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Abstract

In this paper, we present a new interior point method with full Newton step for
monotone linear complementarity problems. The speci�city of our method is to
compute the Newton step using a modi�ed system similar to that introduced
by Darvay in [11]. We prove that this new method possesses the best known
upper bound complexity for these methods. Moreover, we extend results known
in the literature since we consider a general family of smooth concave functions
in the Newton system instead of the square root. Some computational results
are included to illustrate the validity of the proposed algorithm.

Keywords : complementarity, concave functions, interior-point methods,
linear programming, linear complementarity problems, polynomial time com-
plexity

Mathematics Subject Classi�cation : 49M05 - 65K15 - 90C33 -

90C51

Notations

Through this paper we will use the following notations : Rn+ = {x ∈ Rn | x ≥ 0},
Rn++ = {x ∈ Rn | x > 0} and e denotes the vector with all entries equal to one
and whose dimension can be deduced from the context. Given two vectors
z, s ∈ Rn, we denote by zT s the usual scalar product and by zs the Hadamard
product of two vectors, that is zs = (zisi)1≤i≤n. Moreover, we extend this
component-wise operation to the division of two vectors and to the square root,
that is z/s = (zi/si)1≤i≤n and

√
z = (

√
zi)1≤i≤n.

1 Introduction

Since the early 80's and Karkamar's method [18], interior point methods (IPMs)
have received a wide interest in the literature, in several monographs [19, 24,
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27, 28, 30] or PhD thesis [13, 14, 21] to cite only a few of them. This enthusiasm
for IPMs mainly comes from their theoretical complexity. Indeed, large families
of problems including linear programs (LPs) and convex quadratic programs
(CQPs) that are special cases of linear complementarity problems (LCPs) can
be solved in polynomial time.

An LCP consists in �nding z, s ∈ Rn such that for a square matrixM ∈ Rn×n
and a vector q ∈ Rn

s = Mz + q, z, s ≥ 0, zs = 0 . (LCP)

A couple (z, s) such that s = Mz + q is said to be feasible for the LCP if
we have z, s ≥ 0 and strictly feasible if z, s > 0. From now on, we use standard
notation F+ := {(z, s) ∈ R2n

++ | s = Mz+q} for the set of strictly feasible points
of (LCP).

The main strategy of IPMs is to follow the central path (z(µ), s(µ)) for
µ ∈ Rn++, de�ned by

s = Mz + q, z, s ≥ 0, zs = µ . (LCPµ)

The couples (z(µ), s(µ)) are also called µ-centers and de�ne an homotopic path.
The limit when µ→ 0 satis�es the complementarity condition, and hence yields
optimal solutions whenever the limit exists.

IPMs follow the central path approximately by solving an approached version
of the non-linear system in (LCPµ) for several values of µ. The main tool to
solve such a system is the Newton method. A Newton step (∆z,∆s) is given as
the solution of the following linear system{

M∆z = ∆s

z∆s+ s∆z = µ− zs
. (1)

There exists a wide variety of di�erent IPMs that are based on this principle.
In this paper we focus on the simplest IPM (see Algorithm 1) : the full Newton
step interior point method (FN-IPM). Despite its simplicity, this method is one
among the IPMs with the best worst-case complexity. Therefore, it is natural
that any new try in the IPM framework must be validated on this method.

In his monograph [11], Darvay introduces a modi�cation in (LCPµ) by con-
sidering

s = Mz + q, z, s ≥ 0, ϕ(zs) = µ , (2)

where ϕ : Rn+ → Rn+ is assumed to be a smooth function such that ϕ(0) = 0
and ϕ is de�ned by a component-wise extension of a real-valued function ϕ to
Rn, i.e for t ∈ Rn ϕ(t) = (ϕ(ti))1≤i≤n.

This new direction has become an active subject in the past few years for
ϕ(t) =

√
t. For instance, the original result that Darvay established for linear

programming is extended to convex quadratic programming and monotone LCP
in [1, 2]. Furthermore in [4, 29] the authors extend the result of worst-case
polynomial complexity to the wider class of su�cient LCPs for FN-IPM. Finally
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Input: an accuracy parameter ε > 0 ;

a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;
initial values (z0, s0) ∈ F+, µ

0 = z0s0;
1 z := z0, s := s0, µ := µ0, θ := θ0, k := 0 ;

2 while zT s ≥ nε do
3 µ := (1− θk)µ;
4 solve system (1) to �nd (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1;

Algorithm 1: Full Newton step IPM (FN-IPM)

a method independent of the choice of the initial iterate can be found in [5].
In all these di�erent contexts, this new technique with ϕ(t) =

√
t gives the

best known complexity upper bound. This motivates our goal to study a larger
family of functions.

Darvay's method modi�es the Newton steps. More precisely, the Newton
step (∆z,∆s) is given by the linear system{

M∆z = ∆s

ϕ′(zs)(z∆s+ s∆z) = µ−ϕ(zs)
. (3)

In this paper we consider functions ϕ ∈ C3(R+) such that ϕ(0) = 0, ϕ is
increasing and concave, and ϕ′′′(t) ≥ 0 ∀t ∈ R+. This class of functions allows
for a generalisation of the classical IPMs, since we obtain the classical central
path system (LCPµ) for ϕ(t) = t. The square root function does not belong to
this family since it is not di�erentiable at 0, however we can consider a smooth
version of the square root with ϕε>0 : t 7→

√
t+ ε −

√
ε. Algorithm 1 can then

be modi�ed to solve (3) instead of (1) at step 4. We call the resulting algorithm
ϕ-FN-IPM. The main result of this article is that ϕ-FN-IPM, converges to an
ε-solution in at most

O
(√

n log(
n

ε
)
)

iterations. This upper bound corresponds to the best known upper bound for
the FN-IPM.

