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We revisit the construction by Sanders [S1] of the Hartle-Hawking-Israel state for a free quantum Klein-Gordon field on a spacetime with a static, bifurcate Killing horizon and a wedge reflection. Using the notion of the Calderón projector for elliptic boundary value problems and pseudodifferential calculus on manifolds, we give a short proof of its Hadamard property.

Introduction

Let (M, g) be a globally hyperbolic spacetime, with a bifurcate Killing horizon, see [KW], [S1] or Subsect. 2.1 for precise definition. The bifurcate Killing horizon H is generated by the bifurcation surface B = {x ∈ M : V (x) = 0}, where V is the Killing vector field. It allows to split (M, g) into four globally hyperbolic regions, the right/left wedges M + , M -and the future/past cones F , P, each invariant under the flow of V . An important object related with the Killing horizon H is its surface gravity κ, which is a scalar, constant over all of H .

Let us consider on (M, g) a free quantum Klein-Gordon field associated to the Klein-Gordon equation -2 g φ(x) + m(x)φ(x) = 0, where m ∈ C ∞ (M, R), m(x) > 0 is invariant under V , and its associated free field algebra.

If V is time-like in (M + , g), ie if (M + , g, V ) is a stationary spacetime, there exists (see [S2]) for any β > 0 a thermal state ω + β at temperature β -1 with respect to the group of Killing isometries of (M + , g) generated by V .

It was conjectured by Hartle and Hawking [HH] and Israel [I] that if β = 2π κ is the inverse Hawing temperature, denoted by β H in the sequel, then ω + β can be extended to the whole of M as a pure state, invariant under V , the Hartle-Hawking-Israel state, denoted in the sequel by ω HHI .

The rigorous construction of the HHI state was first addressed by Kay in [K4], who constructed the HHI state in the Schwarzschild double wedge of the Kruskal spacetime. In such a double wedge, the HHI state is a double KMS state, see [K2, K3]. Later Kay and Wald [KW] considered the more general case of spacetimes with a bifurcate Killing horizon, and study general properties of stationary states on this class of spacetimes. They emphasized in particular the importance of the Hadamard condition. They proved that a specific sub-algebra of the free field algebra has at most one state invariant under V and Hadamard. They also showed that if M admits a wedge reflection (see Subsect. 2.2) the restriction of such a state to M + will necessarily be a β H -KMS state. These results were later improved in [K1].

The existence of such a state, ie of the HHI state, was however not proved in [HH]. The first proof of the existence of ω HHI was given by Sanders in the remarkable paper [S1], if the bifurcate Killing horizon is static, ie if V is static in M + , assuming also the existence of a wedge reflection. Sanders showed that there exists a unique Hadamard state ω HHI on M extending the double β H -KMS state ω β on M + ∪M -. The double β H -KMS state ω β is a pure state on M + ∪ M -which is the natural extension of ω + β defined using the wedge reflection, see [K2, K3]. It is an exact geometrical analog of the Fock vacuum vector in the Araki-Woods representation of a thermal state.

1.1. Content of the paper. In this paper we revisit the construction in [S1] of the Hartle-Hawking-Israel state in a spacetime with a static bifurcate Killing horizon. Using the notion of the Calderón projector (see Sect. 5), which is a standard tool in elliptic boundary value problems, we significantly shorten the proof of the Hadamard property of ω HHI .

In [S1] the fact that ω HHI is Hadamard was proved by a careful comparison of the Hadamard parametrix construction for the D'Alembertian -2 g + m associated to the Lorentzian metric g and for the Laplacian -∆ ĝ + m associated to the Riemannian metric ĝ obtained from g by Wick rotation in the Killing time coordinate.

In our paper we avoid working with the spacetime covariances of states and instead systematically work with the Cauchy surface covariances (see Subsect. 

= u ∂Ω ∂ ν u ∂Ω for u ∈ C ∞ (Ω) the Calderón projector D is a map from C ∞ c (∂Ω) ⊗ C 2 to C ∞ (∂Ω) ⊗ C 2 defined by: Df • • = γ • G(f 1 (dV ol ĝ ) -1 dS -f 0 (dV ol -1 ĝ )∂ * ν dS), f = f 0 f 1 ∈ C ∞ c (∂Ω) ⊗ C 2 ,
where

G = P -1 . It is easy to see that f ∈ C ∞ (Σ) ⊗ C 2 equals γu for some u ∈ C ∞ (Ω) solution of P u = 0 in Ω if and only if Df = f .
In our case we take N = S β × Σ + , where S β is the circle of length β and

Σ + = Σ ∩ M + is the right part of the Cauchy surface Σ. The Riemannian metric is ĝ = v 2 (y)dτ 2 +h ij (y)dy i dy j , obtained by the Wick rotation t = • • iτ of the Lorentzian metric g = -v 2 (y)dt 2 + h ij (y)dy i dy j on M + ∼ R × Σ + where M + is identified to R × Σ + using the Killing time coordinate t.
The existence of an extension of ω βH to M is then an almost immediate consequence of the fact that (N, ĝ) admits a smooth extension (N ext , ĝext ) if and only if β = β H , a well-known result which plays also a role in [S1].

In fact this geometrical fact implies that D, viewed as an operator defined on C ∞ c (Σ\B)⊗C 2 uniquely extends to a Calderon projector D ext , defined on C ∞ c (Σ)⊗ C 2 . From D ext one can then easily obtain a pure quasi-free state ω HHI on the whole of M .

The Hadamard property of ω HHI follows then from the well-known fact that D ext , being a Calderón projector, is a 2 × 2 matrix of pseudodifferential operators on Σ, and of the Hadamard property of ω β in M + ∪ M -.

Beside shortening the proof of the Hadamard property of ω HHI , we think that our paper illustrates the usefulness of pseudodifferential calculus for the construction and study of Hadamard states, see also [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF], [START_REF] Gérard | Hadamard states for the linearized Yang-Mills equation on curved spacetime[END_REF], [START_REF] Gérard | Hadamard property of the in and out states for Klein-Gordon fields on asymptotically static spacetimes[END_REF], [GOW] for other applications. We believe that Calderón projectors could also be used to construct the Hartle-Hawking-Israel state in the still open case of spacetimes with a Killing horizon that is only stationary.

1.2. Plan of the paper. Let us now briefly give the plan of the paper. In Sect. 2 we recall the notion of a static bifurcate Killing horizon, following [S1] and introduce the associated Klein-Gordon equation.

Sect. 3 is devoted to background material on CCR * -algebras, bosonic quasi-free states and their spacetime and Cauchy surface covariances in the case of quantum Klein-Gordon fields. We use the framework of charged fields, which is in our opinion more elegant, even when considering only neutral field equations. We also recall the notion of pseudodifferential operators on a manifold, which will be useful later on and formulate a consequence of [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF] which states that the Cauchy surface covariances of any Hadamard state for Klein-Gordon fields is given by a matrix of pseudodifferential operators.

