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. We prove that this new method possesses the best known upper bound complexity for these methods. Moreover, we extend results known in the literature since we consider a general family of smooth concave functions in the Newton system instead of the square root.

Introduction

In this paper we focus on the simplest interior point methods (IPMs) : the full Newton step interior point method [START_REF] Roos | Interior point methods for linear optimization[END_REF], this method is one among the IPMs with the best worst-case complexity. Therefore, naturally any new try in the IPM framework must be validated on this method. In particular, we focus on this method applied to the monotone complementarity problem [START_REF] Kojima | A unified approach to interior point algorithms for linear complementarity problems[END_REF]. This problem is a generalization of the linear optimization problem and has been very popular in the literature due to its numerous applications [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF]. In the literature of IPM, this problem has also been an active subject [START_REF] Kojima | A unified approach to interior point algorithms for linear complementarity problems[END_REF].

Darvay [START_REF] Zs | A new algorithm for solving self-dual linear optimization problems[END_REF][START_REF] Zs | New interior-point algorithms in linear programming[END_REF], introduces a modification in the interior point method for finding search directions for linear optimization problems, based on an algebraic transformation of the central path. In particular, he applied the square root function to both sides of the centering equation, and he used Newton's method to obtain the new direction. He proved that the corresponding full Newton step algorithm has O( √ nL) iteration complexity. This new direction using the square root has become an active subject in the past few years [START_REF] Achache | A weighted path-following method for the linear complementarity problem[END_REF][START_REF] Achache | A new primal-dual path-following method for convex quadratic programming[END_REF][START_REF] Achache | Complexity analysis and numerical implementation of a short-step primaldual algorithm for linear complementarity problems[END_REF][START_REF] Asadi | Polynomial interior-point algorithm for P * (κ) horizontal linear complementarity problems[END_REF][START_REF] Asadi | A new full-Newton step O(n) infeasible interior-point algorithm for P * (κ)-horizontal linear complementarity problems[END_REF][START_REF] Asadi | An infeasible interior-point method with improved centering steps for monotone linear complementarity problems[END_REF][START_REF] Asadi | On the P * (κ) horizontal linear complementarity problems over Cartesian product of symmetric cones[END_REF][START_REF] Asadi | An infeasible full-Newton step interior point method for horizontal linear complementarity problem over Cartesian product of symmetric cones[END_REF][START_REF] Asadi | A corrector-predictor interior-point algorithm for P * (κ)-HLCPs over Cartesian product of symmetric cones[END_REF][START_REF] Wang | A new primal-dual path-following interior-point algorithm for semidefinite optimization[END_REF][START_REF] Wang | A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step[END_REF][START_REF] Wang | A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization[END_REF][23]. Several authors generalized this approach to a wide class of optimization problems, for example for linear complementarity problems [1, 3-6, 8, 23], convex quadratic programming [START_REF] Achache | A new primal-dual path-following method for convex quadratic programming[END_REF], second-order cone optimization [START_REF] Wang | A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step[END_REF], semidefinite optimization [START_REF] Wang | A new primal-dual path-following interior-point algorithm for semidefinite optimization[END_REF] and symmetric cone optimization [START_REF] Asadi | On the P * (κ) horizontal linear complementarity problems over Cartesian product of symmetric cones[END_REF][START_REF] Asadi | An infeasible full-Newton step interior point method for horizontal linear complementarity problem over Cartesian product of symmetric cones[END_REF][START_REF] Asadi | A corrector-predictor interior-point algorithm for P * (κ)-HLCPs over Cartesian product of symmetric cones[END_REF][START_REF] Wang | A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization[END_REF].

Inspired by Darvay's new approach we introduce here a new class of IPMs by considering a large family of smooth concave functions instead of the square root. This new class of methods generalizes the classical path-following IPMs, since we obtain them as a special case. The technique presented here does not include Darvay's algorithm, but we can consider a smoother version that belongs to our family of methods. Our main contribution is that we prove that the algorithm with the new directions converges to a solution with the best known complexity for this family of methods.

In Section 2, we introduce the problem and our new directions. In Section 3, we show the polynomial complexity of our new class of methods.

Notations

Through this paper we will use the following notations: R n

+ = {x ∈ R n | x ≥ 0}, R n ++ = {x ∈ R n | x >
0} and e denotes the vector with all entries equal to one and whose dimension can be deduced from the context. Given two vectors z, s ∈ R n , we denote by z T s the usual scalar product and by zs the Hadamard product of two vectors, that is zs = (z i s i ) 1≤i≤n . Moreover, we extend this component-wise operation to the division of two vectors and to the square root, that is

∀z ∈ R n , s ∈ (R \ {0}) n , z/s = (z i /s i ) 1≤i≤n and ∀z ∈ R n + , √ z = ( √ z i ) 1≤i≤n .

Preliminaries and Problem Settings

An LCP consists in finding z, s ∈ R n such that for a square matrix M ∈ R n×n and a vector q ∈ R n s = M z + q, z, s ≥ 0, zs = 0. (LCP)

A couple (z, s) such that s = M z + q is said to be feasible for the LCP if we have z, s ≥ 0 and strictly feasible if z, s > 0. From now on, we use standard notation

F + := {(z, s) ∈ R n ++ × R n ++ | s = M z + q}
for the set of strictly feasible points of (LCP). In this paper we consider a monotone linear complementarity problem, i.e. an LCP where M is positive semi-definite. In this case the set of solutions of (LCP) is a convex set.

