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HIGH ORDER MOMENT MODEL FOR POLYDISPERSE
EVAPORATING SPRAYS TOWARDS INTERFACIAL GEOMETRY

DESCRIPTION∗

MOHAMED ESSADKI† , STEPHANE DE CHAISEMARTIN‡ , FRÉDÉRIQUE LAURENT§ ,

AND MARC MASSOT¶

Abstract. In this paper we propose a new Eulerian modeling and related accurate and robust
numerical methods, describing polydisperse evaporating sprays, based on high order moment methods
in size. The main novelty of this model is its capacity to describe some geometrical variables of the
droplet-gas interface, by analogy with the liquid-gas interface in interfacial flows [19]. For this
purpose, we use fractional size-moments, where the size variable is taken as the droplet surface.
In order to evaluate the evaporation of the polydisperse spray, we use a smooth reconstruction
which maximizes the Shannon entropy [48]. However, the use of fractional moments introduces
some theoretical and numerical difficulties, which need to be tackled. First, relying on a study of
the moment space, we extend the Maximum Entropy (ME) reconstruction of the size distribution
to the case of fractional moments. Then, we propose a new accurate and realizable algorithm to
solve the moment evolution due to evaporation, which preserves the structure of the moment space.
This algorithm is based on a mathematical analysis of the kinetic evolution due to evaporation,
where it shown that the evolution of some negative order fractional moments have to be properly
predicted, a peculiarity related to the use of fractional moments. The present model and numerical
schemes yield an accurate and stable evaluation of the moment dynamics with minimal number of
variables, as well as a minimal computational cost as with the EMSM model [47, 38], but with the
very interesting additional capacity of coupling with diffuse interface model and transport equation
of averaged geometrical interface variables, which are essential in oder to describe atomization.

Key words. High order moment method, moment space, realizable high order numerical scheme,
polydisperse spray, evaporation, entropy maximization, interface geometry.

AMS subject classifications. 76T10, 35Q35, 65M08, 65M12, 65M99, 65D99.

1. Introduction. In the last decades, with the large change of the Earth's cli-
mate, the increase of energy demand and the high consumption of fossil resources,
automotive industries are widely concerned to improve engine efficiency and reduce
emissions. Actually, in automotive engines and particularly Diesel engine, the fuel
is stored as a liquid phase and injected at high pressure in the combustion chamber.
The flow of injected fuel in liquid form mixing with air in the combustion chamber
is a complex two-phase flow, which has a direct impact on the combustion regime
and pollutant emissions. The difficulties of getting accurate measurements inside an
engine and the high cost of experiments [7, 22, 34, 40, 53, 54, 60], make numerical sim-
ulations a promising and powerful tool. They aim at providing predictive simulations
of the flow in automotive engines and understand the various physical mechanisms
involved in this complex problem. The liquid phase is initially separated from the
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gaseous phase, in the neighborhood of the injector nozzle, we have to deal with what
is called a separated phases two-phase flow. The interaction with the surrounding
gas leads to a complex interface dynamics and eventually to the atomization of the
dense liquid core to a polydisperse evaporating spray, in the downstream region, where
evaporation and combustion are taking place.

Modeling the fuel injection flow faces major challenges, because of the multi-scale
character of this two-phase flow problem. Indeed, it involves a large scale spectrum,
varying from the large scales in the separated phases zone to the small scales in the
disperse phase. Direct Numerical Simulations (DNS) have been widely used to solve
the full flow dynamics in both phases with a full resolution of the interface. The flow
in each phase is modeled through the monophasic Navier-Stokes equation and the
interface is determined by using tracking methods (Lagrangian methods [33], Marker
And Cell (MAC) methods [32]) or by interface capturing and reconstruction (VOF,
Level-Set and hybrid method - see [49, 46, 9, 23, 1, 13, 58, 59] and references therein).
These methods have shown a high accuracy in predicting a sharp interface for incom-
pressible and compressible flows. But, they require a high mesh resolution to compute
the solution and they fail to capture the full range of droplet sizes in realistic configu-
ration of high Reynolds and Weber numbers. Therefore, reduced-order models, where
averaging approaches are envisioned, have to be considered since a full resolution is
out of reach for industrial applications.

The actual existing reduced-order models are not suitable to simulate the whole
process of the fuel injection. Instead, two reduced-order model classes have been used
depending on the flow region. In the dense core region, diffuse interface models can
be used to simulate the flow with lower computational cost. In these models, the
interface is considered as a mixing zone, such that the two phases coexist at the same
macroscopic position, where each phase occupies a portion of the volume. Several
strategies and equilibrium level can be used in order to derive such equations either
following an averaging process [18], using fluid mechanics and thermodynamics of ir-
reversible processes [2] or using the principle of least action [21] (see also [45, 44] and
references therein). At the interface, the artificial fluid mixing leads to some level of
diffusion of the interface, and as a consequence, we lose important information about
the interface geometry. Indeed, the volume fraction is the only variable used to de-
scribe the interface geometry, whereas the details of the atomization process cannot
be predicted so far with such averaged models. To gain more precision in capturing
the atomization, some models add a transport equation of the interface area density
[62, 35, 46]. However, two variables (volume fraction and interface area density) are
not sufficient to describe the polydispersion in the disperse phase region.

In this region of the disperse phase, the dynamics and evaporation of droplets are
conditioned by their size. Consequently, size distribution effects should be described
in any attempt of modeling a polydisperse spray. The second reduced-order model
class relies on a kinetic approach, which has been widely used to describe accurately
a population of particle at mesoscopic level and has been shown to be efficient in a
number of cases. In this approach, a cloud of droplets is modeled by a number density
function (NDF), which satisfies a generalized population balance equation (GPBE),
also called Williams-Boltzmann (WBE) equation [65]. The internal variables of the
NDF provide a statistical description of some relevant physical properties such as
the droplet size, velocity and temperature. The numerical resolution of WBE can be
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achieved by the Lagrangian Monte-Carlo approach [3]. This method is considered to
be the most accurate for solving WBE, but leads to a high computational cost for
unsteady flows and requires complex load-balancing algorithms in parallel computa-
tion. Finally, we encounter some difficulties to couple this Lagrangian method for the
dynamics of the spray with an Eulerian method used to solve the continuous phase.
Alternative method consists in deriving an Eulerian moment model from the WBE.
In this approach, a differential system of a finite set of moments of the NDF is closed
through some closure assumptions on the velocity and size distributions, as long as the
considered phase space variables are the velocity and the size. The unclosed velocity
moment terms are closed by expressing the NDF as a function of the known velocity
moments [38, 4, 5, 63] (monokinetic, Maxwell-Boltzmann, anisotropic Gaussian clo-
sures, . . .). For the modeling of the size distribution, three possible approaches can be
used: 1-The first one consists in discretizing the size direction into sections and to use
low order size moments in each of these sections. This approach is commonly known
as Multi-fluid models [30, 41, 43]. 2- The second one provides a closure of negative
as well as fractional moments from the integer ones through a logarithm Lagrangian
interpolation and is called the MOMIC method [27, 26]; it has been essentially use
for soot modeling and simulation. However, such an approach suffers from several
issues; as Mueller et al [50] have pointed that it has a hard time dealing with the
boundary of the moment space, that is bimodal distributions as observed in experi-
mental measurements [67]. Besides, the interpolation procedure can not preserve the
moment space in general and can suffer from important inaccuracy due to the way the
negative order moments are approximated. 3- The third approach involves high order
moments using either a quadrature of the distribution or a smooth reconstruction
using a sum of kernel density functions and quadrature [51, 66] or Entropy maximiza-
tion [38, 24, 47] on the whole size range. The Multi-fluid model suffers from numerical
diffusion in the size direction, especially when we are dealing with evaporation, while
high order moment approach do not encounter this limitation, instead it requires to
solve complex algebra by using high order moments. Furthermore, the computation
of the flux of the disappearance droplet through evaporation requires a pointwise eval-
uation of the size distribution at zero size, which leads to a singular flux in the case
of quadrature closure (such as QMOM or DQMOM approaches). On the other hand,
the continuous reconstruction through Entropy maximization, used the first time in
the EMSM [38, 47] and CSVM [64] models, shows a great capacity in modeling the
polydispersion and evaluating precisely the evaporation fluxes, with a minimal num-
ber of variables. Indeed, high order moments make polydisperse modeling possible
with only one size-section. Eventually, we can also use an hybrid approach, where
we couple high order moment model with the multi-fluid approach. In that case, few
sections can be used to gain more accuracy in simulating the droplet dynamics [64].

So far, the existing models do not provide a unified description of the two re-
gions of the flows (separated and disperse phases). In the present contribution, we
propose a new high order moment model for the disperse phase with the capacity of
describing the interface geometry by analogy with interfacial flows [19]. Our strategy
is to resolve the polydispersion by using a set of variables, which can be identified as
averages of the gas-liquid interface geometry. For this purpose, we show that some
geometrical variables, which can give an accurate description of a complex interface,
can be expressed as fractional size-moments of NDF in the disperse zone, when the
size variable is given by the surface of the droplets. The present contribution aims
at introducing the mathematics fundamentals of the model and showing that we can
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preserve all the advantages of the previously introduced high order moment methods
in [38, 47] in terms of accuracy, realizability and robustness, but with a much higher
potential in terms of coupling with a diffuse interface model. In fact, to evaluate
the evaporation flux, we use the Maximum Entropy reconstruction as it was done
in the EMSM model, but this time with fractional moments. Entropy maximization
with fractional moments was used in another context [52, 31] as a remedy to the
ill-conditioning of the procedure when considering a high number of integer moments
[61]. The considered set of fractional moments is then recovered from the integer
ones, and their orders are optimized to minimize the entropy difference with the real
function. In the present contribution, a known and small set of fractional moments
is used, deduced from physical considerations, in such a way that the problematic is
different. The existence and uniqueness of this convex optimization problem under
constraints is given in [48] in the case of integer moment. While some elements of
proof are to be found in the fractional moment case in [39], in the present contribu-
tion, we propose a generalization of the result in the case of a special set of fractional
moments. Moreover, we need to generalize some useful properties of the fractional
moment space such as canonical moment as well as lower principal representation [14].
These properties are relevant elements to design realizable schemes and algorithms to
solve a high order moment system i.e. numerical scheme, which preserves the moment
vector inside the moment space and yields accuracy and robustness of the numerical
strategy. Finally, we propose a new realizable algorithm to solve the evolution of
fractional moments due to the evaporation. The resolution of the evaporation is done
by evaluating the disappearance flux, then we compute the internal size evolution by
using a specific quadrature, which involves negative order of moments and requires an
original strategy compared to the integer moment problem. The proposed strategy is
then assessed by a careful investigation of the numerical errors as well as a detailed
comparison with the original approach in 0D, 1D and 2D academic configurations.
A companion paper [25] aims at implementing the proposed model into a massively
parallel code with adaptive mesh refinement and showing the potential of the model
and numerical method towards realistic engine simulations.

