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Abstract

Background: The instantaneous phase (IP) and instantaneous frequency (IF) of the electroencephalogram (EEG) are considered as
notable complements for the EEG spectrum. The calculation of these parameters commonly includes narrow-band filteringfollowed
by the calculation of the signal’s analytical form. The calculation of IP and IF is highly susceptible to the filtering parameters and
background noise level, especially in low analytical signal amplitudes.
New Method: Herein, a Monte Carlo estimation scheme is proposed for robust estimation of the EEG IP and IF. It is proposed
that any EEG phase-related inference should be reported as an average with confidence intervals obtained by repeating the IP and
IF estimation under infinitesimal variations (selected by an expert), in the algorithmic parameters such as the filter’sbandwidth,
center frequency and background noise level. In the second part of the paper, a stochastic model consisting of the superposition
of narrow-band foreground and background EEG is used to derive probability density functions of the instantaneous envelope (IE)
and IP of EEG signals, which justify the proposed Monte Carloscheme.
Results: It is rigorously shown that the IP/IF estimation quality highly depends on the IE and any phase/frequency interpretations
in low IE are statistically unreliable and require a hypothesis test.
Comparison with Existing Methods: The impact of the proposed method on previous studies, including time-domain phase
synchrony, phase resetting, phase locking value and phase amplitude coupling are studied with examples.
Conclusion: The findings of this research can set forth new standards for EEG phase/frequency estimation and analysis.

Keywords: Electroencephalogram phase calculation; time-domain phase synchrony; phase resetting; phase locking value; phase
amplitude coupling; phase slipping

1. Introduction

In recent decades, the instantaneous phase and frequency of
the electroencephalogram (EEG) have received great attention
in neuroscience and brain research communities, as a notable
complement for the EEG spectral contents. The concept has
found broad applications inbrain computer interface(BCI) sys-
tems [1, 2], cognitive studies [3, 4] and brain connectivityas-
sessment [5, 6]. Phase-related quantities have also been widely
used in the analysis of clinical and pathological cerebral con-
ditions, including epilepsy [7, 8], dementia [9, 10], autism [11]
and many more. Recent studies have also sought the relation-
ship between the EEG phase andevent-related synchronization
(ERS) andde-synchronization(ERD) [12, 13].

The reliable estimation of the EEG phase and frequency is an
essential prerequisite for all these studies. Various techniques
such as the Hilbert transform (HT), wavelet transform (WT),
and other time/frequency representations have been utilized for
reliable and unambiguous phase calculation (cf. Section 2).
Among all, the HT has been considered the most reliable means
of EEG phase estimation, as a method which does not violate
the physical and theoretical conditions essential for instanta-
neous phase extraction [14]. However, a major difficulty in
using the HT (and other instantaneous EEG phase extraction

methods) is to distinguish between physiological state transi-
tions due to brain activity and spurious variations, spikesand
phase jumps— known as “phase slipping” [15]. It has been pre-
viously reported that unambiguous measurements of the EEG
phase cannot be made around phase slipping epochs, nor near
the ends of signal segments [15, 16]. Some minimum required
signal-to-noise levels have also been empirically found for de-
tecting oscillatory neural activities in presence of background
noise [17].

Other aspects of EEG phase extraction and analysis, such as
temporal properties and band-pass filtering requirements have
been investigated in [15, 18]. The authors reported notabledis-
continuities (phase slipping events) in the EEG phase calculated
from the human scalp and attempted to minimize these effects.
A comprehensive study was performed on various phase ex-
traction tools (particularly HT and WT) and their impacts and
interpretations in neural synchrony [19]. In [14], physical and
theoretical conditions and steps required for obtaining a mean-
ingful phase sequence were extensively studied, besides investi-
gating the most reliable approaches for this purpose. In a recent
study [20], the impact of narrow-band filtering was studied in
true versus spurious phase synchronization using synthetic data
models.
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Although the problem of reliable EEG phase and frequency
estimation has been extensively studied in the neuroscience and
brain communities, due to the lack of a stochastic framework,
the results and discussions regarding the so-called phase slip-
ping phenomenon remain qualitative and descriptive— com-
monly stated as a note of caution— instead of providing pre-
cise guidelines for the extraction and interpretation of the EEG
phase/frequency and discriminating between true versus spuri-
ous phase jumps.

The objective of the current study is to propose a Monte
Carlo estimation procedure for robust instantaneous EEG phase
and frequency estimation using “minor” perturbations in the in-
put signal and phase/frequency estimation algorithm parame-
ters. The proposed method is very generic and does not rely on
prior models for the EEG and the parameter perturbation order
can be set by the expert depending on application.

In the second part of the paper, we adopt a model-based ap-
proach to justify the proposed Monte Carlo estimation proce-
dure in a rigorous statistical framework. Using the most widely
accepted EEG data model and profound theories from signal
detection and estimation [21, 22, 23, 16], it is shown that issues
such as EEG phase slipping and phase/frequency deviations are
unavoidable (yet predictable), and spurious phase variations can
be probabilistically discriminated from physiologicallyrelevant
EEG phase/frequency variations. The EEG signal’s instanta-
neous analytical form envelope, which has been empirically
used in previous studies, is shown to have a fundamental im-
pact on the accuracy of the EEG phase contents.

From an application viewpoint, the authors have recently
shown the applicability of the hereby presented method for BCI
[24] and sleep stage scoring [25] applications.

In Section 2, the basic steps required for EEG phase extrac-
tion are reviewed and the motivation of the current study is
shown using a synthetic data example. The proposed Monte
Carlo phase/frequency estimation method is detailed in Sec-
tions 3-4. This method is statistically justified and used for de-
riving statistical properties of narrow-band EEG in background
noise in Section 5. The practical implications of the proposed
method are detailed in Section 6. Various applications of the
proposed framework and its impact on previous EEG phase
studies are presented in Section 7.

