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Abstract.

Objective: The instantaneous phase (IP) and instantaneous frequency (IF) of the

electroencephalogram (EEG) are considered as notable complements for the EEG

spectrum. The calculation of these parameters commonly includes narrow-band

filtering, followed by the calculation of the signal’s analytical form. The calculation

of the IP and IF is highly susceptible to the filter parameters and background noise

level, especially in low analytical signal amplitudes. The objective of this study is to

propose a robust statistical framework for EEG IP/IF estimation and analysis.

Approach: Herein, a Monte Carlo estimation scheme is proposed for the robust

estimation of the EEG IP and IF. It is proposed that any EEG phase-related inference

should be reported as an average with confidence intervals obtained by repeating the IP

and IF estimation under infinitesimal variations (selected by an expert), in algorithmic

parameters such as the filter’s bandwidth, center frequency and background noise level.

In the second part of the paper, a stochastic model consisting of the superposition of

narrow-band foreground and background EEG is used to derive analytically probability

density functions of the instantaneous envelope (IE) and IP of EEG signals, which

justify the proposed Monte Carlo scheme.

Main results: The instantaneous analytical envelope of the EEG, which has been

empirically used in previous studies, is shown to have a fundamental impact on the

accuracy of the EEG phase contents. It is rigorously shown that the IP/IF estimation

quality highly depends on the IE and any phase/frequency interpretations in low IE

are statistically unreliable and require a hypothesis test.

Significance: The impact of the proposed method on previous studies, including time-

domain phase synchrony, phase resetting, phase locking value and phase amplitude

coupling are studied with examples. The findings of this research can set forth new

standards for EEG phase/frequency estimation and analysis techniques.

Keywords: Electroencephalogram phase calculation, time-domain phase synchrony,

phase resetting, phase locking value, phase amplitude coupling, phase slipping
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1. Introduction

In recent decades, the instantaneous phase and frequency of the electroencephalogram

(EEG) have received great attention in neuroscience and brain research communities, as

notable complements for the EEG spectrum. The notion has found broad applications

in brain computer interface (BCI) systems [1, 2], cognitive studies [3, 4] and brain

connectivity assessment [5, 6]. Phase-related quantities have also been widely used in

the analysis of clinical and pathological cerebral conditions, including epilepsy [7, 8],

dementia [9, 10], autism [11] and many more. Recent studies have also sought the

relationship between the EEG phase and event-related synchronization (ERS) and de-

synchronization (ERD) [12,13].

The reliable estimation of the EEG phase and frequency is an essential prerequisite

for all these studies. Various techniques such as the Hilbert transform (HT), wavelet

transform (WT), and other time/frequency representations have been utilized for reliable

and unambiguous phase calculation. Among all, the HT has been considered the most

reliable means of EEG phase estimation, as a method which does not violate the physical

and theoretical conditions essential for instantaneous phase extraction [14]. However,

a major difficulty in using the HT (and other instantaneous EEG phase extraction

methods) is to distinguish between physiological state transitions due to brain activity

and spurious variations, spikes and phase jumps— known as “phase slipping” [15]. It

has been previously reported that unambiguous measurements of the EEG phase cannot

be made around phase slipping epochs, nor near the ends of signal segments [15, 16].

Some minimum required signal-to-noise ratios (SNR) have also been empirically found

for detecting oscillatory neural activities in presence of background noise [17].

Other aspects of EEG phase extraction and analysis, such as temporal properties

and band-pass filtering requirements have been investigated in [15, 18]. The authors

reported notable discontinuities (phase slipping events) in the EEG phase calculated

from the human scalp and attempted to minimize these effects. A comprehensive study

was performed on various phase extraction tools (particularly HT and WT) and their

impacts and interpretations in neural synchrony [19]. In [14], physical and theoretical

conditions and steps required for obtaining a meaningful phase sequence were extensively

studied, besides investigating the most reliable approaches for this purpose. In a recent

study, the impact of narrow-band filtering was studied in true versus spurious phase

synchronization using synthetic data models [20].

Although the problem of reliable EEG phase and frequency estimation has been

extensively studied in the neuroscience and brain communities, due to the lack of

a stochastic framework, the results and discussions regarding the so-called phase

slipping phenomenon remain qualitative and descriptive— commonly stated as a note

of caution— instead of providing precise guidelines for the extraction and interpretation

of the EEG phase/frequency and discriminating between true versus spurious phase

jumps.

The objective of the current study is to propose a Monte Carlo estimation
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procedure for robust instantaneous EEG phase and frequency estimation using “minor”

perturbations in the input signal and phase/frequency estimation algorithm parameters.

The proposed method is very generic and does not rely on prior models for the EEG and

the parameter perturbation order can be set by the expert depending on application.

In the second part of the paper, we adopt a model-based approach to justify

the proposed Monte Carlo estimation procedure in a rigorous statistical framework.

Using the most widely accepted EEG data model and profound theories from signal

detection and estimation [16,21–23], it is shown that issues such as EEG phase slipping

and phase/frequency deviations are unavoidable (yet predictable), and spurious phase

variations can be probabilistically discriminated from physiologically relevant EEG

phase/frequency variations. The instantaneous analytical envelope of the EEG, which

has been empirically used in previous studies, is shown to have a fundamental impact

on the accuracy of the EEG phase contents.

From an application viewpoint, the authors have recently shown the applicability

of the hereby presented method for BCI [24] and sleep stage scoring [25] applications.

In Section 2, the basic steps required for EEG phase extraction are reviewed. The

proposed Monte Carlo phase/frequency estimation method is detailed in Sections 3-

3.3. This method is statistically justified and used for deriving statistical properties

of narrow-band EEG in background noise in Section 4. The practical implications of

the proposed method are detailed in Section 6. Various applications of the proposed

framework and its impact on previous EEG phase studies are presented in Section 5.