The paper is organized as follows. In a second section, the two-phase flow mod-
eling of polydisperse evaporating sprays in a carrier gaseous flow field as well as the
original high order moment modeling are introduced; we also recall the classical av-
eraged geometrical description of interfacial flows in order to identify the relevant
geometrical averaged variables. Section 3 is then devoted to the introduction of the
new geometrical high order moments for a polydisperse spray as well as the result-
ing system of partial differential equations on moments derived from the WBE. The
closure of the system through maximization of entropy is then presented and its math-
ematical properties detailed. Once the proposed system of equations is closed, Section
4 and 5 are dedicated to the numerical resolution of the obtained system. While Sec-
tion 4 is devoted to the transport in phase space, Section 5 focuses on the transport
in physical space. Section 6 is eventually concerned with the numerical verification
and results in 0D, 1D and 2D, thus assessing the proposed modeling and numerical
strategy, before concluding.

2. Two phase flows modeling.

2.1. Kinetic modeling of polydisperse spray. The spray consists in a cloud
of polydisperse droplets, which can be described statistically with the number density
function (NDF) fφ(t,x, c, φ, T ). This function represents the probable number of
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droplets located at position x, travelling with velocity c and having temperature T
and size φ. In general, the size φ of a spherical droplet can be given by its volume
V , its surface S or its radius R of the droplet. By considering a spherical form, these
three geometrical variables are equivalent fV dV = fSdS = fRdR. In the following,
we use the surface S as the size variable. The NDF will be simply noted by f . This
function satisfies the Williams-Boltzmann Equation (WBE) [65]:

(1) ∂tf + ∂x · (cf) + ∂c · (F f) + ∂S (RSf) + ∂T (Qf) = Γc,

where F is the acceleration, RS , the evaporation rate, Q, the thermal transfer and
Γc, the source term, which includes collisions, secondary breakup and coalescence.

The WBE (1) gives a complete description of the spray dynamics in a general
framework. However, the interaction terms (evaporation, acceleration, thermal trans-
fer) with the gaseous phase and the source terms need to be modeled to close the WBE
at the kinetic or mesoscopic level. The second step of modeling consists in reducing
the large phase space dimension of this equation by using a moment method. Hence,
some closures of the NDF have to be used and the set of assumptions clarified. For
the sake of simplicity and the clarity of the presentation, we propose to work with a
simplified WBE. We consider a dilute spray at high Knudsen number and small and
spherical droplets at low Weber number, obtained after the atomization. Under these
assumptions, secondary breakup, coalescence and collision can be neglected. We also
assume that thermal transfer can be neglected and will mainly focus on one-way cou-
pling. We refer the readers to the following articles and references therein, showing
that such a mesoscopic approach is capable of describing coalescence [16], break-up
[15], heat transfer [42] and two-way coupling [23, 24]. Furthermore, we consider that
the drag force, due to the slip between the droplet and gas velocities, is the only force
acting on the droplets. In the following, we model this force by the Stokes law:

(2) F =
Ug − c
τp(S)

,

where Ug is the gas velocity and τp(S) is the characteristic response time of the
droplet. Finally, we use the d2 law for evaporation:

(3) RS(S) = −K,

where K is the constant rate of evaporation.
The modeling and numerical strategy will be presented by considering these sim-

plified assumptions. However, in Appendix A, we discuss how to extend the proposed
model and the numerical strategy to a general modeling level.

Considering these assumptions and by using non-dimensional variables, the di-
mensionless WBE reads:

(4) ∂t∗f
∗ + ∂x∗ · (c∗f∗) + ∂c∗ ·

(
Ug
∗ − c∗

St(S∗)
f∗
)

+ ∂S∗(K
∗f∗) = 0,

where the superscript ∗ refers to dimensionless variables, and are defined as follows:
if the concerned variable is X, we note by Xo the characteristic value of X, then
X∗ = X/Xo. The maximum size So = Smax will be taken as the characteristic size,
thus S∗ ∈ [0, 1], and the characteristic gas time to = τg as the characteristic time of
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the flow. The Stokes number St =
τp(S)
τg

depends linearly on the droplet size :

(5) St(S∗) = θS∗, where θ =
ρlSmax
18πµgτg

,

where ρl is the liquid mass density and µg is the gas dynamic viscosity. In the
following, we consider only dimensionless variables and we omit the superscript ∗.

2.2. High order size-moment modeling: related closure and moment
space. The high dimension nature of the phase space of the WBE makes its dis-
cretization not convenient for complex industrial applications. Since the exact reso-
lution of the NDF is not required and only macroscopic quantities of the flows are
needed for such applications, an Eulerian moment method can be used to reduce the
complexity of WBE. The size-velocity moments of the NDF are expressed as follows:

(6) Mi,j,k,l =

∫ 1

0

∫
R3

Slcixc
j
yc
k
zf(t,x, c, S)dSd3c.

From the WBE, one can derive a system of equation of finite set of these moments.
The obtained system is unclosed without any assumption on the NDF form. In the
following, we consider that the velocity distribution has a prescribed form:

(7) f(t,x, c, S) = n(t,x, S)ϕ(c−U(t,x, S)), where

∫
R3

ϕ(c)d3c = 1,

and ϕ does not depend on droplet size. The closure of the velocity distribution
requires a specific treatment, especially when we are concerned with modeling parti-
cle trajectory crossing (PTC) at high Knudsen numbers. In such case, the collision
operator has a very limited effect on the NDF and does not produce any kind of
hydrodynamic equilibrium. For accurate modeling of PTC, one can use high order
velocity-moment closed through an anisotropic Gaussian velocity-distribution [63, 55].
In the present work, we are not concerned with these modeling issues, and we will
consider a monokinetic velocity distribution, which can be also analyzed as an hy-
drodynamic equilibrium distribution of Maxwell-Boltzmann type at zero temperature
[10]:

(8) f(t,x, c, S) = n(t,x, S)δ(c−U(t,x)).

This closure does not take into account PTC, since only one velocity is defined per
position and time. This assumption is valid for low inertia droplets, when the droplet
velocities are rapidly relaxed to the local gas velocity. Thus, the droplets do not
experience any crossing. It has been shown in [11] that for an evolving spray of initial
distribution of the form (8) and when the Stokes number is lower than the critical
value Stc =, the monokinetic assumption is valid all the time. Nevertheless, the model
can still be used in the limit of moderately inertial droplets St ≈ 1, provided that
we use appropriate numerical schemes to handle eventual delta-shocks creation when
PTC occurs [10, 38, 55]. Considering this simplified velocity distribution, we derive
the following semi-kinetic system from equation (4) by considering moments of order
0 and 1 in velocity:

(9)
∂tn+ ∂x · (nU) = K∂Sn,

∂tn+ ∂x · (nU ⊗U) = K∂S (nU) + n
Ug −U

St(S)
.
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In the present contribution, we adopt the high order size-moment method with a
continuous reconstruction of the size distribution to model a polydisperse spray. This
approach, based mainly on [47, 36, 38, 37], consists in deriving a dynamical system
of finite set of size-moments of the NDF. The integer size-moments are defined as
follows, with N ≥ 1 for a non dimensional size interval [0, 1]:

(10) m =

m0

...
mN

 , mk =

∫ 1

0

Skn(t,x, S)dS.

The system of the EMSM model obtained from an integration of the semi-kinetic
system (9) over S ∈ [0, 1] multiplied by Sk:

(11)

∂tm0 + ∂x.(m0U) = −Kn(t,x, S = 0) ,
∂tm1 + ∂x.(m1U) = −K m0 ,

...
...

∂tmN + ∂x.(mNU) = −NK mN−1 ,

∂t(m1U) + ∂x.(m1U ⊗U) = −K m0U +m0
Ug −U

θ
.

Let us remark that, the term −Kn(t,x, S = 0) expresses the pointwise disap-
pearance flux of droplets through evaporation. This term only appears in the first
equation. But, it participates in the other moments evolution in the same way through
the coupling terms −kKmk−1, when we consider the integral formulation of this sys-
tem [47]. To close the system, we need to determine the size distribution from the
known moments.

Before proposing a closure of this model, let us recall the definition of the moment
space and some useful properties. We denote by P ([0, 1]) the set of all probability
density measures of the interval [0, 1]. Then the Nth ”normalized” moment space MN

is define as follows:

(12) MN = {cN (µ), µ ∈ P} , cN = (c0(µ), . . . , cN (µ)), ck(µ) =

∫ 1

0

xkµ(x)dx

Let us notice that c0 = 1, since we use probability density measures in this definition.
In our case, we can normalize by m0 to associate the moment vector (m0, . . . ,mN )t

to (c0, . . . , cN )t ∈ MN , where ck = mk/m0. The Nth ”normalized” moment space is
a convex and bounded space.

Definition 1. We define the Nth moment space, the set of vectors (m0, . . .mN )t,
whose normalized vector by the number density m0 belongs to the N th normalized
moment space.
Considering this definition and some results from [14]: if (m0, . . . ,mN )t is in the inte-
rior of the moment space, there exists an infinity of size distributions, which represent
this moment vector. In other word, there exists an infinity of size distributions n(S),
which are the solution of the following finite Hausdroff problem:

(13) mk =

∫ 1

0

Skn(S)dS, k = 0 . . . N.
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Massot et al [47] proposed to use a continuous reconstruction of the size distribution
through the maximization of Shannon entropy:

(14) H(n) = −
∫ 1

0

n(S)ln(n(S))dS.

The existence and uniqueness of a size distribution nME(S) which maximizes the
Shannon entropy and is the solution of the finite Hausdroff moment problem (13) was
proved in [48] for the moment of integer order, when the moment vector belongs to
the interior of the moment space and the solution is shown to have the following form:

(15) n(S) = exp
(
−(λ0 + λ1S + . . .+ λNS

N )
)
,

where coefficients λk, are determined from system (13). In the same article, the au-
thors propose an algorithm to solve this constrained optimization problem, based on
Newton-Raphson method. A discussion of the limitation of this algorithm when the
moment vector is close to the boundary of the moment space, or equivalently when
the ME reconstructed size-distribution approaches to a sum of delta Dirac functions,
is given in [47]. Vié et al [64] proposed some more advanced solutions to cope with this
problem, by tabulating the coefficients depending on the moments and by using an
adaptive support for the integral calculation, which enables an accurate computation
of the integral moments when the NDFs are nearly singular.

This approach shows a high capacity in describing the dynamic of a polydisperse
spray using only one size-section. Even though the high order moment formalism
provides some key information about polydispersion, it is important to realize that it
is restricted to the disperse phase zone. Coupling such an approach with a separated
phases model requires some complementary information, which the usual approaches
of diffuse interface models can not provide. Indeed, diffuse interface models, used to
simulate a separated phases zone, consider the interface as a continuous band layer,
where we have lost important information about the interface geometry. The first step,
would be to enrich the diffuse interface models as in [21] in order to transport averaged
geometrical variables to gain accuracy about the interface geometry. Nevertheless,
even if the usual diffuse interface models would have some more information about the
interfacial flow geometry, the coupling of two very different models is usually a rather
cumbersome task and relies on some parameters, the described physics will depend
on. Consequently we adopt a rather original strategy and we will build a model for
the disperse phase, which involves variables that are describing the interface geometry
in average, so that we end up with a set of variables that are common to the two zones
and can potentially help in building a single unified model able to capture the proper
physics in both zones.

