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Abstract  28 

Pollution-induced community tolerance (PICT) approaches involve comparing tolerance levels of 29 

natural communities to a particular contaminant or a contaminant mixture using short-term toxicity 30 

tests performed under controlled conditions. However, results from toxicity tests can be modulated by 31 

various environmental and experimental conditions, raising questions about their reproducibility and 32 

comparability. In this context, the present study aimed to determine the influence of exposure 33 

duration, periphyton suspension concentration and periphyton maturation stage on the measurement of 34 

short-term effects of copper on phototrophic periphyton communities. Our results showed the very 35 

weak influence of exposure duration in the tested range (2–6 h) on toxicity level, whereas periphyton 36 

biomass in the tested suspension (in terms of both chlorophyll a concentrations and dry weight), 37 

proved a crucial determinant in toxicity assessment. Results also highlighted the potential tolerance 38 

increase with the periphyton maturation stage. This parameter conditioned the positive linear 39 

relationship between tolerance level and periphyton suspension concentration, leading to an increase 40 

in the linear regression slope with the maturation stage. This suggests that such a relationship is 41 

probably highly periphyton-dependent. Consequently, to enable data toxicity comparisons, an a priori 42 

normalization of the periphyton suspension biomass is necessary, and PICT approaches require the 43 

use, as much of possible, of periphyton with similar maturation stage. Finally, the present study clearly 44 

shows that a better standardization of PICT approaches could help to improve reproducibility. It could 45 

thus facilitate the comparison of tolerance levels measured in the same study (e.g. spatial and/or 46 

temporal and/or inter-treatment comparison) as well as the comparison obtained from different 47 

experimental and in situ research.   48 

 49 
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1  Introduction 55 

The concept of pollution-induced community tolerance (PICT), first introduced by Blanck et al 56 

(1988), is an ecotoxicological tool that can help to characterize environmental status, since it takes into 57 

account the contamination history of the ecosystem at the community level (Tlili and Montuelle 2011). 58 

PICT is based on the fact that chronic exposure of a biological community to a toxicant will induce a 59 

succession of species resulting in a replacement of the sensitive species by more tolerant ones (Blanck 60 

2002) and/or specific adaptation such as the establishment of mechanisms for detoxification, thus 61 

leading to an increased community tolerance to this toxicant (Tlili and Montuelle 2011). The approach 62 

uses the theoretical basis of toxicology (the dose-response model) to quantify community tolerance 63 

(Schmitt-Jansen et al. 2008), and can give an indication of past in situ exposure of the community to 64 

toxicants (Tlili and Montuelle 2011).   65 

In principle, the PICT concept can be applied to terrestrial and aquatic ecosystems (Hjorth et al. 2006; 66 

Niklinska et al. 2006). Although, they can be applied with vertebrates (Knopper and Siciliano 2002) 67 

and invertebrates (Millward and Grant 2000), PICT approaches are used mainly for microbial 68 

communities such as bacteria (Boivin et al. 2005) and photosynthetic microorganisms (Dahl and 69 

Blanck 1996). Induced tolerance is observed by comparing the sensitivity of natural communities to a 70 

particular contaminant or contaminant mixture (Kim-Tiam et al. 2014), using short-term toxicity tests 71 

performed under controlled conditions. These tests are based on representative endpoints such as, 72 

photosynthetic efficiency (Dorigo et al. 2010; Tlili et al. 2010), respiration potential (Dorigo et al. 73 

2010; Tlili et al. 2011) enzymatic activities (Fechner et al. 2012), and metabolic capacities (Boivin et 74 

al. 2005). Different studies have thus highlighted an increased tolerance of microbial communities to 75 

various substances such as metals and metalloids, and organic pesticides following chronic exposure 76 

to these toxicants in various ecosystems (see for reviews Blanck 2002; Imfeld and Vuilleumier 2012; 77 

Tlili and Montuelle 2011). In aquatic environments, metals including copper, zinc, lead, nickel, 78 

mercury, and cadmium have been particularly well-studied in PICT approaches, because of their 79 

abundance in surface waters and their potential toxicity to aquatic microbial communities (e.g. 80 

