
HAL Id: hal-01356032
https://hal.science/hal-01356032v1

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS ontology for service selection and reuse
Sophea Chhun, Néjib Moalla, Yacine Ouzrout

To cite this version:
Sophea Chhun, Néjib Moalla, Yacine Ouzrout. QoS ontology for service selection and reuse. Journal
of Intelligent Manufacturing, 2016, 27 (1), pp.187-199. �10.1007/s10845-013-0855-6�. �hal-01356032�

https://hal.science/hal-01356032v1
https://hal.archives-ouvertes.fr

QoS Ontology for Service Selection and Reuse

Sophea CHHUN, Néjib MOALLA, Yacine OUZROUT

Université Lumière Lyon2, DISP laboratory, France

{sophea.chhun, nejib.moalla, yacine.ouzrout}@univ-
lyon2.fr

Abstract. Web service technologies become popular in software development
in all sectors. Even service related standards are defined, they still have limita-
tions to represent the services. Some examples of the limitations are: service
registry does not support the QoS properties, web service description language
(WSDL) does not allow specifying the QoS properties and there is no common
description for defining the web service structure. Our research aims to enhance
the service description structure to support the service selection and composi-
tion process in order to reduce development costs. The existing resources are
analyzed in order to define a Web Service Ontology (WSOnto). Furthermore, a
service selection algorithm is proposed for validating the proposed WSOnto.
This service selection algorithm considers multiple criteria as inputs: applica-
tion context, input, output, weight of the QoS performance and service’s securi-
ty properties. Furthermore, a QoS calculation method is proposed to obtain a
better QoS values.

Keywords: Business process re-engineering, Ontology, Semantic web service,
Service composition, Service discovery, Service Selection, Tracking data, QoS

1 Introduction

The business processes are created from many business tasks joined together by using
connectors (parallel, inclusive, exclusive, event based and complex). They are execut-
ed on service oriented architecture (SOA). Each business task is performed by a ser-
vice and a service can be reused by many business applications. Reusing the existing
available services reuses development cost. In order to obtain a service for executing
a business task, the service selection algorithm is required. The service selection algo-
rithms match between the user’s requirements and the services’ specifications. A
service is specified by its functional and non-functional properties. The functional
properties of service describe its provided operations which describe what a service
can do. The non-functional properties of service define additional information about
the service such as performance, security, and business information [1]. The QoS is a
sub part of the non-functional properties of a service. Many services can provide the
same functionality. In this case, the QoS is used to select the most suitable service [2].
This proves that using the QoS can improve the re-usability of services. In [1], Khu-

tade and Phalnikar state, “Neglecting QoS will cause serious problems in software
development”.

Web service is described by service description languages such as WSDL (Web
Service Description Language) and ontology is used to represent the semantic de-
scription of the web services. Different ontology languages are available such as
OWL (Ontology Web Language), OWL2 (Ontology Web Language–Second Edition),
OWL-S (Ontology Web Language-Semantic) [3] and WSMO (Web Service Modeling
Ontology) [4-5]. However, all the current existing standard languages do not support
the storing of the non-functional properties of the service and do not define the com-
mon structure to represent services. Extend those languages to support non-functional
properties are mandatory. Defining a common standard to represent services is also
required. For example in [2], the authors extend OWL-S profile ontology to represent
QoS vocabulary (business QoS, performance QoS, etc.) and business offers values
(offer start time, offer end time, offer type, etc. to support online shopping service
system. There is no standard ontology structure to represent services’ description and
functional and non-functional properties. The existing semantic structures are defined
based on specific business application domains such as online shopping, transporta-
tion service, online room booking and online restaurant booking. There is no standard,
neither for QoS ontology nor on how to calculate the QoS values.

Service registry UDDI (Universal Description Discovery and Integration) or ser-
vice repository are used to store services [7]. UDDI is not only allowing us to store
service information but also provides APIs (Application Programming Interface) to
publish and invoke services. However, it does not support semantic matching, it sup-
ports only keywords matching. In addition, it does not store Service Non-Functional
Properties (SNFP), and SNFPs are important in service selection and composition
process. Thus, solutions are required to solve this problem.

Sometime atomic services are unable to do it. In this case, service composition (in-
tegration) is required to create a new service by joining many services together. Ser-
vice selection and composition can be done in static or dynamic way or it is done by
syntactic or semantic comparison. Static means that the selection and composition of
services are predefined in the programming code; the dynamic solution is done at
runtime. Syntactic matching uses keywords matching and does not care about syno-
nym and homonym of the words being matched. However, semantic matching con-
siders the synonyms, homonyms and relationships between words that have been
matched. In our research study, we use both dynamic and semantic services matching
to solve business process re-engineering problems by reusing existing available ser-
vices. Reusing existing available services can reduce the development costs (time and
money) and provides better control of existing services.

