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Abstract. Pairwise comparison matrix (PCM) with crisp or fuzzy elements should satisfy consistency require-
ments when it is used in analytic hierarchy process (AHP) or in fuzzy AHP methodologies. An algorithm has been 
presented to obtain a new modified consistent PCM for the corresponding inconsistent original one.  The algo-
rithm sets a linear programming problem based on all of the constraints. To obtain the optimum eigenvector of the 
middle value of the new PCM, segment tree is used to gradually approach the greatest lower bound of distance 
with the original PCM.  As to obtain the lower value and upper value of the new PCM, a theory is proposed to 
reduce adding uncertainty factors and could maximum maintain the similarity with original PCM. The experi-
ments for crisp elements show that the proposed approach can preserve more the original information than refer-
ences. The experiments for fuzzy elements show that our method can effectively reduce inconsistency and obtain 
suitable modified fuzzy PCMs.  

Keywords: AHP, Fuzzy AHP, Inconsistency pairwise comparison matrix, Preserve information, Decision Making 

1.  Introduction 

Analytic Hierarchy Process (AHP) [1, 10-11] and 
Fuzzy AHP [12-13] are multi criteria decision-
making methodologies which are widely used in 
many real problems. The AHP expresses the relative 
importance of criteria by pairwise comparisons and 
converts the values of pairwise comparisons to priori-
ties. However, AHP method has the inability to han-
dle uncertain and imprecise situations due to the dif-
ficulty of mapping decision-makers’ preferences into 
crisp value [34]. Fuzzy sets theory can appropriately 
handle uncertainty and imprecision issues [31, 7, and 
8]. It can better describe vague demands or capacities 
with tolerance than probability distributions. It is also 
a sophisticated technique to solve real problems 
when data is subject to imprecision. Fuzzy AHP 
methodology [12-13] adopts triangular (or trapezoi-
dal) membership functions to define fuzzy sets of 

decision-makers’ preferences. It derives the fuzzy 
priorities of criteria from pairwise comparisons ma-
trix with triangular (or trapezoidal) fuzzy elements to 
tackle the uncertainty and inaccurate issues in multi-
criteria decision-making process. To make sure the 
priorities of each criterion are accurate and sensible 
in either AHP or Fuzzy AHP, the consistency of 
Pairwise Comparison Matrix (PCM) with crisp or 
fuzzy elements must be achieved. For the PCMs 
which fail the consistency test, the decision-makers 
must redo the ratios. To be able to facile employ 
AHP or Fuzzy AHP, a strategy should be proposed to 
repair the inconsistency information of PCMs.      

Some works [3-5, 35] focus on studying incon-
sistency issues with crisp numbers. Karapetrovic and 
Rosenbloom [3] revise the single entry of a ratio’s 
value till consistency of relative PCM (pairwise 
comparison matrix) matrix in an acceptable level. Xu 
and Wei [4] preserve the initial ratios’ value in PCM 



(pairwise comparison matrix) while obtaining satis-
fied consistency requirements. Cao et al. [5] develop 
a heuristic approach which can preserve more origi-
nal comparison information compared with Xu and 
Wei [4]. Chiclana et al. [35] present functional equa-
tion to evaluate cardinal consistency of reciprocal 
preference relations and provide results toward the 
construction of consistent reciprocal preference rela-
tions. However, for these three works, the computing 
times are largely increased and the information of 
original matrix cannot be well preserved when the 
consistency requirement is increased. To find out an 
approximate PCM which is consistent and closest to 
the optimal one, we need to minimize the distance 
between inconsistent PCMs and their corresponding 
consistent PCMs.  

Some works [6, 18, 25, and 36] are used to solve 
the inconsistency issues with fuzzy elements. Xu and 
Wang [6] repaire incomplete inconsistency fuzzy 
preference relation by finding out the unusual and 
false element until the consistency ratio was at a sat-
isfied level. Leung and Cao [18] propose a new defi-
nition of Fuzzy positive reciprocal matrix by setting 
deviation tolerances based on an idea of allowing 
inconsistent information. Zadeh and Bafandeh [25] 
further discuss Leung and Cao’s work and proposed 
a new method of fuzzy consistency test by direct 
fuzzification of QR (Quick Response) algorithm 
which is one of the methods for the eigenvalues cal-
culating of an arbitrary matrix. Cabrerizo et al. [36] 
adopt consistency measures in an iterative procedure 
to estimate the incomplete information, and the pro-
posed consensus model supports the management of 
incomplete unbalanced fuzzy linguistic information. 
However, these works do not have standard parame-
ters to criticize the reliability of their theory so far. 
Therefore, it is very important to prove the feasibility 
of a methodology that can reduce the inconsistency 
of the original matrix and preserve the original ma-
trix’s information as much as possible.   

