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The problem of inverse kinematics is revisited in the present paper. The paper is focusing on the problem of solving
the inverse kinematics problem while minimizing the jerk of the joint trajectories. Even-though the conventional
inverse kinematics algorithms have been proven to be efficient in many applications, it has been proven that
constraints on the accelerations or the jerk cannot be guaranteed, and even yields to divergence or makes the
problem unsolvable. The proposed algorithm yields smooth velocity and acceleration trajectories, which are highly
desired features for industrial robots. The algorithm uses the joint jerk as the control parameter instead of the
classical use of the joint velocity, as a result constraints on the jerk function can be easily incorporated.

To validate the proposed approach, we have conducted several simulations scenarios. The simulation results
have revealed that the proposed method can efficiently solve the inverse kinematics problem while considering
constraints on the joint acceleration and jerk.
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1. Introduction

The inverse kinematics problem is one of the most studied problems in robotics, and many methods to
solve it have been proposed in the literature. Those methods are extensively used in robotics, they can
be also combined with other techniques, e.g. force control, to cope with the imperfect modelling of the
robot and its dynamic parameters.

Generally speaking, the objective is to find a vector in the configuration space that satisfies constraints
in the operational space, in other words the values of the robot’s joints to make the end-effector reaches
a desired goal (position and orientation) in the Cartesian space. Although in some special cases the
problem can be solved analytically [1], [2], [3] it is generally solved numerically [4, 5]. Many efficient
and robust numerical algorithms have been proposed for solving the inverse kinematics problem [6], [7],
[8], [4], [5], [9], [10], only to cite few.

2. Inverse Kinematics Problem: Revisited

The inverse kinematics problem was originally formulated as follows:

min
q̇t

q̇t
TQq̇t

∗ A preliminary version of the paper has been presented at the Workshop on Whole-Body Control for Robots in the Real World, IROS 2014.
Corresponding author. Email: Wael.Suleiman@USherbrooke.ca

1



June 9, 2016 Advanced Robotics ADR-SI-2015-W.Suleiman

subject to

J q̇t = ṙt (1)

where Q is a diagonal and positive semi-definite matrix, J is the Jacobian matrix, q̇ ∈ Rn is the joint
velocity and ṙt is the linear and angular velocity of the end-effector.

The optimization problem (1) can be efficiently solved using the pseudo-inverse technique [4, 5] as
follows:

q̇t = Ĵ†ṙt + (I − Ĵ†J)z (2)

where Ĵ† = Q−1JT
(
J Q−1 JT

)−1 and z is an arbitrary vector. IfQ is the identity matrix, Ĵ† becomes
the well-known Moore-Penrose pseudo-inverse. It is worth mentioning that the optimization problem (1)
is time-invariant as the time derivative can be simply replaced by the difference. Thus, we obtain the
following equivalent optimization problem:

min
∆q

∆qTQ∆q

subject to

J∆q = ∆r (3)

The solution of the above problem is given by:

∆qt = Ĵ†∆rt + (I − Ĵ†J)ẑ (4)

However, in order to consider the velocity and joints limits as well as to avoid obstacles, inequality
constraints should be added. There, many research in robotics have been conducted to solve the following
general inverse kinematics problem:

min
q̇t

q̇t
TQq̇t

subject to

J q̇t = ṙt

b− ≤ Aq̇t ≤ b+

q̇− ≤ q̇t ≤ q̇+

(5)

q̇− and q̇+ are respectively the lower and upper limits of the velocity. A, b− and b+ represent the ad-
ditional constraints that result from considering geometric constraints, such as collision avoidance (for
more details, the reader is referred to the Appendix and Scenario 4 in Section 8), or physical constraints,
such as joint limits. For more details and examples regarding the above-mentioned general formulation,
the reader is referred to [11],[12], [13], [14] [15].

The main differences between (1) and (5) are:

• There is no closed-form expression for the solution of (5). However, it is a convex optimization
problem if Q is a positive semi-definite matrix, and in this case, the problem can be efficiently
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solved by a Quadratic Programming (QP) solver [12], [13],[14],[15].
• Problem (5) is time-variant.