2. Instantaneous Envelope, Phase and Frequency Calcula-
tion

The classical procedure of calculating the instantaneous en-
velope (IE), instantaneous phase (IP) and instantaneous fre-
quency (IF) of a signal is to use its analytical form [23]. These
measures are only uniquely defined for narrow-band signals.
Therefore, considering a discrete-time signalyn (such as an
EEG), it is first bandpass (BP) filtered around the desired center
frequencyω0 = 2π f0/ fs with a narrow bandwidthbw.

xn = BP(yn; p) = yn ∗ hn (1)

wherehn is the equivalent BP filter’s impulse response,∗ de-
notes convolution,fs is the sampling frequency in Hz, and

p = {type,method, ω0,bw, δs, δp, · · · } (2)

is the set of design parameters describing the BP filter, includ-
ing the filter type, designmethod, center frequencyω0, band-
width bw, stop-band attenuationδs, pass-band rippleδp, etc.
The parameter setp plays a major role in the current study. A
detailed discussion is presented in Section 3.1, regardingthe
parameter set selection.

Next, theanalytical formof the BP filtered signal is calcu-
lated using the discrete-time Hilbert transformH{·}.

x̃n = xn + jH{xn} (3)

The IE, IP, and IF are calculated from the analytical form as
follows.

An
∆
=

√

Re(x̃n)2 + Im(x̃n)2 (4)

φn
∆
= atan2[Im(x̃n),Re(x̃n)] (5)

fn
∆
=

fs

2π
[φn − φn−1] mod 2π (6)

where atan2 represents the four-quadrant inverse tangent and
the difference operator in (6) is used as an approximation for
phase differentiation (cf. [22] for alternative approximations).
In order to avoid instantaneous jumps in the IF, the IP sequence
is commonlyunwrappedbefore calculating the difference in
(6).

The upper mentioned stages of IE, IP, and IF calculation (BP
filtering plus analytical signal calculation) are the main stages
of the majority of EEG phase analysis studies. This procedure
is fully deterministic and does not account for the stochastic
properties of the EEG.

In order to show the motivation of the current study, let
us consider a synthetic signal diluted by narrow-band additive
noise, as shown in Fig. 1. The signal model is as follows:

y(t) = A(t) cos(2π
∫ t

0
f (τ)dτ) + n(t) (7)

whereA(t) = sin(2π×3.1t)+0.7 sin(2π×2.7t+π/6) is a slowly
varying amplitude,f (t) = sin(2π × 0.8t) + 20 Hz is the instan-
taneous frequency andn(t) is narrow-band Gaussian noise cen-
tered aroundf0 = 20 Hz and a variance adjusted to set the total
signal-to-noise ratio(SNR) ofy(t) to 25 dB. We consider two
cases for the effective bandwidth ofn(t): 2 Hz and 2.01 Hz, ob-
tained by filtering two ensembles of white noise using bandpass
filters with the same center frequencyf0 and 0.01 Hz of differ-
ence in their effective bandwidths. The data is sampled atfs =

125 Hz for illustration. According to Fig. 1, it is clearly seen
that although the amplitude variations are rather slow and the
initial phase ofy(t) is constant, abrupt random phase jumps and
instantaneous frequency errors are inevitable in low analytical
signal envelopes. In these cases, the difference between the two
filters becomes significant. This difference can be numerically
explained by considering that in low signal amplitudes, thear-
gument of atan2 in (5) is singular, as it fluctuates aroundzero-
divided-by-zeroand a small difference in the filtering scheme
or background noise can cause large phase variations (even be-
yond±π) and randomize the IF, as shown in the last row in Fig.
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Figure 1: (Top row) a synthetic signal and its analytical form envelope in dashed
line using the two filtering schemes detailed in Section 2; (second row) the in-
stantaneous phase in both cases; (third row) the estimated instantaneous fre-
quency and the true instantaneous frequency in dashed lines; (last row left) the
polar representation of a 0.5 s segment of the analytical formaround t= 3.5 s
with a high envelope; (last row right) the polar representation of a 0.5 s segment
of the analytical form around t= 4.3 s with a low envelope. Notice the angle
between the first and last sample of the 0.5 s segments in both cases.

1. This suggests that the probability of phase jumps and the
variance of the IF, somehow increase in low analytical signal
envelopes.

This example shows the necessity of a statistical framework
for the problem of EEG IP and IF analysis, which systemat-
ically considers the effect of low/high instantaneous envelope
and background noise and is robust to minor variations in filter-
ing parameters and the phase extraction algorithm.

3. Method: Robust EEG Phase/Frequency Estimation

Following the explanations and the example in Section 2,
it is noticed that EEG phase and frequency features can be
highly susceptible to background noise and minor variations
in the extraction algorithm (e.g. the bandpass filtering pro-
cedure), especially during epochs of low analytical signalen-
velopes. To overcome this limitation, we propose that due to
the stochastic nature of the EEG, the estimated phase and fre-
quency features should be studied under minor variations in
non-physiological aspects of phase extraction, including: EEG
measurement quantization noise and infinitesimal variations in
the filtering parameters. Our basic assumption throughout this
work is that:

A1. For any significant EEG-based physiological inference,
there exists a range of measurement and algorithmic param-
eter variations (defined by an expert), which can be considered
to be irrelevant to the undergoing physiological phenomenon.

In other words, we assume that physiologically significant
EEG characteristics (spectral, phase, frequency, etc.) are robust
to infinitesimal perturbationsin: 1) the signal’s amplitude, and
2) the phase extraction method (e.g. the bandpass filter’s de-
sign parameter set). This assumption is indeed intuitive and the
definition ofinfinitesimal perturbationsis subjective and highly
dependent on the undergoing physiological activity (braintask).
Nevertheless, we assume that for any physiological experiment,
the expert can set a bound on the algorithm parameters, beyond
which any parameter variations are irrelevant to the underlying
experiment.

Assumption (A1) is supported by the fact that the sub-
frequency bands defined in the EEG phase analysis literature
are highly subjective and minor deviations in the center fre-
quencies, bandwidths, and even filter design technique are im-
plicitly assumed to be irrelevant to the phase study. To the best
of the authors’ knowledge, despite the rich literature on EEG
phase, only some general guidelines have been proposed for the
phase extraction procedure [15, 26], and researchers have been
basically using arbitrary and un-unified narrow-band filtering
and phase extraction schemes in their studies.

