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Introduction

In this paper, we consider a second-order time semi-discretization of the Cahn-Hilliard equation with an analytic nonlinearity, and we prove that any sequence generated by the scheme converges to a steady state as time goes to infinity, provided that the time-step is chosen small enough.

The Cahn-Hilliard equation [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF] reads

u t = ∆w w = -γ∆u + f (u) in Ω × (0, +∞), (1.1) 
where Ω is a bounded subset of R d (1 ≤ d ≤ 3) with smooth boundary and γ > 0.

A typical choice for the nonlinearity is

f (s) = c(s 3 -s) (1.2)
with c > 0. More general conditions on f are given in Section 2, see (2.3)-(2.5). Equation (1.1) is completed with Neumann boundary conditions and an initial data. The Cahn-Hilliard equation was analyzed by many authors and used in different contexts (see, e.g., [START_REF] Cherfils | The Cahn-Hilliard equation with logarithmic potentials[END_REF][START_REF] Novick-Cohen | The Cahn-Hilliard equation[END_REF] and references therein). In particular, it is a H -1 gradient flow for the energy

E(u) = Ω γ 2 |∇u| 2 + F (u) dx,
where F is an antiderivative of f . Convergence of single trajectories to equilibrium for (1.1)-(1.2) has been proved in [START_REF] Rybka | Convergence of solutions to Cahn-Hilliard equation[END_REF]. The proof uses the gradient flow structure of the equation and a Lojasiewicz-Simon inequality [START_REF] Simon | Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems[END_REF].

In one space dimension, the set of steady states corresponding to (1.1)-(1.2) is finite [START_REF] Grinfeld | Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments[END_REF][START_REF] Kosugi | Stationary solutions to the onedimensional Cahn-Hilliard equation: proof by the complete elliptic integrals[END_REF]. In this case, the use of a Lojasiewicz-Simon inequality can be avoided [START_REF] Zheng | Asymptotic behaviour to the solution of the Cahn-Hilliard equation[END_REF] but otherwise, the situation is highly complicated; if d = 2 or 3, there may even be a continuum of stationary solutions (see, e.g., [START_REF] Wei | On the stationary Cahn-Hilliard equation: interior spike solutions[END_REF] and references therein). The Lojasiewicz-Simon inequality allows to prove convergence to an equilibrium without any knowledge on the set of steady states. This celebrated inequality is based on the analyticity of f (see [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF] for a recent overview). In contrast, for the related semilinear parabolic equation, convergence to equilibrium may fail for a nonlinearity of class C ∞ [START_REF] Poláčik | Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains[END_REF].

Using similar techniques, convergence to equilibrium for the non-autonomous Cahn-Hilliard equation was proved in [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF], and the case of a logarithmic nonlinearity was considered in [START_REF] Abels | Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy[END_REF]. The Cahn-Hilliard equation endowed with dynamic or Wentzell boundary conditions was analyzed in [START_REF] Chill | Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions[END_REF][START_REF] Prüss | Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[END_REF][START_REF] Wu | Convergence to equilibrium for a Cahn-Hilliard model with the Wentzell boundary condition[END_REF][START_REF] Wu | Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions[END_REF]. Coupled systems were also considered (see, e.g., [START_REF] Gal | Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions[END_REF][START_REF] Jiang | Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth[END_REF][START_REF] Prüss | Maximal L p -regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions[END_REF]).

Since many space and/or time discretizations of the Cahn-Hilliard equation are available in the literature (see, e.g., [START_REF] Antonietti | A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes[END_REF][START_REF] Elliott | The Cahn-Hilliard model for the kinetics of phase separation[END_REF][START_REF] Gomez | Isogeometric analysis of the Cahn-Hilliard phase-field model[END_REF][START_REF] Gomez | Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models[END_REF][START_REF] Goudenège | High order finite element calculations for the Cahn-Hilliard equation[END_REF][START_REF] Guo | An H 2 convergence of a secondorder convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation[END_REF][START_REF] Nabet | Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions[END_REF][START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF][START_REF] Wu | Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models[END_REF]), it is natural to ask whether convergence to equilibrium also holds for these discretizations, by using similar techniques.

If we consider only a space semi-discretization of (1.1), and if this discretization can be shown to preserve the gradient flow structure, then convergence to equilibrium is a consequence of Lojasiewicz's classical convergence result [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF] and its generalizations [START_REF] Bárta | Every ordinary differential equation with a strict Lyapunov function is a gradient system[END_REF][START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF]. Thanks to the finite dimension, the Lojasiewicz-Simon inequality reduces to the standard Lojasiewicz inequality. The latter is a direct consequence of analyticity of the discrete energy functional.