In Section 2, we present the state of the art of LCPs and IPMs. In Section 3,
we show the polynomial compexity of ϕ-FN-IPM. Finally, in Section 4, we
provide some numerical results on speci�c examples to illustrate the validity of
the proposed algorithm.
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2 State of the Art

2.1 The Linear Complementarity Problem

The (LCP) is a feasibility and not an optimization problem, but it is well-
known that it is closely related with optimization problems. Indeed optimality
conditions of some optimization problems such as LPs and QPs can be stated
as LCPs.

For general matrices M , the problem is NP-complete [8]. Therefore, it is
natural to look for classes of matrices M for which the corresponding LCPs can
be solved in polynomial time. There are more than 50 matrix classes discussed
in the literature of LCPs and a survey can be found in [9]. Below we list several
important and frequently used classes in an IPM framework :

• P∗(κ)-matrices : for κ ≥ 0 the following property holds :

∀x ∈ Rn (1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0 ,

where I+(x) = {i : xi(Mx)i > 0} and I−(x) = {i : xi(Mx)i < 0};

• P∗ = ∪κ≥0P∗(κ);

• skew-symmetric matrices : ∀x ∈ Rn : xTMx = 0;

• positive semide�nite (PSD) matrices : ∀x ∈ Rn : xTMx ≥ 0;

• P0-matrices : matrices with all principal minors non-negative, i.e
∀x 6= 0 ∈ Rn : ∃i, xi(Mx)i ≥ 0.

The most common and most studied class is that of monotone LCPs, where
M is a positive semide�nite matrix. In the special case of the optimality con-
ditions of an LP, M is a skew-symmetric matrix. The class of P∗-matrices
was introduced by Kojima et al. in their fundamental monograph on IPMs for
LCPs [19], while the other classes, as well as a number of additional classes
not mentioned here, were discussed in the classical monograph of Cottle, Pang,
and Stone [10] and in [3]. Most of the relations between these classes are de-
scribed in Figure 1. Some relations are trivial such that the positive semide�nite
matrices (=P∗(0)) are in P∗ whereas others are not.

It is well known that the sequence of the iterates of an IPM may not converge
to a solution of an LCP. To ensure that each limit point of the sequence of the
iterates is a solution, the sequence must be bounded. The following question
arises: Which class of matrices implies boundedness of the sequence? In [19],
Kojima et al. present an IPM for LCPs and proved its global convergence under
the following conditions [Condition 2.3, [19]] :

(i) M is a P0-matrix;

(ii) there exists a strictly feasible point (z0, s0) > 0 and s0 = Mz0 + q.
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Figure 1: The inclusion relations between various matrix classes; CS = column
su�cient, RS =row su�cient, SS = skew-symmetric, PSD = positive semide�-
nite. Source : [12]

(iii) the level set {(z, s) ∈ R2n
++ | s = Mz + q, zT s ≤ t} is bounded for each

t ≥ 0.

Conditions (i) and (ii) guarantee existence and uniqueness of the central
path. Note that condition (ii) is sometimes called "interior point condition" in
the literature.

The linear systems (1) and (3) admit a unique solution as a consequence of
condition (i) as stated in the following proposition.

Proposition 2.1 ([19]). M is a P0-matrix if and only if

(
M −I
S Z

)
is a non-

singular matrix. (for any positive diagonal matrices Z, S)

Kojima et al. point out that, unfortunately, if M is only a P0-matrix, then
requirement (iii) is in general not satis�ed, and they provide a counterexample.
However, if M is a P∗-matrix, then requirement (iii) is satis�ed (Lemma 4.5 in
[19]). Hence, in some sense the P∗-class is maximal with respect to the property
that guarantees global convergence of IPMs.

In this paper we consider a monotone linear complementarity problem, i.e
an LCP where M is PSD. In this case the set of solution of (LCP) is a convex
set.

2.2 Interior Point Methods

There exists a wide variety of IPMs that approximately follow the central path.
They are sometimes called path-following-methods in the literature. These
methods go through three main steps: �nd an initial point, compute some New-
ton steps (possibly some damped Newton steps) and update the parameter µ.

In this paper, we focus on the most simple among these methods: the FN-
IPM. This method is described in Algorithm 1 and consists in taking a single
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full Newton step for each µ. In general, the value of the update parameter θ is
an O(1/

√
n). Since the Newton method with full step behaves well locally it is

not a surprise that the iterates generated by this method are close to the central
path. More informations about FN-IPM can be found in the monographs [27]
for LPs or in [30] for a more general setting. One can also consider an adaptive
update version of the algorithm, which tries to �nd the best value of θ at each
iteration, see [17, 27]. Therefore, a sequence of θ is used instead of one �xed
value. Worst-case complexity for these methods is in O(

√
n log(n/ε)), which is

the best result known for IPMs. However they do not perform well in practice,
because the iterates stay too close to the central path.

In some sense a dual approach is to �rst decide a �xed value of θ ∈]0, 1[. With
this approach, the iterates are more likely to be far from the central path, so it is
necessary to carry out some damped Newton steps with a damping parameter
α to bring the iterates closer to the central path. By taking θ = O(1/

√
n)

we get the FN-IPM, since it is probably not necessary to use more than one
centralization step. This leads to what is sometimes called in the literature
the small-update IPM. However by taking θ = O(1) we get the large-update
method. In order to determine the value of the damping parameter α some merit
function is used. The �rst among the merit functions is the logarithmic barrier,
[27]. More recently Peng, Roos and Terlaky consider self-concordant barrier
[23] and kernel functions [13, 7, 20]. Worst-case complexity for these methods
to �nd an ε-solution to (LCP) is in O(

√
n log(n) log(n/ε)). This result is quite

poor compared to small-update methods, in particular if we consider that the
large update methods behave much better in practice. This gap between theory
and practice is called "irony of IPMs" in [24] and is a main motivation to try
modi�ed versions of these methods.