In this way, our strategy consists in using averaged geometrical variables in the
separated phases zone to model the atomization in future work, and to use the same
variables in the disperse phase to describe the atomization by using the same concept
as in the EMSM model. However, the integer moments used in the EMSM model do
not all represent physical quantities of the flow and more precisely, these moments
do not provide information about the interface geometry. Therefore, we need to use
other geometrical variables in the disperse phase, while maintaining the attractiveness
as well as the efficiency of the EMSM approach. In order to do so, let us introduce
the natural geometrical variables in the separated phases zone, before extending this
description to the disperse phase.
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2.3. Geometrical description of interfacial flows. In many two-phase flow
applications, the exact location of each phase is difficult to determine precisely because
of the different unpredictable phenomena such as turbulence, interface instabilities and
other small scale phenomena that cannot be simulated even with the most powerful
supercomputers. Fortunately, in industrial applications, we are more concerned with
the averaged features than to the small details of the flow. Therefore, we can use Dif-
fuse Interface Models (DIM) [2, 57, 56, 44] to describe the interface location in terms
of probability and averaged quantities based on averaged operators (ensemble aver-
aged, time averaged or volume averaged). In the following, we define some averaged
geometrical variables, which can be used to model the interface in separated phases
for a complementary geometrical description. Their definitions are based here on the
volume averaged operator following the derivation of Drew [19]. First, we define the
phase function χk(t,x) for a given phase k by:

χk(t,x) =

{
1, if x ∈ k
0, otherwise

then, the volume-averaged operator is defined by:

(16) (•)(t,x) =
1

|V |

∫
V

(•)χk(t,x′)dV (x′),

where V ∈ R3 is a macroscopic space around the position x, and |V | is the occupied
volume.

Let us emphasize that the DIM can be obtained by applying this operator to
the monophasic Navier-Stokes equation. The obtained equations involve the volume
fraction variable, which expresses the portion of the occupied volume by a given phase.
Moreover, the volume fraction allows to locate the interface up to the averaging scale
and is then a first piece of information about the interface geometry:

(17) αk(t,x) =
1

|V |

∫
V

χk(t,x′)dV (x′).

The second variable treated by Drew [19] and used also in other two-phase flow models
[62, 35, 46] is the interfacial area density. The importance of this variable relies mainly
on the modeling of exchange terms (evaporation, thermal transfer and drag force) as
well as modeling the primary atomization. The interfacial area density is interpreted
as the ratio of the surface area of an interface contained in a macroscopic volume and
this volume.

(18) Σ(t,x) =
1

|V |

∫
V

||∇χk(t,x′)||dV (x′).

So far, the interface modeling is still incomplete, since no information on the
interface shape is being given. In fact, the small details of the interface can not be
modeled accurately using only two geometrical variables. Drew proposed to intro-
duce the two curvatures of the interface in his model. Indeed, these variables give a
complementary description of the interface and are highly related to the atomization
process, since they are involved in the jump relations at the interface.
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The two local curvatures can be defined as follows: let P be a point of the interface
and n is the normal vector at the point P . Then, we take a plane that contains P and
parallel to n. As the plane rotates around the normal vector, the intersection curve
between the interface and the plane defines a curvature at point P which corresponds
to the curvature of this 2D curve. As the plane completes a full π rotation, it can be
shown that it has reached exactly two extremal curvature values: the two principal
curvatures k1 and k2.

Drew derived the dynamical equations of the mean and Gauss curvature respec-
tively H and G from the differential definitions of k1 and k2. These two variables
read:

(19)
H = 1

2 (k1 + k2),

G = k1k2.

These variables are defined only at the interface. Therefore, we need a specific
averaging for these interfacial variables. So, we introduce the interfacial averaging

operator (̃•), defined as follows:

(20) Σ (̃•)(t,x) =
1

|V |

∫
V

(•)||∇χk(t,x′)||dV (x′).

The interfacial averaged Gauss and mean curvature weighted by the interface are
defined as follows :

(21)
ΣH̃ =

∫
V

H||∇χk(t,x′)||dV (x′),

ΣG̃ =
∫
V

G||∇χk(t,x′)||dV (x′).

These four geometrical variables can be transported and coupled with a diffuse in-
terface model to gain the accuracy on the interface. Drew [19] derived conservative
equations for these variables with source terms, which describe the stretch and the
wrinkling of the interface. Its derivation is based on a cinematic evolution of an inter-
face, when the interface velocity is given. But in real application, the interface velocity
should be determined from the diffuse interface model. In the following, we would
like to express these geometrical variables in the disperse phase as size-moments of
the size distribution, and derive a new high order moment model using such variables.

3. Geometrical high order moment model.

3.1. Interfacial geometrical variables for the disperse phase. Let us con-
sider a population of spherical droplets represented by their size distribution n(t,x, S).
Then, by analogy with the separated phases, we express the averaged geometrical vari-
ables: volume fraction, interface area density, Gauss curvature and mean curvature
in the disperse phase. The definition of these geometrical variables was based on the
phase function χk. This function contains all the microscopic information about the
interface. In the disperse phase, we use the statistical information about the droplet
distribution, which is given by the size distribution n(t,x, S). Considering this func-
tion, we define the different geometrical variables in the context of a polydisperse
spray as follows:

A. The volume fraction αd is the sum of the volume of each droplet divided by
the contained volume at a given position:

(22) αd =

∫ 1

0

V (S)n(t,x, S)dS.
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The droplet being spherical, V (S) =
S3/2

6
√
π

.

B. The interfacial area density Σd is the sum of the surface of each droplet
divided by the contained volume at a given position:

(23) Σd =

∫ 1

0

Sn(t,x, S)dS.

C. The two local curvatures are equal for a spherical droplet k1 = k2 = 2
√
π√
S

.

But since we use the mean and Gauss curvatures, we can define two different
averaged quantities. Let us notice that, in the case of separated phases, the
average mean and Gauss curvatures were defined as an average over a volume
and weighed by the interfacial area. In the disperse phase case, this becomes:

(24)
ΣdH̃d =

∫ 1

0
H(S)Sn(t,x, S)dS,

ΣdG̃d =
∫ 1

0
G(S)Sn(t,x, S)dS.

These four geometrical variables are expressed as fractional moments of the size dis-

tribution mk/2 =
∫ 1

0
Sk/2n(S)dS:

(25)

ΣdG̃d = 4πm0,

ΣdH̃d = 2
√
πm1/2,

Σd = m1,
αd = 1

6
√
π

m3/2.

These moments can be expressed as integer moment by simple variable substitution
x =
√
S. However, we prefer to hold the droplet surface as the size variable, since we

consider a d2 evaporation law, where the evaporation rate RS is constant.

3.2. The governing moment equation. In this section, we derive from the
kinetic equation (4) a high order fractional moment model. This model gives the
evolution of the mean geometrical interfacial variables due to transport, evaporation
and drag force.

(26)



∂tm0+ ∂x · (m0U) = −Kn(t,x, S = 0),

∂tm1/2+ ∂x ·
(
m1/2U

)
= −K

2
m−1/2,

∂tm1+ ∂x · (m1U) = −Km0,

∂tm3/2+ ∂x ·
(
m3/2U

)
= −3K

2
m1/2,

∂t (m1U) + ∂x · (m1U ⊗U) = −Km0U+ m0
Ug −U

θ
,

where −Kn(t,x, S = 0) represents the pointwise disappearance flux, and the moment

of negative order, m
(i)
−1/2 =

∫ Si

Si−1
S−1/2n(t, S)dS, naturally appears in the system af-

ter integrating by part the evaporation term in the WBE. In the following, these terms
and the associated instantaneous fluxes will be closed by a smooth reconstruction of
the size distribution through entropy maximisation.



12 M. ESSADKI, S. DE CHAISEMARTIN, F. LAURENT AND M. MASSOT

The use of fractional moment introduces a new mathematical framework of model-
ing as well as some numerical difficulties, which require a specific treatment. Some use-
ful mathematical properties of the fractional moments space are discussed in Appendix
B. These results will be used to design realizable numerical schemes, i.e. schemes that
ensure the preservation of the moment vector in the moment space.

3.3. Maximum Entropy reconstruction. NDF reconstruction through the
maximum entropy provides a smooth reconstruction to close the moment system (26)
as it was done in the EMSM model. The ME reconstruction consists in maximizing
the following Shannon entropy:

(27) H[n] = −
∫ 1

0

n(s)ln(n(s))ds,

under the condition that its first N + 1 (in our case N = 3) moments are equal to the
computed moments

(28) mk/2 =

∫ 1

0

Sk/2n(S)dS, k = 0 . . . N.

3.3.1. Existence and uniqueness of the solution. In this part, we give a
proof of the existence and uniqueness of the ME distribution function. We mention
that the case of the integer moments has been already treated in [48]. We have used
some ideas of this work. But the present proof is completely different and simplified.
Indeed, Mead et al [48] have used the monotonic properties of the moments, which is
a characterisation of the integer moment space, to prove existence of the ME solution.
In our case, we will only used the definition of the fractional moment space. The ME
problem reads:

(29)


max

{
H[n] = −

∫ 1

0

n(S)ln(n(S))dS

}
,

mk/2 =

∫ 1

0

Sk/2n(S)dS k = 0 . . . N,

where mN = (m0,m1/2, ..,mN/2) is a moment vector in the interior of the fractional

moment space M1/2
N ([0, 1]) (see Appendix B).

Lemma 2. If the constrained optimization (29) problem admits a solution, then
this solution is unique and can be written in the following form:

(30) nME(S) = exp(−λ0 −
N∑
i=1

λiS
i/2),

where λ = (λ0, .., λN )t ∈ RN .
Proof. The Lagrangian function associated to this standard constrained optimiza-

tion problem is:

(31)

L(n,λ) = H[n]− (λ0 − 1)

(∫ 1

0

n(s)ds−m0

)
−

N∑
i=1

[
λi

(∫ 1

0

si/2n(s)ds−mi/2

)]
,
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where λ = (λ0, .., λN ) is the vector of the Lagrange’s multipliers.
Let us suppose that, for a given moment vector mN , there exists a density function
nME which is the solution of the ME problem (29). So, there exists a vector λME

for which the differential of the Lagrange function L(n,λ) at the point (nME ,λME)
vanishes:

(32)

 DL(nME ,λ) · (h,0) =
∫ 1

0
h(s)

[
−ln(nME(s))−

N∑
i=0

λis
i/2

]
ds = 0,

∂L
∂λi

(nME ,λ) =
∫ 1

0
si/2nME(s)ds−mi/2 = 0,

where h is a positive distribution. Since the system (32) is valid for all h, it yields:

(33)


nME(S) = exp(−λ0 −

N∑
i=1

λiS
i/2),

mk/2 =
∫ 1

0
sk/2 exp(−λ0 −

N∑
i=1

λis
i/2)ds.