In Sect. 4 we define various 'Euclidean' Laplacians, K = -∆ ĝ + m acting on N = S β × Σ + and a related operator K, obtained from Wick rotation of the Lorentzian metric on M in the Killing time coordinate, which are considered in [S1]. It is sufficient for us to define these Laplacians by quadratic form techniques, which simplifies some arguments.

In Sect. 5 we recall the definition of the Calderón projector, which is a standard notion in elliptic boundary value problems. In Sect. 6, using the explicit expression for K-1 , we show that the projection associated to the double β-KMS state ω β equals to the Calderón projector D associated to K and the open set

Ω =]0, β/2[×Σ + .
In Sect. 7, we recall the well-known fact that a smooth extension (N ext , ĝext ) of (N, ĝ) exists iff β = β H . The extended Calderón projector D ext generates a pure state on M , which is the Hartle-Hawking-Israel state ω HHI . In Prop. 7.4, we show that such an extension is unique among quasi-free states whose spacetime covariances map C ∞ c (M ) into C ∞ (M ) continuously. Finally we give in the proof of Thm. 7.5 a new and elementary proof of the Hadamard property of ω HHI , using the pseudodifferential calculus on Σ.

2. spacetimes with a static bifurcate Killing horizon 2.1. Static bifurcate Killing horizons. We consider as in [S1] a globally hyperbolic spacetime (M, g) with a static bifurcate Killing horizon. We recall, see [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Def. 2.2], that this is a triple (M, g, V ), such that (1) the Lorentzian manifold (M, g) is globally hyperbolic, (2) V is a complete Killing vector field for (M, g), (3) B • • = {x ∈ M : V (x) = 0} is an compact, orientable submanifold of codimension 2, (4) there exists a Cauchy hypersurface Σ containing B, (5) V is g-orthogonal to Σ, see Figure 1 below where the vector field V is represented by arrows.

Σ M + M - F P H + H - H - H + B Figure 1.
For simplicity we will also assume that the bifurcation surface B is connected. Denoting by n the future pointing normal vector field to Σ one introduces the lapse function:

(2.1) v(x) • • = -n(x)•g(x)V (x), x ∈ Σ,
and Σ decomposes as

Σ = Σ -∪ B ∪ Σ + ,
where Σ ± = {x ∈ Σ : ±v(x) > 0}. The spacetime M splits as

M = M + ∪ M -∪ F ∪ P,
where the future cone F 

(1) R • R = Id, (2) 
R is an isometry of (M + ∪ M -, g) onto itself, which reverses the time orientation, [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Prop. 2.7], and we denote by r the restriction of R to Σ. Denoting by h the induced Riemannian metric on Σ one has:

(3) R = Id on B, (4) R * V = V on M + ∪ M -. It follows that R preserves Σ, see [
(2.2) r * h = h, r * v = -v.

Killing time coordinate.

Denoting by Φ V s : M → M the flow of the Killing vector field V , we obtain a diffeomorphism

χ : R × (Σ\B) (t, y) → Φ V t (y) ∈ M + ∪ M -,
which defines the coordinate t on M + ∪ M -called the Killing time coordinate. The metric g on M + ∪ M -pulled back by χ takes the form (see [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Subsect. 2.1]):

(2.3)

g = -v 2 (y)dt 2 + h ij (y)dy i dy j ,
where the Riemannian metric h ij (y)dy i dy j is the restriction of g to Σ.

2.4. Klein-Gordon operator. We fix a real potential m ∈ C ∞ (M ). As in [S1] we assume that m is stationary w.r.t. the Killing vector field V and invariant under the wedge reflection, ie:

(2.4)

V a ∇ a m(x) = 0, m • R(x) = m(x), x ∈ M + ∪ M -∪ U.
For simplicity we also assume that (2.5) m(x) ≥ m 2 0 > 0, x ∈ M, ie we consider only massive fields. Note that in [S1] the weaker condition m(x) > 0 was assumed. We consider the Klein-Gordon operator (2.6) P = -2 g + m.

Free Klein-Gordon fields

In this section we briefly recall some well-known background material on free quantum Klein-Gordon fields on globally hyperbolic spacetimes. We follow the presentation in [GW1, Sect. 2] based on charged fields.

Charged CCR algebra.

3.1.1. Charged bosonic fields. Let Y a complex vector space, Y * its anti-dual. Sesquilinear forms on Y are identified with elements of L(Y, Y * ) and the action of a sesquilinear form β is correspondingly denoted by y 1 •βy 2 for y 1 , y 2 ∈ Y. We fix q ∈ L h (Y, Y * ) a non degenerate hermitian form on Y, ie such that Ker q = {0}.

The CCR * -algebra CCR(Y, q) is the complex * -algebra generated by symbols 1, ψ(y), ψ * (y), y ∈ Y and the relations:

ψ(y 1 + λy 2 ) = ψ(y 1 ) + λψ(y 2 ), y 1 , y 2 ∈ Y, λ ∈ C, ψ * (y 1 + λy 2 ) = ψ * (y 1 ) + λψ * (y 2 ), y 1 , y 2 ∈ Y, λ ∈ C, [ψ(y 1 ), ψ(y 2 ] = [ψ * (y 1 ), ψ * (y 2 )] = 0, [ψ(y 1 ), ψ * (y 2 )] = y 1 •qy 2 1, y 1 , y 2 ∈ Y, ψ(y) * = ψ * (y), y ∈ Y. A state ω on CCR(Y, q) is (gauge invariant) quasi-free if ω( p i=1 ψ(y i ) q i=1 ψ * (y j )) = 0 if p = q, σ∈Sp p i=1 ω(ψ(y i )ψ * (y σ(i) )) if p = q.
There is no loss of generality to restrict oneself to charged fields and gauge invariant states, see eg the discussion in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Sect. 2]. It is convenient to associate to ω its (complex) covariances λ ± ∈ L h (Y, Y * ) defined by:

ω(ψ(y 1 )ψ * (y 2 )) = • • y 1 •λ + y 2 , ω(ψ * (y 2 )ψ(y 1 )) = • • y 1 •λ -y 2 , y 1 , y 2 ∈ Y.
The following results are well-known, see eg [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Sect. 17

.1] or [GW1, Sect. 2]: -two hermitian forms λ ± ∈ L h (Y, Y * ) are the covariances of a quasi-free state ω iff (3.1) λ ± ≥ 0, λ + -λ -= q.
-Let Y ω be the completion of Y for the Hilbertian scalar product λ + + λ -. If there exist linear operators c ± ∈ L(Y ω ) such that

c + + c -= 1, (c ± ) 2 = c ± ,
(ie c ± is a pair of complementary projections) and λ ± = ±q • c ± , then ω is a pure state.