Gustavson et al. 1999; Soldo and Berha 2000; Barranguet et al. 2002; Serra and Guasch 2009). 81 

Author-produced version of the article published in Environmental Science and Pollution Research (2015), vol. 22, n° 6,  pp 4037–4045 
The original publication is available at http://link.springer.com/article/10.1007%2Fs11356-014-3505-4 

doi:10.1007/s11356-014-3505-4 



4 

 

In lotic environments, the PICT approach is frequently applied on surface-associated microbial 82 

communities, called periphyton (or biofilm). Periphyton is a complex assembly of microbial 83 

communities (including microalgae, bacteria, fungi and heterotrophic protists) embedded in a 84 

polysaccharide and protein matrix. Since they are attached to natural surfaces, periphyton integrate the 85 

effects of multiple anthropogenic disturbances over extended periods of time, and have strong 86 

capacities to adapt to environmental changes (Sabater et al. 2007). Tolerance assessment of 87 

phototrophic periphyton communities (mainly composed of microalgae and cynaobacteria) is 88 

generally performed using photosynthesis as a functional parameter (Dahl and Blanck 1996; Bérard et 89 

al. 2003).  90 

However, short-term effects of metals on photosynthesis can be modulated by various environmental 91 

and experimental conditions, and protocols used in toxicity test vary widely among studies, sometimes 92 

hindering comparison of results (Eklund and Kautsky 2003). For example, it has been shown that 93 

metal effects on microalgae depend not only on metal concentration, but also on cellular densities 94 

(Tobar et al. 1993). This biological parameter can modulate accumulation of metal on individual cells, 95 

thus modulating their exposure level (Steemann and Wium-Andersen 1970; Moreno-Garrido 1997). 96 

Moreno-Garrido et al. (2000) thus observed an increase in copper toxicity (i.e. a decrease in half 97 

effective concentration (EC50) values) to marine microalgal species when their initial cellular density 98 

decreased. In the same way, Fechner et al. (2010) observed for heterotrophic periphyton communities 99 

an increase in metals EC50 values concomitantly with an increase in periphyton suspension 100 

concentrations (periphyton biomass used during the toxicity test). The literature reveals that exposure 101 

durations in toxicity tests with metals can vary widely among studies. For example, in the case of 102 

short-term toxicity tests to evaluate effects of copper on photosynthetic efficiency of periphyton, 103 

exposure duration (incubation duration) can be 2 h (Tlili et al. 2010; Lambert et al. 2012), 4 h (Guasch 104 

et al. 2004) or 6 h (Serra and Guasch 2009), but the influence of such differences on the obtained 105 

results is still sparsely documented. Since these parameters are rarely taken into account (or described) 106 

in studies using short-term toxicity tests, prior findings confirm the need for better standardization of 107 

toxicity tests for reproducibility and comparability of toxicity data, as previously stated (Soldo and 108 
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Berha 2000; Eklund and Kautsky 2003; Fechner et al. 2010). It is now well accepted that PICT can 109 

serve as a powerful tool for in situ assessment of chronic effects of toxicants on periphyton 110 

communities (Pesce et al. 2010). This kind of approach raises question about the periphyton sampling 111 

procedure, which appears to be highly variable between studies, depending on the use of either natural 112 

(Dorigo et al. 2010) or artificial substrates, with fluctuating colonization durations (e.g from 2 weeks 113 

(Blanck and Dahl 1996) to 2 months (Pesce et al. 2010)).  This notably raises the question of the 114 

influence of the maturation stage (growth stage) in tolerance assessment. Maturation processes include 115 

both species succession, which conditions the tolerance baseline of the community, and the building of 116 

a highly complicated structure that can form a protective layer (Extracellular Polymeric Substances), 117 

thereby influencing the level of exposure to toxicants (Ivorra et al. 2000; Gold et al. 2003a, 2003b).  118 