Thus, the situation regarding the space discretization is well understood, and we believe that the focus should be put on the time discretization, in the specific case where the time scheme preserves the gradient flow structure. In this regard, convergence to equilibrium for a fully discrete version of (1.1)-(1.2) was first proved in [START_REF] Merlet | Convergence to equilibrium for the backward Euler scheme and applications[END_REF]: the time scheme was the backward Euler scheme and the space discretization was a finite element method. Fully discretized versions of Cahn-Hilliard type equations were considered in [START_REF] Cherfils | A numerical analysis of the Cahn-Hilliard equation with non-permeable walls[END_REF][START_REF] Cherfils | A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions[END_REF][START_REF] Injrou | Error estimates for a finite element discretization of the Cahn-Hilliard-Gurtin equations[END_REF], where this nice feature of the backward Euler scheme was again demonstrated (see also [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Guillén-González | Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows[END_REF]). In [START_REF] Alaa | Convergence to equilibrium for discretized gradientlike systems with analytic features[END_REF], convergence to equilibrium was proved for several fully discretized versions of the closely related Allen-Cahn equation; the time scheme was either first order or second order, conditionnally or unconditionnally stable, and the time-step could possibly be variable. In addition, general conditions ensuring convergence to equilibrium for a time discretization were given (see also [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]).

Therefore, the fully discrete case is now also well understood. The last stage is to study the time semi-discrete case. This is all the more interesting since this approach is independent of a choice of a specific space discretization. Convergence to equilibrium was proved for the backward Euler time semi-discretization of the Allen-Cahn equation in [START_REF] Merlet | Convergence to equilibrium for the backward Euler scheme and applications[END_REF] (see also [START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF]). A related damped wave equation was considered in [START_REF] Pierre | Convergence to equilibrium for a time semi-discrete damped wave equation[END_REF].

For schemes different from the backward Euler method, the situation is not so clear, and this is well illustrated by the second order case. Indeed, there exist several second-order time semi-discretizations of (1.1)-(1.2) which preserve the gradient flow structure (see, e.g., [START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF][START_REF] Wu | Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models[END_REF] and references therein). Most of these schemes are onestep methods, which can be seen as variants of the Crank-Nicolson scheme, such as the classical secant scheme [START_REF] Du | Numerical analysis of a continuum model of phase transition[END_REF][START_REF] Elliott | The Cahn-Hilliard model for the kinetics of phase separation[END_REF] or the more recent scheme of Gomez and Hughes [START_REF] Gomez | Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models[END_REF], which is a Crank-Nicolson scheme with stabilization.

However, we have not been able to prove convergence to equilibrium for any of these second-order one-step schemes. One difficulty is that the gradient of E (cf. (3.2)) is treated in an implicit/explicit way, and another difficulty is that the discrete dynamical system associated with the scheme is defined on a space of infinite dimension. The first difficulty can be circumvented in finite dimension, as recently shown in [START_REF] Grasselli | Energy stable and convergent finite element schemes for the modified phase field crystal equation[END_REF], where convergence to equilibrium was proved for a fully discrete approximation of the modified phase-field crystal equation using the second-order time discretization of Gomez and Hughes. A related difficulty has been pointed out in [START_REF] Tone | On the long-time stability of the Crank-Nicolson scheme for the 2D Navier-Stokes equations[END_REF] where the stability of the Crank-Nicolson scheme for the Navier-Stokes equation was proved in a finite dimensional setting only.

In this paper, instead of a Crank-Nicolson type method, we use a standard twostep scheme with fixed time-step, namely the backward differentiation formula of order two. It is well-known [START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF] that this scheme enjoys a Lyapunov stability, namely, if the time-step is small enough, a so-called pseudo-energy (cf. (2.17)) is nonincreasing at every time iteration. Thanks to the implicit treatment of the gradient of E (cf. (2.13)), the proof of convergence is similar to the case of the backward Euler scheme in [START_REF] Merlet | Convergence to equilibrium for the backward Euler scheme and applications[END_REF][START_REF] Pierre | Convergence to equilibrium for a time semi-discrete damped wave equation[END_REF]. Using the Lyapunov stability, we first prove Lasalle's in-variance principle by a compactness argument (Proposition 3.1). Convergence to a steady state is then obtained as a consequence of an appropriate Lojasiewicz-Simon inequality (Lemma 3.2), which is the most technical point. In order to derive the convergence rate in H 1 norm, we also take advantage of the fact that the scheme is more dissipative than the original equation (see Remark 2.4).

It would be interesting to extend our convergence result to first-order or secondorder schemes where the nonlinearity is treated explicitly. In order for such schemes to preserve the gradient structure, the standard approach is to truncate the cubic nonlinearity f (cf. (1.2)) at ±∞ so as to have a linear growth at most [START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF]. However, it is not known if the energy associated with such a nonlinearity satisfies a Lojasiewicz-Simon inequality, in contrast with the finite-dimensional case where it can be proved for certain space discretizations [START_REF] Alaa | Convergence to equilibrium for discretized gradientlike systems with analytic features[END_REF].

It could also be of interest to investigate whether a similar convergence result holds for the p-step backward differentiation formula (BDF), with p ≥ 3. A favorable situation is the 3-step BDF method, which preserves the gradient flow structure, at least in finite dimension [START_REF] Stuart | Dynamical systems and numerical analysis[END_REF].

The paper is organized as follows. In Section 2, we introduce the scheme, we establish its well-posedness and we show that it is Lyapunov stable. In Section 3, we prove the convergence result.