An algorithm is proposed to obtain the new modi-
fied PCM based on eigenvector method and linear 
programming method. The modified PCM is consid-
ered as a combination of the original inconsistent 
PCM and an adjustable consistent PCM. The algo-
rithm aims to obtain the middle value, upper value, 
and lower value of adjustable matrix. The strategy is 
to find the optimum priority vector by solving a line-
ar programming problem, and use eigenvector meth-
od to obtain the adjustable matrix based on the opti-
mum priority vector.  This paper is structured in the 
following way. Section 2 gives the basic concepts of 
the PCM with fuzzy and crisp elements, consistency 

indices, and parameters to judge the effectiveness of 
modified matrix. Section 3 gives the detail of the 
proposed algorithm. Section 4 and section 5 apply the 
algorithm to obtain the modified PCMs with crisp 
and fuzzy elements. Section 6 concludes our work.  

2. Preliminaries  

2.1. Pairwise Comparison matrixes with triangular 
fuzzy elements    

Triangular fuzzy numbers are special cases of 
trapezoidal fuzzy numbers, which are widely used in 
fuzzy applications [12]. Triangular fuzzy number 
allows decision-makers to provide preferences in a 
fuzzy range that can keep certain unknown ratio [19]. 
Our work studies show how to obtain a consistent 
pairwise comparison matrix with triangular fuzzy 
elements when given an inconsistent one.  

The  pairwise comparison matrix with tri-
angular fuzzy elements can be described in the fol-
lowing:   

   (2.1) 

Where for each element ,  is 

the lower value,  is the middle value, and  is 
the upper value. In the particular situation, if m=n, 
and the following condition is satisfied:  

 implies ,(∀i, 

j=1, 2 , … , n), then,  is a reciprocal pairwise com-
parison matrix.  Where,  

and . S 
is an interval of real numbers called fuzzy scale. 
Crisp numbers (non-fuzzy numbers) are special cases 
of  when .   

Definition 1. It was proposed in Buckley [2], a 
fuzzy positive reciprocal matrix  is con-

sistent if and only if , {∀i, j, k|1≤i, j, k 
≤n}. 

Where, the operator is one of the operation rules 
of triangular fuzzy elements. This operation can be 
calculated by the following equation: 
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When positive reciprocal matrix is crisp numbers 
A, consistent condition is ,{∀i, j, k|1≤i, 
j, k ≤n}. 

However, this definition is too strict because it is 
unrealistic to reach perfect consistency of a PCM 
(crisp or fuzzy elements). Some works [14-21] have 
developed consistency indices to accept a certain 
level of acceptable deviations. We will study con-
sistency indices to decide whether the current PCM 
should be in an acceptable consistency level or not.   

2.2.  Consistency Indices for pairwise comparison 
matrix  

Several consistency indices have been proposed 
for crisp numbers. For example: Geometric Con-
sistency Index [14], singular value decomposition 
method [15], harmonic consistency index [16], etc. A 
large majority of indices have a good internal agree-
ment, whereas few indices are outliers which have 
weaker agreement when compared with the other 
indices. Different consistency indices are different 
definition of consistency degree and there is still no 
evidence to show that which proposal is the best one. 
We use the most popular and oldest index of 
Satty’CR [17] to measure the consistency of crisp 
numbers. 

The consistency index of CR [17] is defined as:  

  (2.2) 

Where λmax is the principle eigenvalue of A. RI is 
random index which can be gotten by searching de-
fined table. When the value of 0<CR<0.1, the con-
sistency can be accepted.  

Several important works focus on the consistency 
of pairwise comparison matrix with fuzzy elements. 
The first one is Leung and Cao [18], who proposed a 
notion with consideration of a tolerance deviation. 
However, the notion is strongly related to Satty’s CR 
and it has shortcomings to calculate consistency of 
pairwise comparison matrix with fuzzy elements [25]. 
The second one is Ramik and Jaroslav [19]’s work, 
which proposes a new consistency index NI to exam-
ine fuzzy elements based on the distance of the ma-
trix to a special ratio matrix, and compare the proper-
ties with CR. This work has been further studied and 
used by several important works [14, 20-21]. We 
have tested this work’s performance which indicated 

that it can satisfy reasonable results with fuzzy ele-
ments, although it has some shortcomings [21].  

The consistency index of NI [19] is defined as: 

(2.3) 

Where,  is a normalization factor, the value of 

 can be obtained from .  
The third and the forth work are [27, 28]’s study, 

they extend GCI (Geometric Consistency Index) [26] 
to CCI (centric consistency index) index to deal with 
PCM with triangle fuzzy elements. The consistency 
index CCI is defined as: 

(2.4)      

Where  are the elements for fuzzy 

PCM,  is priority vector derived by loga-

rithmic least squares. When CCI( )=0,  is con-
sidered as fully consistent. Thresholds remain identi-
cal with index GCI as CCI is a fuzzy extension of 
GCI. The thresholds are provided as: CCI=0.3147 for 
n=3, CCI=0.3526 for n=4 and CCI=0.370 for n>4 
based on Aguaron’s [26].   

