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Abstract In this paper, we present a new interior point method with full
Newton step for monotone linear complementarity problems. The specificity of
our method is to compute the Newton step using a modified system similar to
that introduced by Darvay in [10]. We prove that this new method possesses
the best known upper bound complexity for these methods. Moreover, we
extend results known in the literature since we consider a general family of
smooth concave functions in the Newton system instead of the square root.
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1 Introduction

In this paper we focus on the simplest interior point methods (IPMs) : the
full Newton step interior point method [19], this method is one among the
IPMs with the best worst-case complexity. Therefore, naturally any new try
in the IPM framework must be validated on this method. In particular, we
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focus on this method applied to the monotone complementarity problem [15].
This problem is a generalization of the linear optimization problem and has
been very popular in the literature due to its numerous applications [12]. In
the literature of IPM, this problem has also been an active subject [15].

Darvay [10,11], introduces a modification in the interior point method for
finding search directions for linear optimization problems, based on an alge-
braic transformation of the central path. In particular, he applied the square
root function to both sides of the centering equation, and he used Newton’s
method to obtain the new direction. He proved that the corresponding full
Newton step algorithm has O(

√
nL) iteration complexity. This new direction

using the square root has become an active subject in the past few years
[1–9,20–23]. Several authors generalized this approach to a wide class of op-
timization problems, for example for linear complementarity problems [1,3–6,
8,23], convex quadratic programming [2], second-order cone optimization [21],
semidefinite optimization [20] and symmetric cone optimization [7–9,22].

Inspired by Darvay’s new approach we introduce here a new class of IPMs
by considering a large family of smooth concave functions instead of the square
root. This new class of methods generalizes the classical path-following IPMs,
since we obtain them as a special case. The technique presented here does
not include Darvay’s algorithm, but we can consider a smoother version that
belongs to our family of methods. Our main contribution is that we prove that
the algorithm with the new directions converges to a solution with the best
known complexity for this family of methods.

In Section 2, we introduce the problem and our new directions. In Section 3,
we show the polynomial complexity of our new class of methods.

Notations

Through this paper we will use the following notations: Rn
+ = {x ∈ Rn | x ≥ 0},

Rn
++ = {x ∈ Rn | x > 0} and e denotes the vector with all entries equal

to one and whose dimension can be deduced from the context. Given two
vectors z, s ∈ Rn, we denote by zT s the usual scalar product and by zs the
Hadamard product of two vectors, that is zs = (zisi)1≤i≤n. Moreover, we
extend this component-wise operation to the division of two vectors and to
the square root, that is ∀z ∈ Rn, s ∈ (R \ {0})n, z/s = (zi/si)1≤i≤n and
∀z ∈ Rn

+,
√
z = (

√
zi)1≤i≤n.

2 Preliminaries and Problem Settings

An LCP consists in finding z, s ∈ Rn such that for a square matrix M ∈ Rn×n

and a vector q ∈ Rn

s = Mz + q, z, s ≥ 0, zs = 0. (LCP)

A couple (z, s) such that s = Mz + q is said to be feasible for the LCP
if we have z, s ≥ 0 and strictly feasible if z, s > 0. From now on, we use
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standard notation F+ := {(z, s) ∈ Rn
++ × Rn

++ | s = Mz + q} for the set of
strictly feasible points of (LCP). In this paper we consider a monotone linear
complementarity problem, i.e. an LCP where M is positive semi-definite. In
this case the set of solutions of (LCP) is a convex set.

The main strategy of IPMs is to follow the central path (z(µ), s(µ)) for
µ ∈ Rn

++, defined by

s = Mz + q, z, s ≥ 0, zs = µ . (LCPµ)

The couples (z(µ), s(µ)) are also called µ-centers and define an homotopic
path. The limit when µ → 0 satisfies the complementarity condition, and
hence yields optimal solutions whenever the limit exists.

IPMs follow the central path approximately by solving an approached ver-
sion of the non-linear system in (LCPµ) for several values of µ. The main tool
to solve such a system is the Newton method. A Newton step (∆z,∆s) is given
as the solution of the following linear system{

M∆z = ∆s

z∆s+ s∆z = µ− zs
(1)

There exists a wide variety of different IPMs that are based on this prin-
ciple. In this paper we focus on the simplest IPM (see Algorithm 1): the full
Newton step interior point method (FN-IPM).

Input: an accuracy parameter ϵ > 0 ;

a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;

initial values (z0, s0) ∈ F+, µ0 = z0s0;

1 z := z0, s := s0, µ := µ0, k := 0 ;

2 while zT s ≥ nϵ do
3 µ := (1− θk)µ;
4 solve system (1) to find (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1;

Algorithm 1: Full Newton step IPM (FN-IPM)

In [11], Darvay introduces a modification in (LCPµ) by considering

s = Mz + q, z, s ≥ 0, φ(zs) = µ , (2)

where φ : Rn
+ → Rn

+ is assumed to be a smooth function such that φ(0) = 0
and φ is defined by a component-wise extension of a real-valued function φ to
Rn, i.e. for t ∈ Rn φ(t) = (φ(ti))1≤i≤n.