From the existing service selection and composition solutions, based on syntactic
or semantic comparison, there are 3 possible ways to express user’s requirements: (i)
by using keywords (also known as context or goals); (ii) by using only functional
properties of services such as input and output; (iii) by using functional and non-
functional properties of services. For our research, we consider all the 3 criteria (con-
text, service functional and non functional properties) because it provides better accu-

racy results. However, it also increases the complexity of the solution and execution
time.

There are some factors which increase the service selection and composition com-
plexity: (i) large number of available services; (ii) various business application do-
mains; (iii) lack of existing standard for web service description and service registry
to express functional and non-functional properties; (iv) many algorithms for service
selection and composition.

Actually, our research study aims to support the reuse of existing available services
in the re-engineering of business process applications deploying service oriented ar-
chitecture. A framework is required to create in order achieve our goal. It must pro-
vide the capability to perform the automatic service selection and composition in
order to obtain the best service that can respond to the requested task. In addition, the
framework must be able to generate an executable business process from user’s busi-
ness process specifications by reusing existing services. Furthermore, the services that
are used in our model are obtained from the previous deployed business process ap-
plications, and they are stored in a common service registry UDDI. The reuse of exist-
ing services is proposed to reuse the increasing number of new created services. It
also decreases the maintaining problems. Figure 1 introduces the overview of our
framework architecture.

Fig. 1. Framework architecture of the service selection and composition process

Our framework is divided into 4 main modules and each of them is described in detail
as follows:

1. Semantic representation of users’ requirements: from the user’s business pro-
cess specifications, we provide a user interface to define additional information
about each business task such as task’s description, functional properties (input,
output) and non-functional properties (QoS). Then, the module generates different
business task ontologies to represent each inputted task of the business process. At
the same time, it generates a business process ontology used later for reconstruct-
ing the user’s inputted business process.

2. Existing SOA infrastructure: our model uses the existing services and the ser-
vices’ execution tracking data to build the web service ontology (WSOnto) for rep-
resenting the available services with their QoS values. Then, it uses the WSOnto to
support the service selection algorithm when selecting the best suitable service for
executing the user’s business task. Furthermore, our model generates another on-
tology to represent the deployed business processes that can be used in the service
composition process. The ontology is selected to represent the published services
because UDDI does not allow to store the QoS values and it supports only the
keywords matching. The generation of ontologies task to represent the existing re-
sources in our model is responsible by a module called “Existing SOA Infrastruc-
ture”.

3. BPMN2 implementer: BPMN specifications ontology is used to support the re-
constructing and the evaluation of the output business processes of our model. It
can also detect the contradiction of the generated business processes. In this part,
we reuse the existing BPMN 2.0 ontology defined in [8].

4. Implementation of business application: this module is responsible for generat-
ing the final deployable business processes and it ensures their syntax correctness.

This paper focuses only on the “Existing SOA infrastructure” module. The aim of this
module is to define a web service ontology structure to represent services’ infor-
mation by considering their functional and non-functional properties. Another objec-
tive of this module is to propose a method to generate an ontology for representing the
previous deployed business processes. To define the ontology structure, we analyze
the existing services’ information resources from UDDI’s data, WSDL files and ser-
vices’ execution tracking data from the server. Moreover, we propose a service classi-
fication technique and we present a method to calculate the QoS values from ser-
vices’execution tracking data.

The rest of this paper is organized as follows. Section 2, “Related Works”, presents
the current existing solutions to our research study. Section 3, “Proposed Solution”,
introduces our web service ontology structure, the mothod to calculate the QoS per-
formance values, and a service selection algorithm. Then section 4, “Discussion”,
describes the added value of our solution and the main issues to be tackled. Finally,
we finish this paper with a conclusion about our work and introduction to future work.

2 Related Works

In this section, we will first analyze the different algorithms for the Selection and
Composition of Web Services (table1). We will also define the QoS attributes and
why it is mandatory to use ontologies to facilitate the services selection and composi-
tion. From these analyses we will identify the main issues and the needs in terms of
semantic selection and composition.