The main strategy of IPMs is to follow the central path (z(µ), s(µ)) for µ ∈ R n ++ , defined by

s = M z + q, z, s ≥ 0, zs = µ . (LCP µ )
The couples (z(µ), s(µ)) are also called µ-centers and define an homotopic path. The limit when µ → 0 satisfies the complementarity condition, and hence yields optimal solutions whenever the limit exists. IPMs follow the central path approximately by solving an approached version of the non-linear system in (LCP µ ) for several values of µ. The main tool to solve such a system is the Newton method. A Newton step (∆z, ∆s) is given as the solution of the following linear system

M ∆z = ∆s z∆s + s∆z = µ -zs (1) 
There exists a wide variety of different IPMs that are based on this principle. In this paper we focus on the simplest IPM (see Algorithm 1): the full Newton step interior point method (FN-IPM).

Input: an accuracy parameter ϵ > 0 ; a sequence of update parameters In [START_REF] Zs | New interior-point algorithms in linear programming[END_REF], Darvay introduces a modification in (LCP µ ) by considering

{θ k }, 0 < θ k < 1 ∀k ∈ N ; initial values (z 0 , s 0 ) ∈ F + , µ 0 = z 0 s 0 ; 1 z := z 0 , s := s 0 , µ := µ 0 , k := 0 ; 2 while z T s ≥ nϵ do
s = M z + q, z, s ≥ 0, φ(zs) = µ , (2) 
where φ : R n + → R n + is assumed to be a smooth function such that φ(0) = 0 and φ is defined by a component-wise extension of a real-valued function

φ to R n , i.e. for t ∈ R n φ(t) = (φ(t i )) 1≤i≤n .
Darvay's method modifies the Newton steps. More precisely, the Newton step (∆z, ∆s) is given by the linear system

M ∆z = ∆s φ ′ (zs)(z∆s + s∆z) = µ -φ(zs) (3) 
In this paper we consider functions φ ∈ C 3 (R + ) such that φ(0) = 0, φ is increasing and concave, and φ ′′′ (t) ≥ 0 ∀t ∈ R + . This class of functions allows for a generalization of the classical IPMs, since we obtain the classical central path system (LCP µ ) for φ(t) = t. The square root function does not belong to this family since it is not differentiable at 0, but we can build a smooth version with φ ϵ>0 : t → √ t + ϵ-√ ϵ. We modify Algorithm 1 to solve (3) instead of (1) at step 4, and call the resulting algorithm φ-FN-IPM. The main result of this article is that φ-FN-IPM, converges to an ϵ-solution in at most O √ n log( n ϵ ) iterations. This upper bound is the best one known for the FN-IPM.

Polynomial Complexity

In this section, we consider the worst-case complexity of the φ-FN-IPM described in Algorithm 2 with φ :

R + → R + verifying (i) φ(0) = 0; (ii) φ ∈ C 3 ([0, +∞)); (iii) φ ′ (t) > 0, ∀t ≥ 0, i.e. φ is increasing; (iv) φ ′′ (t) ≤ 0, ∀t ≥ 0, i.e. φ is concave; (v) φ ′′′ (t) ≥ 0, ∀t ≥ 0.
These functions are invertible and can be extended in a smooth way for negative t by considering :

φ(t) = tφ ′ (0)+ t 2 2 φ ′′ (0)+ t 3 6 φ ′′′ (0). Function φ : R n → R n is then defined component-wisely: ∀t ∈ R n , φ(t) = (φ(t i )) 1≤i≤n .
Input: an accuracy parameter ϵ > 0 ; a sequence of update parameters {θ k }, 0 < θ k < 1 ∀k ∈ N ; initial values (z 0 , s 0 ) ∈ F + , µ 0 = z 0 s 0 ; 1 z := z 0 , s := s 0 , µ := µ 0 , k := 0 ; 2 while n i=1 φ(z i s i ) ≥ nϵ do Algorithm 2: φ-Full Newton step IPM (φ-FN-IPM)

One important characteristic of φ is the existence of a constant T defined by

-φ ′′ (0) = T (φ ′ (0)) 2 . ( 4 
)
Noticing the conditions (iii) and (iv), we have T ≥ 0 and T = 0 for φ(t) = t.

It should be noted that arbitrary values of T > 0 can be achieved by scaling φ.

Note that t → √ t, in the same way as any function t → t q , 0 < q < 1, does not satisfy these hypotheses since it is not differentiable in 0. However we can consider a smooth version for ϵ > 0 with t → (t + ϵ) q -(ϵ) q . As said in the introduction the classical method is given by φ(t) = t. Other examples are φ : t → log(1 + t) and functions constructed as in [START_REF] Haddou | Smoothing methods for nonlinear complementarity problems[END_REF][START_REF] Migot | A smoothing method for sparse optimization over polyhedral sets[END_REF]: for instance φ : t → t t+1 and φ : t → 1 -exp(-t). It is interesting to note two latter functions φ are bounded. Moreover, notice that if a function φ satisfies all these hypotheses, then t → αφ(Ct) with α, C ∈ R ++ also satisfies these hypotheses.

The main result of this section (Theorem 3.5) states the polynomial worstcase complexity of the φ-FN-IPM described in Algorithm 2. In order to achieve this result we define a measure of the proximity to the central path in Section 3.1. Then, in Section 3.2, Theorem 3.1 estimates the error made at each Newton step. Sections 3.3 and 3.4 present conditions to ensure the correct behaviour of the algorithm: strict feasibility of the iterates (Theorem 3.2) and quadratic convergence of the Newton process (Theorem 3.3). Section 3.5 provides the sequence of update parameters (Theorem 3.4).