2. Instantaneous Envelope, Phase and Frequency Calculation

The classical procedure of calculating the instantaneous envelope (IE), instantaneous

phase (IP) and instantaneous frequency (IF) of a signal is to use its analytical form

[23]. These parameters are only uniquely defined for narrow-band signals. Therefore,

considering a discrete-time signal yn (such as an EEG), it is first bandpass (BP) filtered

around the desired center frequency ω0 = 2πf0/fs with a narrow bandwidth bw.

xn = BP(yn; p) = yn ∗ hn (1)

where hn is the equivalent BP filter’s impulse response, ∗ denotes convolution, fs is the

sampling frequency in Hz, and

p = {type,method, ω0, bw, δs, δp, · · · } (2)

is the set of design parameters describing the BP filter, including the filter’s type, design

method, center frequency ω0, bandwidth bw, stop-band attenuation δs, pass-band ripple

δp, etc. The parameter set p plays a fundamental role in the current study. A detailed

discussion is presented in Section 3.2, regarding the parameter set selection.

Next, the analytical form of the BP filtered signal is calculated using the discrete-

time Hilbert transform H{·}.
x̃n = xn + jH{xn} (3)
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The IE, IP, and IF are calculated from the analytical form as follows.

An
∆
=

√

Re(x̃n)2 + Im(x̃n)2 (4)

φn
∆
= atan2[Im(x̃n),Re(x̃n)] (5)

fn
∆
=
fs
2π

[φn − φn−1] mod 2π (6)

where atan2 represents the four-quadrant inverse tangent and the difference operator

in (6) is used as an approximation for phase differentiation (cf. [22] for alternative

approximations). In order to avoid instantaneous jumps in the IF, the IP sequence

is unwrapped before calculating the difference in (6). From (5), it is clear that in low

signal amplitudes, the argument of atan2 becomes singular, as it fluctuates around zero-

divided-by-zero, and a small difference in the filtering scheme or background noise can

cause large phase variations (even beyond ±π) and randomize the IF.

The aforementioned procedure is fully deterministic and does not account for the

stochastic properties of the EEG. One can envisage that in a stochastic framework, the

probability of phase jumps and the variance of the IF, somehow increase in low analytical

signal envelopes. In the sequel, we seek a statistical framework for the problem of EEG

IP and IF analysis, which systematically considers the effect of low/high instantaneous

envelope and background noise and is robust to minor variations in filtering parameters

and the phase extraction algorithm.

3. Method: Robust EEG Phase/Frequency Estimation

To overcome the limitations in IP and IF estimation in low SNR, we propose that

IP and IF estimation should be performed under minor variations in the estimation

process, including: EEG measurement quantization noise and infinitesimal variations in

the filtering parameters. Our basic assumption throughout this work is that:

A1. For any significant EEG-based physiological inference, there exists a range of

measurement and algorithmic parameter variations (defined by an expert), which can

be considered to be irrelevant to the undergoing physiological phenomenon.

In other words, we assume that physiologically significant EEG characteristics

(spectral, phase, frequency, etc.) are robust to “infinitesimal perturbations” in: 1)

the signal’s amplitude, and 2) the phase extraction algorithm (e.g. the bandpass

filter’s design parameter set). This assumption is indeed intuitive and the definition

of “infinitesimal perturbations” is subjective and highly dependent on the undergoing

physiological activity (brain task). Nevertheless, we assume that for any physiological

experiment, the expert can set a bound on the algorithm parameters, beyond which any

parameter variations are irrelevant to the underlying experiment.
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Assumption (A1) is supported by the fact that the sub-frequency bands defined

in the EEG phase analysis literature are highly subjective and minor deviations in the

center frequencies, bandwidths, and even filter design technique are implicitly assumed

to be irrelevant to the phase study. To the best of the authors’ knowledge, despite the

rich literature on EEG phase, only some general guidelines have been proposed for the

phase extraction procedure [15,26], and researchers have been basically using arbitrary

and un-unified narrow-band filtering and phase extraction schemes in their studies.

Other inevitable sources of measurement variability, which are commonly neglected

in practice, are the analog and digital (quantization) device noises during signal

recording, plus the intrinsic background EEG noise. Apparently, if the input signal

is dithered by minor additive noise, at the order of the background EEG level or at

the quantization level of the analog-to-digital convertors (ADC) used for digitizing the

EEG, the foreground EEG is again expected to remain consistent under such minor

dithers.

Based on these assumptions we propose that:

P1. The procedure of EEG phase and frequency estimation should consist of a Monte

Carlo sweep over random perturbations of measurement and algorithm parameters

(background noise level, filter’s bandwidth, center frequency, etc.) at a user-defined

level. The estimated EEG parameters should be reported with their mean and confidence

intervals over this Monte Carlo simulation.

This procedure is rather general and it can be implemented in different forms. For

a given EEG signal yn, Algorithm 1 is hereby proposed as a realization of proposition

(P1), to find robust values and statistical confidence intervals for IP and IF estimates.

A summarized practitioners’ guideline version of Algorithm 1 is listed in Table 1.

For illustration, Fig. 1 shows 30 s of a typical EEG, recorded in a BCI experiment;

together with its IE, IF and unwrapped IP, calculated using Algorithm 1 for N = 50

iterations. The sampling frequency of the signal is fs = 160 Hz. For better visualization

of the phase fluctuations, in Fig. 1, the unwrapped phase has been subtracted by

2π(f0/fs)n, which is the instantaneous phase of a sinusoidal oscillator with a fixed initial

phase. The BP filter is a zero-phase forward-backward filter obtained from an order six

moving average lowpass filter prototype, shown in Fig. 2§. The center frequency of

the filter is f0 = 13.1 Hz (the local peak of the power spectral density as shown in

Fig. 3) and the effective bandwidth is 1 Hz. In each of the N trials, this filter has been

perturbed with random deviations of the bandwidth ranging from zero to 0.05 Hz, the

center frequency f0 has been perturbed with a uniform random value in the range of

f0 ± 10−2 Hz, and the dither ν
(k)
n in each iteration is a zero-mean Gaussian random

variable with a standard deviation εn = 0.1, which is smaller than the quantization

level of the 14-bit ADC used for sampling the EEG signal. The gray shades in Fig. 1,

show the results of N trials overlaid. The average instantaneous frequency f̄n and the

§ The moving average is herein used due to its linear phase and trivial design method. Arbitrary filters

can be generally used instead (cf. [24] for an example of IIR filters).
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Algorithm 1 Robust Instantaneous EEG Phase and Frequency Estimation

Require: A filter design parameter set p as defined in (2).