The problem then consists in finding a vector λ = (λ0, .., λN ) in RN which satisfies the
moment equations in the system (33). This problem is equivalent to find an optimum
of the potential function G(λ0, .., λN ):

(34) G(λ0, . . . , λN ) =

∫ 1

0

exp(−λ0 −
N∑
i=1

λiS
i/2)dS +

N−1∑
k=0

λkmk/2.

The Hessian matrix H defined by Hi,j = ∂2G
∂λi∂λj

is a positive definite matrix, which

ensures uniqueness of an eventual existing solution.
Lemma 3. The function G, defined in (34), is a continuous function in RN , and

goes to infinity when ||λ|| → +∞.
Proof. Let us suppose that the last assertion is wrong, so there exists a sequence

(λ(n))n=0,1,.. such that ||λ(n)|| → +∞ when n→ +∞ and sup
n

{
G(λ(n))

}
< +∞ .

Hence, there exists A ∈ R such that:

(35) G(λ(n)) =

∫ 1

0

exp(−
N∑
i=0

λ
(n)
i Si/2)dS +

N∑
k=0

λ
(n)
k mk/2 < A.

We write for each n ∈ N, λ(n) = λn(α
(n)
0 , α

(n)
0 , . . . , α

(n)
N ), such that

∑N
i=0(α

(n)
i )2 = 1

and λ(n) → +∞.
Since the sequence (α(n))n=0,1.. is a bounded sequence, we can subtract a convergent
subsequence (αφ(n))n, where φ : N→ N is an increasing function and:

(36) lim
n→+∞

α
φ(n)
i = αi.

To simplify the notation, we can directly consider that α
(n)
i → αi when n→ +∞.

We note by Q(n)(x) =
∑N
i=0(α

(n)
i xi/2) and Q(x) =

∑N
i=0 αix

i/2.

Since the vector mN = (m0,m1/2, ..,m(N)/2) is a moment vector, there exists a non-

negative distribution function f such that mk/2 =
∫ 1

0
sk/2f(s)ds for k = 0, . . . N ,

and

(37) G(λ(n)) =

∫ 1

0

exp(−λ(n)Q(n)(s))ds+

∫ 1

0

λ(n)Q(n)(s)f(s)ds ≤ A.
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Since the first integral is positive

(38)

∫ 1

0

Q(n)(s)f(s)ds ≤ A

λ(n)
.

When n tends to infinity, we get:

(39)

∫ 1

0

Q(s)f(s)ds ≤ 0.

We have Q 6= 0, f ≥ 0 and f 6= 0, and since Q is a continuous function, it follows from
the inequality (39) that there exists [a, b] ⊂ [0, 1] in which Q(s) ≤ −B and B > 0.
Since Q(n) converges uniformly to Q in [0, 1], then, for all s ∈ [a, b] and for the large
enough values of n:

(40) Q(n)(s) < −B/2.

Using these results in the inequality (37), as well as αnkmk/2 ≥ −m0, we get:

(41)
A ≥

∫ b
a

(exp(−λ(n)Q(n)(s)))ds+
∑N
i=0 λ

(n)
i mi/2,

≥ (b− a)exp(λ(n)(B2 ))− λ(n)Nm0,

In the limit when n goes to infinity, we get the contradiction +∞ < A, thus concluding
the proof.

Theorem 4. If the vector mN = (m0,m1/2, ..,m(N)/2) belongs to the interior
of the Nth fractional moment space, then the constrained optimization (29) problem
admits a unique solution, which is in the following form:

(42) nME(S) = exp(−λ0 −
N∑
i=1

λiS
i/2).

Proof. The proof is straightforward by using the two last lemmas.

3.4. Algorithm of the NDF reconstruction through the Entropy Max-
imisation. The reconstruction of the NDF through the maximization of Shannon
entropy goes back to finding the Lagrange’s multipliers λ0 . . . λN such that:

(43) mk/2 =

∫ 1

0

Sk/2 exp(−(λ0 +

N∑
i=1

λiS
i/2)),

where k = 0 . . . N . Solving this nonlinear system is equivalent to optimizing the con-
vex function G(λ). We solve the problem by using the Newton iteration as proposed
in [48]:

The integral computations are done by using Gauss-Legendre quadrature. In
[48], it is shown that 24-point quadrature is very efficient to calculate accurately the
different integral expressions involved in the algorithm.

4. Numerical resolution of the moment governing equations. The phe-
nomena involved in the model can be classified in two main classes: the transport
of the droplets in the physical space and the source terms, which induce the particle
evolution in the phase space (velocity and size) through evaporation and drag. We
use operator splitting techniques [17, 12] to separate the resolution of the different
phenomena, we can then solve each operator separately.
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Algorithm 1 EM algorithm

Choose initial guess of the vector λ.

δk/2 ← mk/2 −
∫ 1

0
Sk/2 exp(−

N∑
i=0

λiS
i/2)

while ||δ|| > εm0 do
for i, j < N do

Hi,j ←
∫ 1

0
S(i+j)/2 exp(−

N∑
i=0

λiS
i/2)

end for
λ← λ−H−1 · δ
for k < N do

δk/2 ← mk/2 −
∫ 1

0
Sk/2 exp(−

N∑
i=0

λiS
i/2)

end for
end while

4.1. Resolution of evaporation. Let us consider a pure evaporation without
transport nor drag. The kinetic equation in this case reads:

(44) ∂tn− ∂S(Kn) = 0.

The integration of this equation multiplied by the vector (1, S1/2, S, S3/2)t yields to
the system of equation of the moment in the section [0, 1]

(45)



dtm0 = −nME |S=0,

dtm1/2 = −K

2
m−1/2,

dtm1 = −Km0,

dtm3/2 = −3K

2
m1/2,

where the nME |S=0(m0,m1/2,m1,m3/2) is obtained by ME algorithm.
Solving this system using classical integrator such as Euler or Runge-Kutta methods
leads to serious stability problems. In fact, classical ODE integrators do not ensure
the preservation of the moments in the moment space [47]. This property is essential
for robustness and accuracy to reconstruct a positive NDF.

4.1.1. Exact kinetic solution through the method of characteristics.
The exact solution of the NDF evolution using a d2 evaporation law, can be obtained
easily by solving analytically the kinetic equation (44) using the method of charac-
teristics:

(46) n(t, S) = n(0, S + Kt).

For more general evaporation law, when the evaporation rate RS(S) is a smooth
function of the size, the kinetic equation is written as follows:

(47) ∂tn+ ∂S(RS(S)n) = 0.

By multiplying the equation by RS(S), we obtain:

(48) ∂tΓ(t, S) + RS(S)∂S(Γ(t, S)) = 0,
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where Γ(t, S) = RS(S)n(t, S). For a given initial time t0 and size s0, we define the

one variable function g(t) = Γ(t, S̃(t; t0, s0)), such that S̃(t; t0, s0) is the characteristic
curve verifying:

(49)

 dS̃(t; t0, s0)

dt
= RS(S̃(t; t0, s0)),

S̃(t0; t0, s0) = s0.

The derivative of g(t) vanishes, thus, we obtain the following expression:

(50) Γ(t, S̃(t; t0, s0)) = Γ(t0, s0).

Finally, we obtain the exact solution of the size distribution as follows:

(51) n(t, S) =
RS(S̃(t0; t, S))

RS(S)
n(t0, S̃(t0; t, S))

4.1.2. Fully kinetic scheme. At each time step tn, the reconstructed NDF
nME(t = tn, S) is determined using ME algorithm, then the exact kinetic solution of
the NDF can be expressed analytically as a function of this initial NDF thanks to
(46). Finally, the updated moments are computed as follows:

(52)
mk/2(tn + ∆t) =

∫ 1

0
Sk/2n(tn + ∆t, S)dS

=
∫ 1

K∆t
(S −K∆t)k/2nME(tn, S +K∆t)dS,

The calculation of this integral can be achieved by using Gauss-Legendre quadrature
as previously. The method is simple and accurate. However, its extension to complex
evaporation law, where the evaporation rate depends on several parameters, could
lead to heavy calculations. To clarify this point, we consider a smooth evaporation
law, where RS(S) depends on the droplet size. Considering the exact kinetic solution
(51), we can obtain the following expression:

(53) mk/2(tn+1) =

∫ 1

S̃(tn;tn+1,0)

S̃(tn+1; tn, s)
k/2n(tn, s)ds.

To compute this integral, we need to determine the size S̃(tn+1, tn, Sj), for each
abscissa Sj of the 24-quadrature points, by solving the ODE system (49).

4.1.3. Inefficiency of the original EMSM algorithm for evaporation.
Massot et al [47] proposed a realizable algorithm to solve correctly the evaporation
moment system in the case of integer moment. The idea of this algorithm is also
based on the known solution of the kinetic equation (44). In order to generalize the
d2 evaporation law for more complex laws, the calculation of the moments was done
in three steps instead of computing directly the integral formulas (52) in the case of
d2 law or (53) in general case using a large number of Gauss-Legendre quadrature.
This algorithm reads in the case of fractional moments as follows:

• From the moment vector m(tn) = (m0,m1/2,m1,m3/2)t, we reconstruct NDF
by using the ME algorithm. Then, we compute the disappearance flux, which
represents the droplets which will be totally evaporated at the next step:

(54) Φ− =

∫ K∆t

0

nME(tn, S)


1

S1/2

S
S3/2

 dS.
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Fig. 1: Initial size distribution (dashed line) and the reconstructed size distribution
at t = 0.2 using: exact kinetic solution (solid line), EMSM algorithm (cross), fully
kinetic scheme (circle)

• The abscissas Sj ≥ K∆t and the weights wj ≥ 0 corresponding to the
lower principal representation (111) of the moments1 m[K∆t,1](tn) = m(tn)−
Φ−(tn) are computed by using the PD algorithm [29].

(55) m
[K∆t,1]
k/2 =

2∑
j=1

wjS
k/2
j ,

where m[K∆t,1](tn) is the moment vector in the support [K∆t, 1].
• We calculate the moments at the next step:

(56) mk/2(tn + ∆t) =

2∑
j=1

wj(Sj −K∆t)k/2.

In Figure 1, we compare the evolution of the reconstructed NDF from the moments
computed with the fully kinetic algorithm, the reconstructed NDF from the moments
computed with the above algorithm and the exact kinetic solution. The results show
the inefficiency of this last algorithm to predict the right kinetic evolution of the
NDF, when we use fractional moments. In the next section, we give a mathematical
development of the exact kinetic solution of the fractional moment (52) in order to
understand the limitation of this algorithm, then we propose a new original solution
to adapt the algorithm.

4.1.4. Adapted evaporation scheme for fractional moments. In this sec-
tion, we rewrite the updated moment as a function of an initial infinite set of moments
on the support [K∆t, 1]. This result will allow us to identify the missing point in the
last algorithm. Then, a correction of the algorithm is proposed at the end of the
section as well as its extension to more general evaporation laws.

1We can also use hybrid approach with multi-size sections, in this case we need to take into

account the evaporation fluxes coming from the right section: m(tn)−Φ
(i)
− (tn) + Φ

(i+1)
− (tn), where

i indexes the section.
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Lemma 5. For all positive integer k and for all x ∈ [−1, 1] the function f : x →
(1− x)k/2 admits a power series which converges normally to the function f .

