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Abstract

In recent decades, instantaneous phase (IP) and instantaneous frequency (IF) of the electroencephalogram (EEG) has
received great attention as a notable complement for conventional EEG spectral analysis. The calculation of these
parameters commonly includes narrow-bandpass filtering followed by the calculation of the analytical form of the signal
using the Hilbert transform. In this research, using this widely accepted phase calculation approach and well-established
methods from statistical signal processing, a stochastic model is proposed for the superposition of narrow-band foreground
and background EEG activities. Using this model, the probability density functions of the instantaneous envelope (IE)
and IP of EEG signals are derived analytically. It is rigorously shown that the IP estimation quality highly depends on
the IE and any phase of frequency interpretations in low IE are unreliable for phase analysis. Based on these findings,
a Monte Carlo estimation scheme is proposed for the accurate estimation and smoothing of phase related parameters.
The impact of this approach on previous studies including time-domain phase synchrony, phase resetting, phase locking
value and phase amplitude coupling are studied with examples.

Keywords: Electroencephalogram phase calculation; time-domain phase synchrony; phase resetting; phase locking
value; phase amplitude coupling; phase slipping

1. Introduction

In recent decades, instantaneous phase and frequency of
the electroencephalogram (EEG) has received great atten-
tion within the neuroscience and brain research commu-
nity as a notable complement for conventional EEG spec-
tral analysis. The concept has found broad applications
in brain computer interface problems [1, 2], brain cogni-
tive studies [3, 4] and brain connectivity assessment [5, 6].
Phase-related quantities have also been widely used in the
analysis of clinical and pathological cerebral conditions,
including epilepsy [7, 8], dementia [9, 10], autism [11] and
many more.

The reliable estimation of the EEG phase and frequency
is an essential prerequisite for all these studies. Therefore,
various techniques such as the Hilbert transform (HT),
wavelet transform (WT), and other time/frequency repre-
sentations have been utilized for reliable and unambigu-
ous phase calculation (see Section 2). Among all, the
HT has been considered as the most reliable tool in EEG
phase estimation, as a method which does not violate the
physical and theoretical conditions essential for instanta-
neous phase extraction [12]. However, a major difficulty
in using the HT (and other instantaneous EEG phase ex-
traction methods) is to distinguish between physiological
state transitions due to brain activity and spurious varia-
tions, spikes and phase jumps (known as “phase slipping”
[13]). It has been previously reported that unambiguous

measurements of the EEG phase cannot be made around
phase slipping epochs, nor near the ends of signal segments
[14, 13]. Other aspects of EEG phase analysis, such as
temporal and band-pass filtering, have been investigated
in [13, 15]. The authors reported notable discontinuities
(phase slipping events) in the EEG phase calculated from
the human scalp and attempted to minimize these effects.
A comprehensive study was performed on various phase
extraction tools (particularly HT and WT) and their im-
pacts and interpretations in neural synchrony [16]. In [12],
physical and theoretical conditions and steps required for
obtaining a meaningful phase sequence were extensively
studied, besides investigating the most reliable approaches
for this purpose.

Although the problem of reliable EEG phase and fre-
quency estimation has been extensively studied in the neu-
roscience and brain communities, to the best of our knowl-
edge, some of the fundamental statistical aspects of the
problem have not been studied. The objective of the cur-
rent study is to present a rigorous statistical framework for
studying the problem of instantaneous EEG phase and fre-
quency estimation. Using the most widely accepted data
model, and profound theories from signal detection and
estimation [17, 18, 19, 14], it is shown that issues such as
EEG phase slipping and phase/frequency deviations can
be fully explained and justified, and fake (unreliable) phase
variations can be accurately discriminated from physiolog-

Manuscript under review, August 2016



ically relevant EEG phase/frequency variations. The EEG
signal’s instantaneous analytical form envelope (which has
been empirically reported in previous studies) is shown to
have a fundamental impact on the accuracy of the EEG
phase contents.

In Section 2, the basic steps required for EEG phase ex-
traction are reviewed. The proposed data model for the
EEG and the statistical properties of this model are de-
scribed in Section 3. These statistical measures are used
in Sections 4-6 to derive a Monte Carlo method for robust
phase-related index extraction. Various applications of
the proposed framework and its impact on previous EEG
phase studies are presented in Section 7.