Define: An algorithmic variation irrelevancy bound, including the background noise

level (δλ) and filter design parameter variation range (δp). Note that the algorithm

reduces to the conventional deterministic phase estimation technique by setting

δλ = 0 and δp = 0.

1: for all k = 1, · · · , N do

2: Design a bandpass filter with perturbed design parameter set p(k) = p + δρ(k),

where the parameter perturbations are |δρ(k)| ≤ δp.

3: Add minor noise to the input EEG at an order of δλ, to obtain dithered

randomized ensembles of the EEG: d
(k)
n = yn + ν

(k)
n . We assume ν

(k)
n ∼ N (0, ε2n)

to be Gaussian noise and the dither variance ε2n ≤ δλ. Note that this stage may be

bypassed by setting δλ = 0, if no priors exists regarding the background noise level.

4: Filter d
(k)
n using bandpass filters designed with the perturbed design parameter

set p(k): x
(k)
n = BP(d

(k)
n ; p(k))

5: Calculate the analytical form of the filtered ensemble: x̃
(k)
n = x

(k)
n + jH{x(k)n }

6: Calculate the IE, IP, and IF:

X(k)
n = |x̃(k)n | (7)

θ(k)n = atan2[Im(x̃(k)n ),Re(x̃(k)n )] (8)

f (k)
n =

fs
2π

[θ(k)n − θ
(k)
n−1] mod 2π (9)

7: end for

8: Find the ensemble averages and variances of the parameters

x̄n = E{x̃(k)n }, λxn = E{(x̃(k)n − x̄n)
2} (10)

X̄n = E{X(k)
n }, λXn = E{(X(k)

n − X̄n)
2} (11)

θ̄n = E{θ(k)n }, λθn = E{(θ(k)n − θ̄n)
2} (12)

f̄n = E{f (k)
n }, λfn = E{(f (k)

n − f̄n)
2} (13)

where E{·} represents averaging over k (the N generated ensembles)‡.
9: Calculate the confidence intervals of the estimated parameters: σXn =

√

λXn ,

σθn =
√

λθn, and σ
f
n =

√

λfn.
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Table 1: Practitioners’ Guidelines for Robust IP and IF Calculation

1. Specify the center frequency and bandwidth of interest with tolerances, which

are irrelevant for the EEG study.

2. Specify the measurement noise level of the EEG from the measurement device

characteristics.

3. Repeat the following steps multiple times:

(a) Design bandpass filters with randomized parameters within the specified

tolerance bounds.

(b) Add random noise to the original EEG segment, with amplitudes below

the specified noise level.

(c) Apply the designed filter to the noisy segment.

(d) Extract the IP and IF using conventional methods (e.g., Hilbert transform).

4. Calculate the average and standard deviations of the estimated IP and IF over

multiple iterations.

5. Report the mean values of the IP and IF and use the standard deviations to

form upper and lower confidence intervals for the estimated parameters.

confidence intervals bounded by f̄n±σfn are also shown. The frequency response of the N

perturbed bandpass filters are shown in Fig. 2. It is seen that although the algorithmic

and noise level variations are negligible from the physiological viewpoint, the IP and IF

results are significantly different, especially during the low analytical signal segments of

the EEG.

3.1. Simultaneous Envelope, Phase and Frequency Variations

The implication of the proposed framework is that the IE is highly fundamental for phase

and frequency variations and these measures become unreliable in low IE. However,

further considerations are required for reliable interpretation of the IE. Consider the

following scenarios, which both lead to a low analytical signal envelope:

A) Stationary IF (fixed phase shift) with a dropping IE

B) Stationary envelope with a varying IF (variable phase shift)

The two scenarios are shown in the short-time frequency transforms of a sample EEG

segment in Fig. 4. In the first scenario, the IE is explicitly dropping; while in the second

scenario, due to the variation of the IF, the signal is moving out of the narrow BP filter’s

pass-band, which indirectly results in an IE drop. In both cases, the estimated IP and

IF become unreliable. However, only the first scenario can be considered as a statistical

burden (without any physiological source); while the second scenario can frequently
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Figure 1: (a) A sample EEG segment; (b) the bandpass filtered signals using three BP

filters with f0 = 13.09, 13.1, 13.11 Hz and the corresponding analytical signal envelopes;

(c) the unwrapped IP of fifty perturbed ensembles with their highlighted mean; (d) the

IF of fifty perturbed ensembles with f̄n, and f̄n ± σfn confidence intervals; (e)-(g) a

zoom-in of three IE segments where the black, red and green traces correspond with

the output of BP filters centered at f0, f0 − δf and f0 + δf , respectively, and envelopes

shown in thick black, dashed red and dashed green; (h)-(j) zoom-in of three IF segments.

Notice the random ±π phase jumps around t = 13.9 s, which coincide with a notch in

the IE.
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Figure 2: The overlaid magnitude response of N = 50 order six moving average filters

obtained by perturbing the design parameters, used for the results in Fig. 1. The

difference between the filter responses are assumed to be irrelevant for EEG phase

analysis. Refer to Section 3 for further details.
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Figure 3: Normalized power spectral density (PSD) of the sample EEG segment of Fig. 1

happen for an EEG to have minor fluctuations in the IF mode (considering the narrow-

band of the BP filter), as in experiments with varying levels of subject consciousness or

during different stages of sleep. In order to discriminate these scenarios, the analytical

signal envelope can be tracked at the output of a filter bank with three filters: a BP

filter centered at f0 and two BP filters with minor center frequency deviations, centered

at f0 − δf and f0 + δf . In the first scenario the envelope at all three filter outputs will

drop; while in the second scenario the envelope of the main BP filter (centered at f0) will

drop and the envelope of either the right or left vicinity frequency bands will increase.