2 The time semi-discrete scheme

Notation and assumptions

Let H = L 2 (Ω) be equipped with the L 2 (Ω) norm | • | 0 and the L 2 (Ω) scalar product (•, •). We denote V = H 1 (Ω) the standard Sobolev space based on the L 2 (Ω) space. We use the hilbertian semi-norm

| • | 1 = |∇ • | 0 in V , and the norm in V is v 2 1 = |v| 2 0 + |v| 2 1 .
We denote -∆ : V → V ′ the bounded operator associated with the inner product on V through

-∆u, v V ′ ,V = (∇u, ∇v), ∀u, v ∈ V,
where V ′ is the topological dual of V . As usual, we will denote W k,p (Ω) the Sobolev spaces based on the L p (Ω) space [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

For a function u ∈ L 2 (Ω), we denote

u = 1 |Ω| Ω u and u = u -u ,
where |Ω| is the Lebesgue measure of Ω. We also define

Ḣ = {u ∈ L 2 (Ω), u = 0}, V = V ∩ Ḣ.
We will use the continuous and dense injections

V ⊂ Ḣ = Ḣ′ ⊂ V ′ .
As a consequence of the Poincaré-Wirtinger inequality, the norms v 1 and

v → (|v| 2 1 + v 2 ) 1/2 (2.1)
are equivalent on V . The operator -∆ : V → V ′ , that is the restriction of -∆, is an isomorphism. The scalar product in V ′ is given by

( u, v) -1 = (∇(-∆) -1 u, ∇(-∆) -1 v) = u, (-∆) -1 v V ′ , V
and the norm is given by

| u| 2 -1 = ( u, u) -1 = u, (-∆) -1 u V ′ , V .
We recall the interpolation inequality

| u| 2 0 ≤ | u| -1 | u| 1 , ∀ u ∈ V . (2.2)
We assume that the nonlinearity f : R → R is analytic and if d ≥ 2, we assume in addition that there exist a constant C > 0 and a real number p ≥ 0 such that

|f ′ (s)| ≤ C(1 + |s| p ), ∀s ∈ R, (2.3) with p < 4 if d = 3. No growth assumption is needed if d = 1.
We also assume that

f ′ (s) ≥ -c f , ∀s ∈ R, (2.4) 
for some (optimal) nonnegative constant c f , and that lim inf

|s|→+∞ f (s) s > 0. (2.5)
We define the energy functional

E(u) = γ 2 |u| 2 1 + (F (u), 1), (2.6) 
where F (s) is a given antiderivative of f . The Sobolev injection V ⊂ L p+2 (Ω) and the growth assumption (2.3) ensure that E(u) < +∞ and f (u) ∈ V ′ , for all u ∈ V . In fact, by [START_REF] Kavian | Introduction à la théorie des points critiques et applications aux problèmes elliptiques[END_REF]Corollaire 17.8], the functional E is of class C 2 on V . For any u, v, w ∈ V , we have

dE(u), v V ′ ,V = Ω [γ∇u • ∇v + f (u)v]dx, (2.7) 
d 2 E(u)v, w V ′ ,V = Ω [γ∇v • ∇w + f ′ (u)vw]dx, (2.8) 
where

dE(u) ∈ V ′ is the first differential of E at u and d 2 E(u) ∈ L(V, V ′ ) is the differential of order two of E at u.
If u is a regular solution of (1.1), on computing we see that

d dt E(u(t)) = -|w| 2 1 = -|u t | 2 -1 t ≥ 0, (2.9) 
so that E is a Lyapunov functional associated with (1.1).

Existence, uniqueness and Lyapunov stability

Let τ > 0 denote the time-step. The second-order backward differentiation scheme for (1.1) reads [START_REF] Shen | Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF]:

let (u 0 , u 1 ) ∈ V × V and for n = 1, 2, . . . , let (u n+1 , w n+1 ) ∈ V × V solve    1 2τ (3u n+1 -4u n + u n-1 , ϕ) + (∇w n+1 , ∇ϕ) = 0 (w n+1 , ψ) = γ(∇u n+1 , ∇ψ) + (f (u n+1 ), ψ), (2.10) 
for all (ϕ, ψ) ∈ V × V . For simplicity, we assume that

u 0 = u 1 , (2.11) 
so that, by induction, any sequence (u n ) which complies with (2.10) satisfies u n = u 0 for all n (choose ϕ = 1/|Ω| in (2.10)). We note that w 0 and w 1 need not be defined.

For later purpose, we note that if

u n = u n-1 , then (2.10) is equivalent to              u n+1 = u n (-∆) -1 (3u n+1 -4u n + u n-1 ) 2τ + ẇn+1 = 0 ẇn+1 = -γ∆u n+1 + f (u n+1 ) -f (u n+1 ) w n+1 = f (u n+1 ) .
(2.12)

Eliminating w n+1 leads to

(-∆) -1 (3u n+1 -4u n + u n-1 ) 2τ -γ∆u n+1 + f (u n+1 ) -f (u n+1 ) = 0. (2.13)
Proposition 2.1 (Existence for all τ ). For all (u 0 , u 1 ) ∈ V ×V such that u 0 = u 1 , there exists at least one sequence (u n , w n ) n which complies with (2.10). Moreover, u n = u 0 for all n.