2.3. Parameters to judge the effectiveness of modified 
matrix 

Fewer works describe the necessary parameters 
which can be used to measure the effectiveness of 
modified PCM B. Xu and Wei [4] have given two 
parameters in the following:  

  (2.5) 

    (2.6) 

σ and δ are used as the parameters of modificatory 
effectiveness. The authors [4, 5] argue that the modi-
fied matrix that preserves the most information of the 
original one must satisfy the condition: 

. We extend these two parame-
ters to be suitable to judge modificatory effectiveness 
of fuzzy elements, and the range is identical with σ 
and δ. σfuzzy and δfuzzy are:  
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                           (2.7) 

        (2.8) 

Besides σ and δ, two parameters proposed by Xu 
and Wei [4], a third parameter should be added, 
which is Condition of Order Preservation (COP) [24]. 
For example, suppose the original matrix A has alter-
natives (a1, a2, a3, a4, a5, a6, a7, a8), it has the relation-
ship a1 dominates a2, a3 dominates a4, and the judg-
ments indicate that the extent to which a1 dominates 
a2 is greater that the extent to which a3 dominates a4, 
then the priority vector ω should satisfy: ω(a1)> ω(a2) 
and ω(a3)> ω(a4) (preservation of order of prefer-
ence), and ω(a1)/ω(a2)> ω(a3)/ ω(a4) (preservation of 
order of intensity of preference). 

3. Deriving the optimum eigenvector by solving 
linear programming problem to obtain modified 
pairwise comparison matrix  

Three conditions can guarantee a new modified 
consistent PCM B(or ) which has the closest and 
maximal similarity with the orginal inconsistent 
PCM A (or ):  

1). The consistent value should be at an acceptable 
level based on different consistency indices;  

2). The farthest distance between new PCM 
B(or ) and orginal PCM A (or ) should be as 
small as possible;  

3). The obtained new matrix should have a strong 
similarity with the orginal matrix. 

To suit these conditions, we provide an adjustable 
PCM which can reduce the inconsistency of orginal 
PCM as much as possible. On the basis of the 
adjustable matrix, we propose the definition of the 
modified matrix  

Definition 2. The new modified PCM B is defined 
as a combination of the original PCM A and an 
adjustable matrix called B’ ,which is derived from A; 
the modified PCM B is defined in equation (3.1):  

  (3.1) 

For fuzzy elements, the new modified PCM is 
defined as:  

 (3.2) 

The new modified matrix is constructed by two 
parts based on definition 2: 1). One is the original 
matrix. The function of this matrix is to keep the 
original information and make sure the two matrixes 
is in an acceptable distance. 2). One is the adjustable 
matrix. The function of this matrix is to modify the 
inconsistency level to make sure the new modified 
matrix’s consistency is based on consistency indexes.  

 One way to be able to obtain the adjustable PCM 
is by one element being 

is and one element of  

is , by making every element of  

closely resemble the elements of , which 
is , , and . Therefore, 
we go to find separately. After find-
ing out , combine them together to 

get the new matrix .  

3.1. Deriving the middle value of the adjustable 
matrix 

3.1.1. Distance analysis between original matrix and 
adjustable matrix 

The distance methods have logarithmic least 
square method (LSM)[29], eigenvector method 
[23,24], and least squares method [30]. The optimum 
eigenvector should be as close as possible to the orig-
inal eigenvector (derived from the original matrix). 
The adjustable matrix should strongly resemble the 
original matrix once the optimum eigenvector has 
been determined. Therefore, eigenvector can be used 
to calculate adjustable PCMs. 

According to references [22, 23], if matrix A is 
consistent, then we could find positive weights ω= 
{ω1, ω2, …, ωn}T which can satisfy such condition [9, 
22, 23]: . Therefore, if 
matrix A is close to consistent, then it must 
have .The obtained positive weights 
ω can be used to define the expected adjustable PCM. 
On the basis of this idea, we want to make the fastest 
distance between  and  are the minimum 

value. The fastest distance between  and  is 
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defined as: 

 (3.3) 

The issue of finding the optimal adjustable PCM 
with crisp elements can be portrayed as resolving the 
minimum value of function f, which can be expressed 
in equation (3.4):   

 (3.4) 

This equation (3.4) is extended into equation (3.5) 
to solve adjustable PCM with fuzzy elements:  

(3.5) 

Eq.(3.4) and Eq.(3.5) can reach the absolute mini-
mum value (lowest point) when even the worst situa-
tion of proportion of  is closest to . The idea 

to obtain the optimum positive eigenvector ω ( ) is 
to find out all possible constraints and solve feasible 
solutions by selecting a suitable linear programming 
pattern in section 3.1.2.  