Given this background, the main aim of our work was to help identify the most important parameters 119 

that must be considered to obtain reproducible and comparable results from short-term toxicity tests 120 

for metals on natural phototrophic periphyton communities. 121 

Accordingly, we developed a microcosm approach aiming to accurately determine the influence of 122 

three main parameters on the significance and reproducibility of results obtained from short-term 123 

dose-response relationships for metals (as performed for tolerance determination in the PICT detection 124 

step). Copper was chosen as model compound because of its frequent occurrence in freshwater 125 

environments (Fechner et al. 2012) as well as its current use in PICT approaches. We thus focused on 126 

the influence of (i) periphyton suspension concentration, (ii) duration of exposure to copper, and (iii) 127 

periphyton maturation stage.  128 

 129 

2. Materials and Methods 130 

2.1. Experimental setup and periphyton sampling procedure 131 

Microcosm experiments were carried out in three independent microcosms (glass, 40  20  25 cm), 132 

incubated in thermoregulated tanks at 23 °C (polyethylene, 250 L, 121  81  33cm). One submersible 133 

pump (New Jet 800) was introduced in each microcosm to reproduce the water flow (water discharge 134 
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~1.2 L/min), and three pumps were placed in the tank to homogenize water temperature. High-135 

pressure sodium lamps were used to obtain a constant light intensity of 3500 lux (42.7 μmol m-2 s-1) 136 

under a 13 h/11 h light/dark photoperiod. Artificial substrates (glass slides) were previously placed 137 

vertically at the surface in each microcosm to allow periphyton settlement. Microcosms were filled 138 

with untreated groundwater and a suspension of natural periphyton, collected on stones in April 2013 139 

at the upstream reference site of the Morcille River (Beaujolais, Eastern France) with low Cu 140 

concentrations (dissolved concentrations lower than 0.9 µg/L; see Montuelle et al. (2010) for details). 141 

Silica, nitrates and phosphates were added at concentrations of 15 mg/L, 8 mg/L, and 0.2 mg/L, 142 

respectively, to reach sampling site concentrations (Dorigo et al., 2010). Water was renewed weekly to 143 

avoid nutrient depletion. The experiment lasted 5 weeks. In order to obtain a periphyton suspension 144 

for short-term bioassays, two series of samples were taken from the microcosms, after 3 and 5 weeks 145 

of colonization, respectively. The periphyton was scraped from glass substrates collected in each 146 

microcosm, and suspended in a diluted equivalent mixture of demineralized water and mineral water 147 

(Evian, France) to obtain three replicates of periphyton suspension at 36 cm²/mL.    148 

 149 

2.2. Short-term bioassays  150 

The same medium should be used for all toxicity tests, in order to avoid changes in metal 151 

bioavailability during metal toxicity testing (Blanck 2002, Blanck et al. 2003). Accordingly and to 152 

improve standardization an equivalent mixture of demineralized water and mineral water (Evian, 153 

France) was therefore used to prepare periphyton suspensions as well as Cu solutions. A semi-154 

logarithmic series of Cu concentrations was freshly prepared to obtain five Cu concentrations, ranging 155 

from about 0.32 to 32 mg/L. Cu concentrations in each dilution were checked using inductively 156 

coupled plasma-mass spectrometry (ICP-MS X Series II, Thermo Electron).  157 

The tolerance of phototrophic periphyton communities to Cu was assessed using photosynthetic 158 

efficiency as endpoint. Photosynthetic efficiency is based on the measurement of maximal quantum 159 

yield (YII) of algae (Schreiber et al. 2002). It reflects the number of functional photosystems II (PSII), 160 

and therefore more generally the physiological state of the phototrophic communities (Tlili et al. 161 
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2010). To assess this parameter, periphyton suspensions (1.8 mL, see procedure below) were exposed 162 

to increasing concentrations of Cu (0.9 mL) in a climatic chamber at 23 °C (temperature of 163 

microcosms during growth period) (MLR-350 Versatile Environmental Test Chamber, Sanyo) under 164 

artificial light (1400 lux). Samples were then kept for 30 min in a dark chamber and PSII quantum 165 

yield (665 nm) was determined using a PhytoPAM (pulse amplitude-modulated) fluorometer (Heinz 166 

Wals, Gmbh). For each sample replicate, four blanks and two analytical replicates were analyzed for 167 

each concentration. A single saturation pulse was applied to calculate the maximal quantum yield as 168 