2. Instantaneous Envelope, Phase and Frequency

Calculation

The classical procedure of calculating the instantaneous
envelope (IE), instantaneous phase (IP) and instantaneous
frequency (IF) of a signal is to use its analytical form [19].
These measures are only uniquely defined for narrow-band
signals. Therefore, considering a discrete-time signal yn
(such as an EEG), it is first bandpass (BP) filtered around
the desired center frequency ω0 = 2πf0/fs with a narrow
bandwidth bw.

xn = BP(yn; p) = yn ∗ hn (1)

where hn is the equivalent BP filter’s impulse response, fs
is the sampling frequency in Hz, and

p = {type,method, ω0, bw, δs, δp, · · · } (2)

is the set of design parameters describing the BP filter,
including the filter type, design method, center frequency
ω0, bandwidth bw, stop-band attenuation δs, pass-band
ripple δp, etc. The significance of the parameter set p in
the current study is studied in Section 4.

The BP filter is a linear transform. Accordingly, the
phase of xn over the entire Nyquist band, is the summation
of the input signal’s phase and the filter’s phase. There-
fore, for phase analysis applications, linear-phase finite im-
pulse response (FIR) filters are used to prevent any phase
distortion due to the filtering procedure. However, the
order of narrow-band FIR filters can become very high.
Moreover, the addition of even a linear phase to the in-
put signal can cause fake phase jumps due to the phase
wrapping of the filter’s phase. To avoid this, we herein
use zero-phase forward-backward FIR (or IIR) filtering1,
which does not cause any phase distortions and guarantees
the phase synchrony between the input and output of the
BP filter.

Next, the analytical form of the BP filtered signal is
calculated using the discrete-time Hilbert transform H{·}.

x̃n = xn + jH{xn} (3)

1Zero-phase forward-backward filtering can be implemented using
the filtfilt function in Matlab, Octave, or R.

The IE, IP, and IF are calculated from the analytical form
as follows.

An
∆
=

√

Re(x̃n)2 + Im(x̃n)2 (4)

φn
∆
= atan2[Im(x̃n),Re(x̃n)] (5)

fn
∆
=
fs
2π

[φn − φn−1] mod 2π (6)

where atan2 represents the four-quadrant inverse tangent
and the difference operator is used as an approximation for
differentiation in (6) (cf. [18] for alternative approxima-
tions). In order to avoid, instantaneous jumps in the IF,
the IP sequence is commonly unwrapped before calculating
the difference in (6).

The upper mentioned stages of IE, IP, and IF calcula-
tion (BP filtering plus analytical signal calculation) are the
main stages of the majority of EEG phase analysis studies.
This procedure is fully deterministic and does not account
for the stochastic properties of the EEG.

In order to show the motivation of the current study, let
us consider a synthetic signal diluted by additive noise, as
shown in Fig. 1. The signal model is as follows:

y(t) = A(t) cos(2π

∫ t

0

f(τ)dτ) + n(t) (7)

where A(t) = sin(2π × 1.1t) + 0.7 sin(2π × 3.3t + π/3) is
a slowly varying amplitude, f(t) = sin(2π × 0.8t) + 20 Hz
is the instantaneous frequency and n(t) is white Gaussian
noise with a variance adjusted to set the total signal-to-
noise ratio (SNR) of y(t) to 25 dB. The data is sampled
at fs = 400 Hz for illustration. According to Fig. 1, it
is clearly seen that although the amplitude variations are
rather slow and the initial phase of y(t) is constant, abrupt
random phase jumps and instantaneous frequency errors
are inevitable in low analytical signal envelopes (or in low
SNR); since in low signal amplitudes, a small additive noise
can cause large phase variations (even beyond ±π) and
randomize the IF. This suggests that the probability of
phase jumps and the variance of the IF, somehow increase
in low analytical signal envelopes.

This example shows the necessity of a statistical formu-
lation for the problem of EEG IP and IF analysis, which
systematically considers the effect of low/high instanta-
neous envelope and background noise variance.

3. Statistical Properties of Narrow-Band EEG

For a formal description of the problem, a data model is
required. Herein, we use the most widely accepted model
in the literature.