Note that in all the methods mentioned above, a strictly feasible initial point
is assumed to be known. In many cases, �nding such point is not trivial. Two
approaches allow to do this. The �rst one is a self-embedding technique, which
enlarges the problem to create an arti�cial initial point on the central path. This
technique is presented in [27] for LPs and in [19] for general LCPs. A second
technique is to consider an infeasible version of the IPM. Given an initial point
(z0, s0) ∈ R2n

++ with z0s0 = µ0, which does not satisfy s = Mz + q we solve the
following system

s−Mz − q =
µ

µ0
(s0 −Mz0 − q), z, s ≥ 0, zs = µ . (ILCPµ)

This method gives asymptotically feasible iterates. Such methods are considered
in [5, 6, 22, 26].

3 Polynomial complexity

In this section, we consider the worst-case complexity of the ϕ-FN-IPM de-
scribed in Algorithm 2 with ϕ : R+ → R+ verifying

(i) ϕ(0) = 0;
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(ii) ϕ ∈ C3([0,+∞));

(iv) ϕ′(t) > 0, ∀t ≥ 0, i.e ϕ is increasing;

(v) ϕ′′(t) ≤ 0, ∀t ≥ 0, i.e ϕ is concave;

(vi) ϕ′′′ ≥ 0.

These functions are obviously invertible and can be extended in a smooth way for

negative t, for instance by considering : ϕ(t < 0) = tϕ′(0) + t2

2 ϕ
′′(0) + t3

6 ϕ
′′′(0).

Function ϕ : Rn 7→ Rn is then de�ned component-wisely: ∀t ∈ Rn,ϕ(t) =
(ϕ(ti))1≤i≤n.

Input: an accuracy parameter ε > 0 ;

a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;
initial values (z0, s0) ∈ F+, µ

0 = z0s0;
1 z := z0, s := s0, µ := µ0, θ := θ0, k := 0 ;
2 while

∑n
i=1 ϕ(zisi) ≥ nε do

3 µ := (1− θk)µ;
4 solve system (3) to �nd (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1 ;

Algorithm 2: ϕ-Full Newton step IPM (ϕ-FN-IPM)

One important characteristic of ϕ is the constant T de�ned by

−ϕ′′(0) = T (ϕ′(0))2 .

By conditions (iv) and (v), T ≥ 0 and T = 0 for ϕ(t) = t. It is to be noted that
arbitrary values of T > 0 can be achieved by scaling ϕ.

Note that t 7→
√
t, in the same way as any function t 7→ tq, 0 < q < 1,

does not satisfy these hypotheses since it is not di�erentiable in 0. However
we can consider a smooth version for ε > 0 with t 7→ (t + ε)q − (ε)q. As said
in the introduction the classical method is given by ϕ(t) = t. Other examples
are ϕ : t 7→ log(1 + t) and functions constructed as in [15, ?]: for instance
ϕ : t 7→ t

t+1 and ϕ : t 7→ 1− exp(−t). It is interesting to note that in the two
latter cases, the function ϕ is bounded. Moreover, notice that if a function ϕ
satis�es all these hypotheses, then t 7→ αϕ(Ct) with α,C ∈ R++ also satis�es
these hypotheses.

The main result of this section (Theorem 3.5) states the polynomial worst-
case complexity of the ϕ-FN-IPM described in Algorithm 2. In order to get to
this result we de�ne a measure of the proximity to the central path in Section 3.1.
Then, in Section 3.2, Theorem 3.1 estimates the error made at each Newton
step. Sections 3.3 and 3.4 present conditions to ensure the correct behaviour
of the algorithm: strict feasibility of the iterates (Theorem 3.2) and quadratic
convergence of the Newton process (Theorem 3.3). Section 3.5 provides the
sequence of update parameters (Theorem 3.4).
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3.1 Proximity measure

At each iteration, after updating parameter µ, we compute the Newton direction
(∆z,∆s) as a solution of system (3). Then we update the iterates with

z+ = z + α∆z and s+ = s+ α∆s . (4)

Note that here we consider a damping factor α ∈ [0, 1] to be more general. In
this case we denote (α∆z, α∆s) the α-Newton step and the full Newton step is
given for α = 1.

In order to measure the distance to the target on the central path we consider
a proximity measure δϕ(z, s,µ) de�ned by

δϕ(z, s,µ) :=
1

2

∥∥∥∥ ϕ′(0)

ϕ′(zs)

(
(vϕ(z, s,µ)−1 − vϕ(z, s,µ)

)∥∥∥∥
2

,

with

vϕ(z, s,µ) :=

√
ϕ(zs)

µ
and vϕ(z, s,µ)−1 :=

√
µ

ϕ(zs)
.

We may omit the arguments of vϕ(z, s,µ) and δϕ(z, s,µ), when it is clear from
the context. Notice that this proximity measure is a generalization of the one
in [27] since they consider

δt7→t :=
1

2

∥∥∥∥√ µ

zs
−
√
zs

µ

∥∥∥∥
2

.

Both proximity measures are equal for ϕ(t) = t. Moreover for any function ϕ,
the two proximity measures are asymptotically similar (for zs ↓ 0).

The following two lemmas link the iterates and the proximity measure.

Lemma 3.1. If (z, s) ∈ F+ and δϕ ≤ 1, then ϕ(zs) ≤ 6µ.