Proof. Existence can be obtained by minimizing an appropriate functional. By induction, assume that for some n ≥ 1, (

u n-1 , u n ) ∈ V × V is defined, with u n = u n-1 = u 0 .
Then, by (2.13), u n+1 can be obtained by solving

min {G n (v) : v ∈ V, v = u 0 } , (2.14) 
where

G n (v) = 3 4τ | v| 2 -1 + 1 2τ (-4 un + un-1 , v) -1 + E(v).
By (2.5), there exist κ 1 > 0 and κ 2 ≥ 0 such that

F (s) ≥ κ 1 s 2 -κ 2 , ∀s ∈ R.
Thus, for all v ∈ V , (F (v), 1)

≥ κ 1 |v| 2 0 -κ 2 |Ω|,
and so

E(v) ≥ κ 3 v 2 1 -κ 2 |Ω|, (2.15) 
with κ 3 = min{γ/2, κ 1 } > 0. Moreover, by the Cauchy-Schwarz inequality,

|(-4 un + un-1 , v) -1 | ≤ | v| -1 | -4 un + un-1 | -1 ≤ 3 2 | v| 2 -1 + C n ,
for some constant C n which depends on | un | -1 and | un-1 | -1 . Summing up, we have proved that

G n (v) ≥ κ 3 v 2 1 -κ 2 |Ω| - C n 2τ .
By considering a minimizing sequence (v k ) for problem (2.14), we obtain a minimizer, i.e. u n+1 . Then w n+1 can be recovered from u n+1 by (2.12).

Proposition 2.2 (Uniqueness). If 1/τ > c 2 f /(6γ), then for every (u 0 , u 1 ) ∈ V × V such that u 0 = u 1 , there exists at most one sequence (u n , w n ) n which complies with (2.10).

Proof. Assume that (u n+1 , w n+1 ) and (ũ n+1 , wn+1 ) are two solutions of (2.10), and denote δu = u n+1 -ũn+1 , δw = w n+1 -wn+1 . On subtracting, we obtain

3(δu, ϕ)/(2τ ) + (∇δw, ∇ϕ) = 0, (2.16) 
(δw, ψ) = γ(∇δu, ∇ψ) + (f (u n+1 ) -f (ũ n+1 ), ψ),
for all (ϕ, ψ) ∈ V × V . Choosing ϕ = δw and ψ = δu, yields

-(2τ /3)|δw| 2 1 = γ|δu| 2 1 + (f (u n+1 ) -f (ũ n+1 ), δu).
Using the mean value inequality and (2.4) yields

(s -r)(f (s) -f (r)) = f ′ (ξ)(s -r) 2 ≥ -c f (s -r) 2 ,
for all r, s ∈ R, for some ξ ∈ R depending on r, s. Thus,

c f |δu| 2 0 ≥ γ|δu| 2 1 + (2τ /3)|δw| 2 1 .
Using now (2.16) with ϕ = δu, we obtain

c f |δu| 2 0 = -(2τ c f /3)(∇δw, ∇δu) ≤ γ|∇δu| 2 0 + τ 2 c 2 f 9γ |∇δw| 2 .
If τ c 2 f < 6γ, then δ ẇ = 0, and by (2.16), δu = 0 also. Uniqueness follows.

We define the following pseudo-energy

E(u, v) = E(u) + 1 4τ | v| 2 -1 , ∀(u, v) ∈ V × V ′ .
(2.17)

For a sequence (u n ) n , let also δu n = u n -u n-1 denote the backard difference. The following relation will prove useful, 

3u n+1 -4u n + u n-1 = 2δu n+1 + (δu n+1 -δu n ). ( 2 
E(u n+1 , δu n+1 ) + εγ 2 |u n+1 -u n | 2 1 + 1 τ - c 2 f 8γ(1 -ε) |u n+1 -u n | 2 -1 + 1 4τ |δu n+1 -δu n | 2 -1 ≤ E(u n , δu n ). ( 2 

.19)

Proof. We take the L 2 scalar product of equation (2.13) by δu n+1 and we use (2.18). We obtain

1 τ |δu n+1 | 2 -1 + 1 2τ (δu n+1 -δu n , δu n+1 ) -1 + γ(∇u n+1 , ∇(u n+1 -u n )) = (f (u n+1 ), u n -u n+1 ).
By the Taylor-Lagrange formula, from (2.4), we deduce that

F (r) -F (s) ≥ f (s)(r -s) - c f 2 |r -s| 2 , ∀r, s ∈ R. Thus, (f (u n+1 ), u n -u n+1 ) ≤ (F (u n ), 1) -(F (u n+1 ), 1) + c f 2 |u n+1 -u n | 2 0 .
Next, we use the well-known identity