An implicit assumption in all EEG phase analysis stud-
ies is that a desired (narrow-band) brain activity, referred
to as foreground EEG in the sequel, coexists in a pool of
background EEG, considered as noise. The background
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Figure 1: (Top row) a synthetic signal and its analytical form en-
velope in dashed lines; (second row) the instantaneous phase; (third
row) the estimated instantaneous frequency and the true instanta-
neous frequency in dashed lines; (last row) the phasor representation
of a segment of the analytical form in low envelope (left) and a zoom-
in during a low envelope segment (right). The two lines starting from
the origin, indicate two successive phasors in both cases. Notice the
random phase jumps and IF errors in low analytical signal envelopes.

EEG is considered to be spontaneous (as compared with
the foreground EEG). It is the superposition of numerous
simultaneous and non-coherent cortical activities, which
according to the central limit theorem tends to a Gaussian
distribution and is spread over the entire frequency band
of study. On the other hand, the foreground EEG can be
the result of some mental activity, external stimuli (audio,
visual, etc.), or any other evoked activity, which discrim-
inates it from the spontaneous EEG. Based on these as-
sumptions, the following additive model can be considered
as a generic model for the EEG signal at the BP filter
output.

xn = Xn cos(ω0n+ θn) + vn = sn + vn (8)

where the first part (sn) models the foreground EEG, Xn

is the non-negative foreground envelope with slow vari-
ations (lowpass with respect to the center frequency ω0),
θn is the instantaneous foreground EEG phase (again with
rather slow variations), and vn is the narrow-band coun-
terpart of the background EEG, which generally overlaps

with the foreground EEG spectrum. In this model, the
rather slow variations of Xn and θn is the main assumption
that distinguishes the foreground and background EEGs.

Due to the linearity of the BP filter, the background
EEG remains Gaussian through the filtering process, i.e.,
vn ∼ N (0, σ2

n). The objective of EEG phase analysis is to
estimate and utilize the phase signal θn.

If the BP filter is sufficiently narrow-band (as required
for a canonical definition of the IE, IP, and IF [17, 19]),
its analytical form can be written as follows.

x̃n = xn + jH{xn} = Xne
j(ω0n+θn) + ηn = Ane

j(ω0n+φn)

(9)
where ηn = rne

j(ω0n+ψn) (rn ≥ 0) is the analytical form
of vn— a complex valued Gaussian random process with
zero-mean independent real and imaginary parts and σ2

n

variance [20, Ch. 8]. This additive model is perhaps the
most generic model for narrow-band EEG and in accor-
dance with the most widely accepted data models in EEG
phase analysis studies (cf. [21] for a detailed discussion
about the most common EEG phase models). Previous
studies have mainly studied the narrow-band foreground
part of model (8) within a deterministic framework; ne-
glecting the statistical properties of the background EEG.
The basic idea that is followed in this work is that the
problem should be studied in a stochastic framework and
the signal detectability and reliability of the desired EEG
phase totally depend on the instantaneous envelopes and
variances of the foreground and background EEG.

3.1. Probability Density Functions of the EEG envelope
and phase

The statistical properties of the signal model in (8) have
been extensively studied in the signal processing literature
[22, 20]. Herein, we use some of these well-known proper-
ties to find a statistically justifiable (reliable) method for
EEG phase analysis. For simplicity, we assume the sine
wave envelope Xn and the noise variance σ2

n to be known
(or estimated as discussed in Section 3.3).

3.1.1. pdf of narrow-band background EEG

Considering a Gaussian probability density function
(pdf) for the background EEG, the magnitude and phase
of its analytical form (ηn = rne

j(ω0n+ψn)) are independent
[20]. The magnitude has a Rayleigh distribution and the
phase is uniform over [−π, π].

f(rn|σ2
n) =







rn
σ2
n

exp

(

− r2
n

2σ2
n

)

, for rn ≥ 0

0, elsewhere
(10)

f(ψn|σ2
n) =

{ 1

2π
, for − π ≤ ψn ≤ π

0, elsewhere
(11)
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3.1.2. pdf of narrow-band foreground plus background EEG

Due to the Gauusian assumption on the background
EEG, it can be shown that the envelope and phase of the
analytical form (9) have the following joint pdf:

f(An, φn, θn|Xn, σ
2
n) = f(An,∆φn|Xn, σ

2
n) =

An
2πσ2

n

exp

(

−A2
n +X2

n − 2XnAn cos(∆φn)

2σ2
n

)

(12)

where ∆φn = φn − θn is the instantaneous random phase
difference (error) between the noisy and noiseless sinu-
soidal part of the model (observed versus foreground EEG
phase in our case).