3.1.2. Neutral bosonic fields. We complete this subsection by explaining the relationship with the formalism of neutral fields, see eg [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Subsect. 2.5]. Let X a real vector space, X # its dual, and σ ∈ L a (X , X # ) a symplectic form on X . The * -algebra CCR(X , σ) is the complex * -algebra generated by symbols 1, φ(x), x ∈ X and relations:

φ(x 1 + λx 2 ) = φ(x 1 ) + λφ(x 2 ), x 1 , x 2 ∈ X , λ ∈ R, [φ(x 1 ), φ(x 2 ] = ix 1 •σx 2 1, x 1 , x 2 ∈ X , φ(x) * = φ(x), x ∈ X .
To relate the neutral to the charged formalism one sets Y = CX and for

β ∈ L(X , X # ) denote by β C ∈ L(Y, Y * ) its sesquilinear extension. Y R ∼ X ⊕ X is the real form of Y, ie Y R = Y as a real vector space. Then (Y R , Reσ C ) ∼ (X , σ)⊕(X , σ) is a real symplectic space and we denote by φ(y), y ∈ Y R the selfadjoint generators of CCR(Y R , Reσ C ). Under the identificationφ(y) ∼ φ(x) ⊗ 1 + 1 ⊗ φ(x ) for y = x + ix we can identify CCR(Y R , Reσ C ) with CCR(X , σ) ⊗ CCR(X , σ) as * -algebras.
Note also that under the identification

ψ(y) ∼ 1 √ 2 (φ(y) + iφ(iy)), ψ * (y) ∼ 1 √ 2 (φ(y) -iφ(iy)), y ∈ Y we can identify CCR(Y R , Reσ C ) with CCR(Y, q) for q = iσ C . A quasi-free state ω on CCR(X , σ) is determined by its real covariance η ∈ L s (X , X # ) defined by: ω(φ(x 1 )φ(x 2 )) = • • x 1 •ηx 2 + i 2 x 1 •σx 2 , x 1 , x 2 ∈ X . A symmetric form η ∈ L s (X , X # ) is the covariance of a quasi-free state iff η ≥ 0, |x 1 •σx 2 | ≤ 2(x 1 •ηx 1 ) 1 2 (x 2 •ηx 2 ) 1 2 , x 1 , x 2 ∈ X .
To such a state ω we associate the quasi-free state ω on CCR(Y R , Reσ C ) with real covariance Reη C . Then its complex covariances λ ± are given by (see [GW1, Subsect. 2.5]):

(3.2) λ ± = η C ± 1 2 iσ C .
Applying complex conjugation, we immediately see that in this case

(3.3) λ + ≥ 0 ⇔ λ -≥ 0,
so it suffices to check for example that λ + ≥ 0.

3.2.

Free Klein-Gordon fields.

Let P = -2 g + m(x), m ∈ C ∞ (M, R)
a Klein-Gordon operator on a globally hyperbolic spacetime (M, g) (we use the convention (1, d) for the Lorentzian signature). Let E ± be the advanced/retarded inverses of P and E • • = E + -E -. We apply the above framework to

Y = C ∞ c (M ) P C ∞ c (M ) , [u]•q[u] = i(u|Eu) M ,
where (u|v) M = ´M uvdV ol g . One restricts attention to quasi-free states on CCR(Y, q) whose covariances are given by distributions on M × M , ie such that there exists

Λ ± ∈ D (M × M ) with (3.4) ω(ψ([u 1 ])ψ * ([u 2 ])) = (u 1 |Λ + u 2 ) M , ω(ψ * ([u 2 ])ψ([u 1 ])) = (u 1 |Λ -u 2 ) M , u 1 , u 2 ∈ C ∞ c (M ).
In the sequel the distributions Λ ± ∈ D (M × M ) will be called the spacetime covariances of the state ω.

In (3.4) we identify distributions on M with distributional densities using the density dV ol g and use the notation

(u|ϕ) M , u ∈ C ∞ c (M ), ϕ ∈ D (M )
for the duality bracket. We have then

(3.5) P (x, ∂ x )Λ ± (x, x ) = P (x , ∂ x )Λ ± (x, x ) = 0, Λ + (x, x ) -Λ -(x, x ) = iE(x, x ).
Such a state is called a Hadamard state , (see [R] for the neutral case and [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF] for the complex case) if

(3.6) WF(Λ ± ) ⊂ N ± × N ± ,
where WF(Λ) denotes the 'primed' wavefront set of Λ, ie

S • • = {((x, ξ), (x , -ξ )) : ((x, ξ), (x , ξ )) ∈ S} for S ⊂ T * M × T * M
, and N ± are the two connected components (positive/negative energy shell) of the characteristic manifold:

(3.7) N • • = {(x, ξ) ∈ T * M \{0}) : ξ µ g µν (x)ξ ν = 0}.
3.3. Cauchy surface covariances. Denoting by Sol sc (P ) the space of smooth space-compact solutions of P φ = 0, it is well known that

[E] : C ∞ c (M ) P C ∞ c (M ) [u] → Eu ∈ Sol sc (P ) is bijective, with i(u 1 |Eu 2 ) = Eu 1 •qEu 2 , u i ∈ C ∞ c (M ), for (3.8) φ 1 •qφ 2 • • = i ˆΣ(∇ µ φ 1 φ 2 -φ 1 ∇ µ φ 2 )n µ dσ,
where Σ is any spacelike Cauchy hypersurface, n µ is the future directed unit normal vector field to Σ and dσ the induced surface density. Setting

ρ : C ∞ sc (M ) φ → φ Σ i -1 ∂ ν φ Σ = f ∈ C ∞ c (Σ) ⊕ C ∞ c (Σ)
Since the Cauchy problem

P φ = 0, ρu = f as a unique solution φ ∈ Sol sc (P ) for f ∈ C ∞ c (Σ) ⊕ C ∞ c (Σ) the map C ∞ c (M ) P C ∞ c (M ) [u] → ρEu ∈ C ∞ c (Σ) ⊕ C ∞ c (Σ)
is bijective, and i(u|Eu

) M = ρEu•qρEu, for (3.9) f •qf • • = ˆΣ f 1 f 0 + f 0 f 1 dσ Σ , f = f 0 f 1 .
It follows that to a quasi-free state with spacetime covariances Λ ± one can associate its Cauchy surface covariances λ ± defined by:

(3.10)

Λ ± = • • (ρE) * λ ± (ρE).
Using the canonical scalar product

(f |f ) Σ • • = ´Σ f 1 f 1 +f 0 f 0 dσ Σ we identify λ ± with operators, still denoted by λ ± , belonging to L(C ∞ c (Σ) ⊕ C ∞ c (Σ), D (Σ) ⊕ D (Σ)).
A more explicit expression of λ ± in terms of Λ ± is as follows, see eg [START_REF] Gérard | Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry[END_REF]Thm. 7.10]: let us introduce Gaussian normal coordinates to Σ

U (t, y) → χ(t, y) ∈ V, where U is an open neighborhood of {0} × Σ in R × Σ and V an open neighborhood of Σ in M , such that χ * g = -dt 2 + h ij (t,
y)dy i dy j . We denote by Λ ± (t, y, t , y ) ∈ D (U × U ) the restriction to U × U of the distributional kernel of Λ ± . By (3.5) and standard microlocal arguments, their restrictions to fixed times t, t , denoted by Λ ± (t, t ) ∈ D (Σ ⊗ Σ) are well defined.