Darvay’s method modifies the Newton steps. More precisely, the Newton
step (∆z,∆s) is given by the linear system{

M∆z = ∆s

φ′(zs)(z∆s+ s∆z) = µ−φ(zs)
(3)



4 Mounir Haddou et al.

In this paper we consider functions φ ∈ C3(R+) such that φ(0) = 0, φ is
increasing and concave, and φ′′′(t) ≥ 0 ∀t ∈ R+. This class of functions allows
for a generalization of the classical IPMs, since we obtain the classical central
path system (LCPµ) for φ(t) = t. The square root function does not belong to
this family since it is not differentiable at 0, but we can build a smooth version
with φϵ>0 : t 7→

√
t+ ϵ−

√
ϵ. We modify Algorithm 1 to solve (3) instead of (1)

at step 4, and call the resulting algorithm φ-FN-IPM. The main result of this
article is that φ-FN-IPM, converges to an ϵ-solution in at most O

(√
n log(nϵ )

)
iterations. This upper bound is the best one known for the FN-IPM.

3 Polynomial Complexity

In this section, we consider the worst-case complexity of the φ-FN-IPM de-
scribed in Algorithm 2 with φ : R+ → R+ verifying

(i) φ(0) = 0;
(ii) φ ∈ C3([0,+∞));
(iii) φ′(t) > 0, ∀t ≥ 0, i.e. φ is increasing;
(iv) φ′′(t) ≤ 0, ∀t ≥ 0, i.e. φ is concave;
(v) φ′′′(t) ≥ 0, ∀t ≥ 0.

These functions are invertible and can be extended in a smooth way for nega-

tive t by considering : φ(t) = tφ′(0)+ t2

2 φ
′′(0)+ t3

6 φ
′′′(0). Functionφ : Rn 7→ Rn

is then defined component-wisely: ∀t ∈ Rn,φ(t) = (φ(ti))1≤i≤n.

Input: an accuracy parameter ϵ > 0 ;

a sequence of update parameters {θk}, 0 < θk < 1 ∀k ∈ N ;

initial values (z0, s0) ∈ F+, µ0 = z0s0;

1 z := z0, s := s0, µ := µ0, k := 0 ;
2 while

∑n
i=1 φ(zisi) ≥ nϵ do

3 µ := (1− θk)µ;
4 solve system (3) to find (∆z,∆s) ;
5 (z, s) := (z, s) + (∆z,∆s);
6 k := k + 1 ;

Algorithm 2: φ-Full Newton step IPM (φ-FN-IPM)

One important characteristic of φ is the existence of a constant T defined
by

−φ′′(0) = T (φ′(0))2 . (4)

Noticing the conditions (iii) and (iv), we have T ≥ 0 and T = 0 for φ(t) = t.
It should be noted that arbitrary values of T > 0 can be achieved by scaling
φ.

Note that t 7→
√
t, in the same way as any function t 7→ tq, 0 < q < 1, does

not satisfy these hypotheses since it is not differentiable in 0. However we can
consider a smooth version for ϵ > 0 with t 7→ (t + ϵ)q − (ϵ)q. As said in the
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introduction the classical method is given by φ(t) = t. Other examples are φ :
t 7→ log(1+ t) and functions constructed as in [13,16]: for instance φ : t 7→ t

t+1
and φ : t 7→ 1− exp(−t). It is interesting to note two latter functions φ are
bounded. Moreover, notice that if a function φ satisfies all these hypotheses,
then t 7→ αφ(Ct) with α,C ∈ R++ also satisfies these hypotheses.

The main result of this section (Theorem 3.5) states the polynomial worst-
case complexity of the φ-FN-IPM described in Algorithm 2. In order to achieve
this result we define a measure of the proximity to the central path in Sec-
tion 3.1. Then, in Section 3.2, Theorem 3.1 estimates the error made at each
Newton step. Sections 3.3 and 3.4 present conditions to ensure the correct
behaviour of the algorithm: strict feasibility of the iterates (Theorem 3.2) and
quadratic convergence of the Newton process (Theorem 3.3). Section 3.5 pro-
vides the sequence of update parameters (Theorem 3.4).

3.1 Proximity Measure

At each iteration, after updating parameter µ, we compute the Newton direc-
tion (∆z,∆s) as a solution of system (3). Then we update the iterates with

z+ = z + α∆z and s+ = s+ α∆s . (5)

Note that here we consider a damping factor α ∈ [0, 1] to be more general. In
this case we denote by (α∆z, α∆s) the Newton step with length α and call it
the α-Newton step. Then the full Newton step is given for α = 1.

In order to measure the distance to the target on the central path we
consider a proximity measure δφ(z, s,µ) defined by

δφ(z, s,µ) :=
1

2

∥∥∥∥ φ′(0)

φ′(zs)

(
(vφ(z, s,µ)

−1 − vφ(z, s,µ)
)∥∥∥∥

2

,

with

vφ(z, s,µ) :=

√
φ(zs)

µ
and vφ(z, s,µ)

−1 :=

√
µ

φ(zs)
.

We may omit the arguments of vφ(z, s,µ) and δφ(z, s,µ), when it is clear from
the context. Notice that this proximity measure is a generalization of the one
presented in [19], where the authors consider

δt 7→t :=
1

2

∥∥∥∥√ µ

zs
−
√

zs

µ

∥∥∥∥
2

.

Both proximity measures are equal for φ(t) = t. Moreover for any function φ,
the two proximity measures are asymptotically similar (for zs ↓ 0).

