2005) "Collaborative Product Innovation: Integrating Elements of CPI via PLM Framework." Computer-Aided Design 37 (13) (November): 1425–1434.
- 3 Batenburg, R., Helms,R.W. and Versendaal,J. (2006) PLM roadmap: stepwise PLM implementation based on the concepts of maturity and alignment, Int. J. Product Lifecycle Management, Vol.1,No.4,pp. 333-351.
- 4 Saaksvuori, A., Immonen, A., (2008). Product lifecycle management. Springer.
- 5 Bensiek, T., Kuehn, A., (2012). Maturity Model for Improving Virtual Engineering in Small and Medium-Sized Enterprises, in: Product Lifecycle Management. Towards Knowledge-Rich Enterprises. Springer, pp. 635–645.
- 6 PLMIG, PLM Interest Group (2007) PLM Maturity Reference Manual. Version 1.0, 19 March.

- Dayan, R., Evans, S., 2006. KM your way to CMMI. Journal Of Knowledge Management 10, No 1, 69–80.
- 8 Van Looy, Amy, and Geert Poels. (2012). "Towards a Decision Tool for Choosing a Business Process Maturity Model." In Proceedings of the 7th International Conference on Design Science Research in Information Systems: Advances in Theory and Practice, 78– 87.
- Paulk, M.C., Curtis, B., Chrissis, M.B., Weber,
 C.V., (1993). Capability maturity model, version
 1.1. IEEE Software 10, 18 –27.
- 10 CMMI Overview. Software Engineering Institute. Accessed 16 February 2011.3
- 11 Alfaraj, H.M., Qin, S., (2011). Operationalising CMMI: integrating CMMI and CoBIT perspective. Journal of Engineering, Design and Technology 9, 323–335.
- Curtis, B., Hefley, B., Miller, J., (2009). People Capability Maturity Model (P-CMM) Version
 2.0, Second Edition. Pittsburgh, PA, Carnegie Mellon University.
- 13 Zhang, Haiqing, Yacine Ouzrout, Abdelaziz Bouras, Vincenzo Della Selva, and Matteo Mario Savino. 2013. "Selection of Product Lifecycle Management Components Based on AHP Methodologies." In Advanced Logistics and Transport (ICALT), 2013 International Conference On, 523–528.
- H. Zhang, Y. Ouzrout, A. Bouras, A. Mazza, M. Savino . "PLM Components Selection Based on a Maturity Assessment and AHP Methodology". International Conference on Product Lifecycle Management Conference (PLM'13), Nantes, France, 6-10July, 2013.
- 15 Haiqing Zhang , Yacine Ouzrout , Abdelaziz Bouras , Matteo Mario Savino. (2013)"Sustainability consideration within Product

Lifecycle Management through Maturity Models Analysis". Int. J. Services and Operations Management, Accepted.

- Van Laarhoven, P. J. M., & Pedrycz, W. (1983).
 A fuzzy extension of Saaty's priority theory. Fuzzy sets and Systems, 11(1), 199-227.
- 17 Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy sets and systems, 17(3), 233-247.
- 18 Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP.European journal of operational research, 95(3), 649-655.
- 19 Xu, R. (2000). Fuzzy least-squares priority method in the analytic hierarchy process. Fuzzy Sets and Systems, 112(3), 395-404.
- 20 Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: the Lambda-Max method. Fuzzy sets and Systems, 120(2), 181-195.
- 21 Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33.
- 22 Srdjevic, B. (2005). Combining different prioritization methods in the analytic hierarchy process synthesis. Computers & Operations Research, 32(7), 1897-1919.
- 23 Wang, Y. M., Elhag, T., & Hua, Z. (2006). A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process. Fuzzy Sets and Systems,157(23), 3055-3071.
- 24 Yu, J. R., & Cheng, S. J. (2007). An integrated approach for deriving priorities in analytic network process. European Journal of Operational Research, 180(3), 1427-1432.
- 25 L. A. Huo, J. B. Lan and Z. X. Wang, "New Parametric Prioritization Methods for an Analytical Hierarchy Process Based on a Pairwise Comparison Matrix," Mathematical and

Computer Modelling, Vol. 54, No. 11-12, 2011, pp. 2736-2749.

- 26 Rezaei, Jafar, Roland Ortt, and Victor Scholten.
 2012. "An Improved Fuzzy Preference Programming to Evaluate Entrepreneurship Orientation." Applied Soft Computing (December). doi:10.1016/j.asoc.2012.11.012.
- 27 R. Bellman, L.A. Zadeh, (1970).
 Decision-making in a fuzzy environment, Management Science. 17 (4) 141–164.