We know also that

∂ k t ∂ k t Λ ± (0, 0) ∈ D (Σ × Σ) is well defined for k, k = 0, 1. Then setting λ ± = • • ±q • c ± we have: (3.11) c ± = ± i∂ t Λ ± (0, 0) Λ ± (0, 0) ∂ t ∂ t Λ ± (0, 0) i -1 ∂ t Λ ± (0, 0)
.

Large classes of Hadamard states were constructed in terms of their Cauchy surface covariances in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF][START_REF] Gérard | Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry[END_REF] using pseudodifferential calculus on Σ, see below for a short summary.

3.4. Pseudodifferential operators. We briefly recall the notion of (classical) pseudodifferential operators on a manifold, referring to [START_REF] Shubin | Pseudodifferential Operators and Spectral Theory[END_REF]Sect. 4.3] for details.

For m ∈ R we denote by Ψ m (R d ) the space of classical pseudodifferential operators of order m on R d , associated with poly-homogeneous symbols of order m see eg [START_REF] Shubin | Pseudodifferential Operators and Spectral Theory[END_REF]Sect. 3.7].

Let N be a smooth,

d-dimensional manifold. Let U ⊂ N a precompact chart open set and ψ : U → Ũ a chart diffeomorphism, where Ũ ⊂ R d is precompact, open. We denote by ψ * : C ∞ c ( Ũ ) → C ∞ c (U ) the map ψ * u(x) • • = u • ψ(x). Definition 3.1. A linear continuous map A : C ∞ c (N ) → C ∞ (N ) belongs to Ψ m (N ) if the following condition holds: (C) Let U ⊂ N be precompact open, ψ : U → Ũ a chart diffeomorphism, χ 1 , χ 2 ∈ C ∞ c (U ) and χi = χ i • ψ -1 . Then there exists à ∈ Ψ m (R d ) such that (3.12) (ψ * ) -1 χ 1 Aχ 2 ψ * = χ1 à χ2 .
Elements of Ψ m (N ) are called (classical) pseudodifferential operators of order m on N . The subspace of Ψ m (N ) of pseudodifferential operators with properly supported kernels is denoted by

Ψ m c (N ). Note that if Ψ ∞ (c) (N ) • • = m∈R Ψ m (c) (N ), then Ψ ∞ c (N ) is an algebra, but Ψ ∞ (N )
is not, since without the proper support condition, pseudodifferential operators cannot in general be composed.

We denote by T * N \{0} the cotangent bundle of N with the zero section removed.

To A ∈ Ψ m (N ) one can associate its principal symbol σ pr (A) ∈ C ∞ (T * N \{0}), which is homogeneous of degree m in the fiber variable ξ in T * M , in {|ξ| ≥ 1}. A is called elliptic in Ψ m (N ) at (x 0 , ξ 0 ) ∈ T * N \{0} if σ pr (A)(x 0 , ξ 0 ) = 0. If A ∈ Ψ m (N ) there exists (many) A c ∈ Ψ m c (N ) such that A -A c has a smooth kernel.
Finally one says that

(x 0 , ξ 0 ) ∈ essupp(A) for A ∈ Ψ ∞ (N ) if there exists B ∈ Ψ ∞ c (N ) elliptic at (x 0 , ξ 0 ) such that A c • B is smoothing, where A c ∈ Ψ ∞ c (N ) is as above, ie A -A c is smoothing.
3.5. The Cauchy surface covariances of Hadamard states. We now state a result which follows directly from a construction of Hadamard states in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Subsect. 8.2].

Theorem 3.2. Let ω be any Hadamard state for the free Klein-Gordon field on (M, g) and Σ a spacelike Cauchy hypersurface. Then its Cauchy surface covariances λ ± are 2 × 2 matrices with entries in Ψ ∞ (Σ).

Proof. It is well known (see eg [R]) that if ω 1 , ω 2 are Hadamard states, then Λ ± 1 -Λ ± 2 are smoothing operators on M . Using (3.10) this implies that λ ± 1 -λ ± 2 are matrices of smoothing operators on Σ. From the definition of Ψ ∞ (Σ) it hence suffices to construct one Hadamard state ω whose Cauchy surface covariances λ ± are matrices of pseudodifferential operators. The state constructed in [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Subsect. 8.2] has this property, as can be seen from [START_REF] Gérard | Construction of Hadamard states by pseudo-differential calculus[END_REF]Equ. (8.2)]. 2

Euclidean operators

The construction of the β-KMS state on M + with respect to the Killing vector field V relies on the Wick rotation, where (R × Σ + , g) is replaced by (S β × Σ + , ĝ):

(4.1) ĝ = v 2 (y)dτ 2 + h ij (y)dy i dy j ,
is the Riemannian metric obtained from (2.3) by setting t = iτ and S β = [0, β[ with endpoints identified is the circle of length β.

In this section we recall various 'Euclidean' operators related to ĝ appearing in [S1, S2]. It will be convenient to construct them by quadratic form techniques.

We set N • • = S β × Σ + , whose elements are denoted by (τ, y). We equip N with the Riemannian metric ĝ in (4.1) and the associated density dV ol ĝ = |v|(y)|h| 1 2 (y)dτ dy. The hypersurface Σ + is equipped with the induced density dV ol h = |h| 1 2 (y)dy.

4.1.

Euclidean operator on N . We consider the operator

K • • = -∆ ĝ + m(y),
for m as in Subsect. 2.4. Note that m depends only on y since m is invariant under the Killing flow. We have

K = -v -2 (y)∂ 2 τ -|v| -1 (y)|h| -1 2 (y)∂ y i |v|(y)|h| 1 2 (y)h ij (y)∂ y j + m(y).
K is well defined as a selfadjoint operator on L 2 (N, dV ol ĝ ) obtained from the quadratic form:

(4.2) Q(u, u) • • = ˆN |v| -2 |∂ τ u| 2 + ∂ i uh ij ∂ j u + m|u| 2 dV ol ĝ ,
which is closeable on C ∞ c (N ), since K is symmetric and bounded from below on this domain. Denoting its closure again by Q and the domain of its closure by Dom Q, K is the selfadjoint operator associated to Q, ie the Friedrichs extension of its restriction to

C ∞ (S β ) ⊗ C ∞ c (Σ + ). We know that u ∈ Dom K, Ku = f iff (4.3) u ∈ Dom Q and Q(w, u) = (w|f ) L 2 (N ) , ∀w ∈ C ∞ c (N ). From (2.5) we know that K ≥ m 2 0 hence is boundedly invertible and we set G • • = K -1 . 4.2. Change of volume form. Let us set Q(u, u) = Q(vu, vu), Dom Q = {u ∈ L 2 (N ) : vu ∈ Dom Q}. By (2.5) we have Q(u, u) ≥ m 2 0 vu 2 . If u n ∈ Dom Q, u ∈ L 2 (N ) with u n -u → 0 and Q(u n -u m , u n -u m ) → 0 then from the inequality above we obtain that vu ∈ L 2 (N ) and v(u n -u) → 0. Since Q is closed we obtain that u ∈ Dom Q and Q(u n -u, u n -u) → 0, ie Q is closed.
Let K be the injective selfadjoint operator associated to Q, (which is formally equal to vKv) and let Ĝ = K-1 . We claim that (4.4)

G = v Ĝv, on v -1 L 2 (N ).
This follows easily from the caracterization (4.3) of G and similarly of Ĝ.