The following two lemmas link the iterates and the proximity measure.

Lemma 3.1 If (z, s) ∈ F+ and δφ ≤ 1, then φ(zs) ≤ 6µ.
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Proof Assume by contradiction that there exists i ∈ {1, . . . , n} such that
φ(zisi) > 6µi. Since φ′ is decreasing and zs > 0:

2δφ ≥
∥∥vφ−1 − vφ

∥∥
2
=

∥∥∥∥∥
√
µ√

φ(zs)
−
√

φ(zs)
√
µ

∥∥∥∥∥
2

≥

∣∣∣∣∣
√
µi√

φ(zisi)
−
√

φ(zisi)√
µi

∣∣∣∣∣
=

√
φ(zisi)√
µi

−
√
µi√

φ(zisi)

>
√
6− 1√

6
≈ 2, 04 ,

where the penultimate step comes from the increasing property of the function
x 7→ x− 1/x on R++. This is in contradiction with δφ ≤ 1. ⊓⊔

The following lemma gives bounds on δφ that depend on some constant
Γ (∥µ∥∞) defined as

Γ (∥µ∥∞) :=

(
1− φ′′(0)φ−1(6∥µ∥∞)

φ′(φ−1(6∥µ∥∞))

)
.

Lemma 3.2 Let δ = 1
2

∥∥vφ−1 − vφ
∥∥
2
, then

δ ≤ δφ ≤
(
1− φ′′(0)∥zs∥∞

φ′(∥zs∥∞)

)
δ .

Furthermore in a close neighbourhood of the central path, i.e. δφ ≤ 1, we have

δ ≤ δφ ≤ Γ (∥µ∥∞)δ . (6)

Proof By convexity of function φ′ for all i ∈ {1, . . . , n}

φ′(zisi) ≥ φ′(0) + φ′′(0)zisi .

Then, for all i ∈ {1, . . . , n}

1 ≤ φ′(0)

φ′(zisi)
≤ 1− φ′′(0)zisi

φ′(zisi)
≤ max

i

(
1− φ′′(0)zisi

φ′(zisi)

)
.

Hence, by definition of δ and δφ

δ ≤ δφ ≤
(
1− φ′′(0)∥zs∥∞

φ′(∥zs∥∞)

)
δ .

The sharpest result when δφ ≤ 1 is deduced from Lemma 3.1. ⊓⊔

In the previous lemma, equation (6), we define Γ as a function of ∥µ∥∞
which depends on the choice of φ. For φ(t) = t, we get Γ (∥µ∥∞) = 1 for all
µ. Moreover, for any function φ, Γ is increasing with respect to ∥µ∥∞, and
converges to 1 as ∥µ∥∞ ↓ 0. Moreover, in the course of the proof we showed
that if δφ ≤ 1

φ′(0)

φ′(zisi)
≤ Γ (∥µ∥∞), ∀i ∈ {1, . . . , n}. (7)

This result will be useful in a future proof.
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3.2 Error Bound of the Newton Step

We use the first order Taylor-Lagrange formula applied to φ in zs. There exists
ξ ∈ [z+s+, zs] (or ξ ∈ [zs, z+s+] if zs < z+s+) such that

φ(z+s+) = φ(zs) + αφ′(zs)(z∆s+ s∆z)

+ α2∆z∆sφ′(zs) +
φ′′(ξ)

2

(
z+s+ − zs

)2
,

(8)

with (∆z,∆s) solution of (3). The update of µ will be chosen such that
φ(z+s+) < φ(zs) and thus 0 < z+s+ < zs. Therefore the error we make
when we say that φ(z+s+) is the µ-center is

η(α) := α2∆z∆sφ′(zs) +
φ′′(ξ)

2

(
z+s+ − zs

)2
. (9)

The following sequence of lemmas aims to bound this error in terms of the
proximity measure. Before doing so, we recall a useful lemma from [14].

Lemma 3.3 (Lemma 5.1, [14]) Let (z, s) ∈ F+ and a ∈ Rn. Assume that
matrix M is a positive semidefinite matrix. Let (∆z,∆s) be the solution of{

−M∆z +∆s = 0

s∆z + z∆s = a
.

Then

||∆z∆s||1 ≤ C1

∥∥∥∥ a√
zs

∥∥∥∥2
2

,

||∆z∆s||2 ≤ C2

∥∥∥∥ a√
zs

∥∥∥∥2
2

,

||∆z∆s||∞ ≤ C∞

∥∥∥∥ a√
zs

∥∥∥∥2
2

,

with C1 = 1/2, C2 = 1/(2
√
2) and C∞ = 1/4.

Through the rest of this article we denote by Cp for p ∈ {1, 2,∞} the constants
defined as

C1 =
1

2
, C2 =

1

2
√
2
and C∞ =

1

4
.

Straightforward application of this lemma for a=µ−φ(zs)
φ′(zs) and vφ =

√
φ(zs)

µ

gives the following lemma.

Lemma 3.4 Let (z, s) ∈ F+, (∆z,∆s) be the solution of (3) and p ∈ {1, 2,∞},
then

∥∆z∆s∥p ≤ Cp

∥∥∥∥∥
√
φ(zs)

√
µ

√
zs φ′(zs)

(vφ
−1 − vφ)

∥∥∥∥∥
2

2

.
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The next lemma will bound ||∆z∆sφ′(zs)||p for p ∈ {1, 2,∞}.