Proof. Assume by contradiction that there exists i ∈ {1, . . . , n} such that ϕ(zisi) > 6µi.
Since ϕ is increasing and zs > 0:

2δϕ ≥
∥∥vϕ−1 − vϕ∥∥2 =

∥∥∥∥∥
√
µ√

ϕ(zs)
−
√
ϕ(zs)
√
µ

∥∥∥∥∥
2

≥

∣∣∣∣∣
√
µi√

ϕ(zisi)
−
√
ϕ(zisi)√
µi

∣∣∣∣∣
=

√
ϕ(zisi)√
µi

−
√
µi√

ϕ(zisi)

>
√

6− 1√
6
≈ 2, 04 ,

where the penultimate step comes from the increasing property of the function
x 7→ x− 1/x on R++. This is in contradiction with δϕ ≤ 1.

The following lemma gives bounds on δϕ.
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Lemma 3.2. Let δ = 1
2

∥∥vϕ−1 − vϕ∥∥2, then
δ ≤ δϕ ≤

(
1− ϕ′′(0)‖zs‖∞

ϕ′(‖zs‖∞)

)
δ .

Furthermore in a close neighbourhood of the central path, i.e δϕ ≤ 1, we have

δ ≤ δϕ ≤
(

1− ϕ′′(0)ϕ−1(6‖µ‖∞)

ϕ′(ϕ−1(6‖µ‖∞))

)
δ := Γ(‖µ‖∞)δ .

Proof. By convexity of function ϕ′ for all i ∈ {1, . . . , n}

ϕ′(zisi) ≥ ϕ′(0) + ϕ′′(0)zisi .

Then, for all i ∈ {1, . . . , n}

1 ≤ ϕ′(0)

ϕ′(zisi)
≤ 1− ϕ′′(0)zisi

ϕ′(zisi)
≤ max

i

(
1− ϕ′′(0)zisi

ϕ′(zisi)

)
.

Hence, by de�nition of δ and δϕ

δ ≤ δϕ ≤
(

1− ϕ′′(0)‖zs‖∞
ϕ′(‖zs‖∞)

)
δ .

The sharpest result in a close neighbourhood of the central path is deduced from
Lemma 3.1.

In the previous lemma we de�ne Γ as a function of ‖µ‖∞ which depends on
the choice of ϕ as

Γ(‖µ‖∞) =

(
1− ϕ′′(0)ϕ−1(6‖µ‖∞)

ϕ′(ϕ−1(6‖µ‖∞))

)
. (5)

It is easily seen that for ϕ(t) = t then Γ(‖µ‖∞) = 1 for all ‖µ‖∞. Moreover,
for any function ϕ, Γ is increasing with respect to ‖µ‖∞, and converges to 1 as
‖µ‖∞ ↓ 0.

3.2 Error bound of the Newton step

We use the �rst order Taylor-Lagrange formula applied to ϕ in zs. There exists
ξ ∈ [z+s+, zs] such that

ϕ(z+s+) = ϕ(zs) + αϕ′(zs)(z∆s+ s∆z)

+ α2∆z∆sϕ′(zs) +
ϕ′′(ξ)

2

(
z+s+ − zs

)2
,

(6)

with (∆z,∆s) solution of (3). The update of µ is chosen such that z+s+ < zs.
Therefore the error we make when we say that ϕ(z+s+) is the µ-center is

η := α2∆z∆sϕ′(zs) +
ϕ′′(ξ)

2

(
z+s+ − zs

)2
. (7)

The following sequence of lemmas aims to bound this error in terms of the
proximity measure. We �rst state a lemma from [16].
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Lemma 3.3 (Lemma 5.1, [16]). Let (z, s) ∈ F+ and a ∈ Rn. Assume that
matrix M is a positive semide�nite matrix. Let (∆z,∆s) be the solution of{

−M∆z + ∆s = 0

s∆z + z∆s = a
.

Then

||∆z∆s||2 ≤ C2

∥∥∥∥ a√
zs

∥∥∥∥2
2

,

||∆z∆s||∞ ≤ C∞
∥∥∥∥ a√

zs

∥∥∥∥2
2

,

with C2 = 1/(2
√

2) and C∞ = 1/4.

Straightforward application of this lemma for a=µ−ϕ(zs)
ϕ′(zs) and vϕ =

√
ϕ(zs)
µ

gives the following lemma.

Lemma 3.4. Let (z, s) ∈ F+, (∆z,∆s) solution of (3) and p ∈ {2,∞}, then

‖∆z∆s‖p ≤ Cp

∥∥∥∥∥
√
ϕ(zs)

√
µ

√
zs ϕ′(zs)

(vϕ
−1 − vϕ)

∥∥∥∥∥
2

2

.

The next lemma will bound ||∆z∆sϕ′(zs)||p for p ∈ {2,∞}.

Lemma 3.5. Let (z, s) ∈ F+, (∆z,∆s) solution of (3) and p ∈ {2,∞}, then

||∆z∆sϕ′(zs)||p ≤ 4Cp‖µ‖∞δ2ϕ .

Proof. By concavity of ϕ we have that ϕ(zisi) ≤ ϕ′(0)zisi, ∀i, so

ϕ(zs)ϕ′(0)

zs(ϕ′(zs))2
≤ (ϕ′(0))2

(ϕ′(zs))2
. (8)

Furthermore for p ∈ {2,∞} and using Lemma 3.4, followed by (8)

||∆z∆sϕ′(zs)||p ≤ ||∆z∆s||pϕ′(0)

≤ Cp

∥∥∥∥∥
√
ϕ(zs)

√
µ

√
zs ϕ′(zs)

(v−1 − v)

∥∥∥∥∥
2

2

ϕ′(0)

≤

(
n∑
i=1

Cp
ϕ(zisi)µi

zisi (ϕ′(zisi))2
(vϕ
−1
i − vϕi)

2

)
ϕ′(0)

≤
n∑
i=1

Cpµi

(
ϕ′(0)

ϕ′(zisi)

)2

(vϕ
−1
i − vϕi)

2

≤ 4Cp‖µ‖∞δ2ϕ
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Now we move to the main result which gives a bound for the complete error.

