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Abstract

Background: The instantaneous phase (IP) and instantaneous frequé)of the electroencephalogram (EEG) are considered as
notable complements for the EEG spectrum. The calculafitirese parameters commonly includes narrow-band filtdalhgwed

by the calculation of the signal’s analytical form. The céédion of IP and IF is highly susceptible to the filtering peueters and
background noise level, especially in low analytical sigmaplitudes.

New Method: Herein, a Monte Carlo estimation scheme is proposed forstobstimation of the EEG IP and IF. It is proposed
that any EEG phase-related inference should be reported ageaage with confidence intervals obtained by repeatiagRtand

IF estimation under infinitesimal variations (selected hyeapert), in the algorithmic parameters such as the filtexisdwidth,
center frequency and background noise level. In the secartcopthe paper, a stochastic model consisting of the sogéipn

of narrow-band foreground and background EEG is used toaprobability density functions of the instantaneous &pe (IE)
and IP of EEG signals, which justify the proposed Monte Cacloeme.

Results: It is rigorously shown that the JAF estimation quality highly depends on the IE and any piiesguency interpretations
in low |E are statistically unreliable and require a hypaibeest.

Comparison with Existing Methods: The impact of the proposed method on previous studies, dirgutime-domain phase
synchrony, phase resetting, phase locking value and phagidade coupling are studied with examples.

Conclusion: The findings of this research can set forth new standardsE@ ghasférequency estimation and analysis.

Keywords: Electroencephalogram phase calculation; time-domaisg@kgnchrony; phase resetting; phase locking value; phase
amplitude coupling; phase slipping

1. Introduction methods) is to distinguish between physiological statesira

| . tiotns due to brain activity and spurious variations, spi&ed

n recent decades, the instantaneous pha;e and frequencyp%asejumps_ known as “phase slippirlg’l[15]. It has been pre-
.the electrogncephalogram (EEG) have recewgd greatiattent iously reported that unambiguous measurements of the EEG
in neuroscience and brain research communities, as a Botaghase cannot be made around phase slipping epochs, nor near

complement for fche_EEG spectral contents. The concept h fie ends of signal segments/[15, 16]. Some minimum required
found broad applications iorain computer interfacéSCl) sys- signal-to-noise levels have also been empirically fourrdiés

tems DDZ , cognitive stud|eE|[E|, 4] af‘.d brain connectiaity . tecting oscillatory neural activities in presence of baokmd
sessmen .'ﬂ6]. Phase-related quantities have also beehywi nois eh]

used in the analysis of clinical and pathological cereboal-c
ditions, including epilepsﬂﬂ 8], dementld é 10], ami@] Other aspects of EEG phase extraction and analysis, such as
and many more. Recent studies have also sought the relatiotemporal properties and band-pass filtering requiremeants h
ship between the EEG phase anant-related synchronization been investigated ivh__LlLEhS]. The authors reported notdikle
(ERS) andie-synchronizatioERD) [12,13]. continuities (phase slipping events) in the EEG phase tzkml

The reliable estimation of the EEG phase and frequency is afiom the human scalp and attempted to minimize théeets.
essential prerequisite for all these studies. Variousrtiegles A comprehensive study was performed on various phase ex-
such as the Hilbert transform (HT), wavelet transform (WT),traction tools (particularly HT and WT) and their impacts and
and other tim@requency representations have been utilized foiinterpretations in neural synchrorh_L[19]. |n__|[14], physiaad
reliable and unambiguous phase calculation (cf. Seéfion 2}heoretical conditions and steps required for obtainingeamn
Among all, the HT has been considered the most reliable mearisgful phase sequence were extensively studied, besidestin
of EEG phase estimation, as a method which does not violatgating the most reliable approaches for this purpose. Inente
the physical and theoretical conditions essential foraimst-  study @)], the impact of narrow-band filtering was studied i
neous phase extractioE[14]. However, a majdfialilty in  true versus spurious phase synchronization using syottheta
using the HT (and other instantaneous EEG phase extractianodels.
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Although the problem of reliable EEG phase and frequencys the set of design parameters describing the BP filterudacl
estimation has been extensively studied in the neurosei@nd  ing the filtertype designmethod center frequencwy, band-
brain communities, due to the lack of a stochastic frameworkwidth bw, stop-band attenuatiofs, pass-band ripplé,, etc.
the results and discussions regarding the so-called plipse s The parameter seqt plays a major role in the current study. A
ping phenomenon remain qualitative and descriptive— comeletailed discussion is presented in Secfion 3.1, regartiieg
monly stated as a note of caution— instead of providing preparameter set selection.
cise guidelines for the extraction and interpretation ef HEG Next, theanalytical formof the BP filtered signal is calcu-
phasgrequency and discriminating between true versus spuritated using the discrete-time Hilbert transfofiti-}.
ous phase jumps.

The objective of the current study is to propose a Monte X = Xn + JH{Xn} €)
Carlo estimation procedure for robust instantaneous EESeh

and frequency estimation using “minor” perturbations it The IE, IP, and IF are calculated from the analytical form as

put signal and phageequency estimation algorithm parame- follows. A = v

ters. The proposed method is very generic and does not rely on An = VRe(%0)? + M%) (4)
prior models for the EEG and the parameter perturbationrorde

can be set by the expert depending on application. dn 2 atan2m(%,), Re(%)] (5)

In the second part of the paper, we adopt a model-based ap-
proach to justify the proposed Monte Carlo estimation proce A fs
dure in a rigorous statistical framework. Using the mostahid fn = an — ¢n-1] mod 2r (6)
accepted EEG data model and profound theories from Sign%\llhere atan2 represents the four-quadrant inverse tangent a
detection and estimatioh [21,122] 23| 16], it is shown theés . P . ourdq ‘ang

- - the diference operator i {6) is used as an approximation for
such as EEG phase slipping and plifiegquency deviations are S . S
. . . L phase dierentiation (cf. ] for alternative approximations).
unavoidable (yet predictable), and spurious phase vansittan L . .
S S . . In order to avoid instantaneous jumps in the IF, the IP secpien
be probabilistically discriminated from physiologicatislevant . . '
. . g is commonlyunwrappedbefore calculating the fference in
EEG phas#requency variations. The EEG signal’s instanta-
neous analytical form envelope, which has been empiricall;ga)_l'_

used in previous studies, is shown to have a fundamental IrT]’iltering plus analytical signal calculation) are the maages

pact on the accuracy of th_e EEG phase contents. of the majority of EEG phase analysis studies. This proeedur
From an application viewpoint, the authors have recently, L )
is fully deterministic and does not account for the stodbast

shown the applicability of the hereby presented method @i B properties of the EEG.