3.1.2. Build Linear Programming Problem by 
defined inequalities of the middle value of the 
adjustable matrix 

In this section, we aim to find out the least abso-
lute worst distance by setting a more precise priority 
weights range and adding slack variables.  The least 
absolute worst distance is used to achieve the middle 
value of the adjustable PCM. The middle value of 

 from adjustable matrix should have a strong 

relationship with . is the optimum eigenvector 

matrix of .  can be gotten in the following 
equation:  

 (3.6) 

The optimum value can be gotten when the worst 
proportion is closest to . Eq.(3.6) has feasible 
solutions which means the following equation reach-
es to the minimum based value on Eq.(3.5): 

 (3.7) 

We simply write the variable by introducing an 
additional variable Z= . Then, the prob-
lem is:  

 

 (3.8) 

  (3.9) 

Assume the value of Z is given, and then the con-
straint (3.8) can be rewritten as:  

     (3.10) 

  (3.11) 

          (3.12) 

Take the reciprocal of constraint (3.12); then the 
new constraint (3.13)-(3.15) and can be gotten.  

                 (3.13) 

               (3.14) 

               (3.15) 

  Combine constraint (3.11) and constraint (3.15) and 
remove one of the inequalities, and then the new ine-
quality can be gotten:  

   (3.16) 

Analogously, a similar inequality can be gotten:  

   (3.17) 

Next, we add slack variable S, T, and objective 
function H=S+T, to change the constraints (3.16) and 
(3.17) to equality constraints (3.18) and (3.19).  Then 
we specify constraints, propose formulas to calcu-
late , and add additional stopping parameter 
X. Then constraints correspond to the following line-
ar programming problem:  
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Remark 1. 

1). In constraint (3.18), we define  to nor-

malize vector . If the stopping parameter X=0, 
then it means constraint (3.18) has a solution, and the 
problem (3.18)-(3.23) has a feasible solution; the 
values of is the optimal solution. If the stopping 
parameter is X=1 which contradicts with constraint 
(3.21), then the problem (3.18)-(3.23) is inconsistent; 
then the values of is not the optimal solution.  

2). The equalities (3.18)-(3.23) can be solved by 
Simplex algorithm [32]. The main idea of this algo-
rithm is to walk along edges of the polytope to find 
out extreme points with lower and lower objective 
values till the minimum value is reached or an un-
bounded edge is visited. If the extreme point is 
reached, then the problem (3.18)-(3.23) have feasible 
solutions.   

3). If Z=Z’ can make problem (3.18)-(3.23) have a 
feasible solution, then it must have Z≥Z’ that can also 
make the problem (3.18)-(3.23) have a feasible solu-
tion. The linear programming problem has the opti-
mum solution when inequalities ((3.18)-(3.23)) reach 
to the greatest lower bound of Z.  

4). If i=j, then , then constraint (3.18) can 
be always be satisfied. Analogous, constraint (3.20) 
is always satisfied. Then the equalities (3.18)-(3.23) 
can be used to find adjustable PCM B’ for original 
PCM A.   

3.1.3. Find feasible solutions to solve the linear 
programming problem  

The aim of this section is to find the feasible solu-
tions of ((3.18)-(3.23)) and determine the greatest 
lower bound of Z. The problem can be described as 
storing intervals of [0, Zmax], analyzing the corre-
sponding X value, and finding the greatest lower of Z 
that makes X=0, which can be solved by segment 
tree. The segment tree is special for storing intervals. 
The built time is O(n log n) for n intervals, and it 
uses O(n log n) storage. The reason we adapted to the 
segment tree is because: the segments can be stored 
in any arbitrary manner, it can easily be adapted to 
counting queries, and it helps us to query the number 
of segments that contain a given point.  The steps to 
solve inequalities ((3.18)-(3.23)) are as follows:  

Step 1 sets the initial value. Assume the accuracy 

level is ξ; let the initial value of  be , 

and ; let Zmax=Z= , and Zmin=Z=0. 

Step 2 builds a segment tree by using interval [0, 
Z].  Let P1, P2, P3, P4 be the list of distinct interval 
endpoints. We separate intervals into two parts in 
every division and terminate this process till the val-
ue of the interval is less than the accuracy level (ξ). 
Then obtain the X value in problem ((3.18)-(3.23)) 
by setting the current Z value. If X=0, then the next Z 
value is equal to the lower bound of the current node. 
The calculation steps will end till it reaches to end-
points (P1; P2; P3; P4) based on accuracy level ξ.  

Step 3 selects the greatest lower value of Z when 
X=0, inputs Z value to inequalities ((3.18)-(3.23)), 
then outputs , finally, adopts Eq.(3.6) to 

achieve .  

3.2. Deriving the upper and lower value of the 
adjustable matrix  

This section focuses on obtaining the value of 
and . The modified matrix is a combination of 

the adjustable matrix and original matrix based on 
definition 2; then the adjustable matrix should have 
the minimum fuzziness and maximum preservation 
of the original matrix’s pattern. If is minimum 
fuzziness, then fuzziness of will mostly come 
from , and will be more similar with . In fact, 
the minimum fuzziness of  could reduce uncer-
tainty factors of . If  could maximally preserve 
the pattern of , then the combination of  and  
could reach to the most potential of similarity with . 
We propose theorem 1 to obtain the value of 

and  based on the above theory.  