3. Motivation

The integration of acceleration limits in the inverse kinematics problem of an industrial robot manipula-
tor is motivated by the following reasons:

• Accelerations are proportional to the exerted torques by the joints actuators, therefore ensuring
acceleration limits prevents that high torques are applied on the joints and thus prevents damaging
the actuators.
• Minimizing the jerk of joints yields to smooth and human-like motions, that is mainly interesting

while interacting with humans.

A first attempt to integrate constraints on the accelerations would be using the following finite differ-
ence approach:

q̈t =
q̇t − q̇t−1

T
(6)

where T is the sampling period.
Then the optimization problem (5) can be modified as follows:

min
q̇t

q̇t
TQq̇t

subject to

J q̇t = ṙt

b− ≤ Aq̇t ≤ b+

q̇− ≤ q̇t ≤ q̇+

T q̈− + q̇t−1 ≤ q̇t ≤ T q̈+ + q̇t−1

(7)

where q̈− and q̈+ are respectively the lower and upper limits of the accelerations. Recall that q̇t−1 is a
constant known vector resulting from solving the inverse kinematics problem at the instant t− 1.

It is clear that when T → 0, the additional constraint on the acceleration leads to q̇t = q̇t−1, which
yields to an infeasible optimization problem. In practice, even when the sampling frequency is 1KHz,
that means T = 10−3 s, the optimization problem (7) often becomes infeasible.

A second attempt would be to differentiate the equality constraint in (5), thus:

J(qt)q̈t + J̇(qt, q̇t)q̇t = r̈t (8)

The generalized inverse kinematics problem becomes:

min
q̈t

q̈t
TQq̈t
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subject to

J(qt)q̈t = r̈t−J̇(qt, q̇t)q̇t

b− ≤ Aq̈t ≤ b+

q̈− ≤ q̈t ≤ q̈+

(9)

The following assumptions are usually made:

• Assumption 1: As the problem is formulated in function of the acceleration q̈t, the velocity q̇t is
then supposed to be constant and equals to q̇t−1.
• Assumption 2: As it is very complex to compute J̇(qt, q̇t) in a closed form, an approximation

using finite difference is deployed.

Even-though the Jacobian matrix J(qt) can be computed in an efficient way using only the generalized
coordinates vector qt, using a finite deference approach to compute J̇(qt, q̇t) (Assumption 2) leads, in
practice, to ill-conditioning and numerical instability, this is because J(qt) is a complex and highly
nonlinear function, that yields to divergence or infeasibility of the optimization problem (9).

The main contribution of the paper is providing a general inverse kinematics framework that can
efficiently handle constraints on the acceleration or the jerk.

4. Problem Formulation

In order to efficiently consider constraints on the accelerations, one would integrate the acceleration
variation (commonly called jerk) into (5). The main idea is to introduce the jerk as the control parameter
of the inverse kinematics problem instead of the joint velocity.

The relationship between the position, velocity, acceleration and the jerk can be expressed by the
following equation:



qt
q̇t
q̈t


 =



In T In

T 2

2 In
0 In T In
0 0 In





qt−1

q̇t−1

q̈t−1


+



T 3

6 In
T 2

2 In
T In


 ...
qt (10)

Where Xt =
[
qTt q̇t

T q̈t
T
]T ∈ R3n is the vector that we need to compute, Xt−1 =[

qTt−1 q̇Tt−1 q̈Tt−1

]T is the actual (known) configuration values. T is the sampling control period, and
In is identity matrix of size n (number of degrees of freedom). The unknown parameter in (10) is the
jerk vector ...

qt. It is worth to mention that most of modern manipulators have a fixed sampling control
period, therefore the inverse kinematics problem should be discretized in consequence.