This simple frequency tracking scheme is a computationally efficient alternative for

time-frequency analysis of the EEG over the entire Nyquist band.
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Figure 4: The short-time frequency transform (STFT) of a sample EEG. The left

highlighted segment shows a vanishing component at a fixed IF; the right highlighted

segment shows a component with varying IF, corresponding to scenarios (A) and (B) in

Section 3.1, respectively.

Fig. 1b illustrates the idea. The sample EEG has been passed through three

zero-phase BP filters with the same effective bandwidth 1 Hz, and center frequencies

13.09 Hz, 13.0 Hz, and 13.01 Hz (δf = 0.01 Hz). The resulting signals have been

overlaid for comparison, with three highlighted segments shown in Figs. 1e, 1f and 1g.

Due to the zero-phase (zero group-delay) property, the input and output of these filters

are phase synchronous. Accordingly, Fig. 1e shows significant IE drops in all three

BP filter outputs. Considering the IF of the same segment in Fig. 1h we notice the

totally random behavior of the IF (positive and negative fluctuations around f0), due

to the very low IE of this segment. Fig. 1f shows another IE drop in all three BP filter

outputs. Considering the IF in the same segment in Fig. 1i, we notice that although

the IF has a high variance in this segment, but all the randomized ensembles report an

instantaneous frequency drop in this segment. The same phenomenon has occurred in

Fig. 1g and Fig. 1j; but this time with IF tendency towards frequencies above f0.

3.2. Parameter Selection

The proposed framework is generic and its parameters should be selected by an expert,

per application. Various aspects of the parameter selection are discussed below.

3.2.1. Filter Design Scheme: The BP filter is a linear transform. Accordingly, the

phase of xn over the entire Nyquist band, is the summation of the input signal’s phase

and the filter’s phase. Therefore, for phase-based studies, linear-phase finite impulse

response (FIR) are commonly used, which preserve the input signal phase difference

and do not add any phase distortions; in contrast to infinite impulse response (IIR)

filters, which are nonlinear phase. However, the order of narrow-band FIR filters can

become very high, resulting in long transient response effects. Moreover, the addition

of even a linear phase to the input signal can cause fake phase jumps due to the phase
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wrapping of the filter’s phase. To avoid this, one can use zero-phase forward-backward

filtering (FIR or IIR) as the standard procedure‖, which does not cause any phase

distortions and guarantees the phase synchrony between the input and output of the

BP filter. This procedure is evidently non-causal, which is not a limitation for offline

phase analysis.

3.2.2. Filter Design Parameter Set: The BP filter specifications such as the center

frequency, bandwidth, and design method are all subjective and may be selected

according to physiological ground truth (as considered in all previous studies).

According to Assumption 1, for each application, the parameter deviations considered

during the Monte Carlo simulation are selected such that the deviated filter specifications

would be physiologically “irrelevant” for the application of interest. For example,

consider an EEG with a dominant 7-12 Hz (alpha-band) spectral density peak.

Physiologically, many experts would consider a 0.1 Hz of filter bandwidth deviation

to be irrelevant for such an experiments. Therefore, randomization of the BP filter

bandwidth below this level will permit the identification of reliable and unreliable EEG

parameters.

Depending on the filter design scheme, the filter’s parameter variations can be done

in various domains. For instance, one may prefer to perform the perturbation in the

zero-pole configuration of a predefined filter (as recently proposed in [24]). In this case,

the filter should be checked for stability after the random pole perturbations and the

poles should be preserved inside the unit circle. Moreover the conjugate symmetry of

the zeros and poles need to be preserved, in order to guarantee the realness of the filter

coefficients.

3.2.3. Dither Level: The dither level should be at the same order (or smaller than) the

expected background noise. The analog noise figure and quantization noise of the ADC

used in EEG sampling are inevitable sources of background noise, which can be simply

found by studying the electronic specifications of the EEG measurement system. The

background EEG activity is another source of background noise; however it is rather

subjective and model-dependent and may be subject to a debate among experts.

3.3. Post-Processing: Temporal Filtering of Instantaneous EEG Parameters

The ensemble averaging technique proposed in Stage 8 of Algorithm (1) does not consider

the temporal correlations of the IE, IP, or IF. By assuming a temporal dynamic model

for these parameters, the estimation quality may be further improved by conventional

filtering and smoothing schemes such as the Kalman filter or Particle filter (also known

‖ Zero-phase forward-backward filtering can be implemented using the filtfilt function in Matlab,

Octave, or R. It uses the time-reversal property of the Fourier transform to perform zero-phase

smoothing by processing the input signal in both the forward and reverse directions [24,27]. Therefore,

regardless of the linear or nonlinear phase-response of the filter, the resulting process has a zero-phase

(and zero-group delay) response.
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Figure 5: The estimated IF of 50 ensembles overlaid (gray shades); the average IF

(black); the KF-smoothed IF with γn = 10−3 (blue) and γn = 10−5 (red).

as Sequential Monte Carlo). For proof of concept, let us assume a first order auto-

regressive dynamic model for the IP and apply a classical Kalman filter to improve the

IP and IF estimates.
θn = θn−1 + wn
φn = θn + ψn

(14)

where wn ∼ N (0, γ2n) is considered as process noise, and ψn ∼ N (0, σ2
n) is the observation

noise. For this model, it can be shown that the Kalman filter equations have a single

tunable parameter σ2
n/γ

2
n, which can be adjusted proportional to the phase and frequency

variances obtained in (12) and (13). In Fig. 5, the IF of the sample EEG segment from

Fig. 1 is shown after applying the Kalman smoother for σ2
n = λfn (as defined in (13), and

two values γn = 10−3 and γn = 10−5. Apparently, the results are smoother for smaller

values of γn (the filter relies on the presumed first-order dynamics) and become closer

to the observed noisy IF for larger values of γn. This example is only shown as proof

of concept. The rich literature on Kalman filtering and its extensions can be used in

future studies for robust IP and IF estimation, using suitable temporal priors.