(a, a -b) m = 1 2 |a| 2 m - 1 2 |b| 2 m + 1 2 |a -b| 2 m ,
for m = -1 and m = 0. We find

1 τ |δu n+1 | 2 -1 + 1 4τ |δu n+1 | 2 -1 -|δu n | 2 -1 + |δu n+1 -δu n | 2 -1 + γ 2 |u n+1 | 2 1 -|u n | 2 1 + |u n+1 -u n | 2 1 ≤ (F (u n ), 1) -(F (u n+1 ), 1) + c f 2 |u n+1 -u n | 2 0 . (2.20) 
The interpolation inequality (2.2) and Young's inequality yield

c f 2 |u n+1 -u n | 2 0 ≤ γ(1 -ε) 2 |u n+1 -u n | 2 1 + c 2 f 8γ(1 -ε) |u n+1 -u n | 2 -1 .
Plugging 

Convergence to equilibrium

For a sequence (u n ) n in V , we define its omega-limit set by

ω((u n ) n ) := {u ⋆ ∈ V : ∃n k → ∞, u n k → u ⋆ (strongly) in V }.
Let M ∈ R be given and consider the following affine subspace of V ,

V M = {v ∈ V : v = M } = M + V . (3.1)
The set of critical points of

E (see (2.6)) in V M is S M = {u ⋆ ∈ V M : -γ∆u ⋆ + f (u ⋆ ) -f (u ⋆ ) = 0 in V ′ }.
Indeed, we already know that E ∈ C 2 (V M ; R). Observe that, for any u ∈ V M , v ∈ V , we have (see (2.7))

dE(u), v V ′ , V = Ω [γ∇u • ∇v + f (u)v]dx = Ω [γ∇u • ∇v + (f (u) -f (u) )v]dx = -γ∆u + f (u) -f (u) , v V ′ , V . (3.2) By definition, u ⋆ is a critical point of E in V M if dE(u ⋆ ) = 0 in V ′ .
The definition of S M follows.

Proposition 3.1. Assume that 1/τ > c 2 f /(8γ) and let (u n , w n ) n be a sequence which complies with (2.10)- (2.11). Then δu n → 0 in V and ω((u n ) n ) is a nonempty compact and connected subset of V which is included in S M with M = u 0 . Moreover, E is constant on ω((u n ) n ).

Proof. Using the assumption on τ , we may choose ε ∈ (0, 1) such that 1/τ = c 2 f /(8γ(1 -ε)). Then (2. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) reads

E(u n+1 , δu n+1 ) + εγ 2 |u n+1 -u n | 2 1 + 1 4τ |δu n+1 -δu n | 2 -1 ≤ E(u n , δu n ), (3.3) 
for all n ≥ 1. In particular, (E(u n , δu n )) n is non increasing. Moreover, by (2.15),

E(u, v) ≥ κ 3 u 2 1 + 1 4τ | v| 2 -1 -κ 2 |Ω|, ∀(u, v) ∈ V × V ′ . (3.4) Since E(u 1 , δu 1 ) < +∞, we deduce from (3.4) that (u n , δu n ) is bounded in V × V ′
and that E(u n , δu n ) is bounded from below. Thus, E(u n , δu n ) converges to some E ⋆ in R. By induction, from (3.3)-(3.4) we also deduce that

∞ n=1 |u n+1 -u n | 2 1 ≤ 2 εγ (E(u 1 , δu 1 ) + κ 2 |Ω|) < +∞.
In particular, δu n → 0 in V . This implies that E(u n ) → E ⋆ , and so E is equal to

E ⋆ on ω((u n ) n ).
Next, we claim that the sequence (u n ) is precompact in V . Let us first assume d = 3. We deduce from the Sobolev imbedding [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] that (u n ) is bounded in L 6 (Ω). By the growth condition (2.3), there exists 2 ≥ q > 6/5 such that f (u n+1 ) L q (Ω) ≤ M 1 , where M 1 is independent of n. By elliptic regularity [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF], we deduce from (2.13) that (u n+1 ) n≥1 is bounded in W 2,q (Ω). Finally, from the Sobolev imbedding [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], W 2,q (Ω) is compactly imbedded in V , and the claim is proved.

In the case d = 1 or 2, we obtain directly from the Sobolev imbedding that f (u n+1 ) is bounded in L q (Ω), for any q < +∞, and we conclude similarly.

As a consequence, ω(( (2.13). Thanks to (2.11), the whole sequence (u n ) belongs to V M and u ⋆ as well, where M = u 0 . By (2.18), the term corresponding to the discrete time derivative tends to 0 in V , and we obtain that u ⋆ belongs to S M .

u n ) n ) is a nonempty compact subset of V . Since |u n+1 - u n | 1 → 0, ω((u n ) n ) is also connected. Let finally u ⋆ belong to ω((u n ) n ), with n k → ∞ such that u n k → u ⋆ in V . We let n k tend to ∞ in
If the critical points of E are isolated, i.e. S M is discrete, then Proposition 3.1 ensures that the sequence (u n ) n converges in V . However, as pointed out in the introduction, the structure of S M is generally not known, and there may even be a continuum of steady states. In such cases, the Lojasiewicz-Simon inequality which follows is needed to ensure convergence of the whole sequence (u n ). Lemma 3.2. Let u ⋆ ∈ S M . Then there exist constants θ ∈ (0, 1/2) and δ > 0 depending on u ⋆ such that, for any u ∈ V M satisfying |u -u ⋆ | 1 < δ, there holds

|E(u) -E(u ⋆ )| 1-θ ≤ | -γ∆u + f (u) -f (u) | -1 . (3.5) 
Proof. We will apply the abstract result of Theorem 11.2.7 in [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF]. We introduce the auxiliary functional E M (v) = E(M + v) on V . We will also use the auxiliary functions f M (s) = f (M + s) and F M (s) = F (M + s).