  Theorem 1. The optimal solution vector is: , 

then , i=1,2,…,n. Set CL,CU  are arbi-

trary positive constants. Define the value of  
in the following formulas:  

                                      (3.24) 

Where     

and                              (3.25) 
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Where  

Then the value of and is defined as:  

 and     (3.26) 

Proof. The value of CL, and CU should satisfy two 
conditions: one is minimum fuzziness of , and the 
other one is maximally maintaining similarity of 
original matrix .  

By the first condition, we can get:  

, 

, and  

By the second condition, we need to consider the 
distance between , maintain the relation-
ship among the original matrix, and make the new 
matrix closest to the original matrix’s pattern. It is a 
way to find out the smallest coefficient between 

and , and the smallest coefficient between 

and . We can get the following formulas based 
on the second condition:  

   (3.27) 

   (3.28) 

Therefore, it has been proven that formula (3.25) 
and (3.26) always exist and they can be corrected by 
(3.27) and (3.28).  

3.3. An Algorithm to obtain Modified PCM  

The adjustable matrix is derived by combining 
section 3.1 and 3.2. The expected modified PCM can 
be gotten based on definition 2. A proposed algo-
rithm is to conclude the steps of how to obtain the 
modified consistency PCM.  
Algorithm 1: Find modified PCM  

Algorithm1.  Find Modified _Matrix(Zmax, Zmin, ξ, ) 

Input: Zmax, Zmin, ξ, original matrix ,Z=Zmax 

Output: Zmax, Zmin, optimal matrix   
BEGIN 
1. If (Zmax- Zmin<ξ)&(X=0) 

 Then  

 The current  is the desired optimal solution of weight 
vector.  

 Adopt Eq.(3.6) to get . 

 Use Theorem1 to obtain and .  

 Adjustable PCM = ( , , ). 

 Obtain Modified PCM  by Definition 2.  
 Stop.  

2. Else Search segment tree  
While (Z- Zmin)> ξ 
Z=(( Zmax - Zmin)/2+ Zmin);  
Input Z into problem (3.18)-(3.23) to output the value 

of X 
  If  X=0  
Save the new value of , and Zmax=Z 
  Else 
 Z=upper bound of the current interval;  
 Zmin=lower bound of the current interval; 

END 

4. Numerical illustration and comparison with 
crisp numbers  

4.1. First illustration 

We run the experiments by software Matlab 
(R2009a) on a personal computer with Intel(R) 
Core(TM) 2.2 GHZ and 4 G RAM. First we test crisp 
numbers by using algorithm 1, and then compare 
with references.  Consider the following inconsisten-
cy PCM with crisp numbers in [33]:  

(4.1)  

For PCM A, , CR=0.2151>0.1, the 
principal eigenvector is: ω= (0.3208 0.1395 0.0348    
0.1285 0.2374 0.1391)T.  

The value of CR is much more than 0.1. Therefore, 
we will adopt algorithm 1 to obtain the new con-
sistency PCM.  

Demonstration of Algorithm 1:  
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Input the initial value of , initial value of ξ, Zmax, 
and Zmin 

1). The original matrix is , as 
shown here, crisp number is a specific case of a fuzzy 
number in our model. Set . 

2). The acceptable precise degree is ξ=0.1. Here, 
we adopt 0.1 as an example.  

3). The initial value of Zmax= 5.7655 which is ob-
tained by Eq.(3.7), Zmin=0, and the initial Z=5.7655. 
Algorithm 1 has a solution for the first Z value. To 
better demonstrate, we start from the second iteration.  

Begin second time:  
Step1. (Zmax-Zmin)> ξ; then go to 2;  
Step2. Search segment tree  
           (Zmax-Zmin)> ξ, then 
Set new Z=(( Zmax - Zmin)/2+ Zmin)= 2.8828; 
Input Z into problem (3.18)-(3.23) to output the 

value of X=1,  
Z=5.7655;  Zmin=2.8828; Go to step1.  

Remark 2. 

1).The value of ξ is a stopping sign. If current val-
ue of ξ is less than 0.1, stop the calculation process.  

2).The value of X can determine how to change 
current Z value. If X=0, it means there is a solution 
for problem (3.18)-(3.23), then save the value of vec-
tor ω and set Zmax=Z; else X=1, it means there is not 
a solution for problem (3.18)-(3.23), then set Zmin= 
lower bound of the current interval, Z= upper bound 
of the current interval.  

3). It needs a seven-time iteration to find out the 
final optimum vector of inconsistency PCM A. The 
detailed information of each parameter is shown in 
Table 1. Let ωi be the obtained vector of each feasi-
ble solution. ω5 is the optimum vector for the new 
consistency PCM B when β=0.4 in definition 2.  