Lemma 3.6. Let (z, s) ∈ F+ and (∆z,∆s) solution of (3). For p ∈ {2,∞} we
have

‖η‖p ≤ (4Cp + 2Tϕ(‖zs‖∞))α2‖µ‖∞δ2ϕ+
(
C∞
√
ϕ(‖zs‖∞) + αC2

p

√
‖µ‖∞δϕ

)
8α3T‖µ‖∞3/2

δ3ϕ

Proof. By equation (7) we have

η =α2∆z∆sϕ′(zs) +
α2ϕ′′(ξ)

2
(z∆s+ s∆z)2 +

α4ϕ′′(ξ)

2
(∆s∆z)2

+ α3ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)

By considering the norm for p ∈ {2,∞} and triangle inequalities

‖η‖p ≤α2 ‖∆z∆sϕ′(zs)‖p + α2

∥∥∥∥ϕ′′(ξ)2
(z∆s+ s∆z)2

∥∥∥∥
p

+ α4

∥∥∥∥ϕ′′(ξ)2
(∆s∆z)2

∥∥∥∥
p

+ α3 ‖ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)‖p

.

We now bound each term of the above right-hand side. First, Lemma 3.5 gives

‖∆z∆sϕ′(zs)‖p ≤ 4Cp‖µ‖∞δ2ϕ .

Using successively −ϕ′′(0) = T (ϕ′(0))2, (µ − ϕ(zs))2 = (µvϕ(vϕ
−1 − vϕ))2 ≤

µϕ(zs)(vϕ
−1− vϕ)2 and ϕ(zisi) ≤ ϕ(‖zs‖∞), ∀i ∈ {1, ..., n}, we obtain step by

step∥∥∥∥ϕ′′(ξ)2
(z∆s+ s∆z)2

∥∥∥∥
p

≤ −ϕ
′′(0)

2

∥∥(z∆s+ s∆z)2
∥∥
p

=
T

2

∥∥∥∥∥
(
ϕ′(0)

ϕ′(zs)

)2

(µ−ϕ(zs))2

∥∥∥∥∥
p

≤ Tϕ(‖zs‖∞)‖µ‖∞
2

∥∥∥∥∥
(
ϕ′(0)

ϕ′(zs)
(vϕ
−1 − vϕ)

)2
∥∥∥∥∥
p

≤ 2Tϕ(‖zs‖∞)‖µ‖∞δ2ϕ .

For the third term, we use Lemma 3.5 and the following two properties: −ϕ′′(0) =
T (ϕ′(0))2 and ‖u2‖p ≤ ‖u‖2p ∀u ∈ Rn∥∥∥∥ϕ′′(ξ)2

(∆s∆z)2
∥∥∥∥
p

≤ T

2

∥∥(ϕ′(0)∆s∆z)2
∥∥
p

≤ T

2
‖ϕ′(0)∆s∆z‖2p

≤ T

2
(‖µ‖∞4Cpδ

2
ϕ)2 = 8TC2

p‖µ‖∞
2
δ4ϕ .

11



Finally, the de�nition of vϕ implies that

‖ϕ′(0)(z∆s+ s∆z)‖p =

∥∥∥∥ ϕ′(0)

ϕ′(zs)
µvϕ(vϕ

−1 − vϕ)

∥∥∥∥
p

≤
∥∥∥∥ ϕ′(0)

ϕ′(zs)

√
‖µ‖∞

√
ϕ(‖zs‖∞)(vϕ

−1 − vϕ)

∥∥∥∥
p

,

Using the above inequality, as well as ‖uw‖p ≤ ‖u‖∞‖w‖p, ∀(u,w) ∈ R2n and
−ϕ′′(0) = T (ϕ′(0))2, we get

‖ϕ′′(ξ)(∆s∆z)(z∆s+ s∆z)‖p ≤ T ‖ϕ′(0)(∆s∆z)‖∞ ‖ϕ
′(0)(z∆s+ s∆z)‖p

≤ 8TC∞
√
ϕ(‖zs‖∞)‖µ‖∞3/2

δ3ϕ,

which completes the proof.

In the special case where we are in a close neighbourhood of the central path
we get an improved version of the result:

Theorem 3.1. Let (z, s) ∈ F+ and δϕ ≤ 1. Given (∆z,∆s) solutions of (3)
and p ∈ {2,∞}, we have

‖η‖p ≤ (4Cp + 12T‖µ‖∞)α2‖µ‖∞δ2ϕ + (
√

6C∞ + αC2
pδϕ)α38T‖µ‖∞2

δ3ϕ (9)

Proof. The proof is the same as that of Lemma 3.6, but instead of using
ϕ(zisi) ≤ ϕ(‖zs‖∞), ∀i we can use ϕ(zs) ≤ 6µ from Lemma 3.1.

For instance, for α = 1, using that δpϕ ≤ δϕ for p ≥ 1, then (9) becomes

‖η‖∞ ≤

(
‖µ‖∞ +

(
25 + 4

√
6

2

)
T‖µ‖∞2

)
δ2ϕ .

For ϕ(t) = t we get the same result as in [25]

‖η‖∞ ≤ ‖µ‖∞δ
2
ϕ .

3.3 Feasibility of the Newton step

A Newton step is feasible (strictly feasible) if the couple (z+, s+) de�ned by (4)
is feasible (strictly feasible).