Let now

U : L 2 (N ) → L 2 (S β ) ⊗ L 2 (Σ + ) the unitary map given by U u = v 1 2 u. We set K • • = U KU * .
We have K = -∂ 2 τ + 2 (y, ∂ y ), where:

2 (y, ∂ y ) = -|v| 1 2 (y)|h| -1 2 (y)∂ y i |v|(y)|h| 1 2 (y)h ij (y)∂ y j |v| 1 2 (y) + v 2 (y)m(y),
is obtained as above from the quadratic form (4.5)

ˆΣ+ ∂ i |v| 1 2 ũ|v|h ij ∂ i |v| 1 2 u + |v| 2 m|u| 2 |h| 1 2 dy.
If G • • = K-1 we have by (4.4):

(4.6) G = |v| 1/2 G|v| 3/2 , on v -3/2 L 2 (N ).
We now recall a well known expression for G. Let

F (τ ) = e -τ + e (τ -β) 2 (1 -e -β ) , τ ∈ [0, β[, extended to τ ∈ R by β-periodicity.
In particular we have:

(4.7) F (τ ) = e -|τ | + e (|τ |-β) 2 (1 -e -β ) , τ ∈ [-β, β]
The following expression for G is well-known (see eg [START_REF] Derezinski | Mathematics of Quantization and Quantum Fields[END_REF]Sect. 18.3.2]):

(4.8) Gũ(τ ) = ˆSβ F (τ -τ )ũ(τ )dτ , ũ ∈ L 2 (S β ) ⊗ L 2 (Σ\B).
Note that since 2 ≥ mv 2 by (4.5), we have also -2 ≤ m -1 v -2 by Kato-Heinz theorem hence C ∞ c Σ + ) ⊂ Dom F (τ ).

Calderón projectors

In this section we recall some standard facts on Calderón projectors. We refer the reader to [START_REF] Chazarain | Introduction to the Theory of Linear Partial Differential Operators[END_REF] for details. 5.1. The Calderón projector. Let (N, h) a complete Riemannian manifold and P = -∆ h + m, where m ∈ C ∞ (N ) is a real potential with m(x) ≥ m 2 0 > 0. As in Sect. 4 we construct P as a selfadjoint operator on L 2 (N, dV ol h ) using the quadratic form

(5.1) Q(u, u) = ˆN ∂ i uh ij ∂ j u + m(x)|u| 2 (x)dV ol h .
We obtain that 0 ∈ ρ(P ), hence G • • = P -1 is a bounded operator on L 2 (N, dV ol h ), defined by

(5.2) Q(Gv, w) = (v|w) L 2 (N ) , ∀w ∈ C ∞ c (N ). Let Ω ⊂ N an open set such that ∂Ω = S = n 1 S i
, where S i are the connected components of S and are assumed to be smooth hypersurfaces. We denote by C ∞ (Ω) the space of restrictions to Ω of functions in C ∞ (N ).

We associate to S i the distribution density dS i defined by:

dS i |u • • = ˆSi udσ (i) h , u ∈ C ∞ c (N ),
where dσ

(i)
h is the induced Riemannian density on S i and we set

dS = n i=1 dS i .
We denote by ∂ ν the unit exterior normal vector field to S and set

∂ * ν dS|u • • = dS|∂ ν u , u ∈ C ∞ c (N ). For u ∈ C ∞ (Ω) we set γu • • = u S ∂ ν u S =: γ 0 u γ 1 u . For v ∈ C ∞ c (S) we denote by ṽ ∈ C ∞ c (N ) an extension of v to N such that ũ S = u, ∂ ν ũ S = 0. Definition 5.1. Let f = f 0 f 1 ∈ C ∞ c (S) ⊕ C ∞ c (S)
. We set:

Df • • = γ • G( f1 (dV ol h ) -1 dS -f0 (dV ol -1 h )∂ * ν dS). -The operator D : C ∞ c (S) ⊕ C ∞ c (S) → C ∞ (S) ⊕ C ∞ (S)
is continuous and is called the Calderón projector associated to (P, S).

-The operator D is a 2 × 2 matrix of pseudodifferential operators on S.

Note that dS and ∂ * ν dS are distributional densities, hence (dV ol h ) -1 dS and (dV ol h ) -1 ∂ * ν dS are distributions on N , supported on S. Note also that the Calderón projector is obviously covariant under diffeomorphisms: if χ : (N, h) → (N , h ) is an isometric diffeomorphism with S = χ(S), P = χ * P , then D = ψ * D , where ψ : S → S is the restriction of χ to S.

Expression in Gaussian normal coordinates.

Let U i be a neighborhood of {0} × S i in R × S i and V i a neighborhood of S i in N such that Gaussian normal coordinates to S i induce a diffeomorphism:

χ i : U i x → (s, y) ∈ V i from U i to V i , and ds 2 + k s (y)dy 2 = χ * i h on U i . Then for f ∈ C ∞ c (S i ) ⊗ C 2 we have (5.3) χ * i f1 (dV ol h ) -1 dS -f0 (dV ol h ) -1 ∂ * ν dS = δ 0 (s) ⊗ (f 1 (y) -r 0 (y)f 0 (y)) -δ 0 (s) ⊗ f 0 (y), where r s (y) = |k s | -1 2 (y)∂ s |k s | 1 2 . If ϕ ∈ C ∞ c (R) with ϕ ≥ 0, ´ϕ(s)ds = 1, setting ϕ n (s) = nϕ(ns), we can compute Df for f ∈ C ∞ c (S i ) ⊗ C 2 as (5.4) Df = lim n→+∞ γ • G(ϕ n (s) ⊗ (f 1 (y) -r 0 (y)f 0 (y)) -ϕ n (s) ⊗ f 1 (y)),
where the limit takes place in C ∞ (S) ⊕ C ∞ (S). Note that it is not obvious that Df ∈ C ∞ (S) ⊕ C ∞ (S). To prove it one can first replace G by a properly supported pseudodifferential parametrix P (-1) ∈ Ψ -2 c (N ). Using then Gaussian normal coordinates near a point x 0 ∈ S, one is reduced locally to N = R d , S = {x 1 = 0}. The details can be found for example in [START_REF] Chazarain | Introduction to the Theory of Linear Partial Differential Operators[END_REF].

Another useful identity is the following: for u ∈ C ∞ (Ω) let Iu be the extension of u by 0 in N \Ω. Then (5.5) P Iu = f1 (dV ol h ) -1 dS -f0 (dV ol -1 h )∂ * ν dS + IP u, for f = γu.

The double β-KMS state

In this section we consider the double β-KMS state ω β in M + ∪ M -. It is obtained as the natural extension to M + ∪ M -of the state ω + β in M + , which is a β-KMS state in M + with respect to the Killing flow . Its construction, for the more general stationary case is given in [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Thm. 3.5].