The objective is therefore to transform the inverse kinematic problem (5) into a function of ut =
...
qt

instead of q̇t. To this end, we can use the following formula:

q̇t = q̇t−1 + T q̈t−1 +
T 2

2
ut (11)

The inverse kinematic problem becomes:

min
ut

uTt Qut
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subject to

Jut = ˜̇rt

b̃− ≤ Aut ≤ b̃+

u−q̇ ≤ ut ≤ u+
q̇

(12)

where:

˜̇rt =
2

T 2
(ṙt − J q̇t−1 − J T q̈t−1)

b̃− =
2

T 2

(
b− −Aq̇t−1 −AT q̈t−1

)

b̃+ =
2

T 2

(
b+ −Aq̇t−1 −AT q̈t−1

)

u−q̇ =
2

T 2

(
q̇− − q̇t−1 − T q̈t−1

)

u+
q̇ =

2

T 2

(
q̇+ − q̇t−1 − T q̈t−1

)

(13)

4.1 Incorporating Acceleration and Jerk Constraints

Let us consider the following constraint on the acceleration:

q̈− ≤ q̈t ≤ q̈+ (14)

Using the following equation:

q̈t = q̈t−1 + T ut (15)

The constraint (14) becomes:

1

T

(
q̈− − q̈t−1

)
≤ ut ≤

1

T

(
q̈+ − q̈t−1

)
(16)

Contrary to the acceleration constraints in (7), the above constraints will not yield to infeasibility as the
limits become unbounded (−∞ ≤ ut ≤ +∞) when T → 0.

Moreover, in order to generate smooth acceleration trajectories, limits can be added on the jerk as
follows:

u− ≤ ut ≤ u+ (17)

where u− and u+ are the lower and upper limits of the jerk vector.

4.2 Incorporating Joint Limits

A compact and efficient way for dealing with both of velocity and joint limits has been originally pro-
posed in [11]. The constraints on the joint and velocity constraints are replaced by the following con-
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straints:

ˆ̇q− ≤ q̇t ≤ ˆ̇q+ (18)

where ˆ̇q− and ˆ̇q+ are the generalized joint velocity limits defined as follows:

ˆ̇q+
j =

{
q̇+
j

(q+
j −qj)−ρs
ρi−ρs if q+

j − qj ≤ ρi
q̇+
j otherwise

ˆ̇q−j =

{
q̇−j

(qj−q−
j )−ρs

ρi−ρs if qj − q−j ≤ ρi
q̇−j otherwise

(19)

ˆ̇q∗j is the j element of the vector ˆ̇q∗, qj is the value of joint j, q+
j and q−j are the upper and lower limits

of the joint j and q̇+
j and q̇−j are the upper and lower velocity limits of the joint j.

ρi and ρs are user-defined positive constants, and ρi is usually called the influence distance. It can
be easily proven that the equalities constraints in (19), not only yield a motion within the humanoid’s
velocity limits, but also the joints limits are respected as well with a safety margin equals to ρs:

q−j + ρs ≤ qj ≤ q+
j − ρs

5. Practical Implementation

An issue that has been arisen in practice is that the limits on the jerk (u− ≤ ut ≤ u+) might yield in
some special cases to divergence, a way to solve this issue is introducing a slack variable in order to
relax the equality constraint, thus the optimization problem becomes:

min
ut,δ

uTt Qut + δTQδδ

subject to

Jut + δ = ˜̇rt (20)

b̃− ≤ Aut ≤ b̃+ (21)

u−ˆ̇q ≤ ut ≤ u+
ˆ̇q

(22)

u−q̈ ≤ ut ≤ u+
q̈ (23)

u− ≤ ut ≤ u+ (24)

where:

• δ is a slack variable that has the same dimension as ˜̇rt. The matrix Qδ is a positive matrix defined
in such a way that ‖Q‖ � ‖Qδ‖.
• (22) designs the generalized velocity constraints, where:

u−ˆ̇q =
2

T 2

(
ˆ̇q− − q̇t−1 − T q̈t−1

)

u+
ˆ̇q

=
2

T 2

(
ˆ̇q+ − q̇t−1 − T q̈t−1

)

6
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• (23) designs the accelerations constraints, where:

u−q̈ =
1

T

(
q̈− − q̈t−1

)

u+
q̈ =

1

T

(
q̈+ − q̈t−1

)