YII, 665 nm = (Fm − F0) ∕ Fm, where Fm is the maximum fluorescence after the saturation pulse, and F0 is 169 

the steady state fluorescence. 170 

Three variable parameters were assessed during the short-term toxicity tests: (i) periphyton biomass, 171 

(ii) exposure duration, and (ii) maturation stage. Given the predominance of phototrophic 172 

microorganisms in illuminated periphyton, we postulated that the estimation of the phototrophic 173 

biomass (based on chla concentrations) might give a relative estimation of the total biomass. The 174 

influence of periphyton biomass was thus tested using various periphyton suspension concentrations. 175 

Successive dilutions of the initial periphyton suspension were performed with the 176 

demineralized/mineral water mixture (see above) to obtain periphyton suspension concentrations 177 

ranging from about 400 µg chla/L (dilution 4, i.e. D4) to about 7000 µg chla/L (D1). These 178 

concentrations were estimated from chlorophylla (chla) measurement with the PhytoPAM 179 

fluorometer. This relative estimation of periphyton suspension biomass was then checked with 5-week 180 

periphyton by measuring total biomass (dry weight, DW) as described in Morin et al. (2010).  181 

The influence of the duration of exposure to Cu was evaluated from toxicity tests after 2 h, 4 h and 6 h 182 

of incubation. The influence of the periphyton maturation stage was assessed by performing toxicity 183 

tests with periphyton retrieved after 3 and 5 weeks of development in the microcosms.  184 

 185 

 186 

 187 

 188 
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2.3. Statistical analysis 189 

The relationship between chla and periphyton DW was assessed using linear regression analysis. The 190 

analysis of results from short-term bioassay was conducted using functions from the ‘drc’ package 191 

(Ritz and Streibig 2005) in R version 2.15.0 (R Development Core Team 2012). Dose-response curves 192 

were fitted to the data using the four-parameter log-logistic model given by the formula: 193 

 ))log()(log(exp1 eDoseb

cd
cresponse




  194 

where b denotes the slope of the curve around e. Parameters c and d are the lower and upper limits of 195 

the curve, respectively, and e denotes the EC50, the dose producing a response half-way between the 196 

upper and the lower limit. The response variable was expressed as the percentage of the yield of 197 

uncontaminated control assay. In addition, EC10, and EC50 were derived from each dose-response 198 

curve. Data from the three replicate bioassays were pooled to produce a single dose-response curve 199 

with the % inhibition of PSII activity as a function of Cu concentrations. Student t tests were used to 200 

determine significant differences in ECx between treatments using the selectivity index (SI) function 201 

from the ‘drc’ package. Linear regression analyses were performed to evaluate the relationship 202 

between ECx and chla concentrations. Analysis of covariance (ANCOVA) was used to determine 203 

whether the relationship differed between periphyton maturation stages. 204 

 205 

3. Results and discussion 206 

3.1.     Influence of tested parameters 207 

Assessment of short-term toxicity of Cu to 3-week periphyton photosynthetic efficiency showed a 208 

positive correlation between ECx and periphyton suspension concentration, whatever the exposure 209 

duration (Table 1; Fig. 2). For example, after 6 h of incubation, EC50 increased about 14-fold between 210 

the most diluted periphyton suspension (D4, mean EC50 = 0.09 mg/L) and the least (D1, mean 211 

EC50  = 1.23 mg/L), which was characterized by chla concentrations (6980 µg/L) about 17 times 212 
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higher than chla concentrations in D4 samples (420 µg/L). Also, the positive linear relationship 213 

(p < 0.05) was observed between chla concentrations in periphyton suspension and both EC50 and 214 

EC10 values (Fig. 2), whatever the periphyton maturation stage (3 and 5 weeks). A significant linear 215 

relationship (p < 0.05) was also obtained when comparing ECx and total biomass (based on DW 216 

measurement), which was determined for the 5-week periphyton (data not shown). These results thus 217 

highlight the marked influence of the periphyton suspension concentration on tolerance measurement 218 

in toxicity tests. Performing short-term toxicity tests based on β-glucosidase enzymatic activity, 219 

Fechner et al. (2010) also observed an increase in EC50 values with an increase in concentration of 220 

periphyton suspensions.  Ahuja et al. (1999) showed that increasing biomass concentration from 0.04 221 

to 0.20 gDW/L decreased the level of metal binding per unit cell mass. In addition, according to 222 