Theorem 3.2. Let α be in [0,1] and δϕ ≤ 1. The α-Newton step is strictly
feasible for (z, s) strictly feasible if

αδ2ϕ <
1

1 +
(

25+4
√
6

2

)
T‖µ‖∞

(10)

Furthermore if this condition holds for α = 1, then the full Newton step is
strictly feasible.

12



For α = 1 condition (10) implies that the proximity measure, δϕ, must be
less than 1, which will not be a restrictive assumption.

Proof. For α = 0 the result trivially holds. Therefore, we can assume without
loss of generality that α ∈]0, 1]. Let β ∈]0, α], and

zβ = z + β∆z, sβ = s+ β∆s ,

where (∆z,∆s) is the solution of (3). The proof rests upon a continuity ar-
gument. Indeed, we assume z, s > 0 so ϕ(zs) > 0 and, using equations (3)
and (6):

ϕ(zβsβ) = ϕ(zs) + βϕ′(zs)(z∆s+ s∆z) + η(β) ,

= ϕ(zs)(1− β) + β

(
µ+

η(β)

β

)
,

≥ ϕ(zs)(1− β) + β

(
µ− e‖η(β)‖∞

β

)
,

which is positive for all z, s > 0 if

‖µ‖∞ >
‖η(β)‖∞

β

Lemma 3.6 provides that this condition holds if

‖µ‖∞ > (4C∞+2Tϕ(‖zs‖∞))β‖µ‖∞δ2ϕ+
(
C∞
√
ϕ(‖zs‖∞) + βC2

∞
√
‖µ‖∞δϕ

)
8β2T‖µ‖∞3/2

δ3ϕ.

The right-hand side is increasing with respect to β, so it is su�cient to verify

‖µ‖∞ > (4C∞+2Tϕ(‖zs‖∞))α‖µ‖∞δ2ϕ+
(
C∞
√
ϕ(‖zs‖∞) + αC2

∞
√
‖µ‖∞δϕ

)
8α2T‖µ‖∞3/2

δ3ϕ.

Therefore, since δϕ ≤ 1 and according to Theorem 3.1 strict feasibility is satis�ed
if

1− δ2ϕα
(

4C∞ +
(

12 + 8
√

6C∞ + 8C2
∞

)
T‖µ‖∞

)
> 0 ,

which corresponds to one of our assumptions. It follows that for all β ∈ [0, α],
ϕ(zβsβ) > 0. By continuity of ϕ, this implies that none of zβ or sβ vanish for
β ∈ [0, α], so the result follows.

Figure 2 illustrates Theorem 3.2 with two examples of update after a Newton
step. It appears that starting from a point with a proximity measure greater
than one step can lead outside the feasible domain.

3.4 Quadratic decrease of the proximity measure

The Newton method is known to behave well in a close neighbourhood of the
solution. The following theorem states a condition on the proximity measure,
that ensures a quadratic convergence of the Newton step.

13



Figure 2: Illustration of Theorem 3.2

Theorem 3.3. Assume (z, s) ∈ F+ and (z+, s+) be de�ned as in (4) for α = 1.
Let δϕ := δϕ(z, s,µ), δ+ϕ := δϕ(z+, s+,µ), Γ(‖µ‖∞) de�ned in (5) and

Q(‖µ‖∞) :=
1

1 +
(

25+4
√
6

2

)
T‖µ‖∞

(
1−

(
Γ(‖µ‖∞)

(√
2 + (13 + 2

√
6)T‖µ‖∞

))2
4

)

If
δ2ϕ ≤ Q(‖µ‖∞) ,

then
δ+ϕ ≤ δ2ϕ .

Proof. Let Γ = Γ(‖µ‖∞) be the constant de�ned in Lemma 3.2:

δ+ϕ ≤
Γ

2
‖(vϕ+)−1 − (vϕ

+)‖2 =
Γ

2
‖(vϕ+)−1(e− (vϕ

+)2)‖2

≤ Γ

2

∥∥∥∥∥∥
η
µ√
e + η

µ

∥∥∥∥∥∥
2

≤
Γ
∥∥∥ ηµ∥∥∥

2

2

√
1−

∥∥∥ ηµ∥∥∥∞
.

Now, using Theorem 3.1 with a full step, i.e α = 1, it follows

δ+ϕ ≤ δ2ϕΓ
4C2 + (12 + 8

√
6C∞ + 8C2

2 )T‖µ‖∞
2
√

1− δ2ϕ(4C∞ +
(
12 + 8

√
6C∞ + 8C2

∞
)
T‖µ‖∞)

.

So, δ+ϕ ≤ δ2ϕ if δ2ϕ ≤ Q(‖µ‖∞).
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Considering ϕ(t) = t, the condition of Theorem 3.3 becomes the same as in
[25]:

δ2ϕ ≤
1

2
.

Figure 3 presents the regions δϕ ≤ 1√
2
, δϕ ≤ 1

2 and illustrate one Newton

step from a region to the other.

Figure 3: Illustration of Theorem 3.3

Remark 3.1. The condition in Theorem 3.3 implies the condition in Theo-
rem 3.2. So, if the iterates locate in the neighbourhood of quadratic convergence,
the full Newton step will provide strictly feasible iterates.

Remark 3.2. Notice that since the proximity measure is always non-negative,
the condition from Theorem 3.3 can hold only when µ is su�ciently small, i.e.
when

Γ(‖µ‖∞)
(√

2 + (13 + 2
√

6)T‖µ‖∞
)
≤ 2 .

This is not a restrictive assumption, since given an initial point we can use a
scaling technique so that this point satisfy this condition. This technique will be
clari�ed numerically in Section 4.

3.5 Updating parameter strategy

The sequence of parameter {θk} must be chosen such that the iterates remain
strictly feasible and satisfy the condition of Theorem 3.3. In this section, Propo-
sition 3.1 gives an upper bound on the proximity measure after an update on

15



µ, that is µ+ = µ(1 − θk), and then Theorem 3.4 describes how to build the
sequence {θk}.