To reduce the required time to solve the above-mentioned optimization problem, one might consider
reducing the number of constraints. In our case, it can be easily noticed that the constraints (22), (23)
and (24) are lower and upper bounds on the variable ut, they can be therefore transformed into a more
compact form as follows:

û− ≤ ut ≤ û+

where:

û− = max
{
u−ˆ̇q , u

−
q̈ , u

−
}

û+ = min
{
u+

ˆ̇q
, u+

q̈ , u
+
} (25)

The above-mentioned operators min and max are defined over the rows of the vectors.
Let us introduce the following parameters:

Z =

[
ut
δ

]
, QZ =

[
Q 0
0 Qδ

]
, J =

[
J I

]

A =
[
A 0

]
, Z+ =

[
û+

δ+

]
, Z− =

[
û−

δ−

] (26)

where δ− and δ+ are user-defined constants as lower and upper limits of the slack variable δ.
Thus the optimization problem is transformed into the following classical QP problem:

min
Z
ZTQZZ

subject to

JZ = ˜̇rt

b̃− ≤ AZ ≤ b̃+

Z− ≤Z ≤ Z+

(27)

6. Complexity Analysis

In order to compare the complexity of the new algorithm with the conventional general inverse kinemat-
ics algorithms, one can compare the QP problems (5) and (27):

• On one hand, the dimension of the optimization variable in the proposed algorithm (Z in (27))
is bigger than the conventional velocity variable (q̇t in (5)). On the other hand, adding the slack
variable in (27) has the advantage of increasing the robustness of the QP problem by relaxing the
hard equality constraint.
• The number of equality and inequality constraints is the same.

7
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As a result, the complexity of the QP problems is theoretically quite similar. The numerical simulations
(Scenario 3) in Section 8 also confirmed the above conclusion.

However, it is worth to note that the new algorithm can efficiently handle constraints on the accelera-
tion and the jerk that conventional inverse kinematics algorithms simply cannot handle.

7. Implementation Algorithm

The implementation algorithm can be summarized as follows:

(1) Initial values: X0 =
[
q0 0 0

]T and t = T
(2) Compute the jacobian matrix using the actual configuration (Xt−T )
(3) Compute the upper and lower limits of the jerk (25)
(4) Solve the optimization problem (27) and obtain ut =

...
qt

(5) Compute the configuration vector Xt using (10)
(6) t=t+T
(7) Return to step 2

8. Experimental Results

In order to validate the proposed method, we have conducted three simulations scenarios:

8.1 Scenario 1: acceleration limits
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Figure 1. Planar redundant robot: the end-effector is designed by green circle and the robot joints by red circles, and the end-effector trajectory
by solid cyan line.

We first considered a planar redundant manipulator (Fig. 1). The objective is to move the end-effector
from an initial to a goal position while following a predefined Bezier trajectory.

The inequality constraints that have been considered are:
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Figure 1. Planar redundant robot: the end-effector is designed by green circle and the robot joints by red circles, and the end-effector trajectory
by solid cyan line.

We first considered a planar redundant manipulator (Fig. 1). The objective is to move the end-effector
from an initial to a goal position while following a predefined Bezier trajectory.

The inequality constraints that have been considered are:

(1) Velocity limits (22).
(2) Acceleration constraints (23).
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For this scenario, we chose the following parameters:

• q̇+ = −q̇− = 0.4× [1 1 1 1]T

• q̈+ = −q̈− = 5× [1 1 1 1]T

• T = 10−3

The trajectories of the joints, joint velocity and joint acceleration are given in Fig. 2. The tracking
error between the desired trajectory and the executed trajectory is given in Fig. 2(d).

Fig. 2(b) and Fig. 2(c) point out that the constraints on the joint velocity and acceleration are fully
respected, and Fig. 2(d) shows that the error between the executed trajectory and the desired one is less
than 1.5× 10−3m. It is worth to mention that the tracking error is less than 10−4m if we do not consider
the acceleration limits, however by adding the acceleration constraints the trajectory is followed as much
as possible while respecting the velocity and acceleration constraints.