Table 1. Comparison table of matching model

2.1 Web Services Selection Algorithms

Combinatorial model. In [9], the authors propose 2 algorithms for service selection
and composition, combinatorial and graph based algorithm. Combinatorial algorithm
adapts Multi-dimension Multi-choice 0-1Knapsack Problem (MMKP) to solve service
selection problem. MMKP is defined as following: (i) K groups of elements; (ii) each
group has li (1 <= i <= K) items; (iii) each item is defined by a profit Pij and requires
resource rij = (rij1, rij2, …, rijm); (iv) total amount of available knapsack resources R =
(R1, R2, …, Rm). Knapsack problem aims to select exactly one item from each group
by respecting the resource constraint and maximize the total profit. This problem is
formulated as:

 𝑀𝑎𝑥∑ ∑ 𝐹&'𝑥&'
()
'*+

,
&*+

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 ∑ ∑ 𝑞&'∝𝑥&' ≤ 𝑄∝()
'*+ 	(∝= 1,… . ,𝑚),

&*+

 ∑ 𝑥&' = 1()
'*+

 𝑥&' ∈ {0,1}; 	𝑖 = 1, … , 𝑁; 		𝑗 = 1,… , 𝑙& (1)

Where xij = 1 if the service is selected from its group and xij = 0 otherwise.
This MMKP problem is mapped to service selection problem as following: (i) K

groups are mapped to N service classes; (ii) each item of a K group corresponds to a
service in a service class N; (iii) profit of item is identified by utility function; and
resource of each item is presented by QoS attributes; (iv) available resources are
mapped to user’s QoS requirements. Each service class presents a set of services that
provides the same functionality to solve a specific task. The same authors [9] divide
the QoS attributes into 2 groups, one group requires to maximize their values and the
other group requires to minimize them. Actually, this work supposes that from a us-
er’s requirement, the system generates many groups of services working together to

answer to the user’s requirement. These groups of services are presented by process
plans. A process plan is a sequential of services working together to solve a user’s
requirement. The service utility function that is calculated based on QoS properties
and their weight are defined as:

 𝐹(𝐾) = ∑ 𝑤& ∗ M
NO)(P)QRO)

SO)
T +	∑ 𝑤' ∗ V1 −

NXY(P)QRXY
SXY

Z[
'*+

∝
&*+ (2)

Where α: number of QoS properties that are required to maximize their values; β:
number of QoS properties that are required to minimize their values; w: weight of
each QoS parameter set by user (0< wi, wj <1); µ and ϭ are average value and the
standard deviation of the QoS attribute for all candidates in the service class;
∑ 𝑤&∝
&*+ + ∑ 𝑤'

[
'*+ = 1; α+β = m. In short, this algorithm calculates the sum of QoS

value of all process plans, then choses the one with maximum value of profit or the
utility function value. The algorithm works only for sequential composition. MMKP
problem is NP-hard. Yu, et al. [10] introduce an exponential time algorithm called
BBLP base on branch and bound method. Branch and bound method is presented in
[11]. BBLP generates a search tree in which each node stores a state solution, fixed or
free. Fixed means that the service in the service class is selected, and free otherwise.
A tree node has 3 state values: (i) fixed utility value Ff produced by fixed classes
S] ∈ C, F` = ∑ Fibcdc∈e ; (ii) utility upper bound (Fb): Fb=Ff + FLP. Linear relaxation
of sub problems is used to calculate FLP; (iii) branching class (Sg) is the solution of
FLP; it is a service class Si with the highest value of xij. BBLP build the search tree
by 3 steps. Firstly, for each node find the utility upper bound Fb by linear relaxation
of the whole problems. Then, choose a node with the maximum value of Fb and ex-
tend the tree through Sg. The selected class is added as new node to the tree’s current
node. Lastly, repeat the previous steps until all classes are fixed. Each node with the
highest value of Ff is the optimal solution. The selected candidate of each class can be
found by tracing back to the root of the tree. The same authors in [10] presents heuris-
tic algorithm called WS_HEU which always selecting a feasible solution without
thinking the unfeasible one that does not respect to the constraint. This algorithm runs
in polynomial function; it iterates in each group to upgrade the current solution. If it
cannot fine a better solution, it will use upgrade follow by downgrade method to im-
prove the solution. Feasible solution is a solution that maximizes utility function and
does not violent the constraint. From the start, if there is no feasible solution found,
algorithm stops. The algorithm is used to select services in one process plan. There-
fore, if many process plans matched, it requires applying the algorithm for every plan.
Finally, it chooses the one with highest utility value. Yu, et al., [10] propose a solu-
tion which support rich composition structures such as parallel, conditional and loops
of services. In [12], Cabrera et al. propose the WeSSQoS system which works over
multiple web service repositories and QoS resources; it uses QoS values to rank the
matched services. This system asks users to provide 2 inputs, domain context (refers
to functionality requirement) and a vector of QoS defined by value: a Boolean defines
whether QoS attribute is required to be maximized or minimized; another a Boolean
defines whether QoS attribute is mandatory or not. The selection algorithm follows 3

steps to choose the most suitable service, normalization, ranking and then priority
evaluation. Furthermore, different normalization and ranking algorithms are intro-
duced by the authors.

The combinatorial model is used to rake a set of services that provide the same
functionality of service and select the best service based on a utility function calculat-
ed from QoS values and their weight. Therefore, before applying this combinatorial
model, we must apply another pre-process algorithm first to obtain a set of services
that provides the same functionality of the service.