Monteiro and Castro (2012), the effective surface area available for sorption, and the average distance 223 

between available adsorption sites, is reduced by partial aggregation of biomass at high biomass. 224 

These studies therefore suggest that the observed increase in tolerance to Cu at higher periphyton 225 

suspension concentration in the present study is due, at least partially, to a decrease in periphyton 226 

exposure to Cu during toxicity testing.  227 

We also tested, with a 3-week periphyton, and for the various periphyton suspension concentrations, 228 

the influence of exposure duration (2, 4 and 6 h) to Cu on the tolerance measurement (Table1). 229 

Despite the increase in EC50 values with the increase in periphyton suspension concentration used in 230 

the toxicity test, no significant difference was observed for this parameter between the three tested 231 

exposure durations (2 h, 4 h and 6 h of incubation), whatever the periphyton dilution (D1 to D4). 232 

Effects of exposure duration on EC10 were also imperceptible or very limited, the only significant 233 

differences being observed between 4 h and 6 h of incubation for the periphyton suspension 234 

concentration D3, with values of the same order of magnitude (0.01 to 0.05 mg/L). Within the range of 235 

test conditions in the present study (2–6 h), exposure duration had a negligible influence on the 236 

measurement of tolerance to Cu whatever the periphyton suspension concentrations. Tlili et al (2011) 237 

also observed that the dose-response curve did not change with longer exposure to copper (3, 4 and 238 

6h) when performing toxicity tests based on respiration, and they opted for the shorter exposure time.  239 
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In our toxicity tests based on photosynthetic efficiency, a 2 h incubation seems sufficient for the 240 

cellular uptake of Cu. Thus we decided to perform the following short-term toxicity tests (toxicity test 241 

with a 5-week periphyton) using 2 h of incubation as previously used by Tlili et al. (2010).  242 

The third parameter tested was the influence of the maturation stage of the periphyton. EC50 and EC10 243 

were determined from short-term toxicity tests, after 2 h of incubation, performed with 3- and 5-week 244 

periphyton (Fig 2), considering different periphyton suspension concentrations (D4 to D1). At equal 245 

periphyton suspension concentration, and despite the variability between replicates, ECx mean values 246 

were higher for 5-week periphyton than for 3-week periphyton (EC50: D3 p < 0.05; EC10: D1, D3 247 

p < 0.05, Fig 2).  248 

 In the present study, phototrophic periphyton had a greater tolerance to Cu at higher maturation stage, 249 

highlighting the potential variability of tolerance levels with periphyton maturation stage during 250 

toxicity tests. This result is consistent with the study of Ivorra et al. (2000), who showed a variation in 251 

the effects of metal exposure (Zn and Cd) with the developmental stage of the periphyton. They 252 

observed that mature periphyton were more resistant to metals, even without a history of pre-exposure. 253 

A resistance to Cd was also observed on mature phototrophic periphyton by Duong et al. (2010). 254 

Studying Cu effects, Tien and Chen (2013) explained the decreased metal accumulation in a more 255 

mature periphyton by a decrease in metal-binding capacity thus probably reducing the exposure of 256 

periphyton communities. These results could explain our findings concerning the increased tolerance 257 

to Cu at higher periphyton maturation stage during toxicity tests. In addition, although the relationship 258 

between ECx values and chla concentrations (used as a proxy of periphyton suspension concentration 259 

for the toxicity test) was significant (p < 0.05) whatever the age of the periphyton, it was modulated 260 

according to the sample considered (3 or 5 weeks; Fig. 1) as shown by the significant difference in 261 

slope values (p < 0.05). The slope value of the linear relationship obtained with a 5 weeks periphyton 262 

was significantly higher than that obtained with a 3-week periphyton (p < 0.05), thus suggesting that at 263 

higher biomass, the protective effect is stronger for a periphyton at a later maturation stage.   264 

 265 

 266 
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3.2.  Standardization perspectives  267 