Proof. The case of k is an even integer is trivial. Let us consider the case where
k = 2m+ 1 is an odd number. The function f admits a power series and the conver-
gence radius of the series is 1, and we for all |x| < 1:

(57) (1− x)k/2 =

+∞∑
n=0

ak/2n xn,

we can show that the coefficients a
k/2
n can be written as follows:

(58) ak/2n = (−1)m+1 (2(n−m− 1))!(2m+ 1)!

(n−m− 1)!m!22n−1n!
.

Now, by using the Stirling’s approximation:

(59) n! ∼
√

2πn
(n
e

)n
.

We can prove the following equivalence relation when n tends to infinity.

(60) |ak/2n | ∼
(2m+ 1)!

4m
√
πm!

1

n3/2+m
.

Therefore the series
∑
|ak/2n | is convergent for any positive integer k ≥ 0.

We deduce that
∞∑
n=0

a
k/2
n (K∆t)nsk/2−n converges normally to (s−K∆t)k/2 for

s ≥ K∆t. Thus, We can invert the sum and the integral in the moment expression:

(61)
mk/2(t+ ∆t) =

∞∑
n=0

a
k/2
n (K∆t)n

∫ 1

K∆t
sk/2−nn(t, s)ds

=
∞∑
n=0

a
k/2
n (K∆t)nm

[K∆t,1]
k/2−n (t)

Equation (61) shows that the fractional moment at t+ ∆t depends on an infinite

set of the moments of support [K∆t, 1] (m
[K∆t,1]
a where a = k/2, k/2 − 1, . . . −∞).

In the case of the EMSM model, where only integer moments are used in the model,
the same expansion of the exact kinetic solution of the integer moment involves only
the four transported moments. For this reason, the evolution of the moment can be
evaluated exactly by translating the abscissas (56) of the lower principal representation
(55), which is not the case for the present model. Therefore, we need an adapted
quadrature instead of the one used in (55), such that the moment evolution in the
equation (56) approximates accurately the exact kinetic evolution (61).

Definition 6. We consider a density function µ of the support [a, b]. The ab-
scissas (xj)j=1...n in [a, b] and the weights (wj)j=1...n > 0 are called Gauss quadrature
rule of order n corresponding to µ if and only if for all polynomial function p ∈ P2n−1

of degree ≤ 2n− 1, we have:

(62)

∫ b

a

p(x)µ(x)dx =

n∑
j=1

wjp(xj)
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The existence of such quadrature for each positive measure is proved in [28]. The
Gauss quadrature of order n is also the lower principal representation (see Appendix
B) associated to the 2n first integer moment of measure µ.

Our objective is to find an adequate Gauss quadrature with the lowest possible
quadrature number nq, such that the following approximation

(63) mk/2(t+ ∆t) ≈
nq∑
j=1

wj(Sj −K∆t)k/2

is accurate. More precisely, we would like to find an adequate Gauss quarature such
that the difference

(64)

εk/2(∆t) = mk/2(t+ ∆t)−
nq∑
j=1

wj(Sj −K∆t)k/2

=
∞∑
n=0

a
k/2
n (K∆t)n

(
m

[K∆t,1]
k/2−n (t)−

nq∑
j=1

wjS
k/2−n
j

)
.

is at least o(∆t) to ensure the convergence of the numerical scheme. Unfortunately, it
is a difficult task to prove this point and this problem goes back to seeking for an ac-
curate estimation of the Gauss quadrature errors [28]. However, the task of providing
a rigorous proof of the convergence is beyond of the objective of the present paper.
In the following, we focus on practical issues and we will present a general strategy
to decrease the error εk/2(∆t) by cancelling a finite set of first terms in the infinite
sum (64). We mention that for even k the error εk/2 = 0.

Let us consider the measure µ̃(r) = 2rn(r2)

r2n
−
q

, where n−q is a positive integer vari-

able, defined in the support [
√

K∆t, 1] for the variable2 r =
√
S. Then, the Gauss

quadrature of order nq = n−q + 2 of the measure µ̃(r), represented by the abscissas rj
and weights w′j , satisfies:

(65)

nq∑
j=1

w′jr
k
j =

∫ 1√
K∆t

rkµ̃(r)dr,

=
∫ 1

K∆t
sk/2−n

−
q n(s, t)ds,

= m
[K∆t,1]

k/2−n−q
(t),

for k = 0 . . . 2nq − 1 (k = 0 . . . 2n−q + 3). The computation of the weights w′j and the
abscissas rj can be determined by the PD algorithm [29]. The coefficients wj and Sj
are defined as follows:

(66)

{
wj = w′jr

n−q

Sj =
√
rj

and they verify for all k = −2n−q , . . . , 3:

(67) m
[K∆t]
k/2 =

nq∑
j=1

wjS
k/2
j .

2This substitution makes the link between the fractional moment and its corresponding integer
moment – see Appendix B.
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By using this quadrature in the equation (64), we cancel the k+ n−q first terms in the
series (k ∈ {0, 1, 2, 3} positive moment orders and n−q negative moment orders):

(68) εk/2(∆t) =

+∞∑
n=nq

ak/2n (K∆t)n

m
[∆t,1]
−n−k/2(t)−

nq∑
j=1

wjS
−n−k/2
j

∆tk/2.

From these results we conclude that, the exact moment evolution depends on
other moments than the ones involved in the moment system (26). More precisely,
the computation of the kinetic evolution depends on an infinite set of moment of nega-
tive order. Thus, the missing point in the last algorithm, developed mainly for integer
moment, consists in limiting the lower principal representation (55) to the moment on
the support [K∆t, 1] used in the model (the four fractional moments), which also cor-
responds to take n−q = 0. In order to correct this default, we need at least to consider
some moment of negative order in the low principal representation n−q > 0. However,
we do not know theoretically the sufficient number of quadrature nodes needed to
approximate the solution. In fact, this problem goes back again to the convergence
issue of this method. Since, we do not provide of a complete proof, we rely on the
numerical results to identify the necessary number of quadrature nodes. The results

show that for n−q = 1, where two supplementary moment of negative order (m
[∆t,1]
−1/2

and m
[∆t,1]
−1 ) are represented by the quadrature, the solution approximates accurately

to the exact kinetic solution. Some of these results are presented in Section 6. This is
an important result, since we need only a total of three quadratures nq = 3 to capture
the kinetic evolution. Besides, we can use more quadrature points to increase the
precision by choosing n−q ≥ 2. Let us underline that the proper approximation and
closure of the negative moments is here a key issue.

New adapted algorithm. According to the last results, we propose an adapted
4-steps algorithm. This algorithm is named NEMO (Negative Moments) algorithm
and described below:

A. We reconstruct nME(S) corresponding to the moment vector m(tn) by ME
algorithm, then we calculate the disappearance flux

(69) Φ−(tn) =

∫ K∆t

0

nME(t = tn, s)


1
s1/2

s
s3/2

 ds.

B. We calculate the negative order moments at the interval [K∆t, 1]

(70) m
[K∆t,1]
−a/2 =

∫ 1

K∆t

s−a/2nME(s)ds,

for a = 1, . . . , 2n−q , where 2n−q ≥ 2 is the number of additional moments
of negative order used in this algorithm and chosen by the user. The other
moments of positive order are computed using the disappearance flux:

(71) m
[K∆t,1]
k/2 = mk/2(0)− Φ−,k/2(tn), k = 0 . . . , 3

C. The abscissas Sj ∈ [K∆t, 1] and the weights wj corresponding to the lower

principal representation of the moments m
[K∆t,1]
l/2 for l = −2n−q , . . . , 3 are
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computed using PD Algorithm [29] and the relations (66), such that:

(72) m
[K∆t,1]
l/2 =

nq∑
j=1

wjS
l/2
j ,

where nq = n−q + 2.
D. Finally, we calculate the updated moments as follows:

(73) mk/2(tn + ∆t) =

nq∑
j=1

wj(Sj −K∆t)k/2.

The singularities of the negative moment integral, when ∆t is very small, limits the
use of high values of n−q . But in practice ∆t > 1.e−4 and we will show that the choice
of n−q = 1 or n−q = 2 are sufficient to obtain an accurate solution. In these cases, the
integral computation of the negative order moment can be achieved correctly with
24-point quadrature of Gauss-Legendre quadrature as for the other moments.

For more complex evaporation laws, the algorithm can be generalized by com-
puting the Lagrangian evolution of the abscissas. In other words, the equation (73)
becomes:

(74) mk/2(tn + ∆t) =

nq∑
j=1

wjS̃(tn + ∆t; tn, Sj)
k/2.

4.2. Evaporation coupled with drag. In this paragraph, we present a coupled
solver for the spray evolution under evaporation and drag force. The corresponding
system of equations reads:

(75)



dtm0 = −n(S = 0),

dtm1/2 = −K

2
m−1/2,

dtm1 = −Km0,

dtm3/2 = −3K

2
m1/2,

dt (m1U) = −Km0U + m0
Ug −U

θ
.

Since the first four equations do not depend on the last equation, the moments are
computed using the algorithm presented in the last section. We use the method de-
veloped in [64] to solve the evolution of the velocity by the drag force coupled with
evaporation.

The momentum evolution is conducted in two steps: first, we remove the part of
the droplets, which will completely evaporated during the time interval [tn, tn+1], by
evaluating the disappearance fluxes of the moments and momentum:

(76) U [K∆t,1] = U −
(

Φ−
Φ−,1U

)
,

where U = (m0, . . . ,m3/2,m1U
t)t and Φ− is the disappearance flux vector of the

moments (69). Then, we use the lower principal representation to approximate the
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size distribution of the moment of the support [K∆t, 1] (72). The computation of the
moments is achieved with (73). And to evaluate the momentum evolution in this last
step, we consider a correlated size-velocity, such that, at a given time t ∈ [tn, tn+1], we
attribute the velocity ci(t) to each abscissa Si(t) of the lower principal representation.
Then, we compute the momentum as flows:

(77) (m1U)[K∆t,1](tn+1) =

ns∑
i=1

wiSi(tn+1)ci(tn+1),

where t ∈ [tn, tn+1], and the abscissas Si(tn+1) and the velocities ci(tn+1) are deter-
mined by solving the following ODE systems:

(78)



dci
dt

= −Ug − ci
θSi

,

dSi
dt

= −K,

Si(t = tn) = Si(tn),
ci(t = tn) = U(tn),

Then, the momentum and the final cell velocity are computed as follows:

(79)

(m1U)n+1 =
ns∑
i=1

wkSi(tn+1)ci(tn+1),

U(tn+1) =
(m1U)n+1

mn+1
1

.

This method can be generalized to more complex evaporation law by replacing −K
in the equation (78) by a general evaporation rate RS(S).

5. Transport scheme in physical space: adapted EMSM approach. We
choose to present the scheme in a two dimensional space to lighten the notations
and we note U = (u, v). For the transport resolution in physical space, we use a
dimensional splitting algorithm. In this context we consider a free transport in one
direction (we present the x-direction here) of the droplets without the evaporation
nor the drag force.