[@] and ;Ieep stage SC.OWEZS] appllcatlons. In order to show the motivation of the current study, let
In Sectior[ 2, the basic steps required for EEG phase extrac- . S . A
tion are reviewed and the motivation of the current study iSus_conS|der a sypthe_tlc signal d.IIUtEd by narrow-band a@n
) : noise, as shown in Fifl 1. The signal model is as follows:
shown using a synthetic data example. The proposed Monte
Carlo phasgrequency estimation method is detailed in Sec- t
tions[3E3. This method is statistically justified and usedde- y(t) = A(t) cos(Z f f(r)dr) + n(t) @)
riving statistical properties of narrow-band EEG in badkgrd 0
noise in Sectiofll5. The practical implications of the pragabs whereA(t) = sin(2r x 3.1t) + 0.7 sin(2r x 2.7t + 7/6) is a slowly
method are detailed in Sectibh 6. Various applications ef th varying amplitude f(t) = sin(2r x 0.8t) + 20 Hz is the instan-
proposed framework and its impact on previous EEG phastaneous frequency amdt) is narrow-band Gaussian noise cen-
studies are presented in Sectidn 7. tered aroundy = 20 Hz and a variance adjusted to set the total
signal-to-noise ratigqSNR) ofy(t) to 25 dB. We consider two
2. Instantaneous Envelope, Phase and Frequency Calcula- €@ses for theféective bandwidth o(t): 2 Hz and 2.01 Hz, ob-
tion tained by filtering two ensembles of white noise using basdpa
filters with the same center frequenyand 0.01 Hz of dier-
The classical procedure of calculating the instantanenus e gpce in their Bective bandwidths. The data is sampledat
velope (IE), instantaneous phase (IP) and instantaneeds fr125 Hz for illustration. According to Figl1, it is clearly e
quency (IF) of a signal is to use its analytical folm![23]. $he  tpqt although the amplitude variations are rather slow &ed t
measures are only uniquely defined for narrow-band signalgnitial phase ofy(t) is constant, abrupt random phase jumps and
Therefore, considering a discrete-time siggal(such as an jnstantaneous frequency errors are inevitable in low dicaly
EEG), itis first bandpass (BP) filtered around the desiretecen sjgnal envelopes. In these cases, tifiedince between the two
frequencywo = 2rfo/ fs with a narrow bandwidtiow. filters becomes significant. Thisfiérence can be numerically
X = BPYn: P) = Yo * i (1) explained by considering that in low signal amplitudes,dhe
gument of atan2 if{5) is singular, as it fluctuates arozem-
divided-by-zeraand a small dterence in the filtering scheme
or background noise can cause large phase variations (even b
p = {type methodwo, bw, s, 6p, - - - } (2)  yondzxr)and randomize the IF, as shown in the last row in Fig.

he upper mentioned stages of IE, IP, and IF calculation (BP

whereh, is the equivalent BP filter's impulse responseje-
notes convolutionfs is the sampling frequency in Hz, and



Al. For any significant EEG-based physiological inference,

g HH il iiii i HWIH i ”liuu iiiiii m Jn!l'ﬂ[' ii Hpm there exists a range of measurement and algorithmic param-
2 ool AL L O eter variations (defined by an expert), which can be consitler
< 0 1 2 3 " s A 2 8 to be irrelevant to the undergoing physiological phenonmeno
~ 1f ‘ ‘ ‘ ‘ ‘ ‘ ~ In other words, we assume that physiologically significant
5—9;?;\ ﬁ 3 EEG characteristics (spectral, phase, frequency, etenohust
ol ! i i : i i i ] to infinitesimal perturbation#n: 1) the signal’s amplitude, and
°o o+ oz 3 45 e T8 2) the phase extraction method (e.g. the bandpass filter's de
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ sign parameter set). This assumption is indeed intuitizethe
%igV@VJL_&( definition ofinfinitesimal perturbationss subjective and highly
T i i i ‘ ‘ ‘ ‘ dependent on the undergoing physiological activity (bta#k).
ot 23 e > YT B Nevertheless, we assume that for any physiological exjgerim
the expert can set a bound on the algorithm parameters, 8eyon
(a) which any parameter variations are irrelevant to the uyaeyl
experiment.

Assumption [[Al) is supported by the fact that the sub-
frequency bands defined in the EEG phase analysis literature
are highly subjective and minor deviations in the center fre
quencies, bandwidths, and even filter design techniquenare i
plicitly assumed to be irrelevant to the phase study. To #st b
of the authors’ knowledge, despite the rich literature orGEE
phase, only some general guidelines have been proposéxgfor t

() © phase extraction procedu [El 26], and researchers legve b

basically using arbitrary and un-unified narrow-band fittgr

Figure 1: (Top row) a synthetic signal and its analyticahi@nvelope in dashed  @Nd phase extraction schemes in their studies.

line using the two filtering schemes detailed in Sedfibn Zdqad row) the in- Another source of measurement variability, which is com-

stantaneous phase i_n both cases; (third row)‘the estimas&ghtaneous fre- monly neglected in practice, is due to quantization and back

guency and the true instantaneous frequency in dashed (lassrow left) the . - . - . .

polar representation of a 0.5 s segment of the analytical foound t= 3.5 s grogr_1d HOIS_;e' Therefore, if the Input S|gnad1|meredby minor

with a high envelope; (last row right) the polar represdatanfa 0.5 s segment ~ additive noise, at the order of the background EEG level or at

of the analytical form around= 4.3 s with a low envelope. Notice the angle the quantization level of the analog-to-digital convest(jkDC)

between the first and last sample of the 0.5 s segments in batk.cas used for digitizing the EEG, the foreground EEG is again ex-
pected to remain consistent under such minor dithers.

Based on these assumptions we propose that:

[@. This suggests that the probability of phase jumps and the

enve!opes. ' o should consist of a Monte Carlo sweep over random perturba-
This example shows the necessity of a statistical frameworkjons of measurement and algorithm parameters (background

for the problem of EEG IP and IF analysis, which systematnoise level, filter's bandwidth, center frequency, etci aser-

ically considers the féect of lowhigh instantaneous envelope defined level. The estimated EEG parameters should be re-

and background noise and is robust to minor variations erfilt ported with their mean and confidence intervals over this tdon
ing parameters and the phase extraction algorithm. Carlo simulation.

This procedure is rather general and it can be implemented
3. Method: Robust EEG Phas@requency Estimation in different forms. For a given EEG signgl, Algorithm[1
is hereby proposed as a realization of propositioh (P1) ni fi
Following the explanations and the example in Secfibn 2robust values and statistical confidence intervals for I& [&n
it is noticed that EEG phase and frequency features can hbestimates.
highly susceptible to background noise and minor varigtion For illustration, Fig[2 shows 30 s of a typical EEG, recorded
in the extraction algorithm (e.g. the bandpass filtering- proin a BCl experiment; together with its IE, IF and unwrapped IP
cedure), especially during epochs of low analytical siggral  calculated using Algorithia]1 foN = 50 iterations. The sam-
velopes. To overcome this limitation, we propose that due tgling frequency of the signal i& = 160 Hz. For better visual-
the stochastic nature of the EEG, the estimated phase and frigation of the phase fluctuations, in Hig. 2, the unwrappeasph
quency features should be studied under minor variations ihas been subtracted byt(&y/ fs)n, which is the instantaneous
non-physiological aspects of phase extraction, includiEl§G  phase of a sinusoidal oscillator with a fixed initial phasée T
measurement quantization noise and infinitesimal variatin ~ BP filter is a zero-phase forward-backward filter obtainednr
the filtering parameters. Our basic assumption throughusit t an order six moving average lowpass filter prototype, shown
work is that: in Fig. [3. The center frequency of the filter fg = 13.1 Hz



(the peak of the power spectral density as shown in[Fig. 4) and
Algorithm 1 Robust Instantaneous EEG Phase and Frequendp€ &fective bandwidth is 1 Hz. In each of the trials, this

Estimation ilter has been perturbed with random deviations of the band-
Require: A filter design parameter setas defined in{2). width ranging from zero to 0.05 Hz, the center frequergy
Define: An algorithmic variation irrelevancy boundAVvIB), has been perturbed with a uniform random value in the range of

duces to the conventional deterministic phase estimatioWhich is smaller than the quantization level of the 14-bit@&D
technique by settingl = 0 andsp = 0. used for sampling the EEG signal. The gray shades inFig. 2,
1. forall k=1,--- ,Ndo show the results dN trials overlaid. The average instgntanfeous
. Design a bandpass filter with perturbed design paramfrequencyf, and the confidence intervals bounded fay: o,
eter setp® = p + 5p®, where the parameter perturbations are also shown. The frequency response offhperturbed

aresp® < sp. bandpass filters are shown in Higj. 3. Itis seen that althdugh t
3 Add minor noise to the input EEG at an ordersdf to  @lgorithmic and noise level variations are negligible frme

obtain dithered randomized ensembles of the EEG: physiological viewpoint, the IP and IF results are signifity

different, especially during the low analytical signal segment
4 = yp + 98 (8)  ofthe EEG.
We assume/ﬂ‘) ~ N(0,€?) to be Gaussian noise and the 3.1. Parameter Selection
) . )

dither Va”%(')’c% < oA . . . The proposed framework is generic and its parameters should
4. Filterdy” using bandpass filters designed with the per-pe selected for each application. Various aspects of tranpar

turbed design parameter ggf: eter selection are discussed in what follows.

