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ABSTRACT
La production croissante de données numériques a conduit
à l’émergence d’une grande variété de systèmes de gestion
de données (Data Management Systems, ou DMS). Dans ce
contexte, les applications à usage intensif de données ont
besoin (i) d’accéder à des données hétérogènes de grande
taille (“Big Data”), ayant une structure potentiellement com-
plexe, et (ii) de manipuler des données de façon efficace
afin de garantir une bonne performance de l’application.
Comme ces différents systèmes sont spécialisés sur certaines
opérations mais sont moins performants sur d’autres, il peut
s’avérer essentiel pour une application d’utiliser plusieurs
DMS en même temps.

Dans ce contexte nous présentons Estocada, une appli-
cation donnant la possibilité de tirer profit simultanément
de plusieurs DMSs et permettant une manipulation efficace
et automatique de données de grande taille et hétérogènes,
offrant ainsi un meilleur support aux applications à usage in-
tensif de données. Dans Estocada, les données sont repar-
ties dans plusieurs fragments qui sont stockés dans différents
DMSs. Pour répondre à une requête à partir de ces frag-
ments, Estocada est basé sur la re-écriture de requêtes sous
contraintes; ces dernières sont utilisées pour représenter les
différents modèles de données et la répartition des fragments
entre les diffèrents DMSs.

1. INTRODUCTION
There is significant consensus around the observation that

the times where one system fits all data management needs
are over [24]. Nowadays data-intensive applications often
involve dealing with diverse datasets in terms of size and
structure: relations flat or nested, complex-structure graphs,
documents, and poorly structured logs, or even text data.
Processing tasks to be run this data are also very varied:
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selective or bulk processing, structure traversal and aggre-
gation, joins, grouping, pattern matching, advanced analytic
processing using dedicated functions, etc.

Facing these needs, a wide variety of DMSs is now avail-
able to be used in data management applications. These
systems include structured database management systems
from major vendors, which currently come in centralized or
cloud edition, supporting traditional relational stores (disk-
or memory-resident), but also novel formats such as JSON,
RDF, graphs, text, etc. They have been joined by the large
crowd of so-called NoSQL systems, a very broad term en-
compassing at one end, novel architectures for the very fast
processing of extremely simple, small-granularity data en-
coded in key-value pairs, and at the other end, large-scale
platforms aiming at massive parallel computation, such as
those adopting the Bulk Synchronous Parallel approach.
Among these, the well-known MapReduce model has been
extended with many more operators e.g., in Spark or Flink;
many of its implementations lift the performance disadvan-
tages of early Hadoop versions. More generally, numerous
systems are competing for the glut of so-called “Big Data”
applications; their capabilities (supported data format and
operations) and their performance blueprint (in terms of
speed and scale) makes each of them unique, and enable
numerous optimization opportunities.

Further, observe that a given choice of storage systems
may need to be changed over time, as the data or appli-
cation needs change, as new more efficient system may be-
come available, or on the contrary their usage needs to be
discontinued (for instance due to changes in the application
owner’s IT policy, or in the pricing of a certain commer-
cial system). In such cases, one should not have to modify
(rewrite) the applications, but rather have it run and adapt
seamlessly to the new context.

We propose to demonstrate Estocada [5, 6], a platform
providing applications with transparent, optimized data ac-
cess to diverse, heterogeneous storage systems. Estocada
enables storing one dataset in a set of possibly overlapping
fragments, while providing to the application access to this
dataset in the native language most suited for the dataset,
e.g., SQL if the data is relational (or object-relational),
JSONiq if the data is in JSON documents, etc. At the heart
of Estocada lies a common modeling of the different data
set and storage systems data models, data fragments, and
also queries in an internal, expressive formalism based on re-



lational queries and constraints (which, as we show, is rich
enough to capture rich data structure including nesting, ob-
ject identity, functional dependencies and more); query pro-
cessing then starts by solving a problem of query rewrit-
ing under constraints, backed by an efficient recent algo-
rithm [15]. Demo attendees will have the opportunity to
try Estocada on a set of systems of very varied nature,
data models, and architectures; they will use different data
fragmentation and queries and inspect the resulting query
evaluation plans.

2. MOTIVATING SCENARIO
We describe below a large-scale online marketplace

application scenario which stands to benefit from our ap-
proach. It is inspired from a real-world application from the
French R&D collaborative project Datalyse on Big Data an-
alytics (http://www.datalyse.fr). The marketplace aims
to maximize sales while improving the customer experience,
by exploiting the data produced by the users both actively
(orders, product reviews, etc.) and passively (browsing re-
corded in Web logs).