In this case, the envelope and phase are no longer inde-
pendent (a key point in our study). The marginal distri-
bution of the analytical envelope has a Rician distribution.

f(An|Xn, σ
2
n) =

An
σ2
n

exp

(

−A2
n +X2

n

2σ2
n

)

I0

(

XnAn
σ2
n

)

(13)
where I0(·) is the modified Bessel function of the first kind
[20, Ch. 8]. Using the Bayes’ rule and combining (12) and
(13), the conditional pdf of the phase error ∆φn is found.

f(∆φn|An,Xn, σ
2
n) = f(∆φn|κn) =

exp (κn cos(∆φn))

2πI0(κn)
(14)

where κn
∆
= AnXn/σ

2
n. Apparently, this distri-

bution is symmetric (E{∆φn|An,Xn, σ
2
n} = 0) and

E{∆φ2
n|An,Xn, σ

2
n} is an envelope-dependent phase-error

variance. These properties are later used in the smoothing
stage of the proposed algorithm.

Finally, integrating (12) over An, the marginal distribu-
tion of the IP error is found.

f(∆φn|ρn) =
1

2π
exp(−ρ2

n)[1+√
πρn cos(∆φn) erfcx (−ρn cos(∆φn))]

(15)

where ρn
∆
=

√
SNRn = Xn/

√

2σ2
n denotes the root square

of the instantaneous SNR and erfcx(·) is the scaled com-
plementary error function.

The envelope, phase error, and conditional phase error
distributions of narrow-band Gaussian background EEG
and foreground plus background EEG are shown in Figs.
2, 3, and 4, respectively.

The calculation of the IF pdf additionally requires the
joint pdf of θn and θn−1. Due to the lack of ground truth
regarding the temporal dependence of the EEG phase, pre-
vious results on the IF pdf of sinusoidal signal plus noise
[22, 23, 24], which either assume a constant or fully ran-
dom phase are not directly applicable in this case. A rig-
orous approach is to model the temporal dynamics of the
IP, e.g., by assuming a Markov model for the IP, which is
beyond the scope of the current study. However, as a rule
of thumb, previous research have shown that the IF pdf
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Figure 2: Envelope distributions of Gaussian background EEG (left
three curves) and foreground EEG oscillations plus Gaussian back-
ground EEG (left right curves) for Xn = 4.5 and σ2

n = 0.2, 1, 2.5,
equivalent to SNRn = 17, 10, 6 dB.
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Figure 3: Phase distributions of foreground EEG oscillations plus
Gaussian background EEG for Xn = 4.5 and from top to bottom σ2

n

= 1, 2, 5, 10, 20, and 100, equivalent to SNRn = 10, 7, 3, 0, -3, and
-10 dB.

becomes sharper around ω0 as the IP becomes more cor-
related in time (has slow temporal variations) [23]. More-
over, the IF pdf is peaked around ω0 in high SNR and
it tends to a uniform distribution over [−π, π] (the entire
Nyquist band) in low SNR.

These pdfs have also been used to extract lower bounds
on the estimation variance of the IP and IF using different
assumptions on the temporal structure of the IP [25, 26].
Again, as a general rule of thumb, the Cramér-Rao lower
bound (CRLB) of the IP error variance is commonly in-
versely proportional to the SNR [27].

In summery, all the probability density functions de-
rived in this section depend on the background EEG vari-
ance and the instantaneous analytical signal envelope of
the foreground EEG. Specifically, in low analytical signal
envelopes, the probability of phase error tends to a uni-
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form distribution over [−π, π]. Based on these results, a
statistical framework is proposed in Section 4, for reliable
EEG phase analysis.

3.2. Signal Detectability

Regardless of the presence or absence of a foreground
EEG activity, the procedure of IP calculation (narrow-
band BP filtering, analytical signal calculation followed by
IP estimation) always produces an output; even from pure
random background EEG (noise). But how can one guar-
antee that there has been some foreground activity? Here,
we either require physiological ground truth obtained from
other modalities (e.g., simultaneous MEG, fMRI, etc.), or
complementary information from multiple EEG leads. In
absence of reliable ground truth, we face a statistical hy-
pothesis test. At each time instant, we have two possible
hypothesis:

H0 : xn = vn
(background EEG alone)

H1 : xn = Xn cos(ω0n+ θn) + vn
(background plus foreground EEG)

(16)

The decision is apparently probabilistic. The objective is
to determine the most likely hypothesis, which meets some
predefined probability of detection (pd) and probability of
false alarm (pf ).