It is obvious that

E M (v) = Ω γ 2 |∇v| 2 + F M (v) dx.
The function E M is of class C 2 on V and by (3.2), for any v ∈ V , we have

dE M (v) = -γ∆v + f M (v) -f M (v) in V ′ .
Similarly, by (2.8), for any v, ϕ ∈ V , we have

d 2 E M (v)ϕ = -γ∆ϕ + f ′ M (v)ϕ -f ′ M (v)ϕ in V ′ . (3.6) Let v ⋆ ∈ V be a critical point of E M , i.e. a solution of dE M (v ⋆ ) = 0 in V ′ . Us- ing (2.3) and elliptic regularity, we obtain that v ⋆ ∈ C 0 (Ω) ⊂ L ∞ (Ω). In particular, f ′ M (v) ∈ L ∞ (Ω). The operator A = d 2 E M (v ⋆ ) ∈ L( V , V ′ ) (cf. (3.6)) can be written A = -γ∆ + P 0 (f ′ M (v ⋆ )Id),
where -γ∆ : V → V ′ is an isomorphism, P 0 : H → Ḣ is the L 2 -projection operator, and f ′ M (v ⋆ )Id : V → H is a multiplication operator. Since V is compactly imbedded in Ḣ [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], f ′ M (v ⋆ )Id : V → H is compact, and P 0 (f ′ M (v ⋆ )Id) as well. Using [27, Theorem 2.2.5], we obtain that A is a semi-Fredholm operator.

Next, let N (A) denote the kernel of A, and Π : V → N (A) the L 2 projection. By [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF]Corollary 2.2.6], L := A + Π : V → V ′ is an isomorphism. We choose Z = Ḣ and denote W = L -1 (Z); W is a Banach space for the norm w W = |L(w)| 0 . We claim that W is continuously imbedded in W 2,2 (Ω). Indeed, by definition, w ∈ W if and only if w ∈ V and L(w) = g for some g ∈ Z, i.e.

w ∈ V and -γ∆w + f ′ M (v ⋆ )w -f ′ M (v ⋆ )w + Πw = g.
Thus, -∆w ∈ Ḣ. By elliptic regularity [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF], w ∈ W 2,2 (Ω). Moreover, by the triangle inequality,

γ| -∆w| 0 ≤ C f ′ M (v ⋆ ) L ∞ |w| 0 + |Πw| 0 + |L(w)| 0 ≤ C w W ,
where C is a constant independent of w. But, by elliptic regularity [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF], we also know that w W 2,2 ≤ C| -∆w| 0 for all w ∈ V . This proves the claim. The Nemytskii operator [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF]Example 2.3]). Using [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF]Proposition 2.3.4], we find that the functional v → Ω F M (v) is real analytic from L ∞ (Ω) into R. Thus, E M , which is the sum of a continuous quadratic functional and of a functional which is real analytic on W ⊂ W 2,2 (Ω) ⊂ L ∞ (Ω), is real analytic on W . We also obtain that dE M : W → Z is real analytic.

f M : v → f M (v) is analytic from L ∞ (Ω) into L ∞ (Ω) (see
We are therefore in position to apply the abstract Theorem 11.2.7 in [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF], which shows that there exist θ ∈ (0, 1/2) and δ > 0 such that for all v ∈ V ,

|v -v ⋆ | 1 < δ ⇒ |E M (v) -E M (v ⋆ )| 1-θ ≤ |dE M (v)| -1 .
(3.7)

Finally, we note that any u ⋆ ∈ S M can be written u ⋆ = M + v ⋆ , where v ⋆ is a critical point of E M ; by definition of V M , any u ∈ V M can be written u = M + v with v ∈ V . The expected Lojasiewicz-Simon inequality (3.5) is exactly (3.7) written in terms of u ⋆ , u, E and f . Theorem 3.3. Assume that 1/τ > c 2 f /(8γ) and let (u n , w n ) n be a sequence which complies with (2.10)- (2.11). Then the whole sequence converges to (u ∞ , w ∞ ) in V × V , with u ∞ ∈ S M , M = u 0 , and w ∞ constant. Moreover, the following convergence rate holds

u n -u ∞ 1 + w n -w ∞ 1 ≤ Cn -θ 1-θ , (3.8) 
for all n ≥ 2, where C is a constant depending on u 0 1 , u 1 1 , f , γ, τ , and θ, while θ ∈ (0, 1/2) may depend on u ∞ .