With respect to the data model, the product catalog is
organized in JSON documents; user data (coordinates, pay-
ment information, etc.), order and shipping information are
in a set of relations, shopping carts are documents, while
data recording the users’ interaction with the marketplace
is in HTTP log files. After manually deploying and ex-
perimenting with a few different settings, the system’s first
release makes the following choices: product catalogs are
stored in SOLR (providing full-text indexing and search
based on Lucene), user accounts, preferences, orders and
shipping are stored in a Postgres cluster, the MongoDB sys-
tem is used to store the shopping carts while the logs are
stored in a cluster and Spark is used to process it in paral-
lel, retrieving information and statistics about users’ visits
on the Web site, etc.

After deploying and exploiting this architecture for a while,
the development team noticed that predominant queries (for
user preferences on one hand, and their shopping carts on
the other) correspond to key-based searches. They decided to
investigate the usage of the Voldemort key-value store, for
storing the corresponding data fragments. This required:
migrating these fragments into Voldemort (an error-prone
process as data needs to be restructured in a different data
model), adapting the application to interact with the key-
value store instead of the document and relational stores pre-
viously employed; measuring the resulting performance and
deciding which store to use (say, MongoDB). This change
brought a performance gain of 20% on the application work-
load.

Subsequently, the personalized item search query became
the bottleneck and required extra care; this query combines
user past purchases (from the relational store) and the brows-
ing history log, to identify the products which should be
shown first in response to a user search. To speed up this
query, it was suggested to materialize the result of the join
between past purchases and browsing history data into a
nested relation stored in Spark; further, this relation should
be indexed by the user ID and product category. This
change improved performance by an extra 40%, which was
very well received. However, the satisfaction was short-lived,
as business needs brought new query requirements, and serv-
ing these queries better appeared to conflict with the choices

previously made. The team faces the option of re-migrating
data and re-re-factoring the application; they decide not to
do it (and thus miss the extra performance improvement)
due to lack of manpower.

3. APPROACH AND ARCHITECTURE
We now explain how Estocada is capable of automat-

ing the solution to scenarios such as the one previously de-
scribed. The main focus of this work is on its ability to an-
swer queries over an application dataset based on fragments
stored in a variety of underlying DMSs, across distinct data
models and platforms. The remaining problem is to auto-
matically recommend the way in which the data sets that an
application needs to work with should be fragmented across
such DMSs in order to maximize performance under spe-
cific storage or cost parameters. In the present demo, we
will present simple heuristics for the latter, since work is
in progress, and focus on showcasing the expressive power
and performance benefits that Estocada can bring to query
evaluation.

To adapt to changes in the datasets, workload, and set of
DMSs being used, we chose to internally represent each data
fragment as a materialized view over one or several datasets;
thus, query answering amounts to view-based query rewrit-
ing. As is well-known from prior work in data integration,
this local-as-view approach allows the application to remain
unchanged as the underlying data collections are modified.
Further, our reliance on views gives sound foundation to ef-
ficiency, as it guarantees the complete storage of data, and
the correctness of the fragmentation and query answering.
Pivot model with constraints To further simplify the de-
velopment of applications, each dataset is accessed through
a language specific to its native data model, be it SQL for
relational stores, key-based search API for key-value data,
etc. However, for efficiency, a fragment F of a dataset D
(whose data model is MD) may be stored in a data model
MF different from MD; similarly, a fragment F ′ may store
combined results from different datasets of possibly different
data models, leading to more cross-model transformation of
the data between the application dataset and the stored frag-
ments. To enable query rewriting over and across different
data models, we translate into an internal pivot model the
declarative specification of the data stored in each fragment,
as well as the incoming query, formulated in the application
dataset model; specifically, our pivot model is based on rela-
tional conjunctive queries. Further, to correctly account for
the characteristics of each application data model Ma and
storage data model Ms, we describe their specific features in
the same pivot model, by means of powerful constraints. For
instance, we describe the organization of a document data
model (whether this concerns Ma or Ms) using a small set
of relations such as Node(nID, name), Child(pID, cID), De-
scendant(aID, dID), etc. together with the constraints spec-
ifying that every node has just one parent and one tag, that
every child is also a descendant, etc.1

More generally, constraints allow a faithful internal mod-
eling of datasets, since they can express functional depen-
dencies and keys (for instance, node or tuple IDs) naturally
present in many settings, be it relations, documents or graph

1Such modeling had first been introduced in local-as-view
data integration XML integration works [8,22]; see also Sec-
tion 5.
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stores. Also, importantly for the usage of key-value stores,
we rely on an original encoding of access pattern restrictions
such as “the value of the key must be specified in order to
access the values associated to this key” into relations with
constraints. This enables building only feasible rewritings,
i.e., such that the information needed to access a given data
source is either provided by the query, or has been obtained
from data sources previously accessed while evaluating the
rewriting.