Proximity Measure

At each iteration, after updating parameter µ, we compute the Newton direction (∆z, ∆s) as a solution of system (3). Then we update the iterates with z + = z + α∆z and s + = s + α∆s .

(

) 5 
Note that here we consider a damping factor α ∈ [0, 1] to be more general. In this case we denote by (α∆z, α∆s) the Newton step with length α and call it the α-Newton step. Then the full Newton step is given for α = 1.

In order to measure the distance to the target on the central path we consider a proximity measure δ φ (z, s, µ) defined by

δ φ (z, s, µ) := 1 2 φ ′ (0) φ ′ (zs) (v φ (z, s, µ) -1 -v φ (z, s, µ) 2 , with v φ (z, s, µ) := φ(zs) µ and v φ (z, s, µ) -1 := µ φ(zs)
.

We may omit the arguments of v φ (z, s, µ) and δ φ (z, s, µ), when it is clear from the context. Notice that this proximity measure is a generalization of the one presented in [START_REF] Roos | Interior point methods for linear optimization[END_REF], where the authors consider

δ t →t := 1 2 µ zs - zs µ 2 .
Both proximity measures are equal for φ(t) = t. Moreover for any function φ, the two proximity measures are asymptotically similar (for zs ↓ 0).

The following two lemmas link the iterates and the proximity measure.

Lemma 3.1 If (z, s) ∈ F + and δ φ ≤ 1, then φ(zs) ≤ 6µ.
Proof Assume by contradiction that there exists i ∈ {1, . . . , n} such that φ(z i s i ) > 6µ i . Since φ ′ is decreasing and zs > 0:

2δ φ ≥ v φ -1 -v φ 2 = √ µ φ(zs) - φ(zs) √ µ 2 ≥ √ µ i φ(z i s i ) - φ(z i s i ) √ µ i = φ(z i s i ) √ µ i - √ µ i φ(z i s i ) > √ 6 - 1 √ 6 ≈ 2, 04 ,
where the penultimate step comes from the increasing property of the function

x → x -1/x on R ++ . This is in contradiction with δ φ ≤ 1. ⊓ ⊔
The following lemma gives bounds on δ φ that depend on some constant Γ (∥µ∥ ∞ ) defined as

Γ (∥µ∥ ∞ ) := 1 - φ ′′ (0)φ -1 (6∥µ∥ ∞ ) φ ′ (φ -1 (6∥µ∥ ∞ )) . Lemma 3.2 Let δ = 1 2 v φ -1 -v φ 2 , then δ ≤ δ φ ≤ 1 - φ ′′ (0)∥zs∥ ∞ φ ′ (∥zs∥ ∞ ) δ .
Furthermore in a close neighbourhood of the central path, i.e. δ φ ≤ 1, we have

δ ≤ δ φ ≤ Γ (∥µ∥ ∞ )δ . (6) 
Proof By convexity of function φ ′ for all i ∈ {1, . . . , n}

φ ′ (z i s i ) ≥ φ ′ (0) + φ ′′ (0)z i s i .
Then, for all i ∈ {1, . . . , n}

1 ≤ φ ′ (0) φ ′ (z i s i ) ≤ 1 - φ ′′ (0)z i s i φ ′ (z i s i ) ≤ max i 1 - φ ′′ (0)z i s i φ ′ (z i s i ) .
Hence, by definition of δ and

δ φ δ ≤ δ φ ≤ 1 - φ ′′ (0)∥zs∥ ∞ φ ′ (∥zs∥ ∞ ) δ .
The sharpest result when δ φ ≤ 1 is deduced from Lemma 3.1.

⊓ ⊔

In the previous lemma, equation [START_REF] Asadi | An infeasible interior-point method with improved centering steps for monotone linear complementarity problems[END_REF], we define Γ as a function of ∥µ∥ ∞ which depends on the choice of φ. For φ(t) = t, we get Γ (∥µ∥ ∞ ) = 1 for all µ. Moreover, for any function φ, Γ is increasing with respect to ∥µ∥ ∞ , and converges to 1 as ∥µ∥ ∞ ↓ 0. Moreover, in the course of the proof we showed that if

δ φ ≤ 1 φ ′ (0) φ ′ (z i s i ) ≤ Γ (∥µ∥ ∞ ), ∀i ∈ {1, . . . , n}. (7) 
This result will be useful in a future proof.

Error Bound of the Newton Step

We use the first order Taylor-Lagrange formula applied to φ in zs. There exists

ξ ∈ [z + s + , zs] (or ξ ∈ [zs, z + s + ] if zs < z + s + ) such that φ(z + s + ) = φ(zs) + αφ ′ (zs)(z∆s + s∆z) + α 2 ∆z∆sφ ′ (zs) + φ ′′ (ξ) 2 z + s + -zs 2 , (8) 
with (∆z, ∆s) solution of (3). The update of µ will be chosen such that φ(z + s + ) < φ(zs) and thus 0 < z + s + < zs. Therefore the error we make when we say that φ(z

+ s + ) is the µ-center is η(α) := α 2 ∆z∆sφ ′ (zs) + φ ′′ (ξ) 2 z + s + -zs 2 . ( 9 
)
The following sequence of lemmas aims to bound this error in terms of the proximity measure. Before doing so, we recall a useful lemma from [START_REF] Illés | Polynomial affine-scaling algorithms for P * (κ) linear complementary problems[END_REF].