4. A Theoretical Model-Based Justification; Statistical Properties of

Narrow-Band EEG

The method and results presented in Section 3, demonstrate the susceptibility of EEG

phase and frequency estimates in low analytical signal amplitudes. However, for a formal

description of these findings, a data model is required. Herein, we use the most widely

accepted model in the literature [28–30], to extract statistical properties of narrow-band

EEG. Although, the hereby developed formulations are in accordance with empirical

results on real data, the statistical framework proposed in this section is subject to

debate—as with all model-based techniques— depending on the acceptance or rejection

of the model for specific applications.
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4.1. Data Model

An implicit assumption in most EEG phase analysis studies is that a desired (narrow-

band) brain activity, referred to as foreground EEG in the sequel, coexists in a pool

of background EEG, considered as noise. The background EEG is considered to

be spontaneous (as compared with the foreground EEG). It is the superposition of

numerous simultaneous and non-coherent cortical activities, which according to the

central limit theorem tends to a Gaussian distribution and is spread over the entire

frequency band of study. On the other hand, the foreground EEG can be the result of

some mental activity, external stimuli (audio, visual, etc.), or any other evoked activity,

which discriminates it from the spontaneous EEG. Based on these assumptions, the

following additive model can be considered as a generic model for the EEG signal at the

BP filter output.

xn = Xn cos(ω0n+ θn) + vn = sn + vn (15)

where the first part (sn) models the foreground EEG, Xn is the non-negative foreground

envelope with slow variations (lowpass with respect to the center frequency ω0), θn is

the instantaneous foreground EEG phase (again with rather slow variations), and vn is

the narrow-band counterpart of the background EEG, which generally overlaps with the

foreground EEG spectrum. Due to the linearity of the BP filter, the background EEG

remains Gaussian through the filtering process, i.e., vn ∼ N (0, σ2
n).

In this model, the rather slow variations of Xn and θn (approximately constant over

very small temporal windows) is the main assumption that discriminates the foreground

and background EEGs. The objective of EEG phase analysis is to estimate the phase

signal θn.

If the BP filter is sufficiently narrow-band (as required for a canonical definition of

the IE, IP, and IF [21,23]), its analytical form can be written as follows.

x̃n = xn + jH{xn} = Xne
j(ω0n+θn) + ηn = Ane

j(ω0n+φn) (16)

where ηn = rne
j(ω0n+ψn) (rn ≥ 0) is the analytical form of vn— a complex valued

Gaussian random process with zero-mean independent real and imaginary parts and σ2
n

variance [31, Ch. 8]. The phasor diagram of the foreground plus background EEG is

shown in Fig. 6 for illustration.

This additive model is perhaps the most generic model for narrow-band EEG and

in accordance with the most widely accepted data models in EEG phase analysis studies

(cf. [28] for a detailed discussion about the most common EEG phase models). Previous

studies have mainly studied the narrow-band foreground part of model (15) within a

deterministic framework; neglecting the statistical properties of the background EEG.

The basic idea that is followed in this work is that the problem should be studied in

a stochastic framework and the signal detectability and reliability of the desired EEG

phase totally depend on the instantaneous envelopes and variances of the foreground

and background EEG.
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Figure 6: The phasor diagram of seventy-five data points (green) of foreground plus

background EEG. The black solid circle has a radius of 2σn. Assuming a Gaussian

distribution for the background EEG, 68% of the points fall within this circle.

4.2. Probability Density Functions of the EEG envelope and phase

The statistical properties of the signal model in (15) have been extensively studied

in the signal processing literature [31, 32]. Herein, we use some of these well-known

properties to find a statistically justifiable (reliable) method for EEG phase analysis.

For simplicity, we assume the sine wave envelope Xn and the noise variance σ2
n to be

known (or estimated as discussed in Section 4.4).

4.2.1. pdf of narrow-band background EEG: Considering a Gaussian probability

density function (pdf) for the background EEG, the magnitude and phase of its

analytical form (ηn = rne
j(ω0n+ψn)) are independent [31]. In absence of a foreground

activity (Xn = 0), the background EEG magnitude has a Rayleigh distribution and the

phase is uniform over [−π, π]:

f(rn|σ2
n) =







rn
σ2
n

exp

(

− r2n
2σ2

n

)

, for rn ≥ 0

0, elsewhere
(17)

f(ψn|σ2
n) =







1

2π
, for − π ≤ ψn ≤ π

0, elsewhere
(18)

4.2.2. pdf of narrow-band foreground plus background EEG: In presence of foreground

EEG, due to the Gaussian assumption on the background EEG, it can be shown that

the envelope and phase of the analytical form (16) have the following joint pdf:

f(An, φn, θn|Xn, σ
2
n) = f(An,∆φn|Xn, σ

2
n) =

An
2πσ2

n

exp

(

−A
2
n +X2

n − 2XnAn cos(∆φn)

2σ2
n

)

(19)
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where ∆φn = φn − θn is the instantaneous random phase difference (error) between the

noisy and noiseless sinusoidal part of the model (the observed versus foreground EEG

phases in our case).

In this case, the envelope and phase are no longer independent (a key point in our

study). The marginal distribution of the analytical envelope has a Rician distribution.

f(An|Xn, σ
2
n) =

An
σ2
n

exp

(

−A
2
n +X2

n

2σ2
n

)

I0

(

XnAn
σ2
n

)

(20)

where I0(·) is the modified Bessel function of the first kind [31, Ch. 8]. Using the Bayes’

rule and combining (19) and (20), the conditional pdf of the phase error ∆φn is found.

f(∆φn|An, Xn, σ
2
n) = f(∆φn|κn) =

exp (κn cos(∆φn))

2πI0(κn)
(21)

where κn
∆
= AnXn/σ

2
n. Apparently, this distribution is symmetric around zero

(E{∆φn|An, Xn, σ
2
n} = 0) and E{∆φ2

n|An, Xn, σ
2
n} is an envelope-dependent phase-error

variance. These properties support the assumptions required for the Kalman smoothing

stage described in Section 3.3.

Finally, integrating (19) over An, the marginal distribution of the IP error is found.

f(∆φn|Xn, σ
2
n) = f(∆φn|ρn) =

1

2π
exp(−ρ2n)[1+√

πρn cos(∆φn) erfcx (−ρn cos(∆φn))]
(22)

where ρn
∆
=

√
SNRn = Xn/

√

2σ2
n denotes the root square of the instantaneous SNR and

erfcx(·) is the scaled complementary error function.