Lemma 3.5 Let (z, s) ∈ F+, (∆z,∆s) be the solution of (3) and p ∈ {1, 2,∞},
then

||∆z∆sφ′(zs)||p ≤ ||∆z∆sφ′(0)||p ≤ 4Cp∥µ∥∞δ2φ .

Proof By concavity of φ we have that φ(zisi) ≤ φ′(0)zisi, ∀i, so

φ(zs)φ′(0)

zs(φ′(zs))2
≤ (φ′(0))2

(φ′(zs))2
. (10)

Furthermore for p ∈ {1, 2,∞} and using Lemma 3.4, followed by (10)

||∆z∆sφ′(zs)||p ≤ ||∆z∆s||pφ′(0)

≤ Cp

∥∥∥∥∥
√
φ(zs)

√
µ

√
zs φ′(zs)

((vφ
−1 − vφ))

∥∥∥∥∥
2

2

φ′(0)

≤

(
n∑

i=1

Cp
φ(zisi)µi

zisi (φ′(zisi))2
(vφ

−1
i − vφi)

2

)
φ′(0)

≤
n∑

i=1

Cpµi

(
φ′(0)

φ′(zisi)

)2

(vφ
−1
i − vφi)

2

≤ 4Cp∥µ∥∞δ2φ .

⊓⊔

Now we move to the main result which gives a bound for the complete error.

Lemma 3.6 Let (z, s) ∈ F+ and (∆z,∆s) be the solution of (3). For p ∈
{2,∞} we have

∥η∥p ≤ (4Cp + 2Tφ(∥zs∥∞))α2∥µ∥∞δ2φ

+
(
C∞
√
φ(∥zs∥∞) + αC2

p

√
∥µ∥∞δφ

)
8α3T∥µ∥∞3/2

δ3φ

Proof By equation (9) we have

η =α2∆z∆sφ′(zs) +
α2φ′′(ξ)

2
(z∆s+ s∆z)2 +

α4φ′′(ξ)

2
(∆s∆z)2

+ α3φ′′(ξ)(∆s∆z)(z∆s+ s∆z)

Taking the p-norm for p ∈ {2,∞} and using triangle inequalities

∥η∥p ≤α2 ∥∆z∆sφ′(zs)∥p+α2

∥∥∥∥φ′′(ξ)

2
(z∆s+s∆z)2

∥∥∥∥
p

+ α4

∥∥∥∥φ′′(ξ)

2
(∆s∆z)2

∥∥∥∥
p

+ α3 ∥φ′′(ξ)(∆s∆z)(z∆s+ s∆z)∥p
.
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We now bound each term of the above right-hand side. First, Lemma 3.5 gives

∥∆z∆sφ′(zs)∥p ≤ 4Cp∥µ∥∞δ2φ .

Using successively (4), (µ−φ(zs))2 = (µvφ(vφ
−1−vφ))

2 = µφ(zs)(vφ
−1−vφ)

2

and φ(zisi) ≤ φ(∥zs∥∞), ∀i ∈ {1, ..., n}, we obtain step by step∥∥∥∥φ′′(ξ)

2
(z∆s+ s∆z)2

∥∥∥∥
p

≤
∥∥∥∥φ′′(0)

2
(z∆s+ s∆z)2

∥∥∥∥
p

=
T

2

∥∥∥∥∥
(

φ′(0)

φ′(zs)

)2

(µ−φ(zs))2

∥∥∥∥∥
p

≤ Tφ(∥zs∥∞)∥µ∥∞
2

∥∥∥∥∥
(

φ′(0)

φ′(zs)
(vφ

−1 − vφ)

)2
∥∥∥∥∥
p

≤ 2Tφ(∥zs∥∞)∥µ∥∞δ2φ .

To bound the third term, we use Lemma 3.5, equality (4) and the inequality
∥u2∥p ≤ ∥u∥2p for all u ∈ Rn, and we obtain∥∥∥∥φ′′(ξ)

2
(∆s∆z)2

∥∥∥∥
p

≤ T

2

∥∥(φ′(0)∆s∆z)2
∥∥
p
≤ T

2
∥φ′(0)∆s∆z∥2p

≤ T

2
(∥µ∥∞4Cpδ

2
φ)

2 = 8TC2
p∥µ∥∞

2
δ4φ .

Finally, the definition of vφ implies that

∥φ′(0)(z∆s+ s∆z)∥p =

∥∥∥∥ φ′(0)

φ′(zs)
µvφ(vφ

−1 − vφ)

∥∥∥∥
p

≤
∥∥∥∥ φ′(0)

φ′(zs)

√
∥µ∥∞

√
φ(∥zs∥∞)(vφ

−1 − vφ)

∥∥∥∥
p

Using the above inequality, as well as ∥uw∥p ≤ ∥u∥∞∥w∥p, ∀(u,w) ∈ Rn×Rn,
and (4), we get

∥φ′′(ξ)(∆s∆z)(z∆s+ s∆z)∥p ≤ T ∥φ′(0)(∆s∆z)∥∞ ∥φ′(0)(z∆s+ s∆z)∥p
≤ 8TC∞

√
φ(∥zs∥∞)∥µ∥∞3/2

δ3φ,

which completes the proof. ⊓⊔

In the special case where we are in a close neighbourhood of the central
path we get an improved version of the result:

Theorem 3.1 Let (z, s) ∈ F+, δφ ≤ 1 and (∆z,∆s) be the solution of (3)
and p ∈ {2,∞}, we have

∥η∥p ≤ (4Cp +12T∥µ∥∞)α2∥µ∥∞δ2φ +(
√
6C∞ +αC2

pδφ)α
38T∥µ∥∞2

δ3φ (11)
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Proof The proof is similar to the proof of Lemma 3.6, but we use φ(zs) ≤ 6µ
from Lemma 3.1 instead of φ(zisi) ≤ φ(∥zs∥∞), ∀i. ⊓⊔

For instance, with α = 1, using δqφ ≤ δφ for q ≥ 1, (11) becomes

∥η∥∞ ≤

(
∥µ∥∞ +

(
25 + 4

√
6

2

)
T∥µ∥∞2

)
δ2φ .

For φ(t) = t we get the same result as in [17]: ∥η∥∞ ≤ ∥µ∥∞δ2φ.

3.3 Feasibility of the Newton Step

A Newton step is feasible (strictly feasible) if the couple (z+, s+) defined by (5)
is feasible (strictly feasible).

Theorem 3.2 Let α be in [0,1] and δφ ≤ 1. The α-Newton step is strictly
feasible for (z, s) if

αδ2φ <
1

1 +
(

25+4
√
6

2

)
T∥µ∥∞

. (12)

Note that for α = 1, the above condition makes the full Newton step be strictly
feasible.

For α = 1 condition (12) implies that the proximity measure, δφ, must be less
than 1, which will not be a restrictive assumption.

Proof For α = 0 the result trivially holds. Therefore, we can assume without
loss of generality that α ∈]0, 1]. Let β ∈]0, α], and define zβ := z + β∆z and
sβ := s + β∆s, where (∆z,∆s) is the solution of (3). The proof rests upon
a continuity argument. Indeed, we assume z, s > 0 so φ(zs) > 0 and, using
equations (3) and (8):

φ(zβsβ) = φ(zs) + βφ′(zs)(z∆s+ s∆z) + η(β)

= φ(zs)(1− β) + β

(
µ+

η(β)

β

)
≥ φ(zs)(1− β) + β

(
µ− e

∥η(β)∥∞
β

)
which is positive for all z, s > 0 if ∥µ∥∞ > ∥η(β)∥∞/β. Using Lemma 3.6 this
condition holds if

∥µ∥∞ >(4C∞ + 2Tφ(∥zs∥∞))β∥µ∥∞δ2φ

+
(
C∞
√
φ(∥zs∥∞) + βC2

∞
√
∥µ∥∞δφ

)
8β2T∥µ∥∞3/2

δ3φ
.
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The right-hand side is increasing with respect to β, so it is sufficient to verify

∥µ∥∞ >(4C∞ + 2Tφ(∥zs∥∞))α∥µ∥∞δ2φ

+
(
C∞
√
φ(∥zs∥∞) + αC2

∞
√

∥µ∥∞δφ

)
8α2T∥µ∥∞3/2

δ3φ
.

Therefore, since δφ ≤ 1, using Lemma 3.1, it suffices to have

1− δ2φα
(
4C∞ +

(
12 + 8

√
6C∞ + 8C2

∞

)
T∥µ∥∞

)
> 0 ,

which corresponds to our assumption. It follows that for all β ∈ [0, α],φ(zβsβ) >
0. By continuity of φ, this implies that none of zβ or sβ vanish for β ∈ [0, α],
so the result follows. ⊓⊔

3.4 Quadratic Decrease of the Proximity Measure

The Newton method is known to behave well in a close neighbourhood of the
solution. The following theorem states a condition on the proximity measure,
δφ := δφ(z, s,µ), that ensures a quadratic convergence of the Newton step. We
denote by δφ := δφ(z

+, s+,µ) and vφ := vφ(z
+, s+,µ) the proximity measure

and the function vφ after the Newton step.

Theorem 3.3 Let (z, s) ∈ F+ and (z+, s+) be defined as in (5) for α = 1.
Let Γ (∥µ∥∞) defined in (6) and

Q(∥µ∥∞) :=
1−

(
Γ (∥µ∥∞)(

√
2 + (13 + 2

√
6)T∥µ∥∞)

)2
/4

1 +
(

25+4
√
6

2

)
T∥µ∥∞

. (13)

If δ2φ ≤ Q(∥µ∥∞), then δφ ≤ δ2φ.

Proof Let Γ (∥µ∥∞) be defined as in Section 3.1:

δφ ≤ Γ (∥µ∥∞)

2
∥(vφ)−1 − (vφ)∥2 =

Γ (∥µ∥∞)

2
∥(vφ)−1(e− (vφ)

2)∥2 (14)

≤ Γ (∥µ∥∞)

2

∥∥∥∥∥∥
η(α)
µ√

e+ η(α)
µ

∥∥∥∥∥∥
2

(15)

≤
Γ (∥µ∥∞)

∥∥∥η(α)
µ

∥∥∥
2

2

√
1−

∥∥∥η(α)
µ

∥∥∥
∞

. (16)

Let δ2φ ≤ Q(∥µ∥∞) ≤ 1, using Theorem 3.1 with a full step, i.e. α = 1, it
follows

δφ ≤ δ2φΓ (∥µ∥∞)
4C2 + (12 + 8

√
6C∞ + 8C2

2 )T∥µ∥∞
2
√
1− δ2φ(4C∞ +

(
12 + 8

√
6C∞ + 8C2

∞
)
T∥µ∥∞)

.