First, we provide a useful lemma.

Lemma 3.7. Let (z, s) ∈ F+, (∆z,∆s) solution of (3) and δϕ ≤ 1. Then,

ϕ(z+s+) ≤ 2µ .

Proof. From equation (6) and concavity of function ϕ, it holds

ϕ(z+s+) ≤ µ+ ∆z∆sϕ′(zs) .

So that by Lemma (3.5), it follows

ϕ(z+s+) ≤ µ(1 + 4C∞δ
2
ϕ) ≤ 2µ .

Now, the following proposition provides an upper bound of the proximity
measure after an update of the parameter, denoted δ+ϕ , in terms of the update

θk and the proximity measure before this update, denoted δ̄ϕ.

Proposition 3.1. Let v̄ϕ := vϕ(z+, s+,µ) and vϕ := (z+, s+,µ+), where µ+ :=
(1 − θk)µ. Then,

(δ+ϕ )2 ≤ (1− θk)(δ̄ϕ)2 +
Γ(‖µ‖∞)2n(θk)2

2(1− θk)
.

Proof. Noticing that

vϕ =
v̄ϕ√

1− θk
,

it follows that

(δ+ϕ )2 =
1

4

n∑
i=1

(
ϕ′(0)

ϕ′i(zs)

)2

(vϕ
−2
i + vϕ

2
i − 2)

=
1

4

n∑
i=1

(
ϕ′(0)

ϕ′i(zs)

)2(
(1− θ)v̄ϕ−2i +

v̄ϕ
2
i

(1− θ)
− 2

)

= (1− θ)(1

4

n∑
i=1

(
ϕ′(0)

ϕ′i(zs)

)2

(v̄ϕ
−2
i + v̄ϕ

2
i − 2))

+
1

4

n∑
i=1

(
ϕ′(0)

ϕ′i(zs)

)2(
−2θ +

2θk − (θk)2

1− θk
v̄ϕ

2
i

)

= (1− θk)(δ̄ϕ)2 +
1

4

n∑
i=1

(
ϕ′(0)

ϕ′i(zs)

)2(
−2θk +

2θk − (θk)2

1− θk
v̄ϕ

2
i

)
≤ (1− θk)(δ̄ϕ)2 +

(1 + 4C∞)Γ(‖µ‖∞)2n(θk)2

4(1− θk)

as Γ(‖µ‖∞+
) ≤ Γ(‖µ‖∞) and by Lemma (3.7).
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We conclude this section, by a theorem, which describes the way the update
parameters θk are chosen.

Theorem 3.4. Let µ be such that Q(‖µ‖∞) > 0 and (z, s) ∈ F+. De�ne
0 < θk < 1 as

θk =
2
√

2nΓ(‖µ‖∞)2 (−Q(‖µ‖∞)2 +Q(‖µ‖∞)) +Q(‖µ‖∞)2 + 2Q(‖µ‖∞)2 −Q(‖µ‖∞)

2nΓ(‖µ‖∞)2 + 4Q(‖µ‖∞)2
.

The proximity measure δ+ϕ := δϕ(z+, s+,µ(1 − θk)) satis�es the conditions of
feasibility in Theorem 3.2 and quadratic convergence of the Newton step in The-
orem 3.3.

Proof. As pointed out earlier in Remark 3.1 the condition of Theorem 3.2 is
weaker than the condition of Theorem 3.3. Thus, it is su�cient to satisfy the
former condition to ensure strict feasibility of the iterates.

According to the condition of Theorem 3.3, after an update of µ, i.e µ+ =
(1− θk)µ, the proximity measure δ+ϕ must satisfy

(δ+ϕ )2 ≤ Q(‖µ‖∞+
) .

As Q is decreasing with respect to ‖µ‖∞, it is su�cient to ensure that

(δ+ϕ )2 ≤ Q(‖µ‖∞) .

By Proposition 3.1, we can choose any θk satisfying

(1− θk)Q(‖µ‖∞)2 +
nΓ(‖µ‖∞)2(θk)2

2(1− θk)
≤ Q(‖µ‖∞) .

Therefore, it is su�cient to choose θk such that

0 < θk ≤
2
√

2nΓ(‖µ‖∞)2 (−Q(‖µ‖∞)2 +Q(‖µ‖∞)) +Q(‖µ‖∞)2 + 2Q(‖µ‖∞)2 −Q(‖µ‖∞)

2nΓ(‖µ‖∞)2 + 4Q(‖µ‖∞)2
.

It is interesting to note that this result does no longer depend on the choice
of ϕ only through the constant T .

Remark 3.3. We can compute an upper bound for θk by going to the limit,
µ ↓ 0. Indeed, lim

µ→0
Q(‖µ‖∞) = 1/2 and lim

µ→0
Γ(‖µ‖∞) = 1, so any θk de�ned as

in the previous theorem satis�es

θk ≤ 1√
2n+ 1

.

This upper bound is attained for ϕ(t) = t.
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3.6 Complexity Analysis of the Full Newton Step IPM

The complexity of this algorithm is obtained by the extension of a classical
lemma.

Lemma 3.8. Let θ0 be such that 0 < θ0 ≤ θk ∀k ∈ N. The ϕ-FN-IPM for
monotone LCP described in Algorithm 2 provides an ε-solution (z, s), which
satis�es

∑n
i=1 ϕ(zisi) ≤ nε after at most

[
1

θ0
log(

∑n
i=1 ϕ(z0i s

0
i )

ε
)]

iterations.

Proof. Similar to the proof of [27].

The sequence {θk} is given by Theorem 3.4 and so our main theorem follows.