The new obtained consistency PCM B is:  

 

Table 1 

 Parameter values for each iterative time 

Itera-
tive 
time 

Zmax Zmin Z ξ X ω 

1 5.7655 0 5.7655 5.7655 0 ω1 

2 5.7655 2.8828 2.8828 2.8828 1 – 
3 5.7655 2.8828 4.3242 1.4414 0 ω2 
4 4.3242 2.8828 3.6035 0.7207 0 ω3 
5 3.6035 2.8828 3.2431 0.3603 0 ω4 
6 3.2431 2.8828 3.0629 0.1801 0 ω5 
7 3.0629 2.9729 3.0629 0.0787 1 – 
ω5  (1.0000,  0.6494, 0.1649, 0.3273, 1.3299, 0.4844) 
Three consistencies of PCM B are obtained under 

different precise degrees.  To evaluate the effective 
ness of obtained PCM B, CR (consistency index), δ 
(Eq.2.5), σ (Eq.2.6), iteration times (mark “II” in 
Table 2), and COP (Condition of Order Preservation) 
are shown in Table 2.  

The consistency value of the original A is 0.2151, 
whereas the consistency of new obtained PCM B is 
around 0.03. The effective parameters δ (less than 2) 
and σ (less than 1) are both at an acceptable level. 
The aim to calculate COP is to make sure the ob-
tained PCM could preserve of the order of preference 
and preserve the order of intensity of preference of 
original PCM A. COP tests every pair of weights and 
the proportion among every pairs’ weights. The itera-
tion times are less than 14.  

Table 2 

Effective analysis for algorithm 1 based on five parameters   

PCM CR δ σ COP II 
A 0.2151 0 0  - 
B(ξ=0.1) 0.0325 1.6602 0.9916 Keep 7 
B(ξ=0.01) 0.0325 1.6294 0.9868 Keep 11 
B(ξ=0.001) 0.0324 1.6291 1.0308 Keep 14 

4.2. Comparison with References 

Xu and Wei [4] defined the original matrix A (the 
elements are aij) that can be replaced by the new ma-
trix B (the elements are bij), which is showed in fol-
lowing equation:  

  (4.2) 

Where α is the positive value which is less than, 
but approaching to 1.  

Cao et al. [5] proposed a equation to obtain the 
new matrix B, which is showed the following:  

     (4.3) 

Where is the symbol of Hadamard product; for 
example, means , 

and  is the modified deviation matrix, which is 
showed in the following equation:  

   (4.4) 
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 1.0000 2.2560 4.5757 1.9544 1.3079 2.6896
 0.4433 1.0000 4.9561 2.3408 0.3417 1.1922
 0.2185 0.2018 1.0000 0.3482 0.1501 0.2559
 0.5117 0.4272 2.8720 1.0000 0.4312 0.5093
 0.7646 2.9267 6.6602 2.31

B=
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Where D is the deviation matrix, DI is a zero devi-
ation matrix when [dij]=1. The value of γ is between 
0 and 1.  
α and γ has different meaning for two papers; but, 

the two parameters should be as close to 1 as possible. 
In two papers, they mentioned that α=γ=0.98 is the 
most suitable value to get the optimal new matrix. 
We compare with two references in two situations: 
one is the required Critical Ratio (CR) less than 0.1 
(Table 3); the other one is the required Critical Ratio 
(CR) close to 0 (Table 3).  

Algorithm 1 can reach a CR value lower than ref-
erence [4] and [5] when CR is approaching to 0.1, 
and at the same time, the method could achieve lower 
values of δ and σ in short iterative times. We also 
rank the priority weight ω derived from A. The rank-
ing results are same in two similar weights, which 
mean the priority weight ω which derived from our 
method is acceptable. The iterative times for refer-
ence [3] and [4] are quite large, 820 and 1619 when 

CR is approaching to 0, which will cost the running 
time. The value of δ and σ in these two references is 
far away from the acceptable value, which means the 
priority weight is not acceptable at all; But, the itera-
tive times of our method is less than 10 times, the 
value of δ is less than 4, and the value of σ is less 
than 2, which means our result is acceptable to some 
extent. On the basis of these results, we go to discov-
er the difference of COP parameter in our method 
and two references. Cao et al. is closer to the original 
matrix’s vector, but the gap among Cao, Xu, et al. 
and our method is very narrow (less than 1).The three 
methods have almost the same effectiveness in terms 
of the COP parameter. Thus, our method is also ac-
ceptable in this parameter. 

In conclusion, Algorithm 1 can preserve more 
original information and obtain more consistent new 
matrix in short iterative times for PCMs with crisp 
elements. 