The envelope, phase error, and conditional phase error distributions of narrow-band

Gaussian background EEG and foreground plus background EEG are shown in Figs. 7,

8, and 9, respectively.

The calculation of the IF pdf additionally requires the joint pdf of θn and θn−1.

Due to the lack of ground truth regarding the temporal dependence of the EEG phase,

previous results on the IF pdf of sinusoidal signals plus noise [32–34], which either assume

a constant or fully random phase are not directly applicable in this case. A rigorous

approach is to model the temporal dynamics of the IP, e.g., by assuming a Markov

model for the IP, which is beyond the scope of the current study. However, as a rule

of thumb, previous research have shown that the IF pdf becomes sharper around ω0 as

the IP becomes more correlated in time (has slow temporal variations) [33]. Moreover,

the IF pdf is peaked around ω0 in high SNR and it tends to a uniform distribution over

[−π, π] (the entire Nyquist band) in low SNR.

These pdfs have also been used to extract lower bounds on the estimation variance

of the IP and IF using different assumptions on the temporal structure of the IP [35,36].

Again, as a general rule of thumb, the Cramér-Rao lower bound (CRLB) of the IP error

variance is commonly inversely proportional to the SNR [37].
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Figure 7: Envelope distributions of Gaussian background EEG (left three curves) and

foreground EEG oscillations plus Gaussian background EEG (left right curves) for

Xn = 4.5 and σ2
n = 0.2, 1, 2.5, equivalent to SNRn = 17, 10, 6 dB.
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Figure 8: Phase distributions of foreground EEG oscillations plus Gaussian background

EEG for Xn = 4.5 and from top to bottom σ2
n = 1, 2, 5, 10, 20, and 100, equivalent to

SNRn = 10, 7, 3, 0, -3, and -10 dB.

In summery, all the probability density functions derived in this section depend

on the background EEG variance and the instantaneous analytical signal envelope of

the foreground EEG. Specifically, in low analytical signal envelopes (low SNR), the

probability of phase error tends to a uniform distribution over [−π, π], which is in

accordance with the results previously shown in Section 3.

4.3. Signal Detectability

Regardless of the presence or absence of a foreground EEG activity, the procedure

of IP calculation (narrow-band BP filtering, analytical signal calculation followed by
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Figure 9: Conditional phase error distributions of foreground EEG oscillations plus

Gaussian background EEG for κn = 10, 5, 2, 1, 0.1 (from top to bottom).

IP estimation) always produces an output; even from pure random background EEG

(noise). But how can one guarantee that there has been some foreground activity? Here,

we either require physiological ground truth obtained from the experimental setup or

other modalities (e.g., simultaneous MEG, fMRI, etc.), or complementary information

from multiple EEG leads. In absence of reliable ground truth, one faces a statistical

hypothesis test. At each time instant, there are two possible hypothesis:

H0 : xn = vn
(background EEG alone)

H1 : xn = Xn cos(ω0n+ θn) + vn
(background plus foreground EEG)

(23)

The decision is apparently probabilistic. The objective is to determine the most likely

hypothesis, which meets some predefined probability of detection (pd) and probability of

false alarm (pf ).

The detection of a sinusoidal in noise is a classical problem in detection theory [38,

Ch. 6]. The hypothesis test is performed by setting an appropriate threshold th on the

IE to meet the desired pd and pf . By definition and according to Fig. 7, we have

pf =

∫

∞

th

f(rn|σ2
n)drn

pd =

∫

∞

th

f(An|Xn, σ
2
n)dAn

(24)

which depend on the instantaneous foreground and background EEG levels (the SNR).

The curves for pd as a function of the required SNR with pf as parameter are

shown in Fig. 10, for a fixed instantaneous phase θn = cte. The same results are

approximately applicable for sinusoids with slowly varying phase (as compared with the

center frequency ω0), a condition that is satisfied for narrow-band BP filtered EEG.
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Figure 10: Detection probability (pd) as a function of the required SNR with false alarm

probability (pf ) as a parameter [38, Ch. 6]

Some useful rules can be derived from Fig. 10. For example, a 10 dB SNR is required

to detect a foreground signal with a probability of 90% and pf=1%. For the same pf ,

the probability of detection drops below 10% in zeros or negative SNR. In practice, one

may fix the desired pd and pf and find the corresponding SNR value from Fig. 10. By

intersecting this value with the instantaneous SNR, one can determine the time instants

for which the existence of foreground EEG activity are most (least) probable. These

results are in accordance with the empirical SNR levels previously proposed for the

detection of neural oscillations in background EEG [17].

The utilization of Fig. 10 requires the instantaneous SNR (or its estimate), which

is not directly available for the EEG. A heuristic approach for estimating the EEG SNR

is proposed in Section 4.4.

4.4. Foreground/Background EEG SNR Estimation

The estimation of the instantaneous SNR requires some prior assumptions regrading

the foreground and background EEG. Considering the additive data model proposed in

Section 4.1, and considering the foreground EEG (sn) and background EEG (vn) to be

uncorrelated, superposition holds between their power spectral densities (PSD):

Sx(f) = Ss(f) + Sv(f) (25)

Sx(f) can be directly estimated from the raw EEG. If we further assume that the

background EEG is flat over the narrow-band filter’s passband, the background EEG

PSD Sn(f) can be estimated from the neighborhood bands of the frequency band of

interest, as shown in Fig. 11, and Ss(f) is found by subtracting Sn(f) from Sx(f). The

area under these spectral estimates is equal to their total power. Therefore, the SNR

in the filter’s passband is obtained. The same method can be performed online, by
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Figure 11: Normalized power spectral density (PSD) of a sample EEG segment and the

estimated foreground and background EEG

estimating the PSD and SNRn over a sliding window of the input signal (cf. [17] for a

similar approach).

An alternative approach for SNR estimation is to use oscillatory signal tracking

schemes (similar to the one developed in [39] for electrocardiogram denoising

applications) to estimate the foreground EEG from xn. Having an estimate of sn, the

background EEG and the instantaneous SNR can be found.