Since Σ\B is a Cauchy surface for M + ∪ M -, we associate to ω β its (complex) Cauchy surface covariances on Σ\B λ ± , and (since ω β is a pure state), the pair of complementary projections c ± = ±q -1 • λ ± , see Subsect. 3.1. We will study in details the projection c + .

We identify

C ∞ c (Σ\B) with C ∞ c (Σ + ) ⊗ C 2 using the map (6.1) R : C ∞ c (Σ + ) ⊗ C 2 → C ∞ c (Σ + ) ⊕ C ∞ c (Σ -) g = g (0) ⊕ g (β/2) → f = g (0) ⊕ r * g (β/2) ,
where r : Σ → Σ is the restriction to Σ of the wedge reflection R, see Subsect. 2.2.

We will show that

C • • = R-1 • c + • R
is exactly the Calderón projector for the Euclidean operator K + acting on (N, ĝ), see Subsect. 4.1, and the open set

Ω • • = {(τ, y) ∈ N : 0 < τ < β/2}.
6.1. The double β-KMS state. We recall now the expression of ω β given by Sanders, see [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Sect. 3.3].

There are some differences in signs and factors of i with the expression given by Sanders in [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Sect. 3.3]. They come from two differences between our convention for quantized Klein-Gordon fields and the one of Sanders:

-our convention for Cauchy data of a solution of P u = 0 is given the map

ρu = u Σ i -1 ∂ ν u Σ =:
f , which is more natural for complex fields and leads to a more symmetric formulation of the Hadamard condition, while Sanders uses ρu = u Σ ∂ ν u Σ = g, so f = 1 0 0 -i g.

-we use as complex symplectic form f •σf = (f 1 |f 0 ) -(f 0 |f 1 ), while Sanders uses g •σg = (g 0 |g 1 ) -(g 1 |g 0 ). In terms of spacetime fields, we use i -1 E, Sanders uses iE.

Let us unitarily identify L 2 (Σ, |h|

1 2 dy) with L 2 (Σ + , |h| 1 2 dy) ⊕ L 2 (Σ -, |h| 1 2 dy), by u → u + ⊕ u -, u ± = u Σ ± .
Under this identification the action of the wedge reflection r * u = u • r will be denoted by T , with:

(6.2) T (u + ⊕ u -) • • = r * u -⊕ r * u + .
A direct comparison with the formulas in [S1, Sect. 3.3], using the identity (3.2) gives the following proposition.

Proposition 6.1. The double β-KMS state on M + ∪ M -is given by the Cauchy

surface covariance λ + = λ + 00 λ + 01 λ + 10 λ + 11
where:

(6.3)

λ + 00 = 1 2 |v| 1 2 -1 coth( β 2 ) + -1 T sh -1 ( β 2 ) |v| 1 2 , λ + 11 = 1 2 |v| -1 2 coth( β 2 ) -T sh -1 ( β 2 ) |v| -1 2 , λ + 01 = λ + 10 = 1 2 1.
As in Subsect. 3.1 we have λ -= λ + -q, where the charge q = iσ is given by the matrix q = 0 1 1 0 . We introduce the operators c ± • • = ±q -1 λ ± and obtain (6.4)

c + = 1 2 λ + 00 λ + 11 1 2 . Note that if b 0 = -1 coth( β 2 ) + -1 T sh -1 ( β 2 ), b 1 = coth( β 2 ) -T sh -1 ( β 2 ),
then using that [T, ] = 0 we obtain that

b 0 b 1 = b 1 b 0 = coth( β 2 ) 2 -sh -1 ( β 2 ) 2 = 1,
from which it follows easily that c ± are (formally) projections. This is expected since the double β-KMS state ω β is a pure state in M + ∪ M -.

6.2. Conjugation by R. The map R defined in (6.1) allows to unitarily identify

L 2 (Σ + ) ⊗ C 2 with L 2 (Σ + ) ⊕ L 2 (Σ -).
We have:

(6.5) R-1 R = + ⊕ + , R-1 T R = 0 1 1 0 .
Denoting by c + ij for i, j ∈ {0, 1} the entries of the matrix c + and setting

C ij • • = R-1 • c + ij • R
, we obtain after an easy using (6.3), (6.1): (6.6)

C 00 g 0 = 1 2 g (0) 0 ⊕ 1 2 g (β/2) 0 , C 11 g 1 = 1 2 g (0) 1 ⊕ 1 2 g (β/2) 1 , C 01 g 1 = 1 2 |v| 1 2 -1 + coth( β 2 + )|v| 1 2 g (0) 1 + 1 2 |v| 1 2 -1 + sh -1 ( β 2 + )|v| 1 2 g (β/2) 1 ⊕ 1 2 |v| 1 2 -1 + coth( β 2 + )|v| 1 2 g (β/2) 1 + 1 2 |v| 1 2 -1 + sh -1 ( β 2 + )|v| 1 2 g (0) 1 , C 10 g 0 = 1 2 |v| -1 2 + coth( β 2 + )|v| -1 2 g (0) 0 -1 2 |v| -1 2 + sh -1 ( β 2 + )|v| -1 2 g (β/2) 0 ⊕ 1 2 |v| -1 2 + coth( β 2 + )|v| -1 2 g (β/2) 0 -1 2 |v| -1 2 + sh -1 ( β 2 + )|v| -1 2 g (0)
0 . In (6.6) the upper indices (0), (β/2) refer to the two connected components {τ = 0} and {τ = β/2} of ∂Ω, while the lower indices 0, 1 refer to the two components of g.

6.

3. The Calderón projector. We now compute the Calderón projector for K + , associated to the Riemannian manifold (N, ĝ). We choose

Ω = {(τ, y) ∈ N : 0 < τ < β/2}. We have S = ∂Ω = S 0 ∪S β/2 and we write f ∈ C ∞ c (S)⊕C ∞ c (S) as f = f (0) ⊕f (β/2) for f (i) ∈ C ∞ c (S i ) ⊕ C ∞ c (S i
). We denote by γ (i) , i = 0, β/2 the trace operators on S i defined by γu = γ (0) u ⊕ γ (β/2) u for u ∈ C ∞ (Ω). We have: (6.7) τ, y) .

γ (0) u = lim τ →0 + u(τ, y) -|v(y)| -1 ∂ τ u(τ, y) , γ (β/2) u = lim τ →(β/2) - u(τ, y) |v(y)| -1 ∂ τ u(
We denote similarly by ∂ 

N ext → R with m ext ≥ m 2 0 > 0 such that ψ Σ\B = χ • r, ψ * m ext = m N . Σ + Σ - B S β Σ + ∼r(Σ -) Σ + S β × Σ + R 2 × B χ Figure 2. The embedding χ
This fundamental fact is well explained in [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Subsect. 2.2]. Let us briefly recall the construction of χ following [S1]: one introduces Gaussian normal coordinates to B in (Σ, h), where h is the Riemannian metric induced by g on Σ. We choose the unit normal vector field to B pointing towards Σ + . Using these coordinates we can, since B is compact, identify a small neighborhood U of B in Σ with ] -δ, δ[×B.