Lemma 3.3 (Lemma 5.1, [START_REF] Illés | Polynomial affine-scaling algorithms for P * (κ) linear complementary problems[END_REF]) Let (z, s) ∈ F + and a ∈ R n . Assume that matrix M is a positive semidefinite matrix. Let (∆z, ∆s) be the solution of

-M ∆z + ∆s = 0 s∆z + z∆s = a .
Then

||∆z∆s|| 1 ≤ C 1 a √ zs 2 2 , ||∆z∆s|| 2 ≤ C 2 a √ zs 2 2 , ||∆z∆s|| ∞ ≤ C ∞ a √ zs 2 2 , with C 1 = 1/2, C 2 = 1/(2 √ 2) and C ∞ = 1/4.
Through the rest of this article we denote by C p for p ∈ {1, 2, ∞} the constants defined as

C 1 = 1 2 , C 2 = 1 2 √ 2 and C ∞ = 1 4 .
Straightforward application of this lemma for a= µ-φ(zs) φ ′ (zs) and v φ = φ(zs) µ

gives the following lemma.

Lemma 3.4 Let (z, s) ∈ F + , (∆z, ∆s) be the solution of (3) and p ∈ {1, 2, ∞}, then

∥∆z∆s∥ p ≤ C p φ(zs) √ µ √ zs φ ′ (zs) (v φ -1 -v φ ) 2 2 
.

The next lemma will bound ||∆z∆sφ ′ (zs)|| p for p ∈ {1, 2, ∞}.

Lemma 3.5 Let (z, s) ∈ F + , (∆z, ∆s) be the solution of (3) and p ∈ {1, 2, ∞},

then ||∆z∆sφ ′ (zs)|| p ≤ ||∆z∆sφ ′ (0)|| p ≤ 4C p ∥µ∥ ∞ δ 2 φ .
Proof By concavity of φ we have that φ(z i s i ) ≤ φ ′ (0)z i s i , ∀i, so

φ(zs)φ ′ (0) zs(φ ′ (zs)) 2 ≤ (φ ′ (0)) 2 (φ ′ (zs)) 2 . ( 10 
)
Furthermore for p ∈ {1, 2, ∞} and using Lemma 3.4, followed by ( 10)

||∆z∆sφ ′ (zs)|| p ≤ ||∆z∆s|| p φ ′ (0) ≤ C p φ(zs) √ µ √ zs φ ′ (zs) ((v φ -1 -v φ )) 2 2 φ ′ (0) ≤ n i=1 C p φ(z i s i )µ i z i s i (φ ′ (z i s i )) 2 (v φ -1 i -v φ i ) 2 φ ′ (0) ≤ n i=1 C p µ i φ ′ (0) φ ′ (z i s i ) 2 (v φ -1 i -v φ i ) 2 ≤ 4C p ∥µ∥ ∞ δ 2 φ .
⊓ ⊔

Now we move to the main result which gives a bound for the complete error.

Lemma 3.6 Let (z, s) ∈ F + and (∆z, ∆s) be the solution of (3). For p ∈ {2, ∞} we have

∥η∥ p ≤ (4C p + 2T φ(∥zs∥ ∞ )) α 2 ∥µ∥ ∞ δ 2 φ + C ∞ φ(∥zs∥ ∞ ) + αC 2 p ∥µ∥ ∞ δ φ 8α 3 T ∥µ∥ ∞ 3/2 δ 3 φ
Proof By equation ( 9) we have

η =α 2 ∆z∆sφ ′ (zs) + α 2 φ ′′ (ξ) 2 (z∆s + s∆z) 2 + α 4 φ ′′ (ξ) 2 (∆s∆z) 2 + α 3 φ ′′ (ξ)(∆s∆z)(z∆s + s∆z)
Taking the p-norm for p ∈ {2, ∞} and using triangle inequalities

∥η∥ p ≤α 2 ∥∆z∆sφ ′ (zs)∥ p +α 2 φ ′′ (ξ) 2 (z∆s+s∆z) 2 p + α 4 φ ′′ (ξ) 2 (∆s∆z) 2 p + α 3 ∥φ ′′ (ξ)(∆s∆z)(z∆s + s∆z)∥ p .
We now bound each term of the above right-hand side. First, Lemma 3.5 gives

∥∆z∆sφ ′ (zs)∥ p ≤ 4C p ∥µ∥ ∞ δ 2 φ .
Using successively ( 4), (µ-φ(zs)

) 2 = (µv φ (v φ -1 -v φ )) 2 = µφ(zs)(v φ -1 -v φ ) 2 and φ(z i s i ) ≤ φ(∥zs∥ ∞ ), ∀i ∈ {1, ..., n}, we obtain step by step φ ′′ (ξ) 2 (z∆s + s∆z) 2 p ≤ φ ′′ (0) 2 (z∆s + s∆z) 2 p = T 2 φ ′ (0) φ ′ (zs) 2 (µ -φ(zs)) 2 p ≤ T φ(∥zs∥ ∞ )∥µ∥ ∞ 2 φ ′ (0) φ ′ (zs) (v φ -1 -v φ ) 2 p ≤ 2T φ(∥zs∥ ∞ )∥µ∥ ∞ δ 2 φ .
To bound the third term, we use Lemma 3.5, equality (4) and the inequality ∥u 2 ∥ p ≤ ∥u∥ 2 p for all u ∈ R n , and we obtain