Another source of measurement variability, which is com-
monly neglected in practice, is due to quantization and back-
ground noise. Therefore, if the input signal isditheredby minor
additive noise, at the order of the background EEG level or at
the quantization level of the analog-to-digital convertors (ADC)
used for digitizing the EEG, the foreground EEG is again ex-
pected to remain consistent under such minor dithers.

Based on these assumptions we propose that:

P1. The procedure of EEG phase and frequency estimation
should consist of a Monte Carlo sweep over random perturba-
tions of measurement and algorithm parameters (background
noise level, filter’s bandwidth, center frequency, etc.) ata user-
defined level. The estimated EEG parameters should be re-
ported with their mean and confidence intervals over this Monte
Carlo simulation.

This procedure is rather general and it can be implemented
in different forms. For a given EEG signalyn, Algorithm 1
is hereby proposed as a realization of proposition (P1), to find
robust values and statistical confidence intervals for IP and IF
estimates.

For illustration, Fig. 2 shows 30 s of a typical EEG, recorded
in a BCI experiment; together with its IE, IF and unwrapped IP,
calculated using Algorithm 1 forN = 50 iterations. The sam-
pling frequency of the signal isfs = 160 Hz. For better visual-
ization of the phase fluctuations, in Fig. 2, the unwrapped phase
has been subtracted by 2π( f0/ fs)n, which is the instantaneous
phase of a sinusoidal oscillator with a fixed initial phase. The
BP filter is a zero-phase forward-backward filter obtained from
an order six moving average lowpass filter prototype, shown
in Fig. 3. The center frequency of the filter isf0 = 13.1 Hz
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Algorithm 1 Robust Instantaneous EEG Phase and Frequency
Estimation
Require: A filter design parameter setp as defined in (2).
Define: An algorithmic variation irrelevancy bound(AVIB),

including the background noise level (δλ) and filter design
parameter variation range (δp). Note: The algorithm re-
duces to the conventional deterministic phase estimation
technique by settingδλ = 0 andδp = 0.

1: for all k = 1, · · · ,N do
2: Design a bandpass filter with perturbed design param-

eter setp(k) = p+ δρ(k), where the parameter perturbations
areδρ(k) ≤ δp.

3: Add minor noise to the input EEG at an order ofδλ, to
obtain dithered randomized ensembles of the EEG:

d(k)
n = yn + ν

(k)
n (8)

We assumeν(k)
n ∼ N(0, ǫ2

n) to be Gaussian noise and the
dither varianceǫ2

n ≤ δλ.
4: Filter d(k)

n using bandpass filters designed with the per-
turbed design parameter setp(k):

x(k)
n = BP(d(k)

n ; p(k)) (9)

5: Calculate the analytical form of the filtered ensemble:

x̃(k)
n = x(k)

n + jH{x(k)
n } (10)

6: Calculate the IE, IP, and IF:

X(k)
n = |x̃(k)

n | (11)

θ(k)
n = atan2[Im(x̃(k)

n ),Re(x̃(k)
n )] (12)

f (k)
n =

fs

2π
[θ(k)

n − θ
(k)
n−1] mod 2π (13)

7: end for
8: Find the ensemble averages and variances of the parameters

x̄n = E{x̃(k)
n }, λx

n = E{(x̃(k)
n − x̄n)2} (14)

X̄n = E{X(k)
n }, λX

n = E{(X(k)
n − X̄n)2} (15)

θ̄n = E{θ(k)
n }, λθn = E{(θ(k)

n − θ̄n)2} (16)

f̄n = E{ f (k)
n }, λ

f
n = E{( f (k)

n − f̄n)2} (17)

whereE{·} represents the sample mean over theN gener-
ated ensembles1.

9: Calculate the confidence intervals of the estimated param-

eters:σX
n =

√

λX
n , σθn =

√

λθn, andσ f
n =

√

λ
f
n.

(the peak of the power spectral density as shown in Fig. 4) and
the effective bandwidth is 1 Hz. In each of theN trials, this
filter has been perturbed with random deviations of the band-
width ranging from zero to 0.05 Hz, the center frequencyf0
has been perturbed with a uniform random value in the range of
f0±10−2 Hz, and the ditherν(k)

n in each iteration is a zero-mean
Gaussian random variable with a standard deviationǫn = 0.1,
which is smaller than the quantization level of the 14-bit ADC
used for sampling the EEG signal. The gray shades in Fig. 2,
show the results ofN trials overlaid. The average instantaneous
frequency f̄n and the confidence intervals bounded byf̄n ± σ f

n

are also shown. The frequency response of theN perturbed
bandpass filters are shown in Fig. 3. It is seen that although the
algorithmic and noise level variations are negligible fromthe
physiological viewpoint, the IP and IF results are significantly
different, especially during the low analytical signal segments
of the EEG.

3.1. Parameter Selection

The proposed framework is generic and its parameters should
be selected for each application. Various aspects of the param-
eter selection are discussed in what follows.

3.1.1. Filter Design Scheme
The BP filter is a linear transform. Accordingly, the phase

of xn over the entire Nyquist band, is the summation of the in-
put signal’s phase and the filter’s phase. Therefore, for phase-
based studies, linear-phase finite impulse response (FIR) are
commonly used, which preserve the input signal phase differ-
ence and do not add any phase distortions; in contrast to infi-
nite impulse response (IIR) filters, which are nonlinear phase.
However, the order of narrow-band FIR filters can become very
high, resulting in long transient response effects. Moreover, the
addition of even a linear phase to the input signal can cause fake
phase jumps due to the phase wrapping of the filter’s phase. To
avoid this, we herein use zero-phase forward-backward filtering
(FIR or IIR) 2, which does not cause any phase distortions and
guarantees the phase synchrony between the input and output
of the BP filter. This procedure is evidently non-causal, which
is not a limitation for offline phase analysis.