5. Applications

The current study has significant implications in various EEG phase analysis

applications. In this section, some of the major applications are studied with examples.

In order to make the results reproducible, all source codes related to this study are

online available in the open-source electrophysiological toolbox (OSET) [40].

5.1. Time Domain Synchrony and PLV

The synchronous firing of neurons within different brain regions has been considered

as a potential source of EEG-level brain responses. Synchrony estimation consists

of first calculating the phase sequences using electric or magnetic brain records and

then quantifying the local stability of phase lock through computing the difference

between these sequences [41]. In this context, phase-locking value (PLV) is one of

the most common indexes used for calculating the coherency and synchrony between

phase signals [41, 42]. The index is based on the phase difference (PD) between two

EEG signals.

To show the importance of the proposed statistical approach in phase synchrony

studies, the IP, IF and IE of five 20 s segments of simultaneous EEG channels are

shown in Fig. 12. Accordingly, the initial observation shows a great synchrony between
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Figure 12: Time domain synchrony (middle panel), the corresponding PLV index (right-

side panel), and the instantaneous analytical signal envelope (left-side panel). Notice

the estimations affected by low values of analytic envelope .

the IP of O1, P3, C3 and partially F3 (middle panel). Moreover, considering the FP1

as a reference signal, the inter-channel phase differences (PLVs), are showing a sort

of phase lock or significant phase shift in the highlighted time epochs (indicated by

boxes in Fig. 12). Nevertheless, when comparing these plots with their corresponding

IE (in the left panel of Fig. 12), it is noticed that the spikes in the phase indexes are

concurrent with low IE. Therefore, the phase effects are side-effects of a low analytical

signal envelope during the same epochs. More specifically, the boxes indicated as (a)

and (b) in the left panel have been selected such that the IE captured from electrode

FP1 (the reference lead) includes two notches. During the same period, two big spikes

can be observed in its corresponding phase derivatives in the middle panel of FP1, which

result in notable displacement (shifts) in the calculated phase differences (PLVs). On

the other hand, box (c) is selected such that a low-value analytic envelope in four other

electrodes is concurrent with a high envelope in FP1. Again, the phase differences are

significantly affected by unreliable spikes in phase sequences due to low IE in these

channels. Apparently, as discussed before, measurements of instantaneous phase in

time instants with low IE are unreliable and phase-related quantities such as phase

lock, phase difference, or PLV are affected by this issue. Therefore, any physiological

and pathological interpretations based on these quantities require further consideration.

5.2. Phase Resetting

Phase resetting has been defined as a phase shift (PS) followed by a phase difference

stability, i.e., phase lock (PL) [16]. Each pair of PS and PL, starting from the beginning

of a PS and finishing by the end of a PL (beginning of the next PS), is called a phase

reset (PR). Fig. 13 shows the PR, PL and PS events calculated for a typical EEG.
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Figure 13: Illustration of Phase Resetting (PR), Phase Lock (PL) and Phase Shift (PS)

events using the IF and IP of an EEG segment. The dashed green lines indicate the

tunable threshold used for measuring PS [11].

Using the concepts presented in Fig. 13, in Fig. 14 phase shifts are estimated for

segments of two EEG channels (FP1 and O1) together with their IE, IF, PD and the first

order time difference of the PD. Accordingly, among all the detected phase shift events

(curves crossing the green dashed threshold in the second panel), only two of them have

occurred in significantly high IE (may be considered relevant). Furthermore, according

to the third and fourth panels, the phase shifts calculated between two channels are

only relevant only during the epochs where the IE of both channels have been above the

threshold (blue boxes) and the rest of the detected phase shift events (red boxes) are

unreliable, due to the low-envelope analytic signal.

Phase resetting in various frequency bands of cerebral signals have been previously

correlated to different cognitive responses such as working memory [43, 44], brain

development [45], intelligence [46,47], consciousness [48–51], sensory-motor interactions

[52] and many more [53, 54]. While it appears that many of the phase shifts and

resettings have been during unreliable IE magnitudes. This raises some reservations

regarding physiological and pathological interpretations which have been based on phase

resetting of brain signals and highlights the necessity of simultaneous IE analysis for

such applications, either as a complement or replacement for phase analysis. One can

hypothesize that many of the previous results associated to the EEG phase might have

been mere side-effects of the signals envelope variations.

5.3. Phase-Amplitude Coupling (PAC)

Phase amplitude coupling (PAC) is a means of investigating the coupling between the

phase of lower frequency oscillations and the power of higher frequency oscillations,

i.e., synchronization of IE of faster rhythms with IP of slower rhythms [55]. Due to

the algorithmic details of the PAC, its study is beyond the scope of the current study.

However, many aspects of PAC, including the calculation of the IP and IE in different

frequency bands can be studied within the hereby proposed scheme. Specifically, the

current study emphasizes the necessity of a Monte Carlo estimation of the IE, IP and

IF for PAC studies to assure the statistical relevance of the calculated index.
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Figure 14: Phase resetting (phase shift) measurements affected by the low values in

analytic envelope.

6. Discussion

This study has some major impacts for a systematic interpretation of the EEG phase,

which we highlight below.

(i) The confidence in signal detection, IP and IF estimations is directly related to the

instantaneous SNR and envelope (Xn). In fact, considering a stationary background

EEG variance (σn = cte.), in low foreground EEG envelopes (Xn), the accuracy of

signal detection drops, the probability of phase slipping increases, and the IP/IF

estimation qualities degrade. This suggests that IP and IF are only reliable in high

SNR, and it is not possible to validate any phase or frequency activity without

simultaneously considering the instantaneous envelope of the analytical form of the

EEG.

(ii) The EEG IP and IF are stochastic parameters with SNR-dependent pdfs. As

random variables, they can fluctuate within the range of their pdf. The confidence

intervals of these parameters imply that as far as the estimated IP and IF are

within the θ̄n ± σθn and f̄n ± σfn ranges, the event is considered “normal”. An

odd event— having perhaps a physiological origin, such as phase resetting, etc.—

may only be reported when the IP/IF exceeds the normal range. This shows that

phase/frequency jumps that occur in low analytical signal envelopes are statistically
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irrelevant and may not necessarily be associated to any biological origin. More

rigorously, using the pdfs derived in Section 4.2, percentiles can be estimated for

each of the estimated parameters to find the probability of a given IP or IF.