X = BP(d; pY) (9)

3.1.1. Filter Design Scheme
The BP filter is a linear transform. Accordingly, the phase

5: Calculate the analytical form of the filtered ensemble: g . . ) ;
of x, over the entire Nyquist band, is the summation of the in-

K00 = x4 jr(x®) (10)  put signal’s_phas_e and the filtgr’_s phase. Therefore, fosgha
based studies, linear-phase finite impulse response (FHR) a
6: Calculate the IE, IP, and IF: commonly used, which preserve the input signal phagerdi
ence and do not add any phase distortions; in contrast to infi-
X = |51) (11)  nite impulse response (IIR) filters, which are nonlineargsha

However, the order of narrow-band FIR filters can become very
high, resulting in long transient respongkeets. Moreover, the

K oK K
69 = atan2m(%9), Re(%)] (12)  addition of even a linear phase to the input signal can caee f
phase jumps due to the phase wrapping of the filter's phase. To
f id this, we herein use zero-phase forward-backwardififie
fR — S0 _ gk d 2r 13 avol , p
n 2:r[ n n-al MO (13) (FIR or 1IR)[, which does not cause any phase distortions and
7: end for guarantees the phase synchrony between the input and output

8: Find the ensemble averages and variances of the paramet@fsthe BP filter. This procedure is evidently non-causal,alihi
is not a limitation for dfline phase analysis.

Xn = E{;(gk)}, = E{(;(gk) - X0)?) (14)  3.1.2. Filter Design Parameter Set
The BP filter specifications such as the center frequency,
bandwidth, and design method are all subjective and may-be se
lected according to physiological ground truth (as congidén
all previous studies). According to Assumptldn 1, for eaph a
0n = E{6W), 29 = E{(6Y - 61)?) (16)  plication, the parameter deviations considered during/tbete
Carlo simulation are selected such that the deviated fittec-s
ifications would be physiologically “irrelevant” for the plica-
tion of interest. For example, consider an EEG with a dortinan
whereE{-} represents the sample mean over thgener-  7-12 Hz (alpha-band) spectral density. Physiologicallgngn
ated ensemblBs experts would consider a 0.1 Hz of filter bandwidth deviation
9: Calculate the confidence intervals of the estimated paranto be irrelevant for such an experiments (at least accortting

etersioX = JaX, o = /2%, ando! = /).

Xo = E(XV), 2% = E((XV - X0)?) (15)

fo= E(f0), A = E((f¥ - f)3) 17)

2Zero-phase forward-backward filtering can be implementeutytsiefiltfilt
function in Matlab, Octave, or R.
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Figure 3: The overlaid magnitude responseéNof 50 order six moving aver-

5 : = = - = age filters obtained by perturbing the design parameterd,fos¢he results in
time(s) Fig.[d. The diterence between the filter responses are assumed to be inteleva
(b) BP-filter outputs and Analytic Envelopes for EEG phase analysis. Refer to Secfidn 3 for further detail
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the current literature). Therefore, randomization of the fi-
ter bandwidth at this level will help the identification ofiedle
and unreliable EEG parameters.

Depending on the filter design scheme, the filter's parameter
variations can be done in various domains. For instance, one
may prefer to perform the perturbation in the zero-pole con-
figuration of a predefined filter (as recently proposedirh J24]

In this case, the filter should be checked for stability affter
random pole perturbations and the poles should be preserved
inside the unit circle. Moreover the conjugate symmetryhef t

‘ > ‘ zeros and poles need to be preserved, in order to guaraetee th
TR TT I 19.219.419.619.8 20 258 26 26.2 realness of the filter cdgcients.

time(s) time(s) time(s)

(h) 0} 0)

Amplitude(mV)
Amplitude(mV)
Amplitude(mV)

IF (Hz)

3.1.3. Dither Level
Figure 2: (a) A sample EEG segment; (b) the bandpass filtere@lsigising .
three BP filters withfp = 13.09, 13.1, 13.11 Hz and the corresponding analyt- The dither level should be at the same order _(or_small_er
ical signal envelopes; (c) the unwrapped IP of fifty pertdreasembles with  than) the expected background noise. The quantizatiore nois
their highlighted mean; (d) the IF of fifty perturbed ensembiéth f,, and  of the analog to digital convertors used in EEG sampling is

fn 10',2 confidence intervals; (e)-(g) a zoom-in of three |IE segmenerathe an inevitable source of background noise, which can be sim-
black, red and green traces correspond with the output ofl@Psficentered at

fo, fo—of andfo+4f, respectively, and envelopes shown in thick black, dashedply fqund by StUdymg the electronic specmcatlons of the@D .

red and dashed green; (h)-(j) zoom-in of three IF segmentscétite random ~ USed in the EEG measurement system. The background EEG is

+7 phase jumps around=t13.9 s, which coincide with a notch in the IE. another source of background noise. However, the backdroun
EEG is rather subjective and model dependent and may be sub-
ject to a debate among experts.



5.1. Data Model

An implicit assumption in most EEG phase analysis stud-
ies is that a desired (narrow-band) brain activity, ref@éteas
foreground EEQGn the sequel, coexists in a poollméickground
EEG, considered as noise. The background EEG is considered

0 5 10 e 20 25 to be spontaneous (as compared with the foreground EEG). Iti

the superposition of numerous simultaneous and non-cohere
Figure 5: The estimated IF of 50 ensembles overlaid (gray shatthe average ~ cortical activities, which according to tleentral limit theorem
IF (black); the KF-smoothed IF withi, = 10-3 (blue) andy, = 107° (red). tends to a Gaussian distribution and is spread over theeentir
frequency band of study. On the other hand, the foreground
EEG can be the result of some mental activity, external dtimu
(audio, visual, etc.), or any other evoked activity, whidk-d
criminates it from the spontaneous EEG. Based on these as-
spmptions, the following additive model can be considered a
eneric model for the EEG signal at the BP filter output.

4. Post-Processing: Temporal Filtering of Instantaneous
EEG Parameters

The ensemble averaging technique proposed in $thge 8
Algorithm (1) does not consider the temporal correlatiohs o
the IE, IP, or IF. By assuming a temporal dynamic model for
these parameters, the estimation quality may be further im-
proved by conventional filtering and smoothing schemes such

as the Kalman filter or Particle filter (also known as Sequen¥/here the first parts,) models the foreground EEG, is the

tial Monte Carlo). Herein, for proof of concept, we assume d'°n-negative foreground envelope with slow variationsv¢io

first order auto-regressive dynamic model for the IP andyappl PaSs With respect to the center frequengy, 6, is the instan-
a classical Kalman filter to improve the IP and IF estimates. t@neous foreground EEG phase (again with rather slow vari-
ations), andv, is the narrow-band counterpart of the back-

O = Onq + Wy ground EEG, which generally overlaps with the foreground
bn = 6n + Un (18)  EgG spectrum. Due to the linearity of the BP filter, the back-
ground EEG remains Gaussian through the filtering process,
wherew, ~ N(0.y2) is considered as process noise, andi.e.,vq ~ N(0,c7?).
¥n ~ N(0,02) is the observation noise. For this model, it can  In this model, the rather slow variationsXf andd, (approx-
be shown that the Kalman filter equations have a single tunimately constant over very small temporal windows) is théma
able parametes?/y2, which can be adjusted proportional to assumption that discriminates the foreground and backgrou
the phase and frequency variances obtainedin (16YandI(L7). EEGs. The objective of EEG phase analysis is to estimate the
Fig.[8, the IF of the sample EEG segment from Eig. 2 is showrphase signa,,.

after applying the Kalman smoother fof = A, (as defined in If the BP filter is stficiently narrow-band (as required for a
(I7), and two valuey, = 102 andy, = 107°. Apparently, canonical definition of the IE, IP, and IE |41]23]), its artadgl
the results are smoother for smaller valuesgpfthe filter relies  form can be written as follows.

on the first-order dynamics) and become closer to the obderve

noisy IF for larger values of,. This example is only shown Ko = X + JH{Xa} = Xpel@oMh) 4 = A gllwonsdn) — (20)
as proof of concept. The rich literature on Kalman filterimgl a
its extensions can be used in future studies for robust IRRANd
estimation, using suitable temporal priors.