Proof. Let M = u 0 . For every u ⋆ ∈ ω((u n ) n ), there exist θ ∈ (0, 1) and δ > 0 which may depend on u ⋆ such that the inequality (3.5) holds for every u

∈ B δ (u ⋆ ) = {u ∈ V M : |u -u ⋆ | < δ}. The union of balls {B δ (u ⋆ ) : u ⋆ ∈ ω((u n ) n )} forms an open covering of ω((u n ) n ) in V M .
Due to the compactness of ω((u n ) n ) in V , we can find a finite subcovering {B δ i (u i ⋆ )} m i=1 such that the constants δ i and θ i corresponding to u i ⋆ in Lemma 3.2 are indexed by i.

From the definition of ω((u n ) n ), we know that there exists a sufficiently large n 0 such that u n ∈ U = ∪ m i=1 B δ i (u i ⋆ ) for all n ≥ n 0 . Taking θ = min m i=1 {θ i }, we deduce from Lemma 3.2 and Proposition 3.1 that for all n ≥ n 0 ,

|E(u n ) -E ⋆ | 1-θ ≤ | -γ∆u n + f (u n ) -f (u n ) | -1 , (3.9) 
where E ⋆ is the value of E on ω((u n ) n ). We may also assume (by taking a larger n 0 if necessary) that for all n ≥ n 0 , |δu n | -1 ≤ 1.

We denote Φ n = E(u n , δu n ) -E ⋆ , so that Φ n ≥ 0 and Φ n is nonincreasing. Let n ≥ n 0 . Using the inequality (a + b) 1-θ ≤ a 1-θ + b 1-θ , valid for all a, b ≥ 0, together with (3.9), we obtain

Φ 1-θ n+1 ≤ |E(u n+1 ) -E ⋆ | 1-θ + (4τ ) θ-1 |δu n+1 | 2(1-θ) -1 ≤ | -γ∆u n+1 + f (u n+1 ) -f (u n+1 ) | -1 + (4τ ) θ-1 |δu n+1 | -1 ≤ C (|u n+1 -u n | -1 + |δu n+1 -δu n | -1 ) , ≤ C |u n+1 -u n | 2 1 + |δu n+1 -δu n | 2 -1 1/2 (3.10) where C = C(τ, θ, (-∆) -1 L( V ′ , V ′ ) , (-∆) -1 L( V , V )
) (here and in the following, C denotes a generic positive constant independent of n). For the third inequality, we have used (2.13) and (2.18). Next, we choose ε ∈ (0, 1) such that 1/τ = c 2 f /(8γ(1ε)). Then (3.3) holds, and it can be written

Φ n -Φ n+1 ≥ C |u n+1 -u n | 2 1 + |δu n+1 -δu n | 2 -1 , (3.11) 
with

C = C(τ, γ, ε) > 0. Assume first that Φ n+1 > Φ n /2. Then Φ θ n -Φ θ n+1 = θ Φn Φ n+1 x θ-1 dx ≥ θ Φ n -Φ n+1 Φ n ≥ 2 θ-1 θ Φ n -Φ n+1 Φ 1-θ n+1 .
Using (3.10) and (3.11), we find

Φ θ n -Φ θ n+1 ≥ C |u n+1 -u n | 2 1 + |δu n+1 -δu n | 2 -1 1/2 ,
where C = C(τ, θ, γ, ε,

(-∆) -1 L( V ′ , V ′ ) , (-∆) -1 L( V , V ) ). Now, if Φ n+1 ≤ Φ n /2, then Φ 1/2 n -Φ 1/2 n+1 ≥ (1 -1/ √ 2)Φ 1/2 n ≥ (1 -1/ √ 2)(Φ n -Φ n+1 ) 1/2
and using (3.11) again, we find

Φ 1/2 n -Φ 1/2 n+1 ≥ C |u n+1 -u n | 2 1 + |δu n+1 -δu n | 2 -1 1/2 .
Thus, in both cases, we have

|u n+1 -u n | 1 ≤ C(Φ θ n -Φ θ n+1 ) + C(Φ 1/2 n -Φ 1/2 n+1 ), (3.12) 
for all n ≥ n 0 . Summing on n ≥ n 0 , we obtain Using the Cauchy criterion, we find that the whole sequence (u n ) converges to some u ∞ in V . By Proposition 3.1, u ∞ belongs to S M . Using the second equation in (2.12), we see that ẇn → 0. For the term w n , we write

Ω |f (u n ) -f (u ∞ )|dx = Ω 1 0 f ′ ((1 -s)u n + su ∞ )(u n -u ∞ )ds dx.
Using assumption (2.3), Hölder's inequality and Sobolev imbeddings, we find

Ω |f (u n ) -f (u ∞ )|dx ≤ C( u n 1 , u ∞ 1 ) u n -u ∞ 1 .
Since (u n ) is bounded in V , this yields, for all n ≥ 2,

| w n -w ∞ | = | f (u n ) -f (u ∞ )| ≤ |f (u n ) -f (u ∞ )| ≤ C u n -u ∞ 1 , (3.14) 
where we have used the last equation in (2.12) and where w ∞ = f (u ∞ ) . This implies that w n → w ∞ in V (see (2.1)), and it concludes the proof of convergence.