To rewrite queries in the presence of constraints, the me-
thod of choice is known as Chase & Backchase (C&B, in
short), a classical powerful tool long considered too ineffi-
cient to be of practical relevance. Estocada exploits the
very significant performance savings brought by the recent
provenance-aware C&B algorithm (PACB, in short) [15].
PACB drastically reduces the back-chase effort by keeping
track of the results of the various chase steps applied during
the algorithms, to avoid repeated and fruitless work; this
results in rewriting speedups that can even outperform a
commercial relational optimizer by 1-2 orders of magnitude
(in terms of combined optimization and execution time).
Making rewritings executable From the above, it fol-
lows that query rewriting takes place, first, at the level of
our pivot relational conjunctive model endowed with con-
straints, and it leads to a rewriting which is a conjunctive
query over the relations corresponding to the stored frag-
ments.

Depending on the data model of these fragments, the re-
lational atoms used in the rewritings may either correspond
to actual relations, or to key-value collections which can be
seen as relations with binding patterns, or to the virtual rela-
tions used to encode more complex data models, such as the
Node, Child and Descendant relations mentioned above (the
encoding of nested relations such as supported e.g., in Pig
and HBase is very similar). From this relational, conjunctive
rewriting, a rewriting translation step is performed to: (i)
group the rewriting atoms referring to each distinct fragment
involved in the rewriting; for instance, it can be inferred that
the three atoms Document(dID, “file.json”), Root(dID, rID),
Child(rID, cID), Node(cID, book) found in a rewriting refer
to a single document, by following the connections among
nodes and knowledge of the JSON data model; (ii) reformu-
late each such rewriting snippet into a query which can be
completely evaluated over a single fragment; (ii) if several
fragments are stored in the same underlying DMS, identify
the largest subquery that can be delegated to that DMS,
along the lines of query evaluation in wrapper-mediator sys-
tems. Observe that if the DMS has a distributed archi-
tecture, e.g., Spark deployed on a cluster, the delegated
subquery will be evaluated in parallel fashion, allowing Es-
tocada to leverage its efficiency.
Evaluation of non-delegated operations Rewriting trans-
lation may be unable to push (delegate) some query op-
erations to the DMS storing a fragment if the DMS does
not support them; for instance, most key-value and doc-
ument stores do not support joins. Similarly, if a query
on structured data requests the construction of new nested
results (such as JSON or XML documents, or nested tu-
ples), and if the inputs to this operation are not stored in
a DMS supporting such result construction natively, it will
have to be executed outside of the underlying DMSs. To
evaluate such “last-step” operations, Estocada comprises
its own lightweight execution engine, based on a nested re-
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Figure 1: Estocada architecture.

lational model, whose atomic types include constants, node
IDs, and document types; it provides in particular imple-
mentations of the BindJoin operator needed to access data
sources with access restrictions.
Architecture Figure 1 outlines the architecture of our pro-
totype based on the above discussion. We assume the typ-
ical application uses many data sets D1, D2, . . . , Dn, even
though our smart storage method may be helpful even for
a single data set, distributing it for efficient access across
many stores, potentially based on different data models.

The Storage Descriptor Manager stores information about
the available data fragments D1/F1, D1/F2, . . ., D1/Fn,
D2/F1, . . . etc., and where they are stored in the underly-
ing DMSs, illustrated by a NoSQL store, a key-value store,
a document store, one for nested relations, and finally a
relational one. For each data fragment Di/Fj residing in
the store Sk, a storage descriptor sd(Sk, Di/Fj) is produced.
The descriptor specifies what data (the fragment Di/Fj) is
stored where within Sk. The what part of the descriptor
is specified by a query over the data set Di, following the
native model of Di. The fragment can thus be seen as a ma-
terialized view over Di. The where part of the descriptor is
structured according to the organization of data within Sk.
For instance, if Sk is a relational store, the where information
consists of the schema and table name, whereas if Sk is a
key-value store, it could hold the name of the collection, at-
tribute name, etc. Finally, the descriptor sd(Sk, Di/Fj) also
specifies the data access operation supported by Sk which
allows retrieving the Di/Fj data (such as: a table scan, a
look-up based on a collection name, column group name,
and column name in a key-value store, etc.), as well as the
access credentials required in order to connect to the system
and access it.