Xn = Xn COSoN + 61) + Vh = Sy + Vyy (29)

wherer, = rpel@™¥) (r. > 0) is the analytical form ofj,—
a complex valued Gaussian random process with zero-mean in-
dependent real and imaginary parts arﬁd/ariancelf?gb, Ch. 8].
5. A Theoretical Model-Based Justification; Statistical ~1he phasor diagram of the foreground plus background EEG is
Properties of Narrow-Band EEG shown in Fig[® for illustration.
This additive model is perhaps the most generic model for
The empirical method and results presented in Segflon arrow-band EEG and in accordance with the most widely ac-
demonstrate the susceptibility of EEG phase and frequesicy ecepted data models in EEG phase analysis studies Ef [27]
timates in low analytical signal amplitudes. However, for afor a detailed discussion about the most common EEG phase
formal description of these findings, a data model is reguire models). Previous studies have mainly studied the narandb
Herein, we use the most widely accepted model in the literforeground part of mode[[{19) within a deterministic frame-
ature E’V,EBEQ], to extract statistical properties ofroar  work; neglecting the statistical properties of the backgib
band EEG. Although, the hereby developed formulations ar&EG. The basic idea that is followed in this work is that the
in accordance with empirical results on real data, thesstati problem should be studied in a stochastic framework and the
cal framework proposed in this section is subject to delurte, signal detectability and reliability of the desired EEG pho-
pending on the acceptance or rejection of the model for ipeci tally depend on the instantaneous envelopes and variarfices o
applications (as with all model-based techniques). the foreground and background EEG.
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0.2
Background EEG
(Rayleigh)
N’gc
’C 1 L
x
i’f Foreground + Background
= EEG (Rician)
N’gc
—= 0.5
Figure 6: The phasor diagram of seventy-five data point®(ref foreground
plus background EEG. The black solid circle has a radiusogf 2Assuming 0
a Gaussian distribution for the background EEG, 68% of thietpdall within 0 2 4 6 8 10
this circle. r,A

5.2. Probability Density Functions of the EEG envelope and:igure 7: Envelope distributions of Gaussian background EEeft three
o curves) and foreground EEG oscillations plus Gaussiandrackd EEG (left

phase right curves) forX, = 4.5 ando? = 0.2, 1, 2.5, equivalent to SNR= 17, 10,
The statistical properties of the signal model [in](19) have’ 98
been extensively studied in the signal processing litegatu
[31,[30]. Herein, we use some of these well-known proper- In this case, the envelope and phase are no longer indepen-
ties to find a statistically justifiable (reliable) method 8EG  dent (a key point in our study). The marginal distributiorited
phase analysis. For simplicity, we assume the sine wave envanalytical envelope has a Rician distribution.
lope X, and the noise varianee? to be known (or estimated as

discussed in Sectidn 5.4). f(AnlXn, 02) = al exp —Aﬁ X lo Xnn (24)
TV g2 202 o2
5.2.1. pdf of narrow-band background EEG wherelo() is themodified Bessel function of the first kifg0,

Considering a Gaussian probability density function (foif)  Ch. 8]. Using the Bayes’ rule and combinifig¥23) aind (24), the
the background EEG, the magnitude and phase of its andlyticgonditional pdf of the phase erraw, is found.
form (g, = roel@™¥n) are independent [30]. In absence of
exp(«n COSA¢n))

a foreground activity X, = 0), the background EEG magni- f(AdnlAn, Xn, 02) = F(Adnlkn) = (25)
tude has a Rayleigh distribution and the phase is uniform ove 2rtlo(kn)
[-m, 7]:

where 2 AXn/o2. Apparently, this distribution is sym-

fn r2 metric E{A¢gnlAn, Xn, 02} = 0) and E{A¢Z|An, Xn, 02} is an
f(ralo?) =1 o2 P\ 7252 ,forry 20 (21)  envelope-dependent phase-error variance. These prperti

0. elsewhere. support the assumptions required for the Kalman smoothing
stage described in Sectibh 4.
1 Finally, integrating[(ZB) oveA,, the marginal distribution of
—, for —m <y < i
folo?) = | g fOF —mS¥nsm (22) thelPerroris found.

0, elsewhere

1
F(AgnlXn, o) = f(Adnlon) = > exp(-py)[L1+

5.2.2. pdf of narrow-band foreground plus background EEG
Vrpn cosQ¢n) erfex(—pn cOSAen))]
2

In presence of foreground EEG, due to the Gaussian assump-

tion on the background EEG, it can be shown that the envelope A (26)
and phase of the analytical forfii{20) have the following oin Wherepn = VSNR, = X/ 4203 denotes the root square of the
pdf: instantaneous SNR and erfex{s the scaled complementary
error function
f(An, dn, OnlXn, 02) = T(An, Agp|Xn, 02) = The envelope, phase error, and conditional phase error dis-
An AZ + X2 — 2XnAn cOSA¢n) (23)  tributions of narrow-band Gaussian background EEG and fore
2n02 EXp{ -~ 202 ground plus background EEG are shown in Figs[17, 8,[@nd 9,
respectively.
whereA¢n = ¢n — 6, is the instantaneous random phad@edi The calculation of the IF pdf additionally requires the join

ence (error) between the noisy and noiseless sinusoidabpar pdf of 6, andd,_;. Due to the lack of ground truth regarding the
the model (the observed versus foreground EEG phases in otemporal dependence of the EEG phase, previous resultgon th
case). IF pdf of sinusoidal signal plus noise [31) 32| 33], whictheit



Specifically, in low analytical signal envelopes, the ptuba

2 ity of phase error tends to a uniform distribution over|[x],
which is in accordance with the results previously shown in
15 Fig.[2.
e 5.3. Signal Detectability
e ! Regardless of the presence or absence of a foreground EEG
oF activity, the procedure of IP calculation (narrow-band Bfefi
g ing, analytical signal calculation followed by IP estineat) al-
05l ways produces an output; even from pure random background
' EEG (noise). But how can one guarantee that there has been
some foreground activity? Here, we either require physielo
0%& cal ground truth obtained from the experimental setup oemth

-3 -2 -1 0 1 2 3 modalities (e.g., simultaneous MEG, fMRI, etc.), or comple
Ag, mentary information from multiple EEG leads. In absence of
reliable ground truth, one faces a statistiogpothesis testAt

Figure 8: Phase distributions of foreground EEG osciliplus Gaussian  each time instant, there are two possible hypothesis:
background EEG foX, = 4.5 and from top to bottoror2 = 1, 2, 5, 10, 20, and

100, equivalent to SNR= 10, 7, 3, 0, -3, and -10 dB. Ho: Xn=Vn
(background EEG alone)

Hi: X, = XnCOSon + 6n) + Vq
(background plus foreground EEG)

(27)

1.4

The decision is apparently probabilistic. The objectivaas
determine the most likely hypothesis, which meets somesgpred
finedprobability of detectioripy) andprobability of false alarm
(ps)-

The detection of a sinusoidal in noise is a classical problem
in detection theory@?, Ch. 6]. The hypothesis test is per-
formed by setting an appropriate threshtfidn the IE to meet
the desiredhq andps. By definition and according to Fifl] 7

pr = foo f(rolo2)dr,

1, (28)
pa = fh F(AalXe, 72 dA,

1l

fag |k )