So, δφ ≤ δ2φ if δ2φ ≤ Q(∥µ∥∞). ⊓⊔
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Considering φ(t) = t, the condition of Theorem 3.3 becomes the same as
in [17]: δ2φ ≤ 1/2.

Remark 1 The condition in Theorem 3.3 implies the condition in Theorem 3.2.
So, if the iterates locate in the neighbourhood of quadratic convergence, the
full Newton step will provide strictly feasible iterates.

Remark 2 Notice that since the proximity measure is always non-negative,
the condition from Theorem 3.3 can hold only when µ is sufficiently small,
i.e. when Γ (∥µ∥∞)

(√
2 + (13 + 2

√
6)T∥µ∥∞

)
≤ 2. This is not a restrictive

assumption, because we can always scale a given initial point so that it satisfies
this condition.

3.5 Updating Parameter Strategy

The sequence of parameters {θk} must be chosen such that the iterates re-
main strictly feasible and satisfy the condition of Theorem 3.3. In this section,
Proposition 3.1 gives an upper bound on the proximity measure after an up-
date on µ, that is µ+ = µ(1 − θk), and then Theorem 3.4 describes how to
build the sequence {θk}.

First, we provide an upper bound of the proximity measure after an update
of the parameter, denoted δ+φ := δφ(z

+, s+,µ(1− θk)), in terms of the update

θk, the proximity measure before this update, denoted δφ := δφ(z
+, s+,µ),

and the proximity measure before the Newton step, denoted δφ := δφ(z, s,µ).
The computation of this upper bound is based on the following lemma.

Lemma 3.7 Let (z, s) ∈ F+ and (∆z,∆s) be the solution of (3). Then,

n∑
i=1

φ(z+i s
+
i )

µi

≤ n+ 2δ2φ .

Proof We first show that ∥∥∥∥∆z∆sφ′(zs)

µ

∥∥∥∥
1

≤ 2δ2φ. (17)

For this, we apply Lemma 3.3 with ∆z/
√
µ, ∆s/

√
µ and a= µ−φ(zs)√

µφ′(zs) to obtain

∥∥∥∥∆z∆s

µ

∥∥∥∥
1

≤ 1

2

∥∥∥∥ µ− φ(zs)
√
µφ′(zs)

√
zs

∥∥∥∥2
2

.

Then, we get (17) by following the same steps as in the proof of Lemma 3.5.

From equation (8) and by concavity of φ, φ(z+s+)/µ ≤ e+∆z∆sφ′(zs)/µ.
So,

∑n
i=1 φ(z

+
i s

+
i )/µi ≤

∑n
i=1 1 + |∆zi∆siφ

′(zisi)/µi| ≤ n+ 2δ2φ. ⊓⊔
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Proposition 3.1 Let vφ := vφ(z
+, s+,µ) and v+φ := (z+, s+,µ+), where

µ+ := (1 − θk)µ. Then,

(δ+φ )
2 ≤ (1− θk)(δφ)

2 +
Γ (∥µ∥∞)2

4(1− θk)

(
n(θk)2 + (4θk − 2(θk)2)δ2φ

)
.

Furthermore, assuming that δ2φ ≤ Q(∥µ∥∞) yields

(δ+φ )
2 ≤ (1− θk)Q(∥µ∥∞)2 +

Γ (∥µ∥∞)2

4(1− θk)

(
n(θk)2 + (4θk − 2(θk)2)Q(∥µ∥∞)

)
.

Proof Noticing that v+φ = vφ/
√
1− θk, it follows that

(δ+φ )
2 =

1

4

n∑
i=1

(
φ′(0)

φ′(z+i s
+
i )

)2

((v+φ i
)−2 + (v+φ i

)2 − 2)

=
1

4

n∑
i=1

(
φ′(0)

φ′(z+i s
+
i )

)2(
(1− θk)(vφi)

−2 +
vφ

2
i

(1− θk)
− 2

)

= (1− θk)(
1

4

n∑
i=1

(
φ′(0)

φ′(z+i s
+
i )

)2 (
(vφi)

−2 + vφ
2
i − 2)

)
+
1

4

n∑
i=1

(
φ′(0)

φ′(z+i s
+
i )

)2(
−2θk +

2θk − (θk)2

1− θk
vφ

2
i

)

= (1− θk)(δφ)
2 +

1

4

n∑
i=1

(
φ′(0)

φ′(z+i s
+
i )

)2(
−2θk +

2θk − (θk)2

1− θk
vφ

2
i

)
Using successively equation (7), Lemma 3.7 and Γ (∥µ+∥∞) ≤ Γ (∥µ∥∞), we
obtain

(δ+φ )
2 ≤ (1− θk)(δφ)

2 + Γ (∥µ+∥∞)2
(
−2θk

4
n+

2θk − (θk)2

4(1− θk)
(n+ 2δ2φ)

)
≤ (1− θk)(δφ)

2 + Γ (∥µ∥∞)2
(

n(θk)2

4(1− θk)
+

2θk − (θk)2

2(1− θk)
δ2φ

)
.