Denoting by ω local coordinates on B we have a map

φ :] -δ, δ[×B (s, ω) → y = exp h ω (s) ∈ U, U + = φ(]0, δ[×B), φ * h = ds 2 + k αβ (s, ω)dω α dω β ,
for U + = Σ + ∩ U . In the local coordinates (τ, s, ω) on S β × U + the embedding χ takes the form:

(7.2) χ : S β ×]0, δ[×B → B 2 (0, δ) × B (τ, s, ω) → (s cos(β(2π) -1 τ ), s sin(β(2π) -1 τ ), ω) = • • (X, Y, ω),
where [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Subsect. 2.2] shows that ĝ admits a smooth extension ĝext to N ext iff β = (2π)κ -1 .

B 2 (0, δ) = {(X, Y ) ∈ R 2 : 0 < X 2 +Y 2 < δ 2 }. A straighforward computation performed in [
7.2. The extension of ω β to M . We recall from Subsect. 4.1 that K is defined from the closure Q of the quadratic form Q on C ∞ c (N ). Similarly K ext = -∆ ĝext +m ext , acting on N ext is defined using the corresponding quadratic form Q ext .

The following lemma is equivalent to [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Prop. 5.2], for completeness we give a short proof using quadratic form arguments (note that we assume the stronger condition that inf m(x) > 0).

Lemma 7.2. Let U : C ∞ c (N ) → C ∞ c (N ext \B ext ) defined by U u = u • χ -1 .
Then U extends as a unitary operator U :

L 2 (N ) → L 2 (N ext ) with K ext = U KU * .
Proof. U clearly extends as a unitary operator. To check the second statement it suffices, taking into account the way K and K ext are defined, to prove that

C ∞ c (N ext \B ext ) is a form core for Q ext . The domain of Q ext is the Sobolev space H 1 (N ext ) associated to ĝext , so we need to show that C ∞ c (N ext \B ext ) is dense in H 1 (N ext ). Using the coordinates (X, Y, ω) near B ext ∼ {0} × B, this follows from the fact that C ∞ c (R 2 \{0}) is dense in H 1 (R 2
), see eg [A,Thm. 3.23]. 2 We recall that the projection c + associated to the double β-KMS state ω β was defined in (6.4). Let us identify in the sequel Σ with

Σ ext = ψ(Σ) ⊂ N ext . Theorem 7.3. Let D ext the Calderón projector for (K ext , Σ). Then for f, g ∈ C ∞ c (Σ\B) ⊗ C 2 we have: (g|c + g) L 2 (Σ) = (g ext |D ext f ext ) L 2 (Σ) ,
where

f ext = (ψ * ) -1 f , g ext = (ψ * ) -1 g.
Proof. This follows from Prop. 6.2, the fact that R is implemented by the embedding r of Σ\B into N , (see (7.1)) and Lemma 7.2. 2 7.3. Uniqueness of the extension. We discuss now the uniqueness of extensions of ω β to M . Other types of uniqueness results were obtained before in [KW] and [K1].

Proposition 7.4. There exists at most one quasi-free state ω for the Klein-Gordon field on M such that:

(1) the restriction of ω to M + ∪ M -equals ω β , (2) the spacetime covariances

Λ ± of ω map C ∞ c (M ) into C ∞ (M ). Proof.
Let ω a quasi-free state for the Klein-Gordon operator P in M , with spacetime covariances Λ ± . We assume that Λ

± : C ∞ c (M ) → C ∞ (M ).
Denoting by Λ ± (x, x ) their Schwartz kernels, we have P (

x, ∂ x )Λ ± (x, x ) = P (x , ∂ x )Λ ± (x, x ) = 0, which implies that (7.3) WF(Λ ± ) ⊂ N × N ,
where N is defined in (3.7). We claim that the entries c

± k,k , k, k = 0, 1 of c ± defined in (3.11) map C ∞ c (Σ) into C ∞ (Σ).
In fact by (7.3) we have Λ ± = Λ ± • A modulo smoothing, where A ∈ Ψ 0 (M ) is a pseudodifferential operator with essupp(A) included in an arbitrary small conical neighborhood of N . For u ∈ C ∞ c (Σ) we have, modulo factors of i:

c ± k,k u = ∂ k t Λ ± • A(-∂ k t δ 0 ⊗ u) t=0 , see (3.11). Since WF((-∂ k t δ 0 ) ⊗ u) ⊂ N * Σ, where N * Σ ⊂ T * M is the conormal bundle to Σ and Σ is spacelike, we have N * Σ ∩ N = ∅, hence A(-∂ k t δ 0 ⊗ u) ∈ C ∞ (M ), which proves our claim.
Let now ω i , i = 1, 2 be two quasi-free states as in the proposition. Since (u|(Λ 

+ 1 - Λ + 2 )v) L 2 (M ) = 0 for u, v ∈ C ∞ c (M + ∪M -) we obtain that (f |(λ + 1 -λ + 2 )g) L 2 (Σ)⊗C 2 = 0 for f, g ∈ C ∞ c (Σ\B) ⊗ C 2 hence supp(λ + 1 -λ + 2 )g ⊂ B for g ∈ C ∞ c (Σ\B) ⊗ C 2 . Since we have seen that λ + i : C ∞ c (Σ) ⊗ C 2 → C ∞ (Σ) ⊗ C 2 this implies that (λ + 1 - λ + 2 )f = 0 for f ∈ C ∞ c (Σ\B) ⊗ C 2 . Since λ + i are selfadjoint for L 2 (Σ, dV ol h ) ⊗ C 2 this implies that supp(λ + 1 -λ + 2 )f ⊂ B for f ∈ C ∞ c (Σ) ⊗ C 2 , hence (λ + 1 -λ + 2 )f = 0 using again that λ + i : C ∞ c (Σ) ⊗ C 2 → C ∞ (Σ) ⊗ C 2 . 2 7 
• • = q • D ext , λ - HHI • • = λ + HHI -q
, where D ext is the Calderón projector for (K ext , Σ) and the charge quadratic form q is defined in (3.8). Then:

(1) λ ± HHI are the Cauchy surface covariances for the Cauchy surface Σ of a quasifree state ω HHI for the free Klein-Gordon field on M . where ũ is identified with the map S β τ → ũ(τ ) ∈ L 2 (S β ; L 2 (Σ + )). This proves (7.4). By Lemma 7.2 and using that G ext = K -1 ext is bounded on L 2 (N ext ), we deduce from (7.4) that G ext is also reflection positive, ie (7.6) (R ext u|G ext u ext ) L 2 (Next) ≥ 0, u ∈ L 2 (N ext ), suppu ⊂ N + ext = χ([0, β/2] × Σ + ), for R ext = U RU * . By the remark before [START_REF] Sanders | On the construction of Hartle-Hawking-Israel states across a static bifurcate Killing horizon[END_REF]Thm. 5.3], if (s, y) are Gaussian normal coordinates to Σ in N ext we have R ext u(s, y) = u(-s, y), ie R ext is given by the reflection in Gaussian normal coordinates. This map is a isometry of (N ext , ĝext ), which implies that if ĝext = ds 2 + h ext (s, y)dy 2 near Σ, we have h ext (s, y) = h ext (-s, y) hence if r s (y) = |h ext (s, y)| -1 2 ∂ s |h ext (s, y)| 1 2 we have r 0 (y) ≡ 0.