Figure 9: Conditional phase error distributions of foregrd EEG oscillations which depend on the instantaneous foreground and backgroun
plus Gaussian background EEG far= 10, 5, 2, 1, 0.1 (from top to bottom).  EEG levels (the SNR). The curves fpg as a function of the
required SNR withp; as parameter are shown in Hig] 10, for
a fixed instantaneous phagge= cte The same results are ap-
assume a constant or fully random phase are not directly-applproximately applicable for sinusoids with slowly varyinggse
cable in this case. Arigorous approach is to model the tealpor (as compared with the center frequeng), a condition that is
dynamics of the IP, e.g., by assuming a Markov model for thesatisfied for narrow-band BP filtered EEG. Some useful rules
IP, which is beyond the scope of the current study. Howeer, acan be derived from Fi§_10. For example, a 10 dB SNR is re-
a rule of thumb, previous research have shown that the IF pdfuired to detect a foreground signal with a probability %90
becomes sharper aroung as the IP becomes more correlated andp;=1%. For the same, the probability of detection drops
in time (has slow temporal variations) [32]. Moreover, the | below 10% in zeros or negative SNR. In practice, one may fix
pdf is peaked aroundyo in high SNR and it tends to a uniform the desiredpy and p; and find the corresponding SNR value
distribution over £, 7] (the entire Nyquist band) in low SNR.  from Fig.[10. By intersecting this value with the instantane
These pdfs have also been used to extract lower bounds @NR, one can determine the time instants for which the ex-
the estimation variance of the IP and IF usinfjefient assump- istence of foreground EEG activity are most (least) probabl
tions on the temporal structure of the [P|[34, 35]. Again, as aThese results are in accordance with the empirical SNRdevel
general rule of thumb, the Cr&mRao lower bound (CRLB) of previously proposed for the detection of neural oscillagiin
the IP error variance is commonly inversely proportionah®  background EEQ [17].
SNR @]. The utilization of Fig[ZID requires the instantaneous SNR (o
In summery, all the probability density functions derived i its estimate), which is not directly available for the EEG. A
this section depend on the background EEG variance and-the iheuristic approach for estimating the EEG SNR is proposed in
stantaneous analytical signal envelope of the foregrolt@.E Sectiorf 5.4.
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Figure 10: Detection probabilitypg) as a function of the required SNR with
false alarm probability§;) as a parametelr [37, Ch. 6]
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Figure 11: Normalized power spectral density (PSD) of a safBplé segment
and the estimated foreground and background EEG

5.4. Foregroun@Background EEG SNR Estimation

[@] for electrocardiogram denoising applications) tdraate
the foreground EEG fronx,. Having an estimate o$,, the
background EEG and the instantaneous SNR can be found.

6. Interpretation of Instantaneous Envelope, Phase and
Frequency Estimates

The results of previous sections has some major implication
for a systematic interpretation of the EEG phase, including

1. The confidence in signal detection, IP and IF estimations
is directly related to the instantaneous SNR and envelope
(Xn). In fact, considering a stationary background EEG
variance ¢, = cte), in low foreground EEG envelopes
(Xn), the accuracy of signal detection drops, the probabil-
ity of phase slipping increases, and th¢lPestimation
qualities degrade. This suggests that IP and IF are only
reliable in high SNR, and it is not possible to validate any
phase or frequency activity without considering the instan
taneous envelope of the analytical form of the EEG simul-
taneously.

2. The EEG IP and IF are stochastic parameters with SNR-
dependent pdfs. As random variables, they can fluctuate
within the range of their pdf. The confidence intervals of
these parameters imply that as far as the estimated IP and
IF are within theg, + 0% and f, + 0'; ranges, the event is
considered “normal”. An odd event— having perhaps a
physiological origin, such as phase resetting, etc.— may
only be reported when the fIF exceed the normal range.
This shows that phageequency jumps that occur in low
analytical signal envelopes are statistically irrelevamd
may not necessarily be associated to any biological ori-
gin. More rigorously, using the pdfs derived in Section
5.2, percentiles can be estimated for each of the estimated
parameters to find the probability of a given IP or IF.

The estimation of the instantaneous SNR requires some _
prior assumptions regrading the foreground and background3. The randomized ensembles generated from the Monte
EEG. Considering the additive data model proposed in Sectio ~ Carlo scheme proposed in Sectidn 3 can be considered as

5, and considering the foreground EES) (@nd background

samples drawn from the density functions derived in Sec-

EEG (/) to be uncorrelated, superposition holds between their ~ tion[5.2. Considering the symmetry of the IP distribution,

power spectral densities (PSD):

Sx(f) = Ss(f) + Su(f) (29)

Sx(f) can be directly estimated from the raw EEG. If we further

0 yields the maximum a posteriori (MAP) estimate of the
IP. For the IE (due to the right skew of its distribution) and
IF (due to its possible pdf asymmetry, which depends on
the temporal dynamics of the EEG phase), instead of tak-
ing the expectation of the randomized ensembles, the sam-

assume that the background EEG is flat over the narrow-band  ple modecan be used to obtain the MAP estimate (which

filter's passband, the background EEG PSk#f) can be esti-

are no longer equal %, or fy).

mated from the neighborhood bands of the frequency band of

interest as shown in Fid_1L1, aBi(f) is found by subtract-

4. Considering the fundamental role of the IE in phase analy-

ing Sn(f) from Sy(f). The area under these spectral estimates SIS, a hypothesis that requires future studies is that many o

is equal to their total power. Therefore, the SNR in the fgter

the phase inferred parameters of the EEG, may in fact be

passband is obtained. The same method can be performed on- associated to the analytical signal envelope, rather then t

line, by estimating the PSD and SNBver a sliding window of
the input signal (cf.|_L_1|7] for a similar approach).

EEG phase. In other words, phase-related parameters such
as phase resetting may be sidieets of the signal’s enve-

An alternative approach for SNR estimation is to use oscil-  lope drop, rather than being an independent physiological

latory signal tracking schemes (similar to the one devalape
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in all three BP filter outputs. Considering the IF of the same
segment in Fig._2(h) we notice the totally random behavior of
the IF (positive and negative fluctuations arougy due to the

very low IE of this segment. Fif. 2{f) shows another IE drop
in all three BP filter outputs. Considering the IF in the same
segment in Fig._2{j) we notice that although the IF has a high
variance in this segment, but all the randomized enseméles r

Frequency (Hz)

5 10 V 15 V 2 25
time (s) port an instantaneous frequency drop in this segment. The sa
phenomenon has occurred in Hig. 2(g) and Fig] 2(j); but this

time with IF tendency towards frequencies abdye

Figure 12: The short-time frequency transform (STFT) of a darggG. The
left highlighted segment shows a vanishing component at a fixethe right
highlighted segment shows a component with varying IF, cpomeding to sce-
narios (A) and (B) in Sectidn 8.1, respectively.