Theorem 3.5. Let µ0 = z0s0. Algorithm 2, with the sequence of update param-
eter θk described above, guarantees strict feasibility of the iterates and quadratic
convergence of the proximity measure. Moreover, it provides an ε-solution (z, s),
which satis�es

∑n
i=1 ϕ(zisi) ≤ nε after at most

O
(√

n log
(n
ε

))
iterations.

4 Numerics

In this section, we provide insight on the behaviour of Algorithm 2 by running
several computational tests.

4.1 Implementation details

The sequence of update parameters is given by Theorem 3.4, and we consider
the functions ϕ given in Table 1. As pointed out earlier, the sequence of update
parameters from Theorem 3.4 only relies on the constant T . Given a function
ϕ, for any α positive αϕ satis�es also all the condition from Section 3. So that,
it holds

Tαϕ = − ϕ′′(0)

αϕ′(0)

Therefore for any function ϕ, we can control the parameter T by choosing the
desired value of α.

In Remark 3.2, we point out the fact that the algorithm must start with a
µ0 su�ciently small, that is µ0 ≤ µ∗. We compute µ∗ ∈ R+ as a solution of

0 = a− Γ(‖µ‖∞)
(√

2 + (13 + 2
√

6)T‖µ‖∞
)
,
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Name ϕ(t) ϕ′(t) ϕ′′(t) ϕ−1(t) T
Id. t 1 0 t 0
√ √

t+ 1−
√

1 1
2
√
t+1

− 1
4(t+1)3/2

t2 + 2t 1

log log(1 + t) 1
1+t − 1

2(1+t)2 exp(t)− 1 1
2

θ1 t
t+1

1
(t+1)2 − 1

2(t+1)3
t

1−t
1
2

Table 1: ϕ-functions used in the computational tests

where a is chosen strictly greater than
√

2 and smaller than 2, for instance
a = 1.49. We use the fsolve command from MATLAB. Given z̄0, s̄0, µ̄0 ∈ R3n

++

such that z̄0s̄0 = µ̄0 and s̄0 = Mz̄0 + q̄, an initial point satisfying µ0 ≤ eµ∗ ,
s0 = Mz0+q and

∑n
i=1 ϕ(z0i , s

0
i ) =

∑n
i=1 µ

0
i can be constructed in the following

way

µ0 := eµ∗, σ :=

√
ϕ−1(eµ∗)

µ̄0
z0 := z̄0σ, s0 := s̄0σ, q := q̄σ .

At the end of the algorithm, for k = kf , we get an approximate solution of
(LCP) by computing the reverse scaling :

(z∗, s∗) =
(zkf , skf )

σ
.

Notice that such a point z̄0, s̄0 can always be constructed using the self-embedding
technique from [19].

Remark 4.1. One essential feature of the method presented in this paper is that
for concave, increasing functions ϕ, the points can go further than the µ-center
expected. Indeed, considering that ϕ is concave implies

ϕ(z+s+) ≤ ϕ(zs) +ϕ′(zs)(z∆s+ s∆z) +ϕ′(zs)∆s∆z .

Since (∆z,∆s) is a solution of (3), then

ϕ(z+s+)− µ
ϕ′(zs)

≤ ∆s∆z

Therefore ϕ(z+s+) can be smaller than µ. Taking into account the case, where
M is skew-symmetric. Then, ∆zT∆s = 0, so

n∑
i=1

ϕ(z+i s
+
i )− µi

ϕ′(zisi)
≤ 0,

whereas for ϕ(t) = t we only have

n∑
i=1

ϕ(z+i s
+
i ) = (z+)T s+ =

n∑
i=1

µi

So, our method may behave better than the classical method in an algorithm that
takes advantage of this property.
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Instance Id. θ1 log
√

ADLITTLE 135 135 135 135
AFIRO 85 85 85 85

BEACONFD 210 210 210 210
BOEING2 210 210 210 210
BLEND 133 133 133 133
GROW7 204 204 204 204
ISRAEL 215 215 215 215
KB2 102 102 102 102

RECIPELP 166 166 166 166
SC50A 109 109 109 109
SC50B 109 109 109 109
SC105 159 159 159 159

SCAGR7 172 172 172 172
SHARE1B 186 186 186 186
SHARE2B 156 156 156 156
STOCFOR1 163 163 163 163

Table 2: Number of iterations to reach (z)T s ≤ ε = 10−3

4.2 Computational results

The numerical tests are run on a small selection of LPs from the NETLIB
repository1. The datasets and the number of iterations until convergence are
detailed in Table 2 for every ϕ−function. We observe that on every instance,
our method converges in the same number of iterations than the classical full
step method (ϕ(t) = t). Therefore, the experiments show the validity of our
approach. Notice that for the three choices of function ϕ the results are identical.
This is not surprising, since the sequences of parameters {θk} and {µk} depend
on T which is not really di�erent for these 3 functions.

5 Concluding remarks

The method presented in this article shows a generalization of the FN-IPM with
polynomial upper bound complexity for monotone LCPs considering a general
family of smooth increasing concave functions. Further research may extend
this result to a more general family of LCPs such that P∗(κ)-LCPs or P0-LCPs
with bounded level sets.

Recent developments by Roos in [26] consider an infeasible IPM with full
Newton step using only one feasibility step. More investigations regarding the
method presented in this paper could extend the results in [26].

We provide computational experiments to con�rm the validity of our ap-
proach. Further investigations on more sophisticated methods may get the best

1http://www.netlib.org/lp/
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out of this new direction. Indeed, as stated in Remark 4.1, we expect an im-
proved behavior by introducing a function ϕ other than identity in an algorithm
where the updates of µ depends on the value of the iterates. In particular, we
are planning to study a predictor-corrector implementation of this approach.
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