The results of this study argue for more standardized procedures adapted to PICT approaches. Among 268 

the different parameters tested, exposure duration seems to have the least influence on tolerance 269 

measurement. However, short-term toxicity tests are generally performed in small water volumes with 270 

limited periphyton quantities, which can quickly induce significant changes in microbial community 271 

because of the "bottle effect". This was first observed by Schelske (1984), who showed that effects of 272 

confinement on the structure of phytoplankton communities could outweigh toxicant effects. 273 

However, PICT is based on the fact that a chronic exposure of communities to a toxicant can induce 274 

shift in species composition, thus leading to an increase in tolerance capacities. Indeed, it is better to 275 

limit as much as possible community changes during toxicity testing (i.e. PICT detection).  276 

Accordingly, we recommend short exposure (i.e. 2 h). Based on literature analysis, this duration seems 277 

sufficient to assess short-term effects of other metals, such as zinc, nickel and silver, on phototrophic 278 

periphyton (Soldo and Behra 2000) 279 

By contrast, we showed that periphyton biomass in the tested suspension (in terms of both chla 280 

concentrations and DW) is a crucial determinant in toxicity assessment because of its significant 281 

influence on tolerance level. Consequently, this parameter should be standardized to obtain 282 

comparable results between studies. Previous authors suggested using an a posteriori normalization of 283 

toxicity data, based on periphyton biomass (Soldo and Behra 2000; Fechner et al. 2010; Lambert et al. 284 

2012). In these studies, toxicity data were normalized by dividing ECx by the periphyton dry weight 285 

(expressed in grams of dry matter per liter) (Fechner et al. 2010) or by the chla concentration in the 286 

periphyton suspension (Soldo and Behra 2000; Lambert et al. 2012). However, our results revealed 287 

that the linear relationship observed between ECx and periphyton suspension concentration (expressed 288 

as chla or DW) depends on periphyton maturation stage, as shown  by the significant difference in the 289 

slopes of the relationship observed respectively with  3-week and 5-week periphyton (ANCOVA 290 

p < 0.05, Fig 1). Accordingly, an a posteriori normalization could sometimes be inappropriate since 291 

periphyton structure continuously evolves, and can differ widely according to numerous biotic and 292 

abiotic parameters. More generally, and independently of the importance of the maturation stage, our 293 
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results suggest that the relationship between ECx and chla is probably highly periphyton-dependent. 294 

Hence in order to take into account the differences between sampling sites or between sampling 295 

periods and thus enable data toxicity comparisons, an a priori normalization of the periphyton 296 

suspension biomass is advocated.  297 

However, one challenge of such an a priori normalization resides in the fact that toxicity tests must be 298 

performed with fresh periphyton, rapidly after sample collection. As DW measurement is time-299 

consuming because of methodological constraints, the use of chla concentrations, as a proxy of 300 

biomass, could be a good alternative, because of the possible use of PhytoPam (or other fluorimetric 301 

measurement), which allows an immediate estimation of chla concentrations. In the present study, this 302 

alternative appears methodologically robust as shown by the close positive linear relationship between 303 

DW and chla obtained in the various dilutions performed with the 5-week periphyton (p < 0.001, 304 

Fig. 3). Hence it would be of interest to check whether this relationship between DW and chla extends 305 

to periphyton with higher abundances of heterotrophic microorganisms. It can be argued that such a 306 

priori normalization would require using disrupted periphyton (suspension periphyton). The use of 307 

disrupted or intact periphyton in short-term toxicity assessment is a recurrent debate, and it is known 308 

that the periphyton structure (i.e. suspended or attached) influences response to acute metal exposure. 309 

Given the protective role of the periphyton matrix, which limits the penetration of toxicants, 310 

undisrupted periphyton communities are generally more tolerant to metals than suspended periphyton 311 

communities (Barranguet et al. 2000; Guasch et al. 2003). Nevertheless, the high resistance of thick 312 

periphyton to metals can be mainly related to the physical structure of the assemblage, independently 313 

of species composition and their intrinsic tolerance properties (Barranguet et al. 2000). This can 314 

introduce a potential source of bias in PICT approaches which aim at evaluating changes in tolerance 315 

at the community level. Furthermore, since a priori normalization of periphyton biomass on attached 316 

assemblages appears impossible, our results offer new arguments in support of using disrupted 317 