7. Applications

6.1. Simultaneous Envelope, Phase and Frequency Vargtion The current study has significant implications in variousSEE

The implication of the previous study is that the instan-Phase analysis applications. In this section, some of tijerma
taneous analytical signal envelope is highly fundameraal f applications are studied with examples. In order to make the
phase or frequency variations and phase and frequency meisults reproducible, all source codes related to thisystue
sures become unreliable in low IE. However, further conside ©nline available in theopen-source electrophysiological tool-
tions are required for reliable interpretation of the IEnGidler ~ POX(OSET) [39.
the following scenarios, which both lead to a low analytgigt
nal envelope: 7.1. Time Domain Synchrony and PLV

A) Stationary IF (fixed phase shift) with a dropping IE The synchronous firing of neurons withinfidirent brain re-
gions has been considered as a potential source of EEG-level

B) Stationary envelope with a varying IF (variable phasebrain responses. Synchrony estimation consists of firstitztt
shift) ing the phase sequences using electric or magnetic brairiec

. . ) and then quantifying the local stability of phase lock thglou
The two scenarios are shown in the short-time frequencgiran computing the dference between these sequen@s [40]. In this

forms of a sample EEG s_eg.men.t in Figl 12. In the first scenarigy eyt phase-locking value (PLV) is one of the most common
the IE is explicitly dropping; while in the second scenadae  j,qexes used for calculating the coherency and synchrony be
to the variation of the IF, the signal is moving out of the oarr 1\ cay phase signalﬂ@ 41]. The index is based on the phase
BP filter's pass-band, which indirectly results inan IE drép  igerence (PD) between two EEG signals.

both cases, the estimated IP and IF become unreliable. How- To show the importance of the proposed statistical approach

ever, only 'the first scenar?o can be considered. as a statistic;, phase synchrony studies, the IP, IF and IE of five 20 s seg-
burden (without any physiological source); while the SEEOn o of simultaneous EEG channels are shown ifiBig.13.

scenario can frequently happen for an EEG to have minor fluc- As illustrated in FigIB, the initial observation shows aagr

tuations in the IF mode (considering the narrow-band of tRe B synchrony between the IP of 01, P3, C3 and partially F3 (mid-
filter), asin experiments with varying levels of conscioesm dle panel). Moreover, considering the FP1 as a referenee sig
or dur_mg sI_eep. In order to discriminate these scenartus, t nal, the inter-channel phaseffdirences (PLVs), are showing a
analytical glgnal envglope can be Fracked at the output df a fi sort of phase lockor significantphase shifin the highlighted
ter bank with three filters: a BP filter centered fatand two time epochs (indicated by boxes in Fig.13). Neverthelebgnw
BP filters with minor center f_requency (_Jleviations, centeatd comparing these plots with their corresponding IE (in tife le
fo — 6f. and fo + 7. .In the first scenario the envelope at all panel of Fid.IB), it is noticed that the spikes in the phase in
three filter outputs will drop; while in the second scenatie t dexes are concurrent with low IE. Therefore, the phatects
envelope of the main B.P filter (cenFe.reldf@lwnI drop and the are side-&ects of a low analytical signal envelope during the
_envelope of E.”th?r the right or left V'Cm.'ty frequency banl same epochs. More specifically, the boxes indicated as ¢(g) an
Increase. Thls simple fr_equency tracking scheme is a camput (b) in the left panel have been selected such that the IE ezbtu
tionally efficient alternative for time-frequency analysis of thefrom electrode FP1 (the reference lead) includes two netche
EEG. . 3 . : o
) . . During the same period, two big spikes can be observed in its
Fig.[2[D] illustrates the idea. A_sample_ EEG has been_ paSSeé?)rresponding phase derivatives in the middle panel of FP1,
Lhroggh d tr:]ree zero(;phase ?P f||ter§ with the sarffective hich result in notable displacement (shifts) in the cadted
andwidth 1 Hz, and center frequencies 13.09 Hz, 13.0 Hz, an hase dierences (PLVs). On the other hand, box (c) is selected

1??'01 Hz ¢f = Q'Ol HZ.)' The resgltin.g signals have beeq OVeI*siich that a low-value analytic envelope in four other etelxs
laid for comparison, with three highlighted segments shown

Figs. [2(e)[2{}) anl 2(§). Due to the zero-phase (zero group-
delay) property, the iUpUt anq output of the;e f_”_ters arespha  3p| source codes related to this paper shall be providecherdifter the
synchronous. Accordingly, Fifj. 2{e) shows significant IBmdr  publication of the current study.
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Figure 13: Time domain synchrony (middle panel), the corredimgnPLV index (right-side panel), and the instantaneowsydical signal envelope (left-side
panel). Notice the estimationfected by low values of analytic envelope .
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Figure 14: lllustration of Phase Resetting (PR), Phase (@t} and Phase -
Shift (PS) events using the IF and IP of an EEG segment. Thesdagteen =
lines indicate the tunable threshold used for measuring BS [1 ’5-/

o

is concurrent with a high envelope in FP1. Again, the phafse di
ferences are significanthffected by unreliable spikes in phase
sequences due to low IE in these channels. Apparently, as dis
cussed before, measurements of instantaneous phase intime
stants with low IE is unreliable and any phase-related quant
ties such as phase lock, phaséatience, or PLV areftected

by this issue and any physiological and pathological irttep

tions based on these quantities require further considarat Figure 15: Phase resetting (phase shift) measurem#atted by the low val-
ues in analytic envelope.

d(PD)/dt
ANOND

time(s)

7.2. Phase Resetting
Phase resetting has been defined as a phase shift (PS) fol- ) .
lowed by a phase fierence stability, i.e., phase lock (PL)[16]. IE_ (may be considered relevant). Fur_thermore, accordirlgego
Each pair of PS and PL, starting from the beginning of a pghird and fourth panels, the phase shifts calculated betwee
and finishing by the end of a PL (beginning of the next PS), ichannels are only relevant only during the epochs whereihe |
called a phase reset (PR). Fig] 14 shows the PR, PL and pd both channels have been above thg threshold (blue boxes)
events calculated for a typical EEG. and the rest of the detected phase shift events (red boxes) ar
Using the concepts presented in FIg] 14, in Fig. 15 phasgnreliable, due to the low-envelope analytic signal.
shifts are estimated for segments of two EEG channels (FP1 Phase resetting in various frequency bands of cerebradlsign
and O1) together with their IE, IF, PD and the first order timehave been previously correlated téfdrent cognitive responses
difference of the PD. Accordingly, among all the detected phassuch as workin memorﬂh[l%], brain developmént [44], in-
shift events (curves crossing the green daghessholdin sec-  telligence [[Zb,l_jflG], consciousne@[@ 48 a9, 50], sensor
ond panel), only two of them have occurred in significantiythi  motor interactions]El] and many moE[@ 53]. While many
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complement or replacement for phase analysis.

7.3. Phase-Amplitude Coupling (PAC) References
Phase amplitude coupling (PAC) is a means of investigat-[1] T. W. Picton, A. Dimitrjevic, M. S. John, P. Van Roon,
ing the coupling between the phase of lower frequency oscil- The use of phase in the detection of auditory steady-state re

lations and the power of higher frequency oscillations, &gn- e 1%'/";?:;8_NQi%rffohf’)s(')%lggg_3112 (9 (2001) 16983171

chronization of |E of faster rhythms with IP of slower rhytem 21 b J. krusienski, D. J. McFarland, J. R. Wolpaw, Value oh-
[@] Due to the algorithmic details of the PAC, its study & b tude, phase, and coherence features for a sensorimotomrbaked
yond the scope of the current study. However, many aspects brain—computer interface, Brain research bulletin 87 (0L 130-134.

: ; : infidi doi:10.1016/j.brainresbull.2011.09.019.
of PAC, |ncIud|ng the calculation of the IP and IE i - 3] J. Fell, N. Axmacher, The role of phase synchronizationmem-

ent frequency bands can be studied within the hereby prdpose  ~ ory processes, Nature reviews neuroscience 12 (2) (2013)11®.
scheme. Specifically, the current study emphasizes thesnece  Idoi:10.1038/nrn2979. _
sity of a Monte Carlo estimation of the IE, IP and IF for PAC [4] M. Siegel, M. R. Warden, E. K. Miller, Phase-dependentu-ne

. - ronal coding of objects in short-term memory, Proceedings of
studies to assure the statistical relevance of the catmliatiex. the National Academy of Sciences 106 (50) (2009) 21341-21346

doi:10.1073/pnas.0908193106,
. . . [5] V. Sakkalis, Review of advanced techniques for the esti-
8. Discussion and Conclusion mation of brain connectivity measured with ¢@®gg, Com-
puters in biology and medicine 41 (12) (2011) 1110-1117.
In this study the classical procedure of instantaneous EEG__ |doi:10.1016/j . compbiomed.2011.06.020.