Table 3 

Effective analysis of Algorithm 1 by comparing with references based on parameters  

CR≤0.1 CR=0 

Methods Iteration 
Time CR δ σ λmax Methods Iteration 

Time δ σ 

Xu and Wei [4] 12 0.0972 1.845 0.589 8.955 Xu and Wei [4] 820 10.4648 1.9069 

Cao et al.[5] 18 0.0997 1.713 0.448 8.9844 Cao et al.[5] 1619 11.0308 2.0714 

Our method(ξ=0.05, 
β=0.8) 8 0.0964 1.1572 0.4710 8.9017 Our meth-

od(ξ=0.05, β=0.2) 8 3.2554 1.4458 

Our method(ξ=0.1, 
β=0.8) 7 0.0964 0.7354 0.4689 8.9017 Our meth-

od(ξ=0.1, β=0.2) 7 3.5117 1.5088 

Our method(ξ=0.2, 
β=0.8) 6 0.0964 1.2273 0.4993 8.9017 Our meth-

od(ξ=0.2, β=0.2) 6 3.6985 1.7867 

5. Numerical illustration and comparison with 
fuzzy numbers  

5.1. First analysis for pairwise comparison matrix 
with fuzzy elements   

To judge the effectiveness of Algorithm 1 for 
PCMs with fuzzy elements, we analyze several pa-
rameters including the inconsistency index NI [19], 
consistency index CCI [28, 29], δfuzzy, σfuzzy, COP, 
iteration times and running time.  There is no evi-
dence showing the thresholds of NI. The thresholds 
for CCI are provided as: CCI=0.3147 for n=3, 
CCI=0.3526 for n=4 and CCI=0.370 for n>4 based 
on Aguaron’s [26].  Considering the following PCM 
with fuzzy elements:  

  (4.5) 

For matrix , , CCI=0.3746. It is 
an inconsistent PCM with fuzzy elements. We adopt 
Algorithm 1 to obtain the modified new matrix under 
different parameters. The results are shown in Table 
4. In Table 4, the inconsistency index NI has been 
reduced by 0.1 and the consistency index CCI, is 
around 0.1, which is much less than 0.3147 and indi-
cates the modified matrix can reach to consistent 
requirement; δfuzzy satisfies 0<δfuzzy<2 and σfuzzy satis-

1 1 1 1 1 1 1 1 1(1,1,1) ( , , ) ( , , ) ( , , )
8 7 6 6 5 4 6 5 4

(6,7,8) (1,1,1) (4,5,6) (2,3,4)
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fies 0<σfuzzy<1, which shows the obtained new matrix 
is within acceptable distance with ; the value of 
COP which is gotten from priority vector of  
can preserve order of preference and order of intensi-
ty preference, which present can maintain the pat-

tern of (similarity). Meanwhile, algorithm 1 has 
high convergence speed based on the less iteration 
times and running time. The gap among these four 
matrixes is quite narrow, is the best 
choose when we select the smallest consistency index.  

Table 4.  

Effective Analysis for algorithm 1 based on nine parameters  

β=0.5 NI  CCI  δfuzzy σfuzzy COP Iteration  times Running time(seconds) 

ξ=0.1 0.5816 0.0928 1.8924 0.8656 keep 7 0.021 

ξ=0.01 0.5798 0.0928 1.8682 0.8639 keep 10 0.027 

ξ=0.001 0.5806 0.0928 1.8787 0.8628 keep 14 0.037 

β=0.6 NI CCI δfuzzy σfuzzy COP Iteration  times Running time(seconds) 

ξ=0.1 0.5980 0.1338 1.4713 0.7185 keep 7 0.016 

ξ=0.01 0.5965 0.1338 1.4530 0.7170 keep 10 0.03 

ξ=0.001 0.5971 0.1338 1.4610 0.7161 keep      14 0.035 

5.2. Second analysis for pairwise comparison matrix 
with fuzzy elements   

The second analysis is developed in a company 
manufacturing hard disk drives for storage and home 
entertainment. This company mainly organizes inter-
nal storage in Ayutthaya and Pathumtani of Thailand. 
To better handle sustainability of a plant in Pathum-
tani, we define three main criteria: economic, envi-
ronmental, social. Then define different sub-criteria 
for these three main criteria. To make a believable 
decision of which criteria play fundamental roles in 
sustainability, decision makers give the fuzzy PCMs. 
Algorithm 1 analyzes these PCMs and provide the 
closest consistency PCMs for inconsistency ones. 
Twenty-eight fuzzy matrixes are inconsistency ma-
trixes, and three of them are selected in Table 4. 

Table 4 

Inconsistency PCMs with fuzzy elements 

 

(1 1.5 0.5;0.67 1 0.55; 1.5 1.8 1) 
(1 2 0.67;0.7 1 0.67;1.5 1.8 1) 
(1 2.5 1;0.8 1 1;2 2 1) 
NI: 0.1635; CCI: 0.2835;  

 

(1 0.25 2.5 0.35;0.3 1 0.6 0.3;  
1.25 0.8 1 0.6; 2 1.8 0.9 1) 
(1 0.3 3 0.4;0.35 1 0.8 0.5;  
1.5 0.95 1 0.8; 2.2 2 1 1) 

(1 0.35 3.3 0.42; 0.4 1 0.9 0.55;  
1.55 1.15 1 0.85; 2.4 2.25 1.5 1) 
NI: 0.1372; CCI: 1.7524; 

 