The Storage Advisor recommends dropping redundant frag-
ments that are rarely used or under-performing, and adding
new fragments that fit recently heavy-hitting queries. To
solve this problem across data models, we once again exploit
our pivot model to reduce to the novel setting of relational
view selection under constraints.

The Query Evaluator receives application queries. If a



query carries over a single source Di, the query will likely be
in the native language of Di. If the query carries over mul-
tiple sources having different data models, this assumes the
existence of a global-as-view integration layer on top of the
(application-transparent) local-as-view approach internally
followed by Estocada. While we do not focus on this (op-
tional) GAV integration layer, in such a case we assume the
query is specified by combining algebraic operations (such
as filter, join, union, etc.) on top of individual queries car-
rying over each dataset. It is rather straightforward then
to translate such a query in the pivot model, by focusing
first on the queries confined to a data source, and then on
the combination operators. The evaluator looks up the stor-
age descriptors corresponding to fragments of the queried
datasets, calls the PACB engine to obtain rewritings. The
Runtime Execution Engine then translates such rewritings
into excutable ones as described above and evaluates them.

Clearly Estocada resembles wrapper-mediator systems,
where data resides in various stores and query execution
is divided between the mediator and the wrappers. Dif-
ferent from mediators, however, Estocada distributes the
data across the different-data model stores, which are not
autonomous but treated as slave systems, in order to ob-
tain the best possible performance from the combination of
available systems.

4. DEMONSTRATION OUTLINE
We will show Estocada in action on a set of scenar-

ios closely derived from the one described in Section 2, on
datasets obtained through the Big Data Benchmark [4], and
server logs from several actual e-commerce platforms to which
we gained access through the Datalyse project. To illustrate
the scenarios we will use Postgres, Redis, and Spark as the
underlying storage systems.

The demo attendee experience is as follows: 1. Pick a
dataset, which comes with a previously specified workload
and a set of possible fragments; chose a subset of the frag-
ments, view their specification in the source native language,
and after translation to the pivot internal model. 2. Pick a
workload query and trigger its rewriting: inspect its transla-
tion in the pivot model, the output of the PACB rewriting al-
gorithm, its translated form and finally the executable plan.
3. Trigger the execution of the rewriting, which outputs a
set of performance statistics split across the underlying DMS
and Estocada’ runtime. We will provide for each dataset
the specification of one fragment which stores it “as such” in
a DMS of its native data model; this will enable comparing
performance between the vanilla (one-store) execution and
the one enabled by multiple stores.

5. RELATED WORK AND CONCLUSION
Heterogeneous data integration is an old topic [8,13,20,22]

but the remark “one-size does not fit all” [24] has been re-
cently revisited [16, 21]. The performance benefits of us-
ing multiple stores together (a Hadoop one and a relational
database) have been demonstrated in [19]; they select rela-
tional views to be materialized based on cost information,
but do not handle multiple data models through a unified
approach as we do. Polystores [9, 10] allow querying het-
erogeneous stores by grouping similar-model platform into
“islands” and explicitly sending queries to one store or an-
other; data sets can also be migrated by the users. This

contrasts with our LAV approach where the data store va-
riety is hidden to the application layer. The integration of
“NoSQL” stores has been considered e.g., in [3] again in a
top-down GAV approach without considering materialized
views.

Adaptive stores for a single data model have been studied
e.g., in [2,7,14,17,18]; views have been also used in [1,23]
to improve the performance of a large-scale distributed re-
lational store. The novelty of Estocada here is to support
multiple data models, by relying on powerful query reformu-
lation techniques under constraints.

Data exchange tools such as Clio [11, 12] allow migrating
data between two different schemas. We aim at providing
to the applications transparent data access to heterogeneous
systems, relying on fundamentally different rewriting tech-
niques.

View-based rewriting and view selection are grounded in
the seminal works [13, 20]; the latter focuses on maximally
contained rewritings, while we target exact query rewriting,
which leads to very different algorithms. Further setting our
work apart is the scale and usage of integrity constraints.
Our pivot model recalls the ones described in [8, 22] but
Estocada generalizes these works by allowing multiple data
models both at the application and storage level.

To conclude, we believe hybrid (multi-store) architectures
have the potential to bring huge performance improvements,
since (redundant) views storing query results can increase
the efficiency of query evaluation by many orders of mag-
nitude. Estocada [5, 6] supports this by a local-as-view
approach whose immediate benefit is flexibility since it re-
quires no work when the underlying data storage changes;
we demonstrate its performance benefits and the interest of
simple storage recommendation heuristics. Our work is on-
going toward a cost-based recommendation of optimal frag-
mentation.
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