(80)
∂tmk/2 + ∂x(mk/2u) = 0,

∂t(m1U) + ∂x(m1uU) = 0,

where k = 0 . . . 3.
The mathematical structure of the pressureless gas system leads to some singular-

ities (known as δ-shocks). These singularities occur when the monokinetic assumption
is violated. This can happen when trajectory crossings take place and lead to parti-
cles accumulation in a very small volume. Following the idea of de Chaisemartin [10],
Kah et al [38] developed a finite volume kinetic scheme for the EMSM model. We use
the same approach to solve numerically the system (80). In the following, we present
briefly the main steps to derive the kinetic scheme for the system (80):

A. We write the equivalent kinetic system to the pressureless system (80), as it
was proposed in [6]:

(81)

{
∂tf + ∂x(cxf) = 0 , and

f(t, x, c, S) = n(t, x, S)δ(c−U),
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B. We use the finite volume descritization of the system (80):

(82)
mn+1
i = mn

i −
∆t

∆x
(Fi+1/2 − Fi−1/2),

pn+1
i = pni −

∆t

∆x
(Gi+1/2 −Gi−1/2).

C. We express the exact finite volume fluxes as function of the NDF f(t, x, c, S).
D. We split the fluxes in two integral parts: the first (resp the second) cor-

responds to the droplet of positive (resp negative) velocity in x-direction
(F+
i+1/2, G

+
i+1/2)t resp((F−i+1/2, G

−
i+1/2)t). Then, we use the exact solution of

the kinetic system (81), to express the fluxes as function of the NDF at t = tn.
E. Finally, the fluxes are expressed as function of the known moments and ve-

locities at t = tn:

(83)

(
F±i+1/2

G±i+1/2

)
=

1

∆t

∫ xi+1/2

xi−1/2


m0(tn, x)

m1/2(tn, x)
m1(tn, x)

m3/2(tn, x)
m1u(tn, x)
m1v(tn, x)

1Σ±(x)dx,

where Σ± =
{
x
′
,±(xi+1/2 −∆tu(tn, x

′
)) < ±x′

}
In Appendix C, we present two numerical kinetic schemes of first and second order,
which follow this strategy.

6. Numerical results. This section is dedicated to some representative test-
cases and analysis of numerical results, to verify the robustness and the accuracy
of the proposed numerical schemes. In the first part, we test the new evaporation
algorithm in the case of d2 law with K = 1 for two different initial conditions. A
complementary evaporation test in the case of non constant evaporation rate is given
in Appendix D. The second part focuses on two cases of transport in 1D. First, we
test the accuracy of the kinetic schemes dedicated to the transport. Second, a critical
case of a δ-shock is performed to evaluate the robustness of the schemes. Finally, a
2D case of an evaporating spray in the presence of a steady gas field, given by Taylor-
Green vortices, is presented, in order to qualify the robustness and accuracy of the
method compared to EMSM.
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(a) t=0.1 (b) t=0.2

Fig. 2: Solutions of the reconstructed size distribution using: NEMO with n−q = 1
(cross), fully-kinetic (circle), exact kinetic solution (solid line), at time t = 0.1 and
t = 0.2 and the initial distribution (dashed line).

(a) Fully kinetic algorithm (b) NEMO algorithm with n−q = 1

Fig. 3: Evolution of the moment relative errors calculated with fully kinetic algorithm
(left) and NEMO algorithm (right): m0 (solid line), m1/2 (Dash-dotted line), m1

(cross) and m3/2 (circle).

6.1. Evaporation in 0D simulation.

6.1.1. Evaporation with d2 law for an initial smooth NDF. We consider
an initial NDF in the form of the ME-reconstruction NDF, which is the same initial
condition as the one used in Figure 1.

(84) n0(S) = exp(−20(S1/2 − 1/4)2(S1/2 + 1)).

In this section, we compare the fully-kinetic and NEMO algorithms (n−q = 1),
using the time step ∆t = 0.002, with the exact kinetic solution. One can see from
Figure 2, where we plot the reconstructed NDFs of the two algorithms and the exact
kinetic distrubution at t = 0.1 and t = 0.2, that the two ME-reconstructed distribu-
tions follow accurately the exact distribution. Let us recall that for the fully-kinetic
algorithm, this result is obvious, since we use a large number of quadrature to evaluate
this evolution. But the important result is the one of NEMO algorithm, where we
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Fig. 4: The ME reconstructed NDF in the solid line and the initial discontinuous
NDF in the dashed line.

have used only three quadrature nodes to capture accurately the kinetic evolution.
To make a more quantitative comparison, Figure 3 shows the evolution of the rela-
tive error of the four fractional moments. We can see that in the two algorithm the
moments errors relatively to the initial values do not exceed 0.3%.

6.1.2. d2 law evaporation for a discontinuous initial NDF. In this second
case, we test the new algorithm NEMO in the case of a discontinuous initial NDF:

(85) n0(S) =

{
1, if S ∈ [0.1, 0.6]

0, otherwise

The initial NDF defined in (85) and the initial ME reconstructed NDF are plotted in
Figure 4.

In Figure 5, we present the reconstructed NDF computed using NEMO algorithm
with n−q = 1 at two different times. In the same figures, we compare the obtained
results with the reconstructed NDF obtained with the fully kinetic solution and the
exact kinetic solution 3. As in the previous case, NEMO algorithm shows an accurate
prediction of the exact kinetic solution. Furthermore, Figure 6 shows that the relative
error of the moments are less than 1.%, in the case of NEMO algorithm with n−q = 1
and ∆t = 6.e− 3, which is an accurate result. But, we can see that the fully-kinetic
algorithm is more accurate and the moment relative errors do not exceed 0.3%. We
can improve the accuracy of NEMO algorithm by using a small time step ∆t = 6.e−4
or by using n−q = 2 and keeping the same time step as the previous case. These two
results are presented in Figure 7.

6.2. Transport in 1D simulation. In this part, we investigate the accuracy
and robustness of the transport schemes, the first order and the second order presented
in Appendix C. The evaporation and the drag force are not considered in this study.
First, we investigate the order of accuracy of the transport schemes. Then, we test
the two numerical schemes in a critical case, where we generate a δ-shock singularity.

3The exact kinetic solution is computed for the initial ME reconstructed size distribution.
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(a) t=0.3 (b) t=0.6

Fig. 5: Solutions of the reconstructed size distribution using: NEMO with n−q = 1
(cross), fully-kinetic (circle), exact kinetic solution (solid line), at time t = 0.1 and
t = 0.2 and the initial distribution (dashed line).

(a) Fully kinetic algorithm dt = 6.e−3 (b) NEMO : n−q = 1 and dt = 6.e− 3

Fig. 6: Evolution of the moment errors relatively to their initial value calculated with
fully kinetic algorithm (left) and NEMO algorithm (right): m0 (solid line), m1/2

(dash-dotted line), m1 (cross) and m3/2 (circle).

6.2.1. Accuracy order study. We consider an initial size distribution with a
form depending on the coordinate space x. In fact, we need a non trivial initial size-
space distribution, such that the slopes used in the second order scheme do not vanish
all the time. The chosen initial size distribution has the following profile:

(86) n(t, S, x) = 10 exp

(
− (x− xc)2

σ2
x

)
exp

(
− (
√
S − (1− x)/2)2

σR
)

)
,

where xc = 0.25, σx = 0.1 and σR = 0.3. The initial velocity field is initiated as
follows:

(87)

{
u(t = 0, x) = 0.5− x x < 0.5,
u(t = 0, x) = 0. x ≥ 0.5
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(a) NEMO : n−q = 2 and ∆t = 6e− 3 (b) NEMO : n−q = 1 and ∆t = 6e− 4

Fig. 7: Evolution of the moment errors relatively to their initial value calculated with
NEMO algorithm with n−q = 2 and ∆t = 6e − 3 (left) n−q = 1 and ∆t = 1e − 4
(right): m0 (solid line), m1/2 (Dash-dotted line), m1 (cross) and m3/2 (circle).

(a) t = 0.4 (b) t = 0.8

Fig. 8: Spatial profile of the moment m0 at two different times t = 0.4 (left figure)
and t = 0.8 (right figure), using 128 grid cells.

Figure 8 shows the spatial distribution of the moment m0 obtained with the first
and second order schemes at two different times (t = 0.4 and t = 0.8). Comparing
the two schemes, it is clear that the results obtained with the second order scheme
are more accurate than the ones obtained with the first order. In Figure 9, we show
the grid convergence for the first and second order to the analytic solution at t = 0.8.
The second order scheme converges faster than the first order scheme to the solution.
In the extremum of the moment spatial profile, we can see that the convergence to so-
lution is slow compared to the other points. In fact, the slope limitation in this point
is activated to ensure a non oscillating solution, but, it introduces some numerical
diffusion. To go further in this analysis, we compute the L1-error for each numerical
scheme depending on the grid size. In Figure 10, we display the order curve for the
two schemes. As it can be seen from these curves, the order of the first order scheme
is around 0.6 and of the second order, around 1.5.
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(a) the first order scheme (b) the second order scheme

Fig. 9: The gird convergence for the first order scheme (left) and the second order
scheme (right). The curves correspond: (circle) 64 cells, (cross) 128 cells, (square)
256 cells, (plus) 512 cells and (dashed-line) exact solution.

Fig. 10: Error curves with respect to grid refinement in logarithmic scale: the line
y = 1.5 log(∆x)+0.2 (solid line), the line y = 0.6 log(∆x)−2.5 (dashed-line), logarithm
error of m0 using second order (cross symbol) and logarithm error of m0 using first
order (circle symbol).

6.2.2. Robustness and capacity of capturing δ-shocks. The monokinetic-
assumption is not a valid hypothesis when droplets cross. In such an event, the
monokinetic-model generates a δ-shock. Despite the non-physical solution, the two
kinetic schemes should be able to run in all critical situations and even resolve the
created singularities. In this section, we test the robustness of the numerical schemes
in a case of a strong crossing. Initially, we consider two spatial Gaussian distributions
centered at two positions and traveling at opposite velocity as shown in Figure 11.

Figure 12 shows the spatial profile of the moment m0 at two different times. We
can see the shock generation when the two packets cross. At the end, the droplets
accumulate at the center and the corresponding spacial distribution is in the form of
a delta Dirac measure.
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(a) Initial moments: the cures represent the
moment with decreasing order in terms of
value.

(b) Initial velocity

Fig. 11: Initial condition for the crossing case.

(a) t = 0.6 (b) t = 1.2

Fig. 12: The spatial profile of the moment m0 in the crossing case. The results are
given for 128 cells for both first order scheme (cross) and second order (circle) schemes.