Graph model. Graph algorithm can process with more than one process plans at a
time, unlike the combinatorial algorithms. The candidate graph is constructed as fol-
lows: (i) each graph node corresponds to a candidate item of the service classes and
each node has a profit value (utility function) and a list of QoS (attribute and its val-
ue); (ii) if a service in class Si connects to a service in class Sj, then all services in
class Si are connected to all services in class Sj; (iii) in every links, set the network
QoS attributed to it (accumulated QoS values); (iv) add a virtual source node Vs and
sink node Vd. Vs is connected to all nodes without incoming links and all nodes that
do not have outgoing links are connected to Vd. The QoS attributes of these links are
set to 0; (v) calculate the new QoS value of each node by adding the QoS value of its
incoming link to its original value. The same accumulation process is applied to the
utility function value. An example of service candidate graph is presented in figure 2.

Fig. 2. Service candidate graph (source: [9])

The algorithm passes through the graph in topological short order. Each node stores a
number of paths that respect the constraint (∀𝛼, 𝑞h ≤ 𝑄∝); each accumulative of QoS
value in each node must be less or equal to the value provided by users (one QoS
attribute at a time). The algorithm’s details are available in [9]; the authors propose
MCSP-K by just keeping only K paths in each node.
The Graph solution models the problem as a multi-constraint optimal path (MCOP)
problem. It verifies the constraints and selects the maximum utility in each step when
passes through each node of the graph from the source node to the sink node. Howev-
er for combinatorial model, it compares the utility function values of all the process
plans to choose the one with maximum value of the utility function and verify the
constraint of QoS values.

2.2 QoS Attributes

Many services can provide the same functionality, so QoS could be used to further
select the best service among the matched services [13]. Currently, the standard repre-
sentation of the QoS properties in the service registry is not yet defined. Therefore,
defining a structure to represent the published services and their QoS properties is
required. The existing research works use ontology to represent services and their
QoS properties.

The QoS ontology is usually defined by experts to obtain a comprehensive struc-
ture because experts understand the domain application very well. Moreover, QoS
ontology is mainly defined for a specific application domain. The QoS properties are
categorized into groups according to their characteristic such as performance and
security. Khutade and Phalnikar, [1] use ontology to represent QoS properties and
categorize them into 3 parts: (i) performance: latency, scalability, throughput, re-
sponse time, availability, error rate and accessibility; (ii) security: encryption, authen-
tication, accountability, access control, authorization and confidentiality; (iii) Busi-
ness property: monitoring, reputation, payment method and cost. Chaari, et al. [14]
make a case study about transportation service for delivering goods. They divide non-
functional properties of the service into QoS properties and context properties. QoS
properties are presented into 2 subgroups, execution and security. Context properties
are divided into business properties and environment properties. The environment
value defines the location of the service provider.

Publishing the services by using the WSDL does not allow specifying the value of
QoS. However, the semantic web service description (WSDL-S) allows representing
the QoS properties. Another solution is to extend OWL-S profile. For example,
D’Mello and V. S. Ananthanarayana, [2] extend OWL-S profile ontology to support
the QoS vocabulary that describe the QoS in the level of performance, business and
business offers values. The QoS in the level of business offers is detailed by offer
start time, offer end time, offer type, etc.

In addition, the values of the QoS can be provided by the service providers or from
the services’ execution tracking data stored on the server. The service requesters can
also provide the feedback on the QoS. The calculation of the QoS values is a difficult
task because the QoS values can be quantitative and qualitative. Some of QoS proper-
ties are required to be maximized but others are required to be minimized. For exam-
ple, response time and error rate need to be minimized; but the availability and reputa-
tion require to be maximized. The examples of the calculation of the QoS values are
presented in [15][16]. Many research works study about defining the QoS properties
and categorizing into groups. However, few research works mention about how to
obtain and to calculate the QoS values.

In conclusion, using the QoS properties for characterizing the services is required
the additional work in storing, publishing and calculating. If we want to consider the
QoS properties in the service selection and composition algorithm, we have to consid-
er some issues such as: (i) application domain, is it generic or specific? This gives us
a vision on how to define QoS attributes; (ii) how to define a generic and extensible
QoS vocabulary? (iii) how to represent QoS properties in service’s advertisement,

storing and user’s query? (iv) how to obtain QoS values? (v) how to calculate QoS
values in service selection and composition processes?

2.3 Ontology Encapsulation for Enhanced Service Specification

Ontology improves the semantic representation of web services and faster the re-
search because of its tree structure. However, the variety of ontology languages and
system domains create difficulty in choosing the most suitable ontology language and
its data structure. In order to choose an ontology language, the specifications of the
ontology languages are required to study such as: data structure, creation purpose,
expressiveness, reasoning method, and supported data types.