The detection of a sinusoidal in noise is a classical prob-
lem in detection theory [28, Ch. 6]. The hypothesis test is
performed by setting an appropriate threshold th on the IE
to meet the desired pd and pf . By definition and according
to Fig. 2

pf =

∫

∞

th

f(rn|σ2
n), pd =

∫

∞

th

f(An, φn, θn|Xn, σ
2
n)

(17)
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Figure 5: Detection probability (pd) as a function of the required
SNR with false alarm probability (pf ) as a parameter [28, Ch. 6]

which both depend on the instantaneous SNR. The curves
for pd as a function of the required SNR with pf as param-
eter (known as the ROC curves) are shown in Fig. 5, for a
fixed instantaneous phase θn = cte. The same results are
approximately applicable for sinusoids with slowly varying
phase (as compared with the center frequency ω0), a con-
dition that is satisfied for narrow-band BP filtered EEG.
Some useful rules can be derived from Fig. 5. For exam-
ple, a 10dB SNR is required to detect a foreground signal
with a probability of 90% and pf=1%. For the same pf ,
the probability of detection drops below 0.1 in zeros or
negative SNR. In practice, one may fix the desired pd and
pf and find the corresponding SNR value from Fig. 5. By
intersecting this value with the instantaneous SNR, one
can determine the time instants for which the existence of
foreground EEG activity are most (least) probable.

The utilization of the ROC curves requires the instanta-
neous SNR (or its estimate), which is not directly available
for the EEG. A heuristic approach for estimating the EEG
SNR is proposed in Section 3.3.

3.3. Foreground/Background EEG SNR Estimation

The estimation of the instantaneous SNR requires some
prior assumptions regrading the foreground and back-
ground EEG. Considering the additive data model pro-
posed in Section 3, and considering the foreground EEG
(sn) and background EEG (vn) to be uncorrelated, su-
perposition holds between their power spectral densities
(PSD).

Sx(f) = Ss(f) + Sv(f) (18)

Sx(f) can be directly estimated from the raw EEG. If we
further assume that the background EEG is flat over the
narrow-band filter’s passband, the background EEG PSD
Sn(f) can be estimated from the neighborhood bands of
the frequency band of interest (as shown in Fig. 6), and
Ss(f) is found by subtracting Sn(f) from Sx(f). The area
under these spectral estimates is equal to their total power.
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Therefore, the SNR in the filter’s passband is obtained.
The same method can be performed online, by estimating
the PSD and SNRn over a sliding window of the input
signal.

An alternative approach for SNR estimation is to use os-
cillatory signal tracking schemes (similar to the one devel-
oped in [29] for electrocardiogram denoising applications)
to estimate the foreground EEG from xn. Having an es-
timate of sn, the background EEG and the instantaneous
SNR can be found.

4. Robust EEG Phase Analysis

To this point, we have shown that the instantaneous
EEG phase is a random variable, with an uncertainty that
depends on the instantaneous signal envelope. In this sec-
tion a statistical method is proposed for finding robust
estimates and confidence intervals for the IP and IF. Our
basic assumption is that the phase and envelope charac-
teristics of the foreground EEG should be rather consis-
tent and robust to minor perturbations of the bandpass fil-
ter’s design parameter set p (bandwidth, center frequency,
etc.). This assumption is supported by the fact that the
sub-frequency bands defined in the EEG phase analysis
literature are rather subjective and minor deviations in
the center frequencies and bandwidths are implicitly as-
sumed to be irrelevant to the phase study. To the best
of the authors’ knowledge, only some general guidelines
have been proposed for the bandpass filter specifications
[13, 30], and researchers have been basically using arbi-
trary and un-unified bandpass filtering schemes in their
studies. A similar effect is expected if the input signal is
dithered by minor additive noise, at the order of the back-
ground EEG level. The foreground EEG is again expected
to remain consistent under such minor dithers.

Based on these assumptions, for a given EEG signal yn,
the following procedure is proposed for finding robust val-
ues and statistical confidence intervals for IP and IF esti-

mates. The idea is inspired from Monte Carlo estimation
methods in statistics.

1. Random Ensemble Generation: For