(iii) The randomized ensembles generated from the Monte Carlo scheme proposed in

Section 3 can be considered as samples drawn from the density functions derived

in Section 4.2. Considering the symmetry of the IP distribution, θ̄n yields the

maximum a posteriori (MAP) estimate of the IP. For the IE (due to the right skew

of its distribution) and IF (due to its possible pdf asymmetry, which depends on

the temporal dynamics of the EEG phase), instead of taking the expectation of the

randomized ensembles, the sample mode can be used to obtain the MAP estimate

(which are no longer equal to X̄n or f̄n).

(iv) Considering the fundamental role of the IE in phase analysis, a hypothesis that

requires future studies is that many of the phase inferred parameters of the EEG,

may in fact be associated to the analytical signal envelope, rather than the EEG

phase. In other words, phase-related parameters such as phase resetting may be side

effects of the signal’s envelope drop, rather than being independent physiological

phenomena.

7. Conclusion

In this study the classical procedure of instantaneous EEG phase and frequency analysis

was studied in a stochastic Monte Carlo estimation framework and justified using

the most widely accepted data model representing foreground and background EEG

activities. The probability density functions of the instantaneous phase and envelope

and their dependence on the instantaneous SNR of the EEG were derived. By using

minor perturbations in the BP filtering scheme and background noise level, it was shown

that the EEG phase parameters are highly dependent on the IE and are statistically

unreliable in low analytical signal envelopes. The impact of this framework was shown

for EEG IP and IF calculation, and well-known phase-based parameters such as phase

synchrony, PLV and phase resetting. The study raises some major reservations on

the interpretation of previously reported physiological factors, which have been derived

from the EEG phase alone (neglecting the envelope information). Considering the high

impact of the IE on IP and IF, a fundamental question is whether phase related indexes

can be considered as independent cerebral factors, or they are merely side effects of the

IE variations. The answer to this question requires a statistical setup on a large dataset

recorded under well-defined brain experiments such as steady state audio/visual evoked

potentials.

In future studies, the hereby proposed Monte Carlo randomization procedure and

post-processing proposed in Section 3.3 can also be unified using particle filtering or

sequential Monte Carlo filtering, which perform randomization and smoothing at the

same time, to obtain sample-based MAP estimates for the EEG phase and frequency.

In case of wide acceptance, the findings of this research can set forth new standards
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for EEG phase/frequency estimation methods, using multiple and infinitesimal

algorithm parameter variations and the necessity of reporting average and confidence

intervals over these Monte Carlo sweeps, as a standard procedure.
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[7] M. Chávez, M. Le Van Quyen, V. Navarro, M. Baulac, and J. Martinerie, “Spatio-temporal

dynamics prior to neocortical seizures: amplitude versus phase couplings,” IEEE Transactions

on Biomedical Engineering, vol. 50, no. 5, pp. 571–583, 2003.

[8] T. I. Netoff and S. J. Schiff, “Decreased neuronal synchronization during experimental seizures,”

The Journal of neuroscience, vol. 22, no. 16, pp. 7297–7307, 2002.

[9] C. Stam, Y. Van Der Made, Y. Pijnenburg, and P. Scheltens, “EEG synchronization in mild

cognitive impairment and alzheimer’s disease,” Acta Neurologica Scandinavica, vol. 108, no. 2,

pp. 90–96, 2003.

[10] C. J. Stam, A. M. v. C. van Walsum, Y. A. Pijnenburg, H. W. Berendse, J. C. de Munck,

P. Scheltens, and B. W. van Dijk, “Generalized synchronization of MEG recordings in Alzheimers

disease: evidence for involvement of the gamma band,” Journal of Clinical Neurophysiology,

vol. 19, no. 6, pp. 562–574, 2002.

[11] R. W. Thatcher, D. M. North, J. Neubrander, C. J. Biver, S. Cutler, and P. DeFina, “Autism

and EEG phase reset: deficient GABA mediated inhibition in thalamo-cortical circuits,”

Developmental neuropsychology, vol. 34, no. 6, pp. 780–800, 2009.

[12] B. Blankertz, L. Acqualagna, S. Dähne, S. Haufe, M. Schultze-Kraft, I. Sturm, M. Ušćumlic, M. A.
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[20] W. A. Rios Herrera, J. Escalona, D. Rivera López, and M. F. Müller, “On the estimation of phase

synchronization, spurious synchronization and filtering,” Chaos: An Interdisciplinary Journal

of Nonlinear Science, vol. 26, no. 12, p. 123106, 2016.

[21] B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. I.

Fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, pp. 520–538, 1992.

[22] ——, “Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and

applications,” Proceedings of the IEEE, vol. 80, no. 4, pp. 540–568, 1992.

[23] B. Picinbono, “On instantaneous amplitude and phase of signals,” Signal Processing, IEEE

Transactions on, vol. 45, no. 3, pp. 552–560, 1997.

[24] E. Seraj and R. Sameni, “Robust electroencephalogram phase estimation with applications in

brain-computer interface systems,” Physiological Measurement, vol. 38, no. 3, p. 501, 2017.

[25] F. Karimzadeh, E. Seraj, R. Boostani, and R. Sameni, “A distributed classification procedure

for automatic sleep stage scoring based on instantaneous electroencephalogram phase and

envelope features,” IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017,

[Manuscript under review].

[26] W. J. Freeman, “Hilbert transform for brain waves,” Scholarpedia, vol. 2, no. 1, p. 1338, 2007.

[27] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Higher Education,

2010.

[28] P. Sauseng, W. Klimesch, W. Gruber, S. Hanslmayr, R. Freunberger, and M. Doppelmayr, “Are

event-related potential components generated by phase resetting of brain oscillations? a critical

discussion,” Neuroscience, vol. 146, no. 4, pp. 1435–1444, 2007.
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