Ontology defines the hierarchy and the relationship between different concepts. It
is used to support service selection algorithm and to provide the degree of subsump-
tion matching [17]. In [18], the author propose the service and domain ontology to
represent service’s description and programmer’s API comments. He uses GATE
framework with M-POS and M-DEP to build ontology. At the same time, JAPE rules
are used to extract the necessary keywords from service’s description and API com-
ments. Tian and Huang [19] build a lightweight domain ontology by using tModel
values of the UDDI to hierarchy the ontology. This tModel of UDDI is further sub
categorized by categoryBag value. This ontology does not store the equality concepts,
but they create a separate synonym table to support it. In [20], the authors propose a
service discovery approach base on ontology. They use ontology to semantically rep-
resent the user queries, service descriptions and contextual information. The user’s
query is identified by service type, outputs, inputs and contextual attribute. Their pro-
posed algorithm compares the users’ inputs, outputs and service type with the service
ontology and data type ontology to identify 3 degrees of matching: precise match,
approximate match and mismatch. Then, the algorithm uses the contextual data to
rank the result. Another example of service matching based on ontology is defined in
[21].

Klein [22] cites many keywords-based and table-based service discovery tech-
niques which are not recommended due to the low quality of the retrieved services.

Therefore, the ontology provides the ability for defining many degrees of matching
between 2 concepts and not just only exact matching.

3 Proposed Solution

The existing proposed solutions are mainly considered the QoS values from the
service providers. They do not consider the values of QoS obtained from services’
execution tracking data on the server. For our proposed solution, the values of QoS
performance properties are calculated from the services’ execution tracking data on
the server. Moreover, a method to obtain better value of the services’ execution time
is introduced. This method considers the services’ execution states to calculate the
value of service’s execution time.

A web service ontology (WSOnto) is defined to represent the available services,
the QoS properties and services’ cateogries. The existing research works define the
ontology’s structure by experts and for a specific domain application. However, our
research generates the structure of web service ontology automatically. It uses the
tModel values of UDDI to categorize the services into groups.

Then a service selection algorithm that requires multi-criteria as input is intro-
duced to validate the proposed ontology structure. The multi criteria are domain con-
text, service’s functional properties, QoS performance’s properties and service’s secu-
rity. The service’s security properties include the authentication information and the
supported encryption methods. For the security reason of the information systems,
web services should not be invoked by anyone. It is vital to consider user’s access
right in the service selection process because it is possible that the result service from
the service selection algorithm cannot be invoked. These multi criteria are taken into
account to obtain a better accurate and comprehensive results of the service selection
algorithm.

This paper focuses on “Existing SOA Infrastructure” module which can be seen in
figure 3. This module is responsible for defining a structure to represent the existing
services published by many business process applications and to store the service’s
QoS values. The proposed structure must support with other modules of the global
framework presented in the figure 1. Once a service is published, it is stored in the
UDDI and then it is passed to the “Content Extractor” component. The “Content Ex-
tractor” component extracts useful data, then it forwards those data to the “Ontology
builder” component. After the “Ontology builder” component receives those data, it
will store them in the ontology. Moreover, the “Content Extractor” component is also
used to extract the content the services’ execution data (performance value of ser-
vices) and deployed business processes. The deployed business processes are stored
in a new structure because it is later used in the service composition process. Thus,
the ontologies are needed. One for storing the services, another one for storing de-
ployed business processes. A scheduler process is created to backup ontologies into a
database to prevent any lost. All the data is stored in one database to facilitate the
database connections. Ontology is selected to store services’ information because of
many reasons: (i) the limitations of current UDDI. It does not store QoS values and
allow only keyword matching. (2) Ontology is recognized as a semantic representa-
tion of services because it defines the relationships between the concepts stored in the
ontology. (3) Ontology is a tree structure, so it is supposed to provide better searching
time compare to other data structure such as table.

Fig. 3. Existing SOA infrastructures

To achieve our goal, we divide the work into 2 steps. First, define an ontology’s
structure to represent services’ information. Then define a service selection algorithm
to validate the proposed structured of ontology.

3.1 Web Service Ontology Building

It is vital to study about existing resources and to define what we need to store in
ontology before defining its structure. We have UDDI’s data, WSDL files, tracking
data. In UDDI, some information can be found such as service’s owner (called busi-
ness entity), service’s information and service’s accessing constraints. These data can
be retrieved by UDDI’s APIs. Figure 4 presents service related information extracted
from UDDI. Not all the information is shown in the figure 4 in order to make it visi-
ble. The other additional information can be found such as bindingTemplate identified
by access point (usetype and text description), tModel and categoryBag. CategoryBag
is referenced by one or many Keyreferenced and each of them is defined by tmodel-
Key, name and value. The functional (input, output, pre-condition and effect).