3.1.2. Filter Design Parameter Set
The BP filter specifications such as the center frequency,

bandwidth, and design method are all subjective and may be se-
lected according to physiological ground truth (as considered in
all previous studies). According to Assumption 1, for each ap-
plication, the parameter deviations considered during theMonte
Carlo simulation are selected such that the deviated filter spec-
ifications would be physiologically “irrelevant” for the applica-
tion of interest. For example, consider an EEG with a dominant
7-12 Hz (alpha-band) spectral density. Physiologically, many
experts would consider a 0.1 Hz of filter bandwidth deviation
to be irrelevant for such an experiments (at least accordingto

2Zero-phase forward-backward filtering can be implemented using thefiltfilt
function in Matlab, Octave, or R.
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Figure 2: (a) A sample EEG segment; (b) the bandpass filtered signals using
three BP filters withf0 = 13.09, 13.1, 13.11 Hz and the corresponding analyt-
ical signal envelopes; (c) the unwrapped IP of fifty perturbed ensembles with
their highlighted mean; (d) the IF of fifty perturbed ensembleswith f̄n, and
f̄n ± σ f

n confidence intervals; (e)-(g) a zoom-in of three IE segments where the
black, red and green traces correspond with the output of BP filters centered at
f0, f0−δ f and f0+δ f , respectively, and envelopes shown in thick black, dashed
red and dashed green; (h)-(j) zoom-in of three IF segments. Notice the random
±π phase jumps around t= 13.9 s, which coincide with a notch in the IE.
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Figure 4: Normalized power spectral density (PSD) of the sample EEG segment
of Fig. 2

the current literature). Therefore, randomization of the BP fil-
ter bandwidth at this level will help the identification of reliable
and unreliable EEG parameters.

Depending on the filter design scheme, the filter’s parameter
variations can be done in various domains. For instance, one
may prefer to perform the perturbation in the zero-pole con-
figuration of a predefined filter (as recently proposed in [24]).
In this case, the filter should be checked for stability afterthe
random pole perturbations and the poles should be preserved
inside the unit circle. Moreover the conjugate symmetry of the
zeros and poles need to be preserved, in order to guarantee the
realness of the filter coefficients.

3.1.3. Dither Level

The dither level should be at the same order (or smaller
than) the expected background noise. The quantization noise
of the analog to digital convertors used in EEG sampling is
an inevitable source of background noise, which can be sim-
ply found by studying the electronic specifications of the ADC
used in the EEG measurement system. The background EEG is
another source of background noise. However, the background
EEG is rather subjective and model dependent and may be sub-
ject to a debate among experts.

5



0 5 10 15 20 25
12

13

14

15

16

time(s)

IF
 (

H
z)

Figure 5: The estimated IF of 50 ensembles overlaid (gray shades); the average
IF (black); the KF-smoothed IF withγn = 10−3 (blue) andγn = 10−5 (red).

4. Post-Processing: Temporal Filtering of Instantaneous
EEG Parameters

The ensemble averaging technique proposed in Stage 8 of
Algorithm (1) does not consider the temporal correlations of
the IE, IP, or IF. By assuming a temporal dynamic model for
these parameters, the estimation quality may be further im-
proved by conventional filtering and smoothing schemes such
as the Kalman filter or Particle filter (also known as Sequen-
tial Monte Carlo). Herein, for proof of concept, we assume a
first order auto-regressive dynamic model for the IP and apply
a classical Kalman filter to improve the IP and IF estimates.

θn = θn−1 + wn

φn = θn + ψn
(18)

where wn ∼ N(0, γ2
n) is considered as process noise, and

ψn ∼ N(0, σ2
n) is the observation noise. For this model, it can

be shown that the Kalman filter equations have a single tun-
able parameterσ2

n/γ
2
n, which can be adjusted proportional to

the phase and frequency variances obtained in (16) and (17).In
Fig. 5, the IF of the sample EEG segment from Fig. 2 is shown
after applying the Kalman smoother forσ2

n = λ
f
n (as defined in

(17), and two valuesγn = 10−3 andγn = 10−5. Apparently,
the results are smoother for smaller values ofγn (the filter relies
on the first-order dynamics) and become closer to the observed
noisy IF for larger values ofγn. This example is only shown
as proof of concept. The rich literature on Kalman filtering and
its extensions can be used in future studies for robust IP andIF
estimation, using suitable temporal priors.

5. A Theoretical Model-Based Justification; Statistical
Properties of Narrow-Band EEG

The empirical method and results presented in Section 3,
demonstrate the susceptibility of EEG phase and frequency es-
timates in low analytical signal amplitudes. However, for a
formal description of these findings, a data model is required.
Herein, we use the most widely accepted model in the liter-
ature [27, 28, 29], to extract statistical properties of narrow-
band EEG. Although, the hereby developed formulations are
in accordance with empirical results on real data, the statisti-
cal framework proposed in this section is subject to debate,de-
pending on the acceptance or rejection of the model for specific
applications (as with all model-based techniques).

5.1. Data Model

An implicit assumption in most EEG phase analysis stud-
ies is that a desired (narrow-band) brain activity, referred to as
foreground EEGin the sequel, coexists in a pool ofbackground
EEG, considered as noise. The background EEG is considered
to be spontaneous (as compared with the foreground EEG). It is
the superposition of numerous simultaneous and non-coherent
cortical activities, which according to thecentral limit theorem
tends to a Gaussian distribution and is spread over the entire
frequency band of study. On the other hand, the foreground
EEG can be the result of some mental activity, external stimuli
(audio, visual, etc.), or any other evoked activity, which dis-
criminates it from the spontaneous EEG. Based on these as-
sumptions, the following additive model can be considered as a
generic model for the EEG signal at the BP filter output.

xn = Xn cos(ω0n+ θn) + vn = sn + vn (19)

where the first part (sn) models the foreground EEG,Xn is the
non-negative foreground envelope with slow variations (low-
pass with respect to the center frequencyω0), θn is the instan-
taneous foreground EEG phase (again with rather slow vari-
ations), andvn is the narrow-band counterpart of the back-
ground EEG, which generally overlaps with the foreground
EEG spectrum. Due to the linearity of the BP filter, the back-
ground EEG remains Gaussian through the filtering process,
i.e.,vn ∼ N(0, σ2

n).
In this model, the rather slow variations ofXn andθn (approx-

imately constant over very small temporal windows) is the main
assumption that discriminates the foreground and background
EEGs. The objective of EEG phase analysis is to estimate the
phase signalθn.