. PR . [6] K. J. Friston, Functional andfiective connectivity: a review, Brain con-

phase and frequency analysis was studied in a stochastiteMon ™ o i1 (1) (2011) 13-36a01:10. 1089/brain. 2011.0008,
Carlo estimation framework and.]UStIerd using the most Wide (7] M. Chavez, M. Le Van Quyen, V. Navarro, M. Baulac, J. Martinerie,
accepted data model representing foreground and backgiroun  Spatio-temporal dynamics prior to neocortical seizures: augl versus
EEG activities. The probability density functions of the in phase couplings, IEEE Transactions on Biomedical Enginge50 (5)

tantan h nd envel nd their dependen n the (2003) 571-583doi:10.1109/TBME. 2003 .810696.
_S antaneous phase and envelope a _e epe e ce 0 fé? T. I. Netoff, S. J. Schf, Decreased neuronal synchronization during ex-
instantaneous SNR of the EEG were derived. By using minor  perimental seizures, The Journal of neuroscience 22 (162§20297—
perturbations in the BP filtering scheme and backgroundenois 7307. )
level, it was shown that the EEG phase parameters are highly®! C. Stam, Y. Van Der Made, Y. Pinenburg, P. Scheltens, EEG

d dent the IE d tatisticall liable in | synchronization in mild cognitive impairment and alzheimer's
epenaent on the and are statistically unreliable in low a disease, Acta Neurologica Scandinavica 108 (2) (2003) ®0-9

alytical signal envelopes. The impact of this framework was  |doi:10.1034/7.1600-0404.2003.02067 . x|
shown for EEG IP and IF calculation, and well-known phase{10] C.J. Stam, A. M. v. C. van Walsum, Y. A. Pijnenburg, H. W. 8edse,
based parameters such as phase synchrony, PLV and phase re- J: C: deMunck, P. Scheltens, B. W. van Dijk, Generalized ssonization
. h d . . . he | of MEG recordings in Alzheimers disease: evidence for inentent of
setting. _T e stu y raises some major. rese_rvanons On the In- the gamma band, Journal of Clinical Neurophysiology 19 (6)2®62—
terpretation of previously reported physiological fastawhich 574.
have been derived from the EEG phase alone (neglecting tHéll R. W. Thatcher, D. M. North, J. Neubrander, C. J. BiverC8tler, P. De-
envelope information). Considering the high impact of tBe | Fina, Autism and EEG phase reset: deficient GABA mediatedbinhi
; . tion in thalamo-cortical circuits, Developmental neurogmjiogy 34 (6)
-On |P and IF, a fundamental queStIOH |S Whether phase related (2009) 780—80Cdoi:10.1080/87565640903265178.
indexes can be considered as independent cerebral factors,[12] B. Blankertz, L. Acqualagna, S.dbne, S. Haufe, M. Schultze-Kraft,
they are merely sidefkects of the |E variations. The answer 'B-SFU”(‘;' M. LTCUTI“'t'CvfM-A- \|/3Venzel, GI.EBCU”OC,iKC._R. Miler, Tthe Berlin
. . . P rain-Computer Interrace. Progress beyon ommunicationGargt
to this question requ”’es_\’ a Staﬂstlcal SeFUp ona Iarg&data trol, Frontiers in Neuroscience 180i:10.3389/fnins.2016.00530.
recorded under well-defined brain experiments such asysteaghs) |. sturm, S. Bach, W. Samek, K.-R. iMer, Interpretable Deep
state audifvisual evoked potentials. Neural Networks for Single-Trial EEG Classification, arXpreprint
In future studies, the hereby proposed Monte Carlo random-  arXiv:1604.0820d01:10.1016/j . jneumeth.2016.10.008.

ization br dur nd t-or in r d in Sddi n[14] M. Chavez, M. Besserve, C. Adam, J. Martinerie, Towards
ation procedure a post-processing propose 0 a proper estimation of phase synchronization from time se-

can also be unified usingarticle filtering or sequential Monte ries, Journal of neuroscience methods 154 (1) (2006) 149-160
Carlo filtering, which perform randomization and smoothing at doi:10.1016/j. jneumeth.2005.12.009,

the same time and provides sample-based MAP estimates 6! W-J- Freeman, B.C. Burke, M. D. Holmes, Aperiodic phassatting in
scalp eeg of beta—gamma oscillations by state transitionkplaa-etheta

the EEG phase and frequency. rates, Human brain mapping 19 (4) (2003) 248-272.

In case of wide acceptance, the findings of this research cgme] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronizatiaruniversal con-
set forth new standards for EEG phédmexjuency estimation cept in nonlinear sciences, Vol. 12, Cambridge unive_rsigsprZOO& _
methods, using multiple and infinitesimal algorithm partene [171 J- M. Hurtado, L. L. Rubchinsky, K. A. Sigvardt, = Statist

L. . . . cal method for detection of phase-locking episodes in neosal
variations and the necessity of reporting average and el cillations, Journal of Neurophysiology 91 (4) (2004) 188898.
intervals over these Monte Carlo sweeps. doi:10.1152/jn.00853.2003,

12


http://dx.doi.org/10.1016/S1388-2457(01)00608-3
http://dx.doi.org/10.1016/j.brainresbull.2011.09.019
http://dx.doi.org/10.1038/nrn2979
http://dx.doi.org/10.1073/pnas.0908193106
http://dx.doi.org/10.1016/j.compbiomed.2011.06.020
http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1109/TBME.2003.810696
http://dx.doi.org/10.1034/j.1600-0404.2003.02067.x
http://dx.doi.org/10.1080/87565640903265178
http://dx.doi.org/10.3389/fnins.2016.00530
http://dx.doi.org/10.1016/j.jneumeth.2016.10.008
http://dx.doi.org/10.1016/j.jneumeth.2005.12.009
http://dx.doi.org/10.1152/jn.00853.2003

(18]

(19]

[20]

[21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

R. L. Freeman WJ, Fine temporal resolution of analytic pheeveals
episodic synchronization by state transitions in gamma EBGinal of
Neurophysiology 87 (2002) 9379480i:10.1152/3jn.00254.2001|

M. Le Van Quyen, J. Foucher, J.-P. Lachaux, E. Rodriguez
A. Lutz, J. Martinerie, F. J. Varela, Comparison of Hilberarts-
form and wavelet methods for the analysis of neuronal syn-[43]
chrony, Journal of neuroscience methods 111 (2) (2001) 83-98
doi:10.1016/50165-0270(01)00372-7.

W. A. Rios Herrera, J. Escalona, D. Riverafdez, M. F. Miller, On the
estimation of phase synchronization, spurious synchrtinizand filter-

ing, Chaos: An Interdisciplinary Journal of Nonlinear $wie 26 (12)
(2016) 123106d0i:10.1063/1.4970522.

B. Boashash, Estimating and interpreting the instegdas frequency of a
signal. I. Fundamentals, Proceedings of the IEEE 80 (4) (192@-538.

B. Boashash, Estimating and interpreting the instasdas frequency of

a signal. II. Algorithms and applications, Proceedings eflBEE 80 (4)
(1992) 540-568.

B. Picinbono, On instantaneous amplitude and phasegofais, Signal
Processing, IEEE Transactions on 45 (3) (1997) 552-560.

E. Seraj, R. Sameni, Robust electroencephalogram pstiseation with
applications in brain-computer interface systems, Phygiokd Measure-
ment 38 (3) (2017) 501doi:10.1088/1361-6579/aabbbal

F. Karimzadeh, E. Seraj, R. Boostani, R. Sameni, A distad classifica-
tion procedure for automatic sleep stage scoring based taniameous
electroencephalogram phase and envelope features, |EBBaations on
Neural Systems & Rehabilitation Engineering[Manuscripdenreview].

W. J. Freeman, Hilbert transform for brain waves, Sctp#dia 2 (1)
(2007) 1338.

P. Sauseng, W. Klimesch, W. Gruber, S. Hansimayr,
unberger, M. Doppelmayr, Are event-related potential
nents generated by phase resetting of brain oscillations?
critical discussion, Neuroscience 146 (4) (2007) 14354144
doi:10.1016/j.neuroscience.2007.03.014.