Fig. 4. Service hierarchy tree

The tracking data can be obtained from the server at the level of services (compo-
nent) or service’s operations. Table 2 presents an example of tracking data from the
oracle SOA suite at the level of service’s operations. This table shows the tracking
data of different instances of services and services’ operations. It provides the infor-
mation about composite’s name (composite_name), service’s name (compo-
nent_name), service’s operation (operation_name), execution start time (begin_time),
execution end time (end_time), execution duration (duration_in_second) and execu-
tion state (state). The execution state identifies whether a service is successfully exe-
cuted or not. Moreover, some addition information can be extracted from the table
such as the total number of calls and number of failures of the services. Then, the
availability value can be calculated from these two values.

Table 2. Tracking data

Figure 5 presents our proposed web service ontology’s structure. This web service

ontology (WSOnto) is composed of 2 parts. The first part presents services’ categories
and the second part presents services’ information. Service’s category refers to the
value of tModel in the UDDI. Every time when the service providers publish their
services, they need to specify the service’s category value. The WSOnto is described
in detail as follows:

• The first level (depth=1) of WSOnto represents services’ categories. Each service
category contains a set of services and a list of keywords. These keywords can be
extracted from the UDDI.

• A service is identified by its functional and non-functional properties (QoS), and
some other properties such as businesskey, servicekey, url (of WSDL) and busi-
nessname (service provider).

• The functional properties of service are defined by input and output. The input and
output are specified by data-type, name and value.

• QoS is divided into 2 subgroups, performance and security. The service’s perfor-
mance defines how well a service was executed. The service’s security defines the
supported security mechanisms by a service and users’ authentication information
and users’ access right. Service’s performance is specified by availability, execu-
tionTime and totalcalled of service. Service’s security is identified by encryption
(supported encryption method), authentication (users’ authentication information),
and authorization (users’ access right information). The availability, execution-
Time and totalcalled are defined by 2 properties, value and maximize. Maximize
property defines whether the attribute requires to be maximized or minimized. It
has Boolean value of 0 and 1.

• A service contains one or many operations and each operation is identified by its
functional properties and QoS performance.

Fig. 5. Web service ontology

3.2 QoS value

We are not only focusing on building the ontology structure to represent web services
and defining a service selection algorithm to validate the structure, but we propose

also a solution to improve the calculation of QoS values. This yields to a better accu-
rate result of the service selection algorithm. Usually, the duration of execution time
of the services is calculated as the average value of the execution time of all service’s
instances. This way does not really show the reality value of execution time of service
because; the execution time of the failure service’s instance should not be taken into
account.

Table 3. Execution time of a service’s instances

Table 3 presents an example of the execution time of a service’s instances with the
status equal to fail (status=0) or success (status=1) when the service’s instances were
called. The final value of execution time of a service, Sex, is defined in equation (3).

 𝑆ij =
∑ k)lk)
m
)no
p

 (3)

Where n is the total number of instances of a service; Sex is the duration of the exe-
cution time of a service; St defines the status of the service’s instance. The calculation
function of the service’s execution time and Table 3 provide an example of execution
time attribute case, but it can be applied for other attributes if needed. For the execu-
tion time of the service’s operations can be calculated by using equation (3) as well.

A script is scheduled to run in order to update the QoS values of services and their
operations that are stored in the WSOnto.

Our proposed solution considers only the QoS values from the server and does not
consider the QoS values from the service providers. It is also a solution to consider
the QoS values from the server and the service providers. However, if we want to
consider the QoS values from the service providers, OWL-S or WSDL-S must be
used to describe the web services. Table 3 provides an example of the calculation of
the service’s execution time and service’s availability value from the server and the
service provider. The calculation is described as follows: (i) if the value of the availa-
bility and execution time of service are provided by the server and service provider,
then the final value is the average value of the values obtained from the server and the
service provider; (ii) if one of the server or service provider does not specify the QoS
values, then the final QoS values are taken from the one that has value; (iii) otherwise,
they are set to zero.

Table 4. Calculation the QoS values

3.3 Service Selection Algorithm

A service selection algorithm is proposed to validate the structure of WSOnto. This
algorithm considers only the selection of atomic service to perform the users’ re-
quirements. The user’s requirements are defined by: (i) context that is defined by a set
of keywords. (ii) Service’s functional properties (an input and an output); (iii) ser-
vice’s security value (username and password); (iv) weight of each attribute of the
QoS performance values. The algorithm works in 5 steps sequentially as shown in
figure 6.