If the BP filter is sufficiently narrow-band (as required for a
canonical definition of the IE, IP, and IF [21, 23]), its analytical
form can be written as follows.

x̃n = xn + jH{xn} = Xnej(ω0n+θn) + ηn = Anej(ω0n+φn) (20)

whereηn = rnej(ω0n+ψn) (rn ≥ 0) is the analytical form ofvn—
a complex valued Gaussian random process with zero-mean in-
dependent real and imaginary parts andσ2

n variance [30, Ch. 8].
The phasor diagram of the foreground plus background EEG is
shown in Fig. 6 for illustration.

This additive model is perhaps the most generic model for
narrow-band EEG and in accordance with the most widely ac-
cepted data models in EEG phase analysis studies (cf. [27]
for a detailed discussion about the most common EEG phase
models). Previous studies have mainly studied the narrow-band
foreground part of model (19) within a deterministic frame-
work; neglecting the statistical properties of the background
EEG. The basic idea that is followed in this work is that the
problem should be studied in a stochastic framework and the
signal detectability and reliability of the desired EEG phase to-
tally depend on the instantaneous envelopes and variances of
the foreground and background EEG.
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5.2. Probability Density Functions of the EEG envelope and
phase

The statistical properties of the signal model in (19) have
been extensively studied in the signal processing literature
[31, 30]. Herein, we use some of these well-known proper-
ties to find a statistically justifiable (reliable) method for EEG
phase analysis. For simplicity, we assume the sine wave enve-
lopeXn and the noise varianceσ2

n to be known (or estimated as
discussed in Section 5.4).

5.2.1. pdf of narrow-band background EEG
Considering a Gaussian probability density function (pdf)for

the background EEG, the magnitude and phase of its analytical
form (ηn = rnej(ω0n+ψn)) are independent [30]. In absence of
a foreground activity (Xn = 0), the background EEG magni-
tude has a Rayleigh distribution and the phase is uniform over
[−π, π]:

f (rn|σ2
n) =



















rn

σ2
n

exp

(

− r2
n

2σ2
n

)

, for rn ≥ 0

0, elsewhere
(21)

f (ψn|σ2
n) =



















1
2π

, for − π ≤ ψn ≤ π
0, elsewhere

(22)

5.2.2. pdf of narrow-band foreground plus background EEG
In presence of foreground EEG, due to the Gaussian assump-

tion on the background EEG, it can be shown that the envelope
and phase of the analytical form (20) have the following joint
pdf:

f (An, φn, θn|Xn, σ
2
n) = f (An,∆φn|Xn, σ

2
n) =

An

2πσ2
n

exp

(

−A2
n + X2

n − 2XnAn cos(∆φn)

2σ2
n

)

(23)

where∆φn = φn − θn is the instantaneous random phase differ-
ence (error) between the noisy and noiseless sinusoidal part of
the model (the observed versus foreground EEG phases in our
case).
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Figure 7: Envelope distributions of Gaussian background EEG (left three
curves) and foreground EEG oscillations plus Gaussian background EEG (left
right curves) forXn = 4.5 andσ2

n = 0.2, 1, 2.5, equivalent to SNRn = 17, 10,
6 dB.

In this case, the envelope and phase are no longer indepen-
dent (a key point in our study). The marginal distribution ofthe
analytical envelope has a Rician distribution.

f (An|Xn, σ
2
n) =

An

σ2
n

exp

(

−A2
n + X2

n

2σ2
n

)

I0

(

XnAn

σ2
n

)

(24)

whereI0(·) is themodified Bessel function of the first kind[30,
Ch. 8]. Using the Bayes’ rule and combining (23) and (24), the
conditional pdf of the phase error∆φn is found.

f (∆φn|An,Xn, σ
2
n) = f (∆φn|κn) =

exp(κn cos(∆φn))
2πI0(κn)

(25)

where κn
∆
= AnXn/σ

2
n. Apparently, this distribution is sym-

metric (E{∆φn|An,Xn, σ
2
n} = 0) and E{∆φ2

n|An,Xn, σ
2
n} is an

envelope-dependent phase-error variance. These properties
support the assumptions required for the Kalman smoothing
stage described in Section 4.

Finally, integrating (23) overAn, the marginal distribution of
the IP error is found.

f (∆φn|Xn, σ
2
n) = f (∆φn|ρn) =

1
2π

exp(−ρ2
n)[1+

√
πρn cos(∆φn) erfcx(−ρn cos(∆φn))]

(26)

whereρn
∆
=
√

SNRn = Xn/
√

2σ2
n denotes the root square of the

instantaneous SNR and erfcx(·) is the scaled complementary
error function.

The envelope, phase error, and conditional phase error dis-
tributions of narrow-band Gaussian background EEG and fore-
ground plus background EEG are shown in Figs. 7, 8, and 9,
respectively.

The calculation of the IF pdf additionally requires the joint
pdf of θn andθn−1. Due to the lack of ground truth regarding the
temporal dependence of the EEG phase, previous results on the
IF pdf of sinusoidal signal plus noise [31, 32, 33], which either
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Figure 9: Conditional phase error distributions of foreground EEG oscillations
plus Gaussian background EEG forκn = 10, 5, 2, 1, 0.1 (from top to bottom).

assume a constant or fully random phase are not directly appli-
cable in this case. A rigorous approach is to model the temporal
dynamics of the IP, e.g., by assuming a Markov model for the
IP, which is beyond the scope of the current study. However, as
a rule of thumb, previous research have shown that the IF pdf
becomes sharper aroundω0 as the IP becomes more correlated
in time (has slow temporal variations) [32]. Moreover, the IF
pdf is peaked aroundω0 in high SNR and it tends to a uniform
distribution over [−π, π] (the entire Nyquist band) in low SNR.