V. Makinen, H. Tiitinen, P. May, Auditory event-related respes are
generated independently of ongoing brain activity, Neunage 24 (4)
(2005) 961-968d0i:10.1016/j .neuroimage.2004.10.020.

A. Mazaheri, O. Jensen, Posteriar activity is not phase-reset
by visual stimuli, Proceedings of the National Academy of Sci-
ences of the United States of America 103 (8) (2006) 2948-2952[53]
doi:10.1073/pnas.0505785103|

W. B. Davenport, W. L. Root, An introduction to the thgasf random
signals and noise, Vol. 159, McGraw-Hill New York, 1958.

S. O. Rice, Statistical properties of a sine wave pluslcen noise, Bell
System Technical Journal 27 (1) (1948) 109-157.

H. Raemer, R. Blyth, The probability density of the phd&gerence of a
narrow-band gaussian noise with sinusoidal signal (cpryekRE Trans-
actions on Information Theory 7 (4) (1961) 265-267.

Y. S. Shmaliy, Probability distributions of the envetopnd phase, and
their derivatives in time of the sum of a non-stationary siigma and
narrow-band gaussian noise, Journal of the Franklin LitstiB36 (6)
(1999) 1013-1022.

S. M. Kay, Fundamentals of Statistical Signal ProcessiBstimation
Theory, Prentice Hall PTR, 1993.

M. L. Farquharson, Estimating the parameters of polynbptiase sig-
nals, Ph.D. thesis, Queensland University of Technolo@p€2.

S. Peleg, B. Porat, The Cramer-Rao lower bound for sgwih constant
amplitude and polynomial phase, IEEE Transactions on Sigoak3sing
39 (3) (1991) 749-752401:10.1109/78.80864.

M. A. Richards, Fundamentals of radar signal processiata McGraw-
Hill Education, 2005.

R. Sameni, A Linear Kalman Notch Filter for Power-Linedrference
Cancellation, in: Proceedings of the 16th CSI Internati@emposium
on Artificial Intelligence and Signal Processing (AISP),ir8h, Iran,
2012, pp. 604-610.

R. Sameni, The Open-Source Electrophysiological Tmof®OSET), version 3|1
(2014).

URLhttp://wuw.oset.ir

J.-P. Lachaux, E. Rodriguez, J. Martinerie, F. J. \@ardeasuring phase
synchrony in brain signals, Human brain mapping 8 (4) (19998)-298.

M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phase synuizagion

of chaotic oscillators, Physical review letters 76 (11) 98P 1804.

[42]

(44]

[45]

[46]

(47]

(48]
[49]
[50]
R. Fre-

compo-

451]

[52]

[54]

13

doi:10.1103/PhysRevLett.76.1804.

D. S. Rizzuto, J. R. Madsen, E. B. Bromfield, A. SchultzaBage, R. A.-

S. D. Seelig, M. J. Kahana, Reset of human neocortical oseitlduring

a working memory task, Proc. Natl. Acad. Sci 100 (2003) 7933679
doi:10.1073/pnas.0732061100.

C. Tallon-Baudry, O. Bertrand, C. Fischer, Oscillgteynchrony between
human extrastriate areas during visual short-term memory erante, J
Neurosci 21 (20) (2001) 177.

C. B. R. W. Thatcher, D. North, Development of corticahoectivity as
measured by EEG coherence and phase, Human Brain Mapping@ (20
1400-1415/doi:10.1002/hbm.20474,

C. B. R.W. Thatcher, D. North, Intelligence and EEG phasset: A
two compartmental model of phase shift and lock, Neuroimage @232
1639-1653d0i:10.1016/j .neuroimage.2008.06.009.

P. Sauseng, W. Klimesch, W. R. Gruber, N. Birbaumer, Gross
frequency phase synchronization: A brain mechanism of mem-
ory matching and attention, Neuroimage 40 (2008) 308-317.
doi:10.1016/j.neuroimage.2007.11.032,

D. Cosmelli, O. David, J. P. Lachaux, J. Martinerie, L. r@so,

B. Renault, F. Varela, Waves of consciousness: ongoingicebrt
patterns during binocular rivalry, Neuroimage 23 (2004) -128).
doi:10.1016/50165-1684(99)00103-6.

F. J. Varela, J. P. Lachaux, E. Rodriguez, J. Martin€efige brainweb:
phase synchronization and large-scale integration, NaRaviews N 2
(2001) 229-239d0i:10.1038/35067550.

E. R. John, The neurophysics of consciousness, Brage&teh Reviews
39 (2002) 1-28d0i:10.1016/50165-0173(02)00142-X.

E. R. John, From synchronous neural discharges to sciiNge
awareness?, Progress in Brain Research 150 (2005) 143-171.
doi:10.1016/50079-6123(05)50011-6.

E. Vaadia, L. Haalman, M. Abeles, H. Bergman, Y. Prut, Hovii,

A. Aertsen, Dynamics of neuronal interactions in monkey cor-
tex in relation to behavior events, Nature 373 (1995) 51B-51
doi:10.1038/373515a0.

P. Sauseng, W. Klimesch, What does phase information of os-
cillatory brain activity tell us about cognitive proces8gsNeu-
roscience and Biobehavioral Reviews 32 (2008) 1001-1013.
doi:10.1016/j.neubiorev.2008.03.014.

M. J. Kahana, The cogntivie correlates of human brain os-
cillations, Journal of Neuroscience 26 (2006) 1669-1672.
doi:10.1523/JNEUROSCI.3737-05c.2006.

B. Voytek, R. T. Canolty, A. Shestyuk, N. Crone, J. ParR. T. Knight,
Shifts in gamma phase—amplitude coupling frequency from tioetipha
over posterior cortex during visual tasks, Frontiers in hameuroscience

4 (2010) 191.


http://dx.doi.org/10.1152/jn.00254.2001
http://dx.doi.org/10.1016/S0165-0270(01)00372-7
http://dx.doi.org/10.1063/1.4970522
http://dx.doi.org/10.1088/1361-6579/aa5bba
http://dx.doi.org/10.1016/j.neuroscience.2007.03.014
http://dx.doi.org/10.1016/j.neuroimage.2004.10.020
http://dx.doi.org/10.1073/pnas.0505785103
http://dx.doi.org/10.1109/78.80864
http://www.oset.ir
http://www.oset.ir
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1073/pnas.0732061100
http://dx.doi.org/10.1002/hbm.20474
http://dx.doi.org/10.1016/j.neuroimage.2008.06.009
http://dx.doi.org/10.1016/j.neuroimage.2007.11.032
http://dx.doi.org/10.1016/S0165-1684(99)00103-6
http://dx.doi.org/10.1038/35067550
http://dx.doi.org/10.1016/S0165-0173(02)00142-X
http://dx.doi.org/10.1016/S0079-6123(05)50011-6
http://dx.doi.org/10.1038/373515a0
http://dx.doi.org/10.1016/j.neubiorev.2008.03.014
http://dx.doi.org/10.1523/JNEUROSCI.3737-05c.2006

	Introduction
	Instantaneous Envelope, Phase and Frequency Calculation
	Method: Robust EEG Phase/Frequency Estimation
	Parameter Selection
	Filter Design Scheme
	Filter Design Parameter Set
	Dither Level


	Post-Processing: Temporal Filtering of Instantaneous EEG Parameters
	A Theoretical Model-Based Justification; Statistical Properties of Narrow-Band EEG
	Data Model
	Probability Density Functions of the EEG envelope and phase
	pdf of narrow-band background EEG
	pdf of narrow-band foreground plus background EEG

	Signal Detectability
	Foreground/Background EEG SNR Estimation

	Interpretation of Instantaneous Envelope, Phase and Frequency Estimates
	Simultaneous Envelope, Phase and Frequency Variations

	Applications
	Time Domain Synchrony and PLV
	Phase Resetting
	Phase-Amplitude Coupling (PAC)

	Discussion and Conclusion