For the convergence rate, we will first show that

0 ≤ Φ n ≤ Cn -1 1-2θ , (3.15) 
for all n ≥ n 1 , for some n 1 > n 0 large enough. The exponent θ is the same as above. If Φ n 1 = 0 for some n 1 ≥ n 0 , then Φ n = 0 for all n ≥ n 1 , and estimate (3.15) is obvious. So we may assume that Φ n > 0 for all n. Let n ≥ n 0 and denote G(s) = 1 s 1-2θ . The sequence G(Φ n ) is nondecreasing and tends to +∞. If Φ n+1 > Φ n /2, then

G(Φ n+1 ) -G(Φ n ) = Φn Φ n+1 1 -2θ s 2-2θ ds ≥ (1 -2θ)2 2θ-2 Φ 2θ-2 n+1 [Φ n -Φ n+1 ] (3.11) ≥ CΦ 2θ-2 n+1 |u n+1 -u n | 2 1 + |δu n+1 -δu n | 2 -1 (3.10) ≥ C 1 ,
where C 1 is a positive constant independent of n.

If Φ n+1 ≤ Φ n /2 and Φ n ≤ 1, then

G(Φ n+1 ) -G(Φ n ) ≥ 2 1-2θ -1 Φ 1-2θ n ≥ 2 1-2θ -1.
Let n ′ 0 ≥ n 0 be large enough so that Φ n ′ 0 ≤ 1. Then, in both cases, for all n ≥ n ′ 0 , we have

G(Φ n+1 ) -G(Φ n ) ≥ C 2 ,

∞ n=n 0

 0 |u n+1 -u n | 1 ≤ CΦ θ n 0 + CΦ 1/2 n 0 < +∞. (3.13) 

  Proposition 2.3 (Lyapunov stability). Let ε ∈ [0, 1). If (u n , w n ) n is a sequence which complies with (2.10)-(2.11), then for all n ≥ 1,

.18) 

  this into (2.20) gives(2.19).

	Remark 2.4. If τ is small enough, then by choosing ε ∈ (0, 1), we see that the scheme (2.10) is more dissipative than the original equation (1.1), since the H 1
	norm |u n+1 -u n | 2 1 appears in (2.19); in contrast, only the H -1 norm |u t | 2 -1 appears in (2.9).

* Paola F. Antonietti has been partially supported by SIR Project No. RBSI14VT0S "PolyPDEs: Non-conforming polyhedral finite element methods for the approximation of partial differential equations" funded by MIUR.

where C 2 = min{C 1 , 2 1-2θ -1} > 0. By summation on n, we obtain

for all n ≥ n ′ 0 . Thus, by choosing n 1 > n ′ 0 large enough, we have

for all n ≥ n 1 , which yields (3.15). Now, by summing estimate (3.12) on n, we find

for all n ≥ n 1 . Using (3.15) yields

for all n ≥ n 1 . We may change the constant C in order for the estimate to hold for all n ≥ 2. From (3.16) and the second equation in (2.12), we obtain the convergence rate for ( ẇn ). The convergence rate for w n is a consequence of (3.16) and (3.14). This concludes the proof.

Remark 3.4. It is possible to show that a local minimizer of E in V M is stable uniformly with respect to τ . More precisely, let (u τ n ) n denote a sequence which complies with (2.13) and corresponding to a time-step τ . We assume τ ∈ (0, τ ⋆ ] where τ ⋆ > 0 is such that 1/τ ⋆ > c 2 f /(8γ). If u ⋆ ∈ V M is a local minimizer of E in V M , and if u τ 0 = u τ 1 is close enough to u ⋆ in V M , then the whole sequence (u τ n ) n remains close to u ⋆ , uniformly with respect to τ ∈ (0, τ ⋆ ]. The proof of this stability result is based on the Lojasiewicz-Simon inequality (it may be false for a C ∞ nonlinearity, see [START_REF] Absil | On the stable equilibrium points of gradient systems[END_REF]). It is proved in [START_REF] Alaa | Convergence to equilibrium for discretized gradientlike systems with analytic features[END_REF] for several fully discrete approximations of the Allen-Cahn equation. The case of the semi-discrete scheme (2.13) is more involved. Indeed, dissipative estimates (uniform in τ ) are needed to obtain precompactness of the set {u τ n : τ ∈ (0, τ ⋆ ], n ∈ N} in V M . Moreover, as τ → 0 + , the dissipation due to the scheme vanishes (cf. Remark 2.4). Thus, instead of the series

)), we have to deal with the series n |u τ n+1 -u τ n | -1 . We refer the interested reader to [START_REF] Huang | Gradient inequalities[END_REF][START_REF] Miranville | Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations[END_REF] for the proof of stability of a local minimizer in an infinite dimensional setting (for continuous dynamical systems).