These pdfs have also been used to extract lower bounds on
the estimation variance of the IP and IF using different assump-
tions on the temporal structure of the IP [34, 35]. Again, as a
general rule of thumb, the Cramér-Rao lower bound (CRLB) of
the IP error variance is commonly inversely proportional tothe
SNR [36].

In summery, all the probability density functions derived in
this section depend on the background EEG variance and the in-
stantaneous analytical signal envelope of the foreground EEG.

Specifically, in low analytical signal envelopes, the probabil-
ity of phase error tends to a uniform distribution over [−π, π],
which is in accordance with the results previously shown in
Fig. 2.

5.3. Signal Detectability
Regardless of the presence or absence of a foreground EEG

activity, the procedure of IP calculation (narrow-band BP filter-
ing, analytical signal calculation followed by IP estimation) al-
ways produces an output; even from pure random background
EEG (noise). But how can one guarantee that there has been
some foreground activity? Here, we either require physiologi-
cal ground truth obtained from the experimental setup or other
modalities (e.g., simultaneous MEG, fMRI, etc.), or comple-
mentary information from multiple EEG leads. In absence of
reliable ground truth, one faces a statisticalhypothesis test. At
each time instant, there are two possible hypothesis:

H0 : xn = vn

(background EEG alone)
H1 : xn = Xn cos(ω0n+ θn) + vn

(background plus foreground EEG)

(27)

The decision is apparently probabilistic. The objective isto
determine the most likely hypothesis, which meets some prede-
finedprobability of detection(pd) andprobability of false alarm
(pf ).

The detection of a sinusoidal in noise is a classical problem
in detection theory [37, Ch. 6]. The hypothesis test is per-
formed by setting an appropriate thresholdth on the IE to meet
the desiredpd andpf . By definition and according to Fig. 7

pf =

∫ ∞

th
f (rn|σ2

n)drn

pd =

∫ ∞

th
f (An|Xn, σ

2
n)dAn

(28)

which depend on the instantaneous foreground and background
EEG levels (the SNR). The curves forpd as a function of the
required SNR withpf as parameter are shown in Fig. 10, for
a fixed instantaneous phaseθn = cte. The same results are ap-
proximately applicable for sinusoids with slowly varying phase
(as compared with the center frequencyω0), a condition that is
satisfied for narrow-band BP filtered EEG. Some useful rules
can be derived from Fig. 10. For example, a 10 dB SNR is re-
quired to detect a foreground signal with a probability of 90%
andpf=1%. For the samepf , the probability of detection drops
below 10% in zeros or negative SNR. In practice, one may fix
the desiredpd and pf and find the corresponding SNR value
from Fig. 10. By intersecting this value with the instantaneous
SNR, one can determine the time instants for which the ex-
istence of foreground EEG activity are most (least) probable.
These results are in accordance with the empirical SNR levels
previously proposed for the detection of neural oscillations in
background EEG [17].

The utilization of Fig. 10 requires the instantaneous SNR (or
its estimate), which is not directly available for the EEG. A
heuristic approach for estimating the EEG SNR is proposed in
Section 5.4.
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5.4. Foreground/Background EEG SNR Estimation

The estimation of the instantaneous SNR requires some
prior assumptions regrading the foreground and background
EEG. Considering the additive data model proposed in Section
5.1, and considering the foreground EEG (sn) and background
EEG (vn) to be uncorrelated, superposition holds between their
power spectral densities (PSD):

Sx( f ) = Ss( f ) + Sv( f ) (29)

Sx( f ) can be directly estimated from the raw EEG. If we further
assume that the background EEG is flat over the narrow-band
filter’s passband, the background EEG PSDSn( f ) can be esti-
mated from the neighborhood bands of the frequency band of
interest as shown in Fig. 11, andSs( f ) is found by subtract-
ing Sn( f ) from Sx( f ). The area under these spectral estimates
is equal to their total power. Therefore, the SNR in the filter’s
passband is obtained. The same method can be performed on-
line, by estimating the PSD and SNRn over a sliding window of
the input signal (cf. [17] for a similar approach).

An alternative approach for SNR estimation is to use oscil-
latory signal tracking schemes (similar to the one developed in

[38] for electrocardiogram denoising applications) to estimate
the foreground EEG fromxn. Having an estimate ofsn, the
background EEG and the instantaneous SNR can be found.

6. Interpretation of Instantaneous Envelope, Phase and
Frequency Estimates

The results of previous sections has some major implications
for a systematic interpretation of the EEG phase, including:

1. The confidence in signal detection, IP and IF estimations
is directly related to the instantaneous SNR and envelope
(Xn). In fact, considering a stationary background EEG
variance (σn = cte.), in low foreground EEG envelopes
(Xn), the accuracy of signal detection drops, the probabil-
ity of phase slipping increases, and the IP/IF estimation
qualities degrade. This suggests that IP and IF are only
reliable in high SNR, and it is not possible to validate any
phase or frequency activity without considering the instan-
taneous envelope of the analytical form of the EEG simul-
taneously.

2. The EEG IP and IF are stochastic parameters with SNR-
dependent pdfs. As random variables, they can fluctuate
within the range of their pdf. The confidence intervals of
these parameters imply that as far as the estimated IP and
IF are within theθ̄n ± σθn and f̄n ± σ f

n ranges, the event is
considered “normal”. An odd event— having perhaps a
physiological origin, such as phase resetting, etc.— may
only be reported when the IP/IF exceed the normal range.
This shows that phase/frequency jumps that occur in low
analytical signal envelopes are statistically irrelevantand
may not necessarily be associated to any biological ori-
gin. More rigorously, using the pdfs derived in Section
5.2, percentiles can be estimated for each of the estimated
parameters to find the probability of a given IP or IF.