Fig. 2(a) shows that the joint trajectories are smooth, mathematically speaking they are C2 functions
as a result of considering constraints on the acceleration. It is worth to point out that the conventional
formulation Eq. (7) has failed to find a solution after few iterations, this is because the optimization
problem became infeasible.
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For this scenario, we chose the following parameters:

• q̇+ = �q̇� = 0.4 ⇥ [1 1 1 1]T

• q̈+ = �q̈� = 5 ⇥ [1 1 1 1]T
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For this scenario, we chose the following parameters:

• q̇+ = �q̇� = 0.4 ⇥ [1 1 1 1]T

• q̈+ = �q̈� = 5 ⇥ [1 1 1 1]T

• T = 10�3

The trajectories of the joints, joint velocity and joint acceleration are given in Fig. 2. The tracking
error between the desired trajectory and the executed trajectory is given in Fig. 2(d).

Fig. 2(b) and Fig. 2(c) point out that the constraints on the joint velocity and acceleration are fully
respected, and Fig. 2(d) shows that the error between the executed trajectory and the desired one is less
than 1.5⇥ 10�3m. It is worth to mention that the tracking error is less than 10�4m if we do not consider
the acceleration limits, however by adding the acceleration constraints the trajectory is followed as much
as possible while respecting the velocity and acceleration constraints.

Fig. 2(a) shows that the joint trajectories are smooth, mathematically speaking they are C2 functions
as a result of considering constraints on the acceleration. It is worth to point out that the conventional
formulation Eq. (7) has failed to find a solution after few iterations, this is because the optimization
problem became infeasible.
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For this scenario, we chose the following parameters:

• q̇+ = �q̇� = 0.4 ⇥ [1 1 1 1]T

• q̈+ = �q̈� = 5 ⇥ [1 1 1 1]T

• T = 10�3

The trajectories of the joints, joint velocity and joint acceleration are given in Fig. 2. The tracking
error between the desired trajectory and the executed trajectory is given in Fig. 2(d).

Fig. 2(b) and Fig. 2(c) point out that the constraints on the joint velocity and acceleration are fully
respected, and Fig. 2(d) shows that the error between the executed trajectory and the desired one is less
than 1.5⇥ 10�3m. It is worth to mention that the tracking error is less than 10�4m if we do not consider
the acceleration limits, however by adding the acceleration constraints the trajectory is followed as much
as possible while respecting the velocity and acceleration constraints.

Fig. 2(a) shows that the joint trajectories are smooth, mathematically speaking they are C2 functions
as a result of considering constraints on the acceleration. It is worth to point out that the conventional
formulation Eq. (7) has failed to find a solution after few iterations, this is because the optimization
problem became infeasible.
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8.2 Scenario 2: jerk limits

In this scenario, we considered the same planar redundant manipulator of Scenario 1 with the following
inequality constraints:

(1) Velocity limits (22).
(2) jerk constraints (24).

For this scenario, we chose the following parameters:

• q̇+ = −q̇− = 0.4× [1 1 1 1]T

• ...
q+ = −...

q− = 500× [1 1 1 1]T

• T = 10−3

Fig. 3(b) and Fig. 3(c) point out that the constraints on the joint velocity and jerk are fully respected.
On one hand, Fig. 3(d) shows that the tracking has been slightly increased in comparison with Scenario
1, this is mainly a result of respecting the jerk constraints. On the other hand, Fig. 3(a) shows that joint
trajectories are smoother than those of Scenario 1, this is because they are C3 functions in this case.
It is important to mention that the obtained resultas cannot be compared with the conventional inverse
kinematics methods, this is because those methods simply cannot handle constraints on the jerk.
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8.3 Scenario 3: Computational Complexity

A simulated scenario of a Baxter research robot in which the robot should reach a randomized goal
pose (position and orientation) from a rnadomized initial pose, both the initial and goal poses are in the
reachable space of the robot (Fig. 4).

(a) (b)

Figure 4. 6D Kinematic reachability space of Baxter’s left arm. The color density increases according to the number of possible configurations.