(1 2 3 4;0.5 1 1.5 0.5; 0.3 0.5 1 2;  
0.25 1.5 0.5 1) 
(1 2.5 4 4; 0.55 1 2 1.5; 0.5 0.8 1 2.5; 
0.3 2 0.8 1) 
(1 3 4.5 5; 0.67 1 2.5 2; 1.5 1.2 1 3;  
0.5 1.5 0.8 1) 
NI: 0.2599;CCI:0.7880 

Algorithm 1 is adopted to obtain the modified 
PCMs. Table 5 displays the results. The results show 
the new modified PCMs have good consistency level 
because of all NI value less than 0.1 and all CCI val-
ue less than 0.3147. Meanwhile, the new modified 
PCMs are closest to original PCMs because δfuzzy and 
δfuzzy are in an acceptable range, and the COP value 
shows that the new modified PCMs preserve order of 
preference and order of intensity preference. Ten 
PCMs are studied in Figure 1. The results show that 
Algorithm 1 could effectively reduce the inconsisten-
cy of original PCM (reduced the value of NI and CCI) 
and preserve the information of original PCM. Algo-
rithm 1 can also approach to its limits faster than [4-
5]. The maximum iteration times for Algorithm 1 is 
less than twenty, even when ξ=0.0001, while the 
maximum iteration times for [5] and [4] are 1619 and 
820 respectively. The convergence rate of Algorithm 
1 has low growth rate. Figure 2 shows the results.  

Table 5 

 Modified PCMs with fuzzy elements  

 

(1.0000 1.3784 0.8130; 0.7266 1.0000 0.6855; 1.1282 1.4545 1.0000) 
(1.0000 1.4460 0.8376; 0.7650 1.0000 0.7132; 1.1957 1.4833 1.0000) 
(1.0000 1.5290 0.9241; 0.8052 1.0000 0.7956; 1.3322 1.5474 1.0000) 
NI: 0.0895; CCI: 0.0235; δfuzzy:0.3130; δfuzzy:0.4270 

A
ω B

B

A

B(ξ=0.1,β=0.5)

1A

2A

3A

1B



 

(1 0.7163 1.5830 0.7193; 0.6418 1 0.9503 0.6326; 0.8891 0.8444 1 0.7031; 1.2491 1.3140 1.1822 1) 
(1 0.7707 1.6859 0.7380; 0.6599 1 1.0254 0.7135; 0.9314 0.8981 1 0.7493; 1.3040 1.4015 1.2481 1) 
(1 0.8067 1.7315 0.7643; 0.6873 1 1.0609 0.7498; 0.9424 0.9524 1 0.7803; 1.3115 1.4218 1.3785 1) 
NI: 0.0464; CCI: 0.1587; δfuzzy:0.4707; δfuzzy:0.5720 

 

(1 1.7043 1.9173 2.2901; 0.5867 1 1.1250 0.8865; 0.5053 0.8154 1 1.3490; 0.4367 1.0347 0.7413 1) 
(1 1.9405 2.1386 2.4266; 0.5670 1 1.1784 1.1839; 0.5757 0.9771 1 1.4418; 0.4509 1.1744 0.8539 1) 
(1 2.0967 2.3753 2.3748; 0.5881 11.3205 1.1963; 0.7466 1.0529 1 1.3468; 0.5543 1.1622 0.9655 1) 
NI:0.1092; CCI:0.0646 δfuzzy:0.3865 σfuzzy:1.0528 

 

Fig. 1. Consistency analysis for obtained new PCMs with fuzzy elements  

 

Fig. 2. Convergence rate for Algorithm 1 

6. Conclusions  

Algorithm 1 has been proposed to derive a con-
sistent PCM with crisp or fuzzy elements from an 
inconsistent one. The presented approach is tested in 
several examples. The experiments results in Table 3 
conclude the effectiveness of Algorithm 1 by com-
paring with Cao et al. [5] and Xu and Wei [4] based 
on PCMs with crisp elements. Algorithm 1 can retain 
more original information and achieve lower value of 
δ and σ when both α [4] and γ [5] approach to 1. Ta-
bles 4 and 5 summarize the effectiveness of Algo-
rithm 1 for PCMs with fuzzy elements. The modified 
PCMs with fuzzy elements can maintain original in-
formation and reach to acceptable consistency level 
as well. 

Two effective criteria δ and σ show how the dis-
tance between modified PCM and original PCM is 
acceptable for both crisp and fuzzy elements. A new 
effective criterion COP reflects that the modified 
PCM resembles the original PCM (crisp and fuzzy 
elements). In conclusion, this approach could en-
hance the quality of vague and inaccurate data for 
decision makers, and also can better handle the in-
consistency problems of AHP and Fuzzy AHP.  

However, β in Algorithm 1 has a different meaning 
with α and γ. The true meaning of β is the proportion 
of the original matrix to an adjustable matrix. The 
approximate prefect range of β is [0.25, 0.8] based on 
experiments’ results, and there is no clue to which 
value is the best one for β as the inconsistency level 
of PCMs are differs. In future research, it would be 
interesting to figure out the exact prefect range of β. 
Meanwhile, efforts should be made to test Algorithm 
1 for more cases.  
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