3. The randomized ensembles generated from the Monte
Carlo scheme proposed in Section 3 can be considered as
samples drawn from the density functions derived in Sec-
tion 5.2. Considering the symmetry of the IP distribution,
θ̄n yields the maximum a posteriori (MAP) estimate of the
IP. For the IE (due to the right skew of its distribution) and
IF (due to its possible pdf asymmetry, which depends on
the temporal dynamics of the EEG phase), instead of tak-
ing the expectation of the randomized ensembles, the sam-
ple modecan be used to obtain the MAP estimate (which
are no longer equal tōXn or f̄n).

4. Considering the fundamental role of the IE in phase analy-
sis, a hypothesis that requires future studies is that many of
the phase inferred parameters of the EEG, may in fact be
associated to the analytical signal envelope, rather than the
EEG phase. In other words, phase-related parameters such
as phase resetting may be side effects of the signal’s enve-
lope drop, rather than being an independent physiological
phenomenon.
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Figure 12: The short-time frequency transform (STFT) of a sample EEG. The
left highlighted segment shows a vanishing component at a fixedIF; the right
highlighted segment shows a component with varying IF, corresponding to sce-
narios (A) and (B) in Section 6.1, respectively.

6.1. Simultaneous Envelope, Phase and Frequency Variations

The implication of the previous study is that the instan-
taneous analytical signal envelope is highly fundamental for
phase or frequency variations and phase and frequency mea-
sures become unreliable in low IE. However, further considera-
tions are required for reliable interpretation of the IE. Consider
the following scenarios, which both lead to a low analyticalsig-
nal envelope:

A) Stationary IF (fixed phase shift) with a dropping IE

B) Stationary envelope with a varying IF (variable phase
shift)

The two scenarios are shown in the short-time frequency trans-
forms of a sample EEG segment in Fig. 12. In the first scenario,
the IE is explicitly dropping; while in the second scenario,due
to the variation of the IF, the signal is moving out of the narrow
BP filter’s pass-band, which indirectly results in an IE drop. In
both cases, the estimated IP and IF become unreliable. How-
ever, only the first scenario can be considered as a statistical
burden (without any physiological source); while the second
scenario can frequently happen for an EEG to have minor fluc-
tuations in the IF mode (considering the narrow-band of the BP
filter), as in experiments with varying levels of consciousness
or during sleep. In order to discriminate these scenarios, the
analytical signal envelope can be tracked at the output of a fil-
ter bank with three filters: a BP filter centered atf0 and two
BP filters with minor center frequency deviations, centeredat
f0 − δ f and f0 + δ f . In the first scenario the envelope at all
three filter outputs will drop; while in the second scenario the
envelope of the main BP filter (centered atf0) will drop and the
envelope of either the right or left vicinity frequency bands will
increase. This simple frequency tracking scheme is a computa-
tionally efficient alternative for time-frequency analysis of the
EEG.

Fig. 2(b) illustrates the idea. A sample EEG has been passed
through three zero-phase BP filters with the same effective
bandwidth 1 Hz, and center frequencies 13.09 Hz, 13.0 Hz, and
13.01 Hz (δ f = 0.01 Hz). The resulting signals have been over-
laid for comparison, with three highlighted segments shownin
Figs. 2(e), 2(f) and 2(g). Due to the zero-phase (zero group-
delay) property, the input and output of these filters are phase
synchronous. Accordingly, Fig. 2(e) shows significant IE drops

in all three BP filter outputs. Considering the IF of the same
segment in Fig. 2(h) we notice the totally random behavior of
the IF (positive and negative fluctuations aroundf0), due to the
very low IE of this segment. Fig. 2(f) shows another IE drop
in all three BP filter outputs. Considering the IF in the same
segment in Fig. 2(i) we notice that although the IF has a high
variance in this segment, but all the randomized ensembles re-
port an instantaneous frequency drop in this segment. The same
phenomenon has occurred in Fig. 2(g) and Fig. 2(j); but this
time with IF tendency towards frequencies abovef0.

7. Applications

The current study has significant implications in various EEG
phase analysis applications. In this section, some of the major
applications are studied with examples. In order to make the
results reproducible, all source codes related to this study are
online available in theopen-source electrophysiological tool-
box(OSET) [39]3.

7.1. Time Domain Synchrony and PLV

The synchronous firing of neurons within different brain re-
gions has been considered as a potential source of EEG-level
brain responses. Synchrony estimation consists of first calculat-
ing the phase sequences using electric or magnetic brain records
and then quantifying the local stability of phase lock through
computing the difference between these sequences [40]. In this
context, phase-locking value (PLV) is one of the most common
indexes used for calculating the coherency and synchrony be-
tween phase signals [40, 41]. The index is based on the phase
difference (PD) between two EEG signals.

To show the importance of the proposed statistical approach
in phase synchrony studies, the IP, IF and IE of five 20 s seg-
ments of simultaneous EEG channels are shown in Fig.13.

As illustrated in Fig.13, the initial observation shows a great
synchrony between the IP of O1, P3, C3 and partially F3 (mid-
dle panel). Moreover, considering the FP1 as a reference sig-
nal, the inter-channel phase differences (PLVs), are showing a
sort of phase lockor significantphase shiftin the highlighted
time epochs (indicated by boxes in Fig.13). Nevertheless, when
comparing these plots with their corresponding IE (in the left
panel of Fig.13), it is noticed that the spikes in the phase in-
dexes are concurrent with low IE. Therefore, the phase effects
are side-effects of a low analytical signal envelope during the
same epochs. More specifically, the boxes indicated as (a) and
(b) in the left panel have been selected such that the IE captured
from electrode FP1 (the reference lead) includes two notches.
During the same period, two big spikes can be observed in its
corresponding phase derivatives in the middle panel of FP1,
which result in notable displacement (shifts) in the calculated
phase differences (PLVs). On the other hand, box (c) is selected
such that a low-value analytic envelope in four other electrodes

3All source codes related to this paper shall be provided online after the
publication of the current study.
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Figure 14: Illustration of Phase Resetting (PR), Phase Lock(PL) and Phase
Shift (PS) events using the IF and IP of an EEG segment. The dashed green
lines indicate the tunable threshold used for measuring PS [11].

is concurrent with a high envelope in FP1. Again, the phase dif-
ferences are significantly affected by unreliable spikes in phase
sequences due to low IE in these channels. Apparently, as dis-
cussed before, measurements of instantaneous phase in timein-
stants with low IE is unreliable and any phase-related quanti-
ties such as phase lock, phase difference, or PLV are affected
by this issue and any physiological and pathological interpreta-
tions based on these quantities require further consideration.