φ ′′ (ξ) 2 (∆s∆z) 2 p ≤ T 2 (φ ′ (0)∆s∆z) 2 p ≤ T 2 ∥φ ′ (0)∆s∆z∥ 2 p ≤ T 2 (∥µ∥ ∞ 4C p δ 2 φ ) 2 = 8T C 2 p ∥µ∥ ∞ 2 δ 4 φ .
Finally, the definition of v φ implies that

∥φ ′ (0)(z∆s + s∆z)∥ p = φ ′ (0) φ ′ (zs) µv φ (v φ -1 -v φ ) p ≤ φ ′ (0) φ ′ (zs) ∥µ∥ ∞ φ(∥zs∥ ∞ )(v φ -1 -v φ ) p
Using the above inequality, as well as ∥uw∥ p ≤ ∥u∥ ∞ ∥w∥ p , ∀(u, w) ∈ R n ×R n , and (4), we get

∥φ ′′ (ξ)(∆s∆z)(z∆s + s∆z)∥ p ≤ T ∥φ ′ (0)(∆s∆z)∥ ∞ ∥φ ′ (0)(z∆s + s∆z)∥ p ≤ 8T C ∞ φ(∥zs∥ ∞ )∥µ∥ ∞ 3/2 δ 3 φ ,
which completes the proof.

⊓ ⊔

In the special case where we are in a close neighbourhood of the central path we get an improved version of the result: Theorem 3.1 Let (z, s) ∈ F + , δ φ ≤ 1 and (∆z, ∆s) be the solution of (3) and p ∈ {2, ∞}, we have

∥η∥ p ≤ (4C p + 12T ∥µ∥ ∞ )α 2 ∥µ∥ ∞ δ 2 φ + ( √ 6C ∞ + αC 2 p δ φ )α 3 8T ∥µ∥ ∞ 2 δ 3 φ (11)
Proof The proof is similar to the proof of Lemma 3.6, but we use φ(zs) ≤ 6µ from Lemma 3.1 instead of φ(z i s i ) ≤ φ(∥zs∥ ∞ ), ∀i. ⊓ ⊔

For instance, with α = 1, using δ q φ ≤ δ φ for q ≥ 1, (11) becomes

∥η∥ ∞ ≤ ∥µ∥ ∞ + 25 + 4 √ 6 2 T ∥µ∥ ∞ 2 δ 2 φ .
For φ(t) = t we get the same result as in [START_REF] Roos | A full-Newton step O(n) infeasible interior-point algorithm for linear optimization[END_REF]: ∥η∥ ∞ ≤ ∥µ∥ ∞ δ 2 φ .

Feasibility of the Newton

Step A Newton step is feasible (strictly feasible) if the couple (z + , s + ) defined by ( 5) is feasible (strictly feasible).

Theorem 3.2 Let α be in [0,1] and δ φ ≤ 1. The α-Newton step is strictly feasible for (z, s) if

αδ 2 φ < 1 1 + 25+4 √ 6 2 T ∥µ∥ ∞ . ( 12 
)
Note that for α = 1, the above condition makes the full Newton step be strictly feasible.

For α = 1 condition [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF] implies that the proximity measure, δ φ , must be less than 1, which will not be a restrictive assumption.

Proof For α = 0 the result trivially holds. Therefore, we can assume without loss of generality that α ∈]0, 1]. Let β ∈]0, α], and define z β := z + β∆z and s β := s + β∆s, where (∆z, ∆s) is the solution of (3). The proof rests upon a continuity argument. Indeed, we assume z, s > 0 so φ(zs) > 0 and, using equations ( 3) and (8):

φ(z β s β ) = φ(zs) + βφ ′ (zs)(z∆s + s∆z) + η(β) = φ(zs)(1 -β) + β µ + η(β) β ≥ φ(zs)(1 -β) + β µ -e ∥η(β)∥ ∞ β which is positive for all z, s > 0 if ∥µ∥ ∞ > ∥η(β)∥ ∞ /β. Using Lemma 3.6 this condition holds if ∥µ∥ ∞ >(4C ∞ + 2T φ(∥zs∥ ∞ ))β∥µ∥ ∞ δ 2 φ + C ∞ φ(∥zs∥ ∞ ) + βC 2 ∞ ∥µ∥ ∞ δ φ 8β 2 T ∥µ∥ ∞ 3/2 δ 3 φ .
The right-hand side is increasing with respect to β, so it is sufficient to verify

∥µ∥ ∞ >(4C ∞ + 2T φ(∥zs∥ ∞ ))α∥µ∥ ∞ δ 2 φ + C ∞ φ(∥zs∥ ∞ ) + αC 2 ∞ ∥µ∥ ∞ δ φ 8α 2 T ∥µ∥ ∞ 3/2 δ 3 φ .
Therefore, since δ φ ≤ 1, using Lemma 3.1, it suffices to have

1 -δ 2 φ α 4C ∞ + 12 + 8 √ 6C ∞ + 8C 2 ∞ T ∥µ∥ ∞ > 0 ,
which corresponds to our assumption. It follows that for all β ∈ [0, α], φ(z β s β ) > 0. By continuity of φ, this implies that none of z β or s β vanish for β ∈ [0, α], so the result follows. ⊓ ⊔

Quadratic Decrease of the Proximity Measure

The Newton method is known to behave well in a close neighbourhood of the solution. The following theorem states a condition on the proximity measure, δ φ := δ φ (z, s, µ), that ensures a quadratic convergence of the Newton step. We denote by δ φ := δ φ (z + , s + , µ) and v φ := v φ (z + , s + , µ) the proximity measure and the function v φ after the Newton step.