Fig. 6. Service selection process

The pseudo code of the service selection algorithm is presented as follows:

Service Selection (Req, WSOnto) {

 /* create a tree contains services that are verified
with user’s context specification */

 OntoTree = filterContext(context, WSOnto);

/* remove all nodes that are not verified with the user’s
security constraints */

 OntoTree = filterSecurity (security, OntoTree);

/* remove all nodes that are not verified to the IOs con-
straints*/

 OntoTree = filterFunctionality (IOs, OntoTree);

 /* rank and select the most suitable service base on
the QoS Performance values*/

 Result = selectBestService (performance, OntoTree);

}

The algorithm can be described in detail as follows:

(a) filterContext: this method builds a new tree that stores all services verified with
user’s context (keywords) from web service ontology (WSOnto). It passes
through the web service ontology to compare the user’s context with service
category’s keywords, and then compares the user’s context with the service’s
keyword to select the services that verify user’s context constraint. All the vali-
dated services are copied to OntoTree.

(b) filterSecurity: this method removes all service nodes that are not verified with
QoS security constraints (username and password). When absent the inputted
values from the user, filterSecurity still check the service’s authentication val-
ue. If the service’s authentication is empty, the service node is kept. Otherwise,
it is removed. The service’s authentication is empty means the service can be
invoked by anymore.

(c) filterFuntionality: this mothod has OntoTree, inputs and outputs as its input. It
passes through all the services stored in OntoTree one by one and compares
service functional properties with the inputs and outputs provided by users.
This test supposes that the input and output are defined by data type and name.
filterFunctionality compares the service’s outputs with user’s outputs and ser-
vice’s inputs with user’s inputs. All the services that are not verified with the
service’s functional property constraints are removed from the OntoTree.

(d) selectBestService: this method calculates the utility values of all services in On-
toTree, then it ranks the result by the utility values descendant. Then it outputs
a service with the maximum value of utility. The calculation of utility value is
followed equation (2).

4 Discussion

The designed web service ontology (WSOnto) represents the existing available ser-
vices, QoS values, and the services’ operations. WSOnto is used to eliminate the limi-
tations of UDDI and WSDL. The limitations of UDDI concern the semantic matching
and it cannot store the non-functional properties of services. For WSDL, it does not
allow introducing the QoS values. Moreover, OWL is used to build the WSOnto be-
cause it is a W3C recommendation, expressiveness, support reasoning, and follows
object oriented programming. In WSOnto, each service and service’s category link to
a list of keywords. These keywords are used to solve homonym problem. The WSOn-

to stores also some important service’s attributes allow accessing other additional
information of services in the UDDI.

After defining the WSOnto, the equation (3) is defined to calculate the service’s
execution time by taking into account the value of service’s execution state. The exe-
cution time is a Boolean value of 0 and 1. The final value of service’s execution time
is calculated by the sum of all instances of service’s execution time multiply with the
value of the service’s execution state, then divide with the number of service’s in-
stances. This calculation produces the average value of service’s execution time for
only successfully executed service’s instances. This calculated method produces a
better result than just taking the average value of the execution time of all service’s
instances.

Then a service selection algorithm is proposed to validate proposed WSOnto’s
structure. The service selection algorithm uses multi criteria to select the best suitable
service to perform a user’s requirement. One important criteria of the service selection
algorithm are the service’s security properties. The service’s security properties are
defined by the encryption methods, user’s authentication and user’s authorization
information. Fewer researchers consider the service’s security properties as a selec-
tion criterion in their service selection algorithms. If the service’s security properties
are not taken into account in the service selection algorithm, the algorithm can output
the results that cannot be invoked by the service requesters. In addition, the QoS per-
formance’s weight is also one of the multi criteria of our proposed service selection
algorithm. The QoS performance’s weight is used to easily allow users specifying
their preference of QoS performance’s values. The QoS performance’s weight allows
to obtain better accurate result by avoiding the big gap between different values of the
QoS performance properties. For example the total number of service’s calls, a ser-
vice is called just for a few times while the other one was called hundreds of times.
Thus, without considering the weight can cause a big effect on the value of the utility
function.

Taking into account multi criteria in the service selection algorithm improves the
output results, but it also increases the complexity of the algorithm.

5 Conclusion and Future Work

In this paper, we define a web service ontology (WSOnto) to represent existing avail-
able services, services’ categories, and the QoS values. WSOnto stores also the ser-
vices’ operations with their functional properties and QoS values. The tModel of
UDDI values is used to automatically categorize the services into groups. Moreover,
each service and service’s category are linked with a list of keywords that can be used
in the service selection algorithm. We proposed a method to better calculate the value
of services’ execution time by considering the failure or the success state of services’
execution. The services’ execution tracking data on the server is used to calculate the
QoS performance values. An example table of the tracking data from the oracle SOA
server is introduced. Then a service selection algorithm is proposed to test the pro-

posed web service ontology. It takes multi-criteria as input. The services’ security is
also an input criteria of our proposed service selection algorithm.