This proves the first part of the proposition.
Now, assuming that δφ ≤ Q(∥µ∥∞) allows us to use Theorem 3.3 and so

δφ ≤ δ2φ ≤ Q(∥µ∥∞)2 gives the result. ⊓⊔

We conclude this section by a description of the choice of the update pa-
rameters θk.

Theorem 3.4 Let µ be such that Q(∥µ∥∞) > 0 and (z, s) ∈ F+ such that
δ2φ ≤ Q(∥µ∥∞). Define θk as

θk =
−b+

√
b2 − 4ac

2a
,
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with

a = Γ (∥µ∥∞)2n− 2Γ (∥µ∥∞)2Q(∥µ∥∞) + 4Q(∥µ∥∞)2 ,

b = 4Γ (∥µ∥∞)2Q(∥µ∥∞)− 8Q(∥µ∥∞)2 + 4Q(∥µ∥∞) ,

c = 4Q(∥µ∥∞)2 − 4Q(∥µ∥∞) .

The proximity measure δ+φ := δφ(z
+, s+,µ(1− θk)) satisfies the conditions of

feasibility in Theorem 3.2 and quadratic convergence of the Newton step in
Theorem 3.3.

By definition Q(∥µ∥∞) < 1, thus c is negative. Furthermore, for n sufficiently
large a is positive and so b2 − 4ac and θk are positive.

We would also like to point out that the value of θk is of order 1/
√
n for

n large. This observation is fundamental considering the complexity of the
algorithm.

Proof As pointed out earlier in Remark 1 the condition of Theorem 3.2 is
weaker than the condition of Theorem 3.3. Thus, it is sufficient to satisfy the
latter condition to ensure strict feasibility of the iterates.

According to the condition of Theorem 3.3, after an update of µ, i.e. µ+ =
(1− θk)µ, the proximity measure δ+φ must satisfy

(δ+φ )
2 ≤ Q(∥µ+∥∞) .

As Q is decreasing with respect to ∥µ∥∞, it is sufficient to ensure that

(δ+φ )
2 ≤ Q(∥µ∥∞) .

By Proposition 3.1 in the case δ2φ ≤ Q(∥µ∥∞), we can choose any θk satisfying

(1−θk)Q(∥µ∥∞)2+
Γ (∥µ∥∞)2

4(1− θk)

(
n(θk)2 + (4θk − 2(θk)2)Q(∥µ∥∞)

)
≤ Q(∥µ∥∞) .

Therefore, it is sufficient to choose θk > 0 such that

θk ≤ −b+
√
b2 − 4ac

2a
,

with a, b and c defined as in the statement of the theorem. ⊓⊔

Remark 3 For a more explicit characterization of θk, we can study its asymp-
totical behaviour. By definition of Γ and Q,

lim
µ→0

Q(∥µ∥∞) = 1/2 and lim
µ→0

Γ (∥µ∥∞) = 1,

so lim
µ→0

θk = −1+
√
1+4n

2n ≤ 1√
n
.



A Generalized Direction in IPM for Monotone LCP 15

3.6 Complexity Analysis of the Full Newton Step IPM

The complexity of this algorithm is obtained by the extension of a classical
lemma, whose proof can be found for instance in [19].

Lemma 3.8 Let θ̄ be such that 0 < θ̄ ≤ θk ∀k ∈ N. The φ-FN-IPM for
monotone LCP described in Algorithm 2 provides an ϵ-solution (z, s), which
satisfies

∑n
i=1 φ(zisi) ≤ nϵ after at most log

(∑n
i=1 φ(z

0
i s

0
i )/ϵ

)
/θ̄ iterations.

The sequence {θk} is given by Theorem 3.4. As already stated, θk is of
order 1/

√
n for n large, which justify the existence of θ̄. Moreover, we can

choose θ̄ of order 1/
√
n without loss of generality. As a result, we can now

state our main theorem.

Theorem 3.5 Let µ0 = z0s0. Algorithm 2, with the sequence of update pa-
rameters θk described above, guarantees strict feasibility of the iterates and
quadratic convergence of the proximity measure. Moreover, it provides an ϵ-
solution (z, s), which satisfies

∑n
i=1 φ(zisi) ≤ nϵ after at most O

(√
n log

(
n
ϵ

))
iterations.

Preliminary computational experiments give similar results to the classical
method on a small selection of LPs from the NETLIB repository1. This con-
firms the validity of our approach. Some informations regarding these results
are presented on Appendix A. Further investigations on more sophisticated
methods may get the best out of this new direction.

4 Conclusions

The method presented in this article shows a generalization of the FN-IPM
with polynomial upper bound complexity for monotone LCPs considering a
general family of smooth increasing concave functions. The main contributions
of this article are that we extend the classical path-following method and
Darvay’s method with φ(t) =

√
t and prove that these new methods have the

best known worst-case complexity.
Further research may extend this result to a more general family of LCPs

such that P∗(κ)-LCPs or P0-LCPs with bounded level sets as in [4,5,23].
Recent developments by Roos in [18] consider an infeasible IPM with full

Newton step using only one feasibility step. More investigations regarding the
method presented in this paper could extend the results in [18].