Theorem 3.3 Let (z, s) ∈ F + and (z + , s + ) be defined as in (5) for α = 1.

Let Γ (∥µ∥ ∞ ) defined in [START_REF] Asadi | An infeasible interior-point method with improved centering steps for monotone linear complementarity problems[END_REF] and

Q(∥µ∥ ∞ ) := 1 -Γ (∥µ∥ ∞ )( √ 2 + (13 + 2 √ 6)T ∥µ∥ ∞ ) 2 /4 1 + 25+4 √ 6 2 T ∥µ∥ ∞ . ( 13 
)
If δ 2 φ ≤ Q(∥µ∥ ∞ ), then δ φ ≤ δ 2 φ .
Proof Let Γ (∥µ∥ ∞ ) be defined as in Section 3.1:

δ φ ≤ Γ (∥µ∥ ∞ ) 2 ∥(v φ ) -1 -(v φ )∥ 2 = Γ (∥µ∥ ∞ ) 2 ∥(v φ ) -1 (e -(v φ ) 2 )∥ 2 (14) ≤ Γ (∥µ∥ ∞ ) 2 η(α) µ e + η(α) µ 2 (15) ≤ Γ (∥µ∥ ∞ ) η(α) µ 2 2 1 -η(α) µ ∞ . ( 16 
)
Let δ 2 φ ≤ Q(∥µ∥ ∞ ) ≤ 1, using Theorem 3.1 with a full step, i.e. α = 1, it follows

δ φ ≤ δ 2 φ Γ (∥µ∥ ∞ ) 4C 2 + (12 + 8 √ 6C ∞ + 8C 2 2 )T ∥µ∥ ∞ 2 1 -δ 2 φ (4C ∞ + 12 + 8 √ 6C ∞ + 8C 2 ∞ T ∥µ∥ ∞ ) . So, δ φ ≤ δ 2 φ if δ 2 φ ≤ Q(∥µ∥ ∞ ). ⊓ ⊔
Considering φ(t) = t, the condition of Theorem 3.3 becomes the same as in [START_REF] Roos | A full-Newton step O(n) infeasible interior-point algorithm for linear optimization[END_REF]:

δ 2 φ ≤ 1/2.
Remark 1 The condition in Theorem 3.3 implies the condition in Theorem 3.2. So, if the iterates locate in the neighbourhood of quadratic convergence, the full Newton step will provide strictly feasible iterates.

Remark 2 Notice that since the proximity measure is always non-negative, the condition from Theorem 3.3 can hold only when µ is sufficiently small, i.e. when Γ (∥µ∥ ∞ ) √ 2 + (13 + 2 √ 6)T ∥µ∥ ∞ ≤ 2. This is not a restrictive assumption, because we can always scale a given initial point so that it satisfies this condition.

Updating Parameter Strategy

The sequence of parameters {θ k } must be chosen such that the iterates remain strictly feasible and satisfy the condition of Theorem 3.3. In this section, Proposition 3.1 gives an upper bound on the proximity measure after an update on µ, that is µ + = µ(1 -θ k ), and then Theorem 3.4 describes how to build the sequence {θ k }.

First, we provide an upper bound of the proximity measure after an update of the parameter, denoted δ + φ := δ φ (z + , s + , µ(1 -θ k )), in terms of the update θ k , the proximity measure before this update, denoted δ φ := δ φ (z + , s + , µ), and the proximity measure before the Newton step, denoted δ φ := δ φ (z, s, µ). The computation of this upper bound is based on the following lemma. Lemma 3.7 Let (z, s) ∈ F + and (∆z, ∆s) be the solution of (3). Then,

n i=1 φ(z + i s + i ) µ i ≤ n + 2δ 2 φ .
Proof We first show that

∆z∆sφ ′ (zs) µ 1 ≤ 2δ 2 φ . (17) 
For this, we apply Lemma 3.3 with ∆z/ √ µ, ∆s/ √ µ and a= µ-φ(zs) √ µφ ′ (zs) to obtain

∆z∆s µ 1 ≤ 1 2 µ -φ(zs) √ µφ ′ (zs) √ zs 2 2
.

Then, we get ( 17) by following the same steps as in the proof of Lemma 3.5.

From equation [START_REF] Asadi | An infeasible full-Newton step interior point method for horizontal linear complementarity problem over Cartesian product of symmetric cones[END_REF] and by concavity of φ, φ(z

+ s + )/µ ≤ e+∆z∆sφ ′ (zs)/µ. So, n i=1 φ(z + i s + i )/µ i ≤ n i=1 1 + |∆z i ∆s i φ ′ (z i s i )/µ i | ≤ n + 2δ 2 φ . ⊓ ⊔ Proposition 3.1 Let v φ := v φ (z + , s + , µ) and v + φ := (z + , s + , µ + ), where µ + := (1 -θ k )µ. Then, (δ + φ ) 2 ≤ (1 -θ k )(δ φ ) 2 + Γ (∥µ∥ ∞ ) 2 4(1 -θ k ) n(θ k ) 2 + (4θ k -2(θ k ) 2 )δ 2 φ .
Furthermore, assuming that