7.2. Phase Resetting

Phase resetting has been defined as a phase shift (PS) fol-
lowed by a phase difference stability, i.e., phase lock (PL) [16].
Each pair of PS and PL, starting from the beginning of a PS
and finishing by the end of a PL (beginning of the next PS), is
called a phase reset (PR). Fig. 14 shows the PR, PL and PS
events calculated for a typical EEG.

Using the concepts presented in Fig. 14, in Fig. 15 phase
shifts are estimated for segments of two EEG channels (FP1
and O1) together with their IE, IF, PD and the first order time
difference of the PD. Accordingly, among all the detected phase
shift events (curves crossing the green dashedthresholdin sec-
ond panel), only two of them have occurred in significantly high
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Figure 15: Phase resetting (phase shift) measurements affected by the low val-
ues in analytic envelope.

IE (may be considered relevant). Furthermore, according tothe
third and fourth panels, the phase shifts calculated between two
channels are only relevant only during the epochs where the IE
of both channels have been above the threshold (blue boxes)
and the rest of the detected phase shift events (red boxes) are
unreliable, due to the low-envelope analytic signal.

Phase resetting in various frequency bands of cerebral signals
have been previously correlated to different cognitive responses
such as working memory [42, 43], brain development [44], in-
telligence [45, 46], consciousness [47, 48, 49, 50], sensory-
motor interactions [51] and many more [52, 53]. While many
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of the phase shifts and resettings have been during unreliable
IE magnitudes. This raises some reservations regarding physi-
ological and pathological interpretations which have beenbased
on phase resetting of brain signals and highlights the necessity
of simultaneous IE analysis for such applications, either as a
complement or replacement for phase analysis.

7.3. Phase-Amplitude Coupling (PAC)

Phase amplitude coupling (PAC) is a means of investigat-
ing the coupling between the phase of lower frequency oscil-
lations and the power of higher frequency oscillations, i.e., syn-
chronization of IE of faster rhythms with IP of slower rhythms
[54]. Due to the algorithmic details of the PAC, its study is be-
yond the scope of the current study. However, many aspects
of PAC, including the calculation of the IP and IE in differ-
ent frequency bands can be studied within the hereby proposed
scheme. Specifically, the current study emphasizes the neces-
sity of a Monte Carlo estimation of the IE, IP and IF for PAC
studies to assure the statistical relevance of the calculated index.

8. Discussion and Conclusion

In this study the classical procedure of instantaneous EEG
phase and frequency analysis was studied in a stochastic Monte
Carlo estimation framework and justified using the most widely
accepted data model representing foreground and background
EEG activities. The probability density functions of the in-
stantaneous phase and envelope and their dependence on the
instantaneous SNR of the EEG were derived. By using minor
perturbations in the BP filtering scheme and background noise
level, it was shown that the EEG phase parameters are highly
dependent on the IE and are statistically unreliable in low an-
alytical signal envelopes. The impact of this framework was
shown for EEG IP and IF calculation, and well-known phase-
based parameters such as phase synchrony, PLV and phase re-
setting. The study raises some major reservations on the in-
terpretation of previously reported physiological factors, which
have been derived from the EEG phase alone (neglecting the
envelope information). Considering the high impact of the IE
on IP and IF, a fundamental question is whether phase related
indexes can be considered as independent cerebral factors,or
they are merely side effects of the IE variations. The answer
to this question requires a statistical setup on a large dataset
recorded under well-defined brain experiments such as steady
state audio/visual evoked potentials.

In future studies, the hereby proposed Monte Carlo random-
ization procedure and post-processing proposed in Section4
can also be unified usingparticle filteringor sequential Monte
Carlo filtering, which perform randomization and smoothing at
the same time and provides sample-based MAP estimates for
the EEG phase and frequency.

In case of wide acceptance, the findings of this research can
set forth new standards for EEG phase/frequency estimation
methods, using multiple and infinitesimal algorithm parameter
variations and the necessity of reporting average and confidence
intervals over these Monte Carlo sweeps.
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estimation of phase synchronization, spurious synchronization and filter-
ing, Chaos: An Interdisciplinary Journal of Nonlinear Science 26 (12)
(2016) 123106.doi:10.1063/1.4970522.

[21] B. Boashash, Estimating and interpreting the instantaneous frequency of a
signal. I. Fundamentals, Proceedings of the IEEE 80 (4) (1992) 520–538.

[22] B. Boashash, Estimating and interpreting the instantaneous frequency of
a signal. II. Algorithms and applications, Proceedings of the IEEE 80 (4)
(1992) 540–568.

[23] B. Picinbono, On instantaneous amplitude and phase of signals, Signal
Processing, IEEE Transactions on 45 (3) (1997) 552–560.

[24] E. Seraj, R. Sameni, Robust electroencephalogram phaseestimation with
applications in brain-computer interface systems, Physiological Measure-
ment 38 (3) (2017) 501.doi:10.1088/1361-6579/aa5bba.

[25] F. Karimzadeh, E. Seraj, R. Boostani, R. Sameni, A distributed classifica-
tion procedure for automatic sleep stage scoring based on instantaneous
electroencephalogram phase and envelope features, IEEE Transactions on
Neural Systems & Rehabilitation Engineering[Manuscript under review].

[26] W. J. Freeman, Hilbert transform for brain waves, Scholarpedia 2 (1)
(2007) 1338.

[27] P. Sauseng, W. Klimesch, W. Gruber, S. Hanslmayr, R. Fre-
unberger, M. Doppelmayr, Are event-related potential compo-
nents generated by phase resetting of brain oscillations? a
critical discussion, Neuroscience 146 (4) (2007) 1435–1444.
doi:10.1016/j.neuroscience.2007.03.014.
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