Despite having the best worst case upper-bound for IPMs the full Newton
step is not the most used approach for numerics, since this upper-bound is
attained in general [19]. We believe that the philosophy applied in this paper
can be generalized to other IPMs approaches. In particular, we are planning
to study a predictor-corrector implementation of this approach.

1 http://www.netlib.org/lp/
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A Numerics

To validate the theoretical results, we first implemented the φ-FN-IPM described in Al-
gorithm 2 with the sequence of update parameters given by Theorem 3.4 and with the
functions φ given in Table 1. The datasets and the residuals after convergence are detailed

Name Id. θ1 log ( )α

Fct. t t
t+1

log(1 + t) (t+ 10−3)α − (10−3)α with α ∈ (0, 1)

Table 1 φ-functions used in the computational tests

in Table 2. The stopping criterion is zT s ≤ nϵ, where ϵ = 10−6, and we compute the resid-
uals as ∥zs∥∞ × 106. For every φ function that appears in Table 1, the method converged
in the same number of iterations, so we only display the number of iterations once. This
phenomenon is not surprising, since the φ-FN-IPM used here stays very close to the central
path, as shown by Theorem 3.3. Therefore, this implementation does not exploit fully the
new directions. Nonetheless, some small differences remain in the residuals as illustrated in
Table 2.

Instance Iter. Id. θ1 log α = 0.25 α = 0.5 α = 0.75
ADLITTLE 268 0.995583 0.995853 0.995856 0.995851 0.995855 0.995854

AFIRO 170 0.943919 0.944204 0.944207 0.944200 0.944205 0.944205
BEACONFD 418 0.995479 0.995728 0.995730 0.995724 0.995727 0.995728
BOEING2 420 0.974064 0.974307 0.974309 0.974309 0.974309 0.974307
BLEND 264 0.984332 0.984599 0.984602 0.984600 0.984599 0.984599
GROW7 406 0.983538 0.983785 0.983788 0.983780 0.983787 0.983785
ISRAEL 428 0.988911 0.989157 0.989155 0.989148 0.989154 0.989156
KB2 203 0.944257 0.944530 0.944532 0.944530 0.944531 0.944530

RECIPELP 332 0.960634 0.960884 0.960887 0.960884 0.960885 0.960885
SC50A 218 0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
SC50B 218 0.951084 0.951353 0.951356 0.951350 0.951354 0.951354
SC105 316 0.973217 0.973472 0.973475 0.973473 0.973474 0.973473

SCAGR7 342 0.985376 0.985631 0.985633 0.985632 0.985632 0.985632
SHARE1B 372 0.968387 0.968633 0.968635 0.968634 0.968632 0.968634
SHARE2B 310 0.972849 0.973105 0.973107 0.973102 0.973107 0.973106
STOCFOR1 324 0.982774 0.983031 0.983033 0.983033 0.983031 0.983031

Table 2 Value of Res.=∥zs∥∞ × 106, after the algorithm reaches zT s ≤ nϵ = 10−6n

To illustrate the possible differences between the functions φ, we run another experiment
that considers a fixed value for θk = 1√

n
for all k ∈ N. Table 3 illustrates the different

behaviours observed for different choices of φ. We notice that a smaller number of iterations
seems to be required when the derivative in zero is larger for the methods with α = 0.25, 0.5
and 0.75. Thus, further research exploring interior-point methods in large neighbourhood of
the central path may get the best out of these differences.
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Instance Id. θ1 log α = 0.25 α = 0.5 α = 0.75
Res. Iter. Res. Iter. Res. Iter. Res. Iter. Res. Iter. Res. Iter.

ADLITTLE 0.995 268 0.975 255 0.993 263 0.967 212 0.983 226 0.966 245
AFIRO 0.943 170 0.988 161 0.930 167 0.970 134 0.972 143 0.954 155

BEACONFD 0.995 418 0.998 397 1.000 410 0.984 330 0.996 352 0.968 382
BOEING2 0.974 420 0.974 399 0.977 412 0.986 331 0.967 354 0.975 383
BLEND 0.984 264 0.975 251 0.986 259 0.950 209 0.954 223 0.973 241
GROW7 0.983 406 0.973 386 0.996 398 0.993 320 0.982 342 0.992 370
ISRAEL 0.988 428 0.976 407 0.987 420 0.976 338 0.972 361 0.998 390
KB2 0.944 203 0.938 193 0.957 199 0.968 160 0.954 171 0.959 185

RECIPELP 0.960 332 0.978 315 0.992 325 0.963 262 0.991 279 0.995 302
SC50A 0.951 218 0.960 207 0.946 214 0.962 172 0.999 183 0.944 199
SC50B 0.951 218 0.960 207 0.946 214 0.962 172 0.999 183 0.944 199
SC105 0.973 316 0.982 300 0.976 310 0.989 249 0.983 266 0.982 288

SCAGR7 0.985 342 0.981 325 0.968 336 0.978 270 0.988 288 0.981 312
SHARE1B 0.968 372 0.984 353 0.969 365 0.989 293 0.983 313 0.979 339
SHARE2B 0.972 310 0.996 294 0.981 304 0.957 245 0.981 261 0.962 283
STOCFOR1 0.982 324 0.975 308 0.979 318 0.967 256 0.980 273 0.961 296

Table 3 Value of Res.=∥zs∥∞ × 106 after the algorithm reaches zT s ≤ nϵ = 10−6n and
number of iterations (Iter.).