6.3. 2D simulation: Transport, evaporation and the drag force. After
the model and numerical schemes have been tested in 0D and 1D simulations, we
propose in this part to compare in a classical 2D configuration the present model
and numerical schemes with the EMSM model, in a case where we consider trans-
port, evaporation and drag. The simulations are performed using the CanoP code,
developed within the collaboration of Maison de la Simulation, IFPEn and EM2C
Laboratory [20, 25] based on the p4est library [8], which has the Adaptive Mesh Re-
finement (AMR) capability as well as the ability to manage such meshes in massively
parallel computations. Parallel performance of the code have been already evaluated
in [20, 25]. In the present simulation, we use only a uniform grid, since we are not
concerned with AMR in the present work. In the following, we consider an evapo-
rating spray in the presence of Taylor-Green vortices for the gas, which is a steady
solution of the inviscid incompressible Euler equations. The non-dimensional velocity
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field of the gas is given as follows:

(88)
ug(x, y) = sin(2πx) cos(2πy),
vg(x, y) = − cos(2πx) sin(2πy),

where (x, y) ∈ [0, 1]2 and we consider periodic boundary conditions. Initially, the
spray is localized in the bottom-left vortex. The initial spatial size-distribution is
given as follow:

(89) n(t,x, S) = 1[a,b](S)1{x′,||x−xc||2<
√

2r}(x) exp(−||x− xc||22/r2),

where [a, b] = [0.25, 0.75], xc = (0.15, 0.15) and r = 0.1. The initial Stokes number
computed with the mean size S̄ = m1/m0 is equal to St(S̄) = 0.05, that is close to
the critical Stokes number. The Stokes number decreases over the time because of
evaporation. The spray evaporation rate is K = 0.5. In Figures 13-14, we present
the computed spatial distribution of the volume fraction at two different times: using
the EMSM model (left) and the new fractional moment model (right). We have used
second order scheme for the transport resolution in both cases and the EMSM evap-
oration algorithm to solve evaporation in the EMSM model and NEMO algorithm
with n−q = 1 for fractional moments. For the EMSM model, the volume fraction is
not resolved but it is calculated through ME reconstruction of the size distribution

(1/
√

6π)
∫ 1

0
S3/2nME(S)dS. Instead, for the new model with fractional moments, the

volume fraction is directly calculate by (1/
√

6π)m3/2. The results of the two compu-
tations are closely similar, and the L1-norm difference relatively to the initial volume
fraction field is less than 3% at t = 1. This validates the results of the new model.
In fact, the EMSM model was compared with the Multi-fluid model in [38], and this
comparison showed a high capacity of the EMSM model to predict the evaporation
and the mean dynamics4 of the spray.

7. Conclusions. In the present paper, we have proposed a new model for an
evaporating polydisperse spray with the capacity of describing the interface geometry
in the disperse phase, by analogy with the interface description in interfacial flows [19].
This model is a first step, in future work, toward a coupling with a diffuse interface
model, where additional transport equation of geometrical variables will be used, in
order to describe the atomization process with a unified model from the dense region
to the polydisperse spray. However, this paper was not only dedicated to modeling
issues, but also to tackle the different mathematical difficulties and to propose ac-
curate and robust numerical schemes. Indeed, the new model involves a high order
fractional size-moments, where the size is given by the droplet surface, which intro-
duce a new mathematical framework and the need of adapted numerical schemes.
The first issue is related to the size distribution closure with ME reconstruction. We
have extended this continuous reconstruction in the case of integer moments [48, 47]
to fractional moments. The second issue was related to the numerical scheme to solve
the new model. For this purpose, we have used operator splitting techniques [17, 12]
to separate the resolution of transport in the physical space and the source terms
(evaporation and drag terms). The main difficulty with high order fractional moment

4Both the EMSM model and the present model, with one size-section, are limited in predicting the
size-conditioned dynamics compared with Multi-fluid model because the Stokes number is computed
with mean size. The extension of the EMSM model to CSVM model [64] tackles these issues.
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(a) EMSM (b) Fractional moments

Fig. 13: The spatial distribution of the volume fraction for the Taylor-Green simula-
tion at t = 0.5. The computation is carried out in a uniform grid 128× 128.

(a) EMSM (b) Fractional moments

Fig. 14: The spatial distribution of the volume fraction for the Taylor-Green simula-
tion at t = 1.0. The computation is carried out in a uniform grid 128× 128.

is to design accurate and realizable numerical scheme, especially for the resolution
of the evaporation, where standard ODE solvers fail in ensuring these criteria. The
proposed strategy consists in making the link with the kinetic evolution of the NDF
for both transport in physical space and evaporation. For evaporation, we have found
that the evolution of the moment of negative order are involved in the kinetic evolu-
tion of the evaporation, and we have seen how the proposed NEMO algorithm has
improved the convergence and the accuracy of the solution. For transport resolution,
we have extended the kinetic schemes developed in [38]. The proposed schemes are
based on some moment theory [14], and we have extended some of these properties
to fractional moments, in order to use this scheme in our case.

Furthermore, some extensions of the present numerical, especially evaporation,
are straightforward and have been already discussed in this paper. We can also also
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extend the model to the case of two-way coupling [23] and anisotropic Gaussian closure
of the velocity distribution [63] for more accurate modeling of PTCs. However, the
main challenge for the continuity of this work will be the modeling of the evolution
of the averaging geometrical variables in the separated phases zone, where the key
atomization mechanisms generating the polydisperse sprays are to be found.

Appendix A. Realistic droplet models. The closure models used in Section
2.1 are based on simplified assumptions. In this appendix, we demonstrate that the
present contribution can be generalized to more realistic physical models. In this
part, we consider a dilute spray of spherical droplets, where the droplets experience
evaporation, drag and thermal transfer, and we neglect the collision, coalescence and
fragmentation. In this context, WBE can be written as follows:

(90) ∂tf + ∂x · (cf) + ∂c · (F f) + ∂S (RSf) + ∂T (Qf) = 0,

Where the drag force F (t,x, c, S) depends on time, space, velocity and size. The
evaporation rate RS(t,x, S, c, T ) and thermal transfer Q(t,x, S, c, T ) depend on the
time, space, velocity, size and temperature.

We consider the following presumed NDF form:

(91) f(t,x, c, T, S) = n(t,x, S)δ(c−U(t,x, S))δ(T − Td(t,x, S))

The semi-kinetic equation can then be obtained by integrating (90) with respect to

(c, T ) after multiplying it by (1, c, e(T ))t, where e(T ) = e0 +
∫ T
T0
Cv,l(T

′)dT ′ and

Cv,l(T ) is the liquid fuel heat capacity at constant volume:

(92)
∂tn+ ∂x · (nU) = ∂S(Rdn),

∂tnU + ∂x · (nU ⊗U) = ∂S (nRdU) + nF d
∂tned + ∂x · (nUed) = ∂S (nRdU) + nCv,l(Td)Qd.

where Rd = RS(t,x,U , S, Td), Qd = Q(t,x,U , S, Td), F d = F (t,x,Ud, S) and
ed = e(Td).

In the following, we consider that the temperature and the velocity are indepen-
dent of the droplet size. Then, we derive the moment governing equation from the
semi-kinetic system:

(93)



∂tm0 + ∂x · (m0U) = −nRd|S=0,
∂tm1/2 + ∂x ·

(
m1/2U

)
= Gm1/2

,
∂tm1 + ∂x · (m1U) = Gm1

,
∂tm3/2 + ∂x ·

(
m3/2U

)
= Gm3/2

,
∂t (m1U) + ∂x · (m1U ⊗U) = Gm1U ,
∂t (m1ed) + ∂x · (m1Ued) = Gm1ed ,

where the source terms are expressed as follows:

(94)

Gmk/2
= −

∫ 1

0
k/2Sk/2−1Rd(S)n(S)dS

Gm1U = −U
∫ 1

0
Rd(S)n(S)dS +

∫ 1

0
SF d(S)n(S)dS

Gm1ed = −ed
∫ 1

0
Rd(S)n(S)dS + Cv,l(Td)

∫ 1

0
SQd(S)n(S)dS
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The closure of the system is achieved by a continuous reconstruction through the
maximization of Shannon Entropy.

We use the operator splitting technique to solve numerically the system (93).
The transport part can be solved in the same way as it was done in section 5. In
the following, we focus on the resolution of the source term part. Let us consider
a spatial homogeneous domain, where only source terms are involved, the equation
system becomes:

(95) dtM = S(t,M)

where M = (m0,m1/2,m1,m3/2,m1U ,m1ed)
T is the unknown vector and

S = (−Rdn
ME(m)|S=0, Gm0 , Gm1/2

, Gm1 , Gm3/2
, Gm1U , Gm1ed)T is the source term.

The four moments are computed by using NEMO algorithm with a slight adaptation
in the fourth step, where the equation (73) is replaced by:

(96) mk/2(tn + ∆t) =

nq∑
j=1

wjS̃(tn + ∆t; tn, Sj)
k/2,

where the weight wj and abscissas Sj are determined in the third step of the algorithm

and the S̃(t; t0, s0) is defined as follows:

(97)

 dS̃(t; t0, s0)

dt
= RS(t, S̃(t; t0, s0),U , Td),

S̃(t0; t0, s0) = s0.

where the temperature Td can be determined from the averaged internal energy ed.

The updated velocity and the internal energy are computed using the CQMOM
technique, as explained in Section 4.2. For t ∈ [tn, tn+1], we write after subtracting
the disappearance flux from the moments:

(98)
(m1U)[S̃(tn;tn+1,0),1](t) =

nq∑
i=1

wiS̃(t; tn, Si)ci(t)

(m1ed)
[S̃(tn;tn+1,0),1](t) =

nq∑
i=1

wiS̃(t; tn, Si)ei(t)

with

(99)

{
dci
∆t

= F (t, S̃(t; tn, Si), ci)

ci(t = tn) = U(tn),

and

(100)

{
dei
∆t

= Q(t, S̃(t; tn, Si), ci, Td)

ei(t = tn) = ed(tn),

We recall that the superscript [S̃(tn; tn+1, 0), 1] refers to the moments of the measure

defined in the support [S̃(tn; tn+1, 0), 1], where S̃(tn; tn+1, 0) is the size of the last
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evaporated droplet.

Appendix B. Fractional moment space. The purpose of this part is to ex-
tend some definition and relevant properties of the integer moment space to fractional
moment space, in order to provide necessary tools to characterize the topology of this
space, thus we can design realizable numerical schemes. In the following, we use the
normalized fractional moments ck/2 = mk/2/m0.

Definition 7. We define the the Nth fractional moment space as follows:

M1/2
N ([0, 1]) = {cN (µ)\µ ∈ P([0, 1])} , cN (µ) = (c0(µ), c1/2(µ), . . . , cN/2(µ))t,

where P([0, 1]) denotes the set of probability density measures defined on the interval

[0, 1] and ck/2 =
∫ 1

0
xk/2dµ(x).

The fractional moments can be expressed as integer moment by using the following
substitution r2 = x:

(101) ck/2(µ) =

∫ 1

0

xk/2µ(x)dx =

∫ 1

0

rk (2rµ(r2))︸ ︷︷ ︸
µ̃(r)

dr

This relation expresses an identification between the fractional moment ck/2(µ) of the
measure µ and the integer moment c̃k = ck(µ̃) of the measure µ̃(r) = 2rµ(r2). In
the following, we use these notations to differentiate between the two natures of the
moments, even if they are equal. With this simple identification, we will take benefit
from the already existed results of integer moment space to extend them to the case
of fractional moment space.