δ 2 φ ≤ Q(∥µ∥ ∞ ) yields (δ + φ ) 2 ≤ (1 -θ k )Q(∥µ∥ ∞ ) 2 + Γ (∥µ∥ ∞ ) 2 4(1 -θ k ) n(θ k ) 2 + (4θ k -2(θ k ) 2 )Q(∥µ∥ ∞ ) . Proof Noticing that v + φ = v φ / √ 1 -θ k , it follows that (δ + φ ) 2 = 1 4 n i=1 φ ′ (0) φ ′ (z + i s + i ) 2 ((v + φ i ) -2 + (v + φ i ) 2 -2) = 1 4 n i=1 φ ′ (0) φ ′ (z + i s + i ) 2 (1 -θ k )(v φ i ) -2 + v φ 2 i (1 -θ k ) -2 = (1 -θ k )( 1 4 n i=1 φ ′ (0) φ ′ (z + i s + i ) 2 (v φ i ) -2 + v φ 2 i -2) + 1 4 n i=1 φ ′ (0) φ ′ (z + i s + i ) 2 -2θ k + 2θ k -(θ k ) 2 1 -θ k v φ 2 i = (1 -θ k )(δ φ ) 2 + 1 4 n i=1 φ ′ (0) φ ′ (z + i s + i ) 2 -2θ k + 2θ k -(θ k ) 2 1 -θ k v φ 2 i
Using successively equation ( 7), Lemma 3.7 and Γ (∥µ

+ ∥ ∞ ) ≤ Γ (∥µ∥ ∞ ), we obtain (δ + φ ) 2 ≤ (1 -θ k )(δ φ ) 2 + Γ (∥µ + ∥ ∞ ) 2 - 2θ k 4 n + 2θ k -(θ k ) 2 4(1 -θ k ) (n + 2δ 2 φ ) ≤ (1 -θ k )(δ φ ) 2 + Γ (∥µ∥ ∞ ) 2 n(θ k ) 2 4(1 -θ k ) + 2θ k -(θ k ) 2 2(1 -θ k ) δ 2 φ .
This proves the first part of the proposition. Now, assuming that δ φ ≤ Q(∥µ∥ ∞ ) allows us to use Theorem 3.3 and so

δ φ ≤ δ 2 φ ≤ Q(∥µ∥ ∞ ) 2 gives the result. ⊓ ⊔
We conclude this section by a description of the choice of the update parameters θ k .

Theorem 3.4 Let µ be such that Q(∥µ∥ ∞ ) > 0 and (z, s) ∈ F + such that δ 2 φ ≤ Q(∥µ∥ ∞ ). Define θ k as θ k = -b + √ b 2 -4ac 2a , with a = Γ (∥µ∥ ∞ ) 2 n -2Γ (∥µ∥ ∞ ) 2 Q(∥µ∥ ∞ ) + 4Q(∥µ∥ ∞ ) 2 , b = 4Γ (∥µ∥ ∞ ) 2 Q(∥µ∥ ∞ ) -8Q(∥µ∥ ∞ ) 2 + 4Q(∥µ∥ ∞ ) , c = 4Q(∥µ∥ ∞ ) 2 -4Q(∥µ∥ ∞ ) .
The proximity measure δ + φ := δ φ (z + , s + , µ(1 -θ k )) satisfies the conditions of feasibility in Theorem 3.2 and quadratic convergence of the Newton step in Theorem 3.3.

By definition Q(∥µ∥ ∞ ) < 1, thus c is negative. Furthermore, for n sufficiently large a is positive and so b 2 -4ac and θ k are positive.

We would also like to point out that the value of θ k is of order 1/ √ n for n large. This observation is fundamental considering the complexity of the algorithm.

Proof As pointed out earlier in Remark 1 the condition of Theorem 3.2 is weaker than the condition of Theorem 3.3. Thus, it is sufficient to satisfy the latter condition to ensure strict feasibility of the iterates.

According to the condition of Theorem 3.3, after an update of µ, i.e. µ + = (1 -θ k )µ, the proximity measure δ + φ must satisfy

(δ + φ ) 2 ≤ Q(∥µ + ∥ ∞ ) .
As Q is decreasing with respect to ∥µ∥ ∞ , it is sufficient to ensure that

(δ + φ ) 2 ≤ Q(∥µ∥ ∞ ) .
By Proposition 3.1 in the case δ 2 φ ≤ Q(∥µ∥ ∞ ), we can choose any θ k satisfying

(1-θ k )Q(∥µ∥ ∞ ) 2 + Γ (∥µ∥ ∞ ) 2 4(1 -θ k ) n(θ k ) 2 + (4θ k -2(θ k ) 2 )Q(∥µ∥ ∞ ) ≤ Q(∥µ∥ ∞ ) .
Therefore, it is sufficient to choose θ k > 0 such that

θ k ≤ -b + √ b 2 -4ac 2a ,
with a, b and c defined as in the statement of the theorem.

⊓ ⊔

Remark 3 For a more explicit characterization of θ k , we can study its asymptotical behaviour. By definition of Γ and Q,

lim µ→0 Q(∥µ∥ ∞ ) = 1/2 and lim µ→0 Γ (∥µ∥ ∞ ) = 1, so lim µ→0 θ k = -1+ √ 1+4n 2n ≤ 1 √ n .

Complexity Analysis of the Full Newton Step IPM

The complexity of this algorithm is obtained by the extension of a classical lemma, whose proof can be found for instance in [START_REF] Roos | Interior point methods for linear optimization[END_REF]. Lemma 3.8 Let θ be such that 0 < θ ≤ θ k ∀k ∈ N. The φ-FN-IPM for monotone LCP described in Algorithm 2 provides an ϵ-solution (z, s), which satisfies n i=1 φ(z i s i ) ≤ nϵ after at most log n i=1 φ(z 0 i s 0 i )/ϵ / θ iterations.