If f ∈ C ∞ c (Σ) ⊗ C 2 it follows from (5.3) that D ext f = γG ext T f for T f = δ 0 (s) ⊗ f 1 -δ 0 (s) ⊗ f 0 .

We have R ext T f = δ 0 (s) ⊗ f 1 + δ 0 (s) ⊗ f 0 . Applying the reflection positivity (7.6) to u = T f we obtain that:

(R ext T f |G ext T f ) L 2 (Next) = (f |qD ext f ) L 2 (Σ) ≥ 0,
which proves the positivity of λ + HHI . To make the argument rigorous is suffices to approximate δ 0 by a sequence ϕ n as in (5.4). This completes the proof of (1).

Let us now prove (2). The fact that ω HHI is the unique extension of ω β to M with the stated properties has been proved in Prop. 7. Moreover we know that the restriction of ω HHI to M + ∪ M -is a Hadamard state. The same is obviously true of the restriction of ω ref to M + ∪ M -. Going to Cauchy surface covariances, this implies that if

χ ∈ C ∞ c (Σ ± ) then χ • (c ± HHI -c ± ref )
• χ is a smoothing operator on Σ. We claim that this implies that c ± HHI -c ± ref is smoothing, which will imply that ω HHI is a Hadamard state.

If fact let a be one of the entries of c ± HHI -c ± ref , which is a scalar pseudodifferential operator belonging to Ψ m (Σ) for some m ∈ R. We know that χ • a • χ is smoothing for any χ ∈ C ∞ c (Σ\B). Then its principal symbol σ pr (a) vanishes on T * (Σ\B) hence on T * Σ by continuity, so a ∈ Ψ m-1 (Σ). Iterating this argument we obtain that a is smoothing, which proves our claim and completes the proof of the theorem. 2

  3.3) associated with a Cauchy surface Σ containing the bifurcation surface B. It turns out that the Cauchy surface covariances λ ± of the double β-KMS state ω β are related to a Calderón projector D. Let us informally recall what is the Calderón projector associated to a elliptic boundary value problem, see Sect. 5 for more details: let (N, ĝ) be a complete Riemannian manifold and P = -∆ ĝ + m(x) for m ∈ C ∞ (N ), m(x) > 0 a Laplace-Beltrami operator. Let also Ω ⊂ M a smooth open set. To Ω is naturally associated the canonical surface density dS, defined by dS|u = ´∂Ω udσ, for u ∈ C ∞ c (M ), where dσ is the induced surface element on ∂Ω. If ∂ ν is the external normal derivative to ∂Ω and γu

ν

  the exterior normal derivatives on S i . Proposition 7.1. [S1, Subsect. 2.2] Assume that β = (2π)κ -1 . Then there exists a smooth complete Riemannian manifold (N ext , ĝext ) and (1) a smooth isometric embedding ψ : Σ → N ext , (2) a smooth isometric embedding χ : (N, ĝ) → (N ext \B ext , ĝext ) for B ext = ψ(B), (3) a smooth function m ext :

  (2) the Hartle-Hawking-Israel state ω HHI is a pure Hadamard state and is the unique extension to M of the double β-KMS state ω β with the property that its spacetime covariancesΛ ± HHI map continuously C ∞ c (M ) into C ∞ (M ). Proof.Let us first prove (1). By (3.3) it suffices to check the positivity of λ + HHI . This was shown in [S1, Thm. 5.3] using reflection positivity. For the reader's convenience, let us briefly repeat the argument:for u ∈ L 2 (N ) we set Ru(τ, y) = u(-τ, y), for τ ∈ [-β/2, β/2] ∼ S β . The operator G = K -1 is reflection positive, i.e. (7.4) (Ru|Gu) L 2 (N ) ≥ 0, ∀u ∈ L 2 (N ), suppu ⊂ [0, β/2] × Σ + .In fact setting ũ = |v| 3/2 u, (7.4) is equivalent to(7.5) (Rũ| Gũ) L 2 (S β )⊗L 2 (Σ + ) ≥ 0, ∀ũ ∈ L 2 (S β ) ⊗ L 2 (Σ + ), suppũ ⊂ [0, β/2] × Σ + .Using (4.7) we obtain(Rũ| Gũ) L 2 (S β )⊗L 2 (Σ + ) e -β ) u 0 ) L 2 (Σ + ) + (u β | 1 2 (1-e -β ) u β ) L 2 (Σ +) , for u 0 = ˆSβ e -τ ũ(τ )dτ, u β = ˆSβ e (τ -β/2) ũ(τ )dτ

  4. It remains to prove that ω HHI is a pure Hadamard state in M . The fact that ω HHI is pure follows from the fact that D ext is a projection. To prove the Hadamard property let us fix a reference Hadamard state ω ref for the Klein-Gordon field in M . By Thm. 3.2 its Cauchy surface covariances on Σ λ ± ref are matrices of pseudodifferential operators on Σ. The same is true of c ± ref = ±q -1 •λ + ref and of c ± HHI , since Calderón projectors are given by matrices of pseudodifferential operators on Σ.

  .4. The Hartle-Hawking-Israel state.

	Theorem 7.5 ([S1]). Let us set
	λ + HHI
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We compute the Calderón projector D defined in Subsect. 5.1 using the coordinates (τ, y). Since dS i = |h| 1 2 (y)dy and dV ol ĝ = |v| 1 2 (y)|h| 1 2 (y)dy, we obtain: (6.8) Df = D (0) f ⊕ D (β/2) f, for (6.9)

for i, j ∈ {0, β/2} and k, l ∈ {0, 1} the various entries of D, we obtain: (6.10)

We also set

Proof. We recall that C ij are the entries of R-1 • c + • R. We compute D (i)(j) kl using (6.10) and the explicit formulas (4.7), (4.8) for the kernel G(τ, τ ) of G. Computation of D 00 :

Computation of D 11 :

Hence

D 10 g 0 = C 10 g 0 . This completes the proof of the proposition. 2 7. The Hartle-Hawking-Israel state and its properties 7.1. The smooth extension of (N, ĝ) and the Hawking temperature. The existence of the Hartle-Hawking-Israel state and the definition of the Hawking temperature T H = κ(2π) -1 (where κ is the surface gravity) rely on the existence of an extension (N ext , ĝext ) of (N, ĝ) such that the two components S 0 , S β/2 ∼ Σ + of ∂Ω are smoothly glued together into Σ ⊂ N ext .

The extended Riemannian metric ĝext is smooth iff β = (2π)κ -1 (for other values of β (N ext , ĝext ) has a conic singularity on B).

Let us embed Σ\B into N by: r :

x → (0, x) for x ∈ Σ + , x → (β/2, r(x)) for x ∈ Σ -, Note that for R defined in (6.1) we have (7.1) R = (r) * .

We recall that the function m : Σ → R + was introduced in Subsect. 2.4.