For a fractional moment vector cN ∈ M1/2
N ([0, 1]), we denote by PN (cN ) the set

of all measure µ ∈ P([0, 1]), which are the solution of the following finite Hausdorff
problem:

(102) ck/2 =

∫ 1

0

xk/2µ(x)dx, k/2 ≤ N/2

If cN = (c0, . . . , cN/2)t belongs to the interior of M1/2
N ([0, 1]), we can show that the

set PN (cN ) is infinite. Indeed, these results were shown in [14] for integer moments,
and its generalization for fractional is straightforward through the identification (101).
Furthermore, the set of c(N+1)/2(µ), where µ ∈ P(cN ), is infinite and

(103)
c−(N+1)/2(cN ) = min

µ∈P(cN )

{
c(N+1)/2(µ)

}
, c+

(N+1)/2(cN ) = max
µ∈P(cN

{
c(N+1)/2(µ)

}
We define the canonical fractional moment as follows:

(104) pk =
ck/2 − c−k/2(ck)

c+
k/2(ck)− c−k/2(ck)

.

The canonical moment vector belongs to [0, 1]N , which has a simple topology com-
pared to the moment space. By using the results obtained on canonical integer mo-
ments [14], we can write the algebraic relation between fractional moments and their
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corresponding canonical moments, in the case of N = 3, by using the identification
(101):

(105) p1 =
m1/2

m0
, p2 =

m0m1 −m2
1/2

(m0 −m1/2)m1/2)
, p3 =

(m0 −m1/2)(m1/2m3/2 −m2
1)

(m0m1 −m2
1/2)(m1/2 −m1)

.

If the moment vector cN ∈M1/2
N , the vector c±N+1 = (m0, . . . ,mN/2, c

±
(N+1)/2(cN )) be-

longs to the boundary of the moment space M1/2
N+1, and the measure set PN+1(c±N+1) =

{µ±} has only one element. The measure µ+ (resp µ−) is called the upper (resp lower)
principal representation. In the case of integer moment vector c̃N , it was shown that
the lower and upper principal representation (µ̃+ and µ̃−) can be expressed as sum of
ns ≤ (N + 1)/2 weighted delta-Dirac functions (we count the abscissas in the interior
]0, 1[ by 1 and the ones in the extremity (0 or 1) by 1/2) [14].

(106) µ̃±(r) =

ns∑
i=1

w̃±i δr±i
(r)

we recall that the subscript •̃ is used for integer moments and its corresponding
measure, which are related to the fractional moments according to the identification
(101). The Product-Difference (PD) algorithm [29] can be used to determine the
weight and the abscissas of the low principal representation depending on the moment
c̃N . In other words, this algorithm solve the following non-linear system:

(107) c̃k =

ns∑
i=1

w̃−i r
k
−, k = 0, 1, . . . , N

The identification (101) allow us to relate the the lower principal representation µ−
in terms of fractional moments, to the lower principal representation µ̃− in terms of
integer moments as follows:

(108) µ−(x) =
1

2
√
x
µ̃−(
√
x),

Proposition 8. Let r be a positive real number, then for all positive real x we
have:

(109)
δr(
√
x)

2
√
x

= δr2(x).

Proof. Let f be an integrable function in L1([0, 1]):

(110)

∫ +∞
0

δr(
√
x)

2
√
x
f(x)dx =︸︷︷︸

y=
√
x

∫ +∞
0

δr(y)f(y2)dy

= f(r2).

Hence the result.
Using the last proposition, we deduce that:

(111) µ−(x) =

ns∑
i=1

w−i δx−i
(x),
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where x−i = (r−i )2 and w−i = w̃−i .
Thus, we can reused the PD algorithm to determine the weights and abscissas of the
lower principal representation for fractional moment.

Appendix C. Transport scheme. In this part, we present a first and a second
order scheme, which are derived from the kinetic approach present in 5.

C.1. First order scheme. For a first order scheme, we consider a constant
piecewise reconstruction for the moments and the velocity. Then the fluxes become:

(112)

(
Fi+1/2

Gi+1/2

)
=



mn
0,i

mn
1/2,i

mn
1,i

mn
3/2,i

mn
1,iu

n
0,i

mn
1,iv

n
i

max(uni , 0) +



mn
0,i+1

mn
1/2,i+1

mn
1,i+1

mn
3/2,i+1

mn
1,i+1u

n
0,i+1

mn
1,iv

n
i+1

min(uni+1, 0),

C.2. Second order scheme. Kah et al [38] developed a realizable second order
kinetic scheme. They showed that the canonical moments (in the context of integer
moments) are transported variables. Therefore, these quantities satisfy a maximum
principle. Since, the canonical moments live in the simple space [0, 1]N (N = 3 in our
case). The authors proposed to use linear reconstruction of the canonical moments
to design a high order scheme, instead of reconstructing directly the moments, which
belong to a complex space. We adopt the same approach with some adaptations for
the fractional moments. After reconstructing the variables (velocity and canonical
moments) the fluxes are computed by a simple integration.

C.2.1. Reconstruction. The reconstructed variables are the moment m0, the
canonical moments (defined in the appendix B) p1, p2, p3 and the velocity.

(113)



m0(x) = m0,i +Dm0,i(x− xi),
p1(x) = p1,i +Dp1,i(x− xi),
p2(x) = p2,i +Dp2,i(x− xi),
p3(x) = p3,i +Dp3,i(x− xi),
u(x) = ui +Dui(x− xi),
v(x) = vi +Dvi(x− xi),

where x ∈ [xi−1/2, xi+1/2]. Generally the quantities with the bar are different from
the cell averaged quantities pk,i, uk,i and vk,i and they are determined depending on
the slopes and the following conservation properties:

(114)

mn
1/2,i =

1

∆x

∫ xi+1/2

xi−1/2
m0(x)p1(x)dx,

mn
1,i =

1

∆x

∫ xi+1/2

xi−1/2
m0(x)p1(x)[(1− p1)p2 + p1](x)dx,

mn
3/2,i =

1

∆x

∫ xi+1/2

xi−1/2
m0p1

{
(1− p1)(1− p2)p2p3 + [(1− p1)p2 + p1]2

}
(x)dx,

mn
1,iu

n
i =

1

∆x

∫ xi+1/2

xi−1/2
m0(x)p1(x)[(1− p1)p2 + p1](x)u(x)dx.

Compared to the expressions developed in the case of the EMSM model, only the last
integral expression is different. In fact, the velocity is weighted with the moment m1
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for both models, but in the new model, m1 seems as a second order moment. For
this reason, the expression of the moment m1 as function of the canonical moment is
different from the one in the case of integer moments.

Kah el al. [38] show that the bar terms can be written as follows:

(115)
pk,i = ak,i + bk,iDpk,i,
ui = au,i + bu,iDui,

where for each k, ak,i and bk,i are independent of Dpk,i , and au,i and bu,i are inde-
pendent of Dui.

C.2.2. Slope limitation. In order to satisfy the maximum principle for the
transported quantities (the canonical moment and the velocity) and the positivity
of the number density m0, the slopes should be calculated carefully. Following the
development done in [38], the slopes are calculated as follows:
(116)

Dm0,i = φ(mn
0,i−1,m

n
0,i,m

n
0,i) min

( |mn
0,i+1 −mn

0,i|
∆x

,
|mn

0,i −mn
0,i−1|

∆x
,

2mn
0,i

∆x

)
,

Dpk,i = φ(pnk,i−1, p
n
k,i, p

n
k,i+1) min

( |pnk,i+1 − ak,i|
∆x+ 2bk,i

,
|ak,i − pnk,i−1|

∆x− 2bk,i

)
,

Dui = φ(uni−1, u
n
i , u

n
i+1) min

( |uni+1 − uni |
∆x+ 2bu,i

,
|uni − uni−1|
∆x− 2bu,i

,
1

∆t

)
,

where φ(a, b, c) = 1/2(sgn(b− a) + sgn(c− b)).

Using the equations (114),(115) and (116) the slopes and the bar variables can
be expressed as function of the current and neighbor cell variables. However, these
algebra relations are quite heavy. Therefore, its calculation is achieved using Maple
software.

C.2.3. Fluxes Computation. After computing the slopes and the bar vari-
ables, the fluxes can be computed as follows:
(117)

(
F+
i+1/2

G+
i+1/2

)
=

1

∆t

∫ xi+1/2

xL
i+1/2

m0


1
p1

p1[(1− p1)p2 + p1]
p1

{
(1− p1)(1− p2)p2p3 + [(1− p1)p2 + p1]2

}
p1[(1− p1)p2 + p1]u
p1[(1− p1)p2 + p1]v

 dx,

and
(118)

(
F−i+1/2

G−i+1/2

)
= − 1

∆t

∫ xR
i+1/2

xi+1/2

m0


1
p1

p1[(1− p1)p2 + p1]
p1

{
(1− p1)(1− p2)p2p3 + [(1− p1)p2 + p1]2

}
p1[(1− p1)p2 + p1]u
p1[(1− p1)p2 + p1]v

 dx,
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(a) t=0.3 (b) t=0.6

Fig. 15: The evolution of the NDF in the case of a linear evaporation rate: initial ME
reconstructed solution (dashed line), NEMO algorithm using n−q = 1 (cross), fully
kinetic algorithm (circle) and exact kinetic solution (solid line), at times t = 0.3 and
t = 0.6.

such that

(119)

xLi+1/2 = xi+1/2 −∆t
(ūi + ∆x

2 Dui)+

1 + ∆tDui
,

xRi+1/2 = xi+1/2 −∆t
(ūi+1 − ∆x

2 Dui+1)+

1 + ∆tDui+1
.

The expression inside the integrals are polynomial functions of x of order up to 6, its
calculation can be achieved by using three points of the Gauss-Legendre quadrature.

Appendix D. Accuracy of NEMO algorithm for non constant evapora-
tion laws. NEMO scheme has been developed under the assumption of a d2 law,
but as it was explained before, the algorithm can be generalized for more complex
law by solving the Lagrangian equation (49) for each abscissas Sj given in the third
step of the algorithm. In this section, we propose to evaluate the accuracy of the
algorithm in the case where the evaporation rate depends linearly on the size:

(120) Rs(S) = −(a+ bS).

The exact kinetic solution can be computed according to the equation (51). In the
following, we set a = 0.5 and b = 1. Figure 15 present the NDFs computed by NEMO
algorithm, fully kinetic algorithm and compared to the exact solution at t = 0.3 and
t = 0.6. And the relative error are given in Figure 16. We can see from these results,
the accuracy of the generalized NEMO algorithm to predict the kinetic evolution.
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(a) fully kinetic algorithm (b) NEMO algorithm with n−q = 1

Fig. 16: Evolution of the moment errors relatively to their initial value calculated
with fully kinetic algorithm (left) and NEMO algorithm (right): m0 (solid line),
m1/2 (Dash-dotted line), m1 (cross) and m3/2 (circle).
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