The reaching motion has been repeated 5000 times and only the joint velocity constraints have been
considered. The computational time of the conventional method and the proposed one are reported in
Table 1. The experiments were performed on Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz PC with 8
GB RAM.

Table 1. Computational complexity

Method Average comput. time Max comput. time Min comput. time
Conventional method 542µs 621µs 485µs

Proposed method 583µs 638µs 512µs

From Table 1, we can observe that the computational time of the proposed method and of the conven-
tional one are quite similar. However, it is worth to mention that we have only considered the velocity
constraints because the conventional method cannot handle the jerk or the acceleration constraints.

8.4 Scenario 4: Smooth and Collision-free Motions

A simulated scenario of a Baxter research robot and an obstacle that consists of a sphere attached to
a thin cylindric rod is given in Fig. 5. The objective is to reach a goal pose from an initial pose while
avoiding the collision with the obstacle.

As mentioned in Section 2, the collision avoidance problem can be formulated as kinematics inequality
constraints [16], an overview of the formulation can be found in Appendix A.

In this scenario, the following constraints have been considered:

(1) Collision avoidance: the Baxter robot is approximated by its collision geometry model from the
Unified Robot Description Format (URDF) file, where the arms are approximated by cylinders
and boxes. The collision avoidance is formulated as inequality constraints having the following
form: Aq̇t ≤ B.

(2) Joint limits of the robot joints, these values are given in the URDF file.

11
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(3) Velocity limits of the robot’s joints, these values are also given in the URDF file.
(4) Desired joint acceleration and jerk limits.

The end-effector tries to reach the goal pose at each iteration via a direct straight line, at the same
time the collision avoidance inequality constraints repulse the arm to keep a minimum clearance to the
obstacles.

Snapshots of the simulated motion are given in Fig. 5. The right arm’s joint trajectories are shown in
Fig. 6(a) and the minimum distance to the obstacles is given in Fig. 6(b).
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9. Conclusion and Future Work

In this paper, a new method for inverse kinematics while considering jerk limits has been proposed. The
method is simple to implement, yet efficient to handle acceleration and jerk constraints. As discussed in
the paper, several attempts have been proposed in the literature to integrate the acceleration limits into
the conventional inverse kinematics algorithms, however they are not numerically efficient and yield
often to ill-conditioned optimization problems. Moreover, the proposed algorithm guarantees that the
accelerations of the joints are smooth by defining a threshold on the jerk.

Simulation results have been conducted and the efficiency of the algorithm has been pointed out.
Future work will focus on the realtime implementation of the proposed algorithm and the validation on
the real Baxter research robot.
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Appendix A. Collision avoidance as kinematics constraint

Let us consider the two strictly convex objects O1 and O2 in Fig. A1, where O2 is supposed to be fixed
obstacle and O1 is a part of the robot. Let d be the distance between the pair of closest points p1 and p2

belonging to O1 and O2 respectively. Since O1 and O1 are strictly convex objects, d is C1 function.

O1

O2

p1

p2

d

d s

d i

n

Figure A1. Collision avoidance as kinematics inequality constraints

In order to incorporate the collision avoidance as an inequality constraint, the derivative of distance
with respect to time, ḋ, is bounded as follows:

−ḋ ≤ ζ d− ds
di − ds

; di > ds (A1)

where ζ is a positive coefficient that regulates the convergence speed, and di and ds are called respec-
tively influence and security distances. As O2 is fixed, ḋ can be expressed as follows:

ḋ = nT ṗ1 (A2)

where n is a unit vector defined as: n = (p1−p2)
d .

As O1 is a part of the robot, ṗ1 can be expressed as a function of the robot generalized coordinates, q,
its derivatives, q̇, and the jacobian matrix at the point p1, J(q, p1), as follows:

ṗ1 = J(q, p1) q̇ (A3)

By replacing A2 and A3 in A1, we obtain:

−nT J(q, p1) q̇ ≤ ζ d− ds
di − ds

(A4)

As it can be easily seen that (A4) is a linear inequality constraint with respect to the velocity vector q̇.
Moreover, the above method has been extended to the case of non-strictly convex objects [11].
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