We want to make use of the full advantage of ontology, therefore, we aim to repre-
sent the users’ requirements in ontology structure and perform the matching between
users’ requirements ontologies and the WSOnto to obtain the most suitable service to
perform user’s requirements. Therefore, our future work is to define the ontologies to
represent users’ requirements and propose service composition algorithm. Then com-
plete the other parts described in our global framework.

Acknowledgements: This project has been funded with support from the European
Commission (EMA2-2010- 2359 Project). This publication reflects the views only of
the authors, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

References
1. A. Pradnya Khutade and B. Rashmi Phalnikar, “QOS BASED WEB SERVICE

DISCOVERY USING OO CONCEPTS,” International Journal of Advanced Technology
& Engineering Research (IJATER), vol. 2, no. 6, 2012.

2. D. A. D’Mello and V. S. Ananthanarayana, “Semantic Web Service Selection Based on
Service Provider’s Business Offerings,” IJSSST, vol. Vol. 10, no. No. 2, Mar. 2009.

3. D. Martin, M. Burstein, and et al., “OWL-S: Semantic Markup for Web Services,” vol. 22,
2004.

4. H. H. Wang, N. Gibbins, T. R. Payne, and D. Redavid, “A formal model of the Semantic
Web Service Ontology (WSMO),” Information Systems, vol. 37, no. 1, pp. 33–60, 2012.

5. J. de Bruijn, C. Bussler, J. Domingue, and et al., Web Service Modeling Ontology
(WSMO). 2005.

6. C. Von Riegen, “UDDI version 2.03 data structure reference,” 2002.
7. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband, K. Ja-

nuszewski, S. Lee, B. McKee, and J. Munter, “UDDI Version 3.0,” Published specifica-
tion, Oasis, vol. 5, pp. 16–18, 2002.

8. C. Natschläger, “Towards a BPMN 2.0 Ontology,” presented at the Business Process
Model and Notation, 2011, pp. 1–15.

9. T. Yu and K. J. Lin, “Service selection algorithms for composing complex services with
multiple QoS constraints,” Service-Oriented Computing-ICSOC 2005, pp. 130–143, 2005.

10. T. Yu, Y. Zhang, and et al., “Efficient algorithms for Web services selection with end-to-
end QoS constraints,” ACM Transactions on the Web (TWEB), vol. 1, p. 6, 2007.

11. S. KHAN, “Quality adaptation in a multisession multimedia system: Model, algorithms
and architecture,” Department of ECE, University of Victoria, 1998.

12. O. Cabrera, M. Oriol, X. Franch, L. López, J. Marco, O. Fragoso, and R. Santaolaya,
“WeSSQoS: A Configurable SOA System for Quality-aware Web Service Selection,”
arXiv preprint arXiv:1110.5574, 2011.

13. S. Neelavathi and K. Vivekanandan, “An Innovative Quality of Service (QOS) based Ser-
vice Selection for Service Orchrestration in SOA,” International Journal of Scientific and
Engineering Research, 2 (4), 2011.

14. S. Chaari, Y. Badr, F. Biennier, C. BenAmar, and J. Favrel, “Framework for web service
selection based on non-functional properties,” International Journal of Web Services Prac-
tices, vol. 3, no. 2, pp. 94–109, 2008.

15. M. Alrifai, T. Risse, P. Dolog, and W. Nejdl, “A scalable approach for qos-based web ser-
vice selection,” in Service-Oriented Computing–ICSOC 2008 Workshops, 2009, pp. 190–
199.

16. D. Schuller, U. Lampe, J. Eckert, R. Steinmetz, and S. Schulte, “Cost-driven Optimization
of Complex Service-based Workflows for Stochastic QoS Parameters,” in Web Services
(ICWS), 2012 IEEE 19th International Conference on, 2012, pp. 66–73.

17. M. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs, “Ranked matching
for service descriptions using owl-s,” in Kommunikation in Verteilten Systemen (KiVS),
2005, pp. 91–102.

18. M. Sabou, “Building Web Service Ontologies,” 2006.
19. Y. Tian and M. Huang, “Enhance discovery and retrieval of geospatial data using SOA and

Semantic Web technologies,” presented at the Expert Systems with Applications, 2012.
20. T. Broens, S. Pokraev, M. Van Sinderen, J. Koolwaaij, and P. Dockhorn Costa, “Context-

aware, ontology-based service discovery,” Ambient Intelligence, pp. 72–83, 2004.
21. M. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs, “Ranked matching

for service descriptions using owl-s,” in Kommunikation in Verteilten Systemen (KiVS),
2005, pp. 91–102.

22. A. Bernstein and M. Klein, “Towards high-precision service retrieval,” The Semantic
Web—ISWC 2002, pp. 84–101, 2002.