The sequence {θ k } is given by Theorem 3.4. As already stated, θ k is of order 1/ √ n for n large, which justify the existence of θ. Moreover, we can choose θ of order 1/ √ n without loss of generality. As a result, we can now state our main theorem. Theorem 3.5 Let µ 0 = z 0 s 0 . Algorithm 2, with the sequence of update parameters θ k described above, guarantees strict feasibility of the iterates and quadratic convergence of the proximity measure. Moreover, it provides an ϵsolution (z, s), which satisfies

n i=1 φ(z i s i ) ≤ nϵ after at most O √ n log n ϵ iterations.
Preliminary computational experiments give similar results to the classical method on a small selection of LPs from the NETLIB repository1 . This confirms the validity of our approach. Some informations regarding these results are presented on Appendix A. Further investigations on more sophisticated methods may get the best out of this new direction.

Conclusions

The method presented in this article shows a generalization of the FN-IPM with polynomial upper bound complexity for monotone LCPs considering a general family of smooth increasing concave functions. The main contributions of this article are that we extend the classical path-following method and Darvay's method with φ(t) = √ t and prove that these new methods have the best known worst-case complexity.

Further research may extend this result to a more general family of LCPs such that P * (κ)-LCPs or P 0 -LCPs with bounded level sets as in [START_REF] Asadi | Polynomial interior-point algorithm for P * (κ) horizontal linear complementarity problems[END_REF][START_REF] Asadi | A new full-Newton step O(n) infeasible interior-point algorithm for P * (κ)-horizontal linear complementarity problems[END_REF]23].

Recent developments by Roos in [START_REF] Roos | An improved and simplified full-Newton step O(n) infeasible interior-point method for linear optimization[END_REF] consider an infeasible IPM with full Newton step using only one feasibility step. More investigations regarding the method presented in this paper could extend the results in [START_REF] Roos | An improved and simplified full-Newton step O(n) infeasible interior-point method for linear optimization[END_REF].

Despite having the best worst case upper-bound for IPMs the full Newton step is not the most used approach for numerics, since this upper-bound is attained in general [START_REF] Roos | Interior point methods for linear optimization[END_REF]. We believe that the philosophy applied in this paper can be generalized to other IPMs approaches. In particular, we are planning to study a predictor-corrector implementation of this approach. 

A Numerics

To validate the theoretical results, we first implemented the φ-FN-IPM described in Algorithm 2 with the sequence of update parameters given by Theorem 3.4 and with the functions φ given in Table 1. The datasets and the residuals after convergence are detailed Name Id. θ 1 log ( ) α Fct. t

t t+1
log(1 + t) (t + 10 -3 ) α -(10 -3 ) α with α ∈ (0, 1)

Table 1 φ-functions used in the computational tests in Table 2. The stopping criterion is z T s ≤ nϵ, where ϵ = 10 -6 , and we compute the residuals as ∥zs∥∞ × 10 6 . For every φ function that appears in Table 1, the method converged in the same number of iterations, so we only display the number of iterations once. This phenomenon is not surprising, since the φ-FN-IPM used here stays very close to the central path, as shown by Theorem 3.3. Therefore, this implementation does not exploit fully the new directions. Nonetheless, some small differences remain in the residuals as illustrated in To illustrate the possible differences between the functions φ, we run another experiment that considers a fixed value for θ k = 1 √ n for all k ∈ N. Table 3 illustrates the different behaviours observed for different choices of φ. We notice that a smaller number of iterations seems to be required when the derivative in zero is larger for the methods with α = 0.25, 0.5 and 0.75. Thus, further research exploring interior-point methods in large neighbourhood of the central path may get the best out of these differences.
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Table 2 .

 2 

	Instance	Iter.	Id.	θ 1	log	α = 0.25	α = 0.5	α = 0.75
	ADLITTLE	268	0.995583 0.995853 0.995856 0.995851 0.995855 0.995854
	AFIRO	170	0.943919 0.944204 0.944207 0.944200 0.944205 0.944205
	BEACONFD	418	0.995479 0.995728 0.995730 0.995724 0.995727 0.995728
	BOEING2	420	0.974064 0.974307 0.974309 0.974309 0.974309 0.974307
	BLEND	264	0.984332 0.984599 0.984602 0.984600 0.984599 0.984599
	GROW7	406	0.983538 0.983785 0.983788 0.983780 0.983787 0.983785
	ISRAEL	428	0.988911 0.989157 0.989155 0.989148 0.989154 0.989156
	KB2	203	0.944257 0.944530 0.944532 0.944530 0.944531 0.944530
	RECIPELP	332	0.960634 0.960884 0.960887 0.960884 0.960885 0.960885
	SC50A	218	0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
	SC50B	218	0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
	SC105	316	0.973217 0.973472 0.973475 0.973473 0.973474 0.973473
	SCAGR7	342	0.985376 0.985631 0.985633 0.985632 0.985632 0.985632
	SHARE1B	372	0.968387 0.968633 0.968635 0.968634 0.968632 0.968634
	SHARE2B	310	0.972849 0.973105 0.973107 0.973102 0.973107 0.973106
	STOCFOR1	324	0.982774 0.983031 0.983033 0.983033 0.983031 0.983031

Table 2

 2 Value of Res.=∥zs∥∞ × 10 6 , after the algorithm reaches z T s ≤ nϵ = 10 -6 n

http://www.netlib.org/lp/

Instance

Id. θ 1 log α = 0.25 α = 0.