periphyton, as is the case in many PICT studies (e.g. Soldo and Behra 2000; Dorigo et al. 2010; Tlili et 318 

al. 2010). According to the ECx values obtained, it seems preferable to consider low periphyton 319 

biomass (chla < 3000 µg/L or DW < 0.4 mg/mL in our case) in order to reduce the variability 320 
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observed between replicates, because of the difficulty in homogenizing disrupting periphyton samples 321 

at high suspension concentrations.   322 

We also confirmed in the present study the importance of the maturation stage of the periphyton used 323 

for toxicity tests. This raises particular concerns when using PICT approaches in natural environments 324 

with periphyton collected on natural substrates, without knowledge about the colonization duration. 325 

One possible alternative is the use of artificial substrates, as chosen by many authors (Guasch et al. 326 

2003; Dorigo et al. 2010; Morin et al. 2010), despite the well-known biases due to the fact that 327 

artificial substrates do not perfectly reflect natural substrates (Peterson et al. 1989; Potapova et al. 328 

2005). This alternative is of particular interest in PICT studies designed to assess spatial and/or 329 

temporal changes in tolerance. In this context, we note that it could be of interest to define the 330 

recommended colonization time before a periphyton can be used in toxicity tests. However, and given 331 

the fact that periphyton maturation greatly depends on various environmental factors and is strongly 332 

site-dependent, this parameter is probably one of the most difficult to define with a view to a better 333 

standardization of PICT approaches.    334 

In addition to parameters considered in our study, it would be of interest to further identify and test 335 

other factors that could significantly influence results and conclusions from PICT studies (e.g. 336 

temperature incubation or light intensity). 337 
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  EC50 EC10 

D4 

2 h 0.21 ± 0.07 0.02 ± 0.02 

4 h 0.08 ± 0.02 0.01 ±0.01 

6 h 0.09 ± 0.02 0.02 ± 0.02 

D3 

2 h 0.11 ± 0.02 0.03 ± 0.02 (ab) 

4 h 0.10 ± 0.03 0.01 ± 0.01 (b) 

6 h 0.13 ± 0.02 0.05 ± 0.02 (a) 

D2 

2 h 0.27 ± 0.05 0.11 ± 0.05 

4 h 0.30 ± 0.09 0.05 ± 0.02 

6 h 0.30 ± 0.06 0.06 ± 0.02 

D1 

2 h 0.76 ± 0.24 0.13 ± 0.06 

4 h 0.92 ± 0.31 0.18 ± 0.09 

6 h 1.23 ± 0.52 0.19 ± 0.08 

 484 

Table 1. Mean (± s.d.) EC50 and EC10 (mg Cu/L) for periphyton suspension concentrations, ranging from about 485 

400 µg chla/L (D4) to about 7000 µg chla/L (D1) after 2, 4 and 6 h of incubation. Different letters (a, b, c) 486 

indicate significant difference between EC10 values (p < 0.05), n = 3, within the D3 dilution. 487 
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 502 

 503 

 504 

Fig 1. Linear relationship between mean chla concentrations in periphyton suspension (µg/L) and (a) mean EC50 505 

and (b) mean EC10 (mg Cu/L) during toxicity tests performed with a 3- and 5-week periphyton after 2 h of 506 

incubation. 507 

 508 

Author-produced version of the article published in Environmental Science and Pollution Research (2015), vol. 22, n° 6,  pp 4037–4045 
The original publication is available at http://link.springer.com/article/10.1007%2Fs11356-014-3505-4 

doi:10.1007/s11356-014-3505-4 



22 

 

 509 

 510 

 511 

Fig 2. Mean (± s.d.) for (a) EC50 and (b) EC10 (mg Cu/L) for periphyton suspension concentrations, ranging from 512 

about 400 µg chla/L (D4) to about 7000 µg chla/L (D1) during toxicity tests performed with a 3- and 5-week 513 

periphyton after 2 h of incubation, n = 3. 514 
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 515 

Fig 3. Linear relationship between chla (µg/sample) and DW (mg/sample) obtained with 5-week periphyton. 516 

chla concentrations and dry weight are in relation to the total volume of the periphyton suspension used during 517 

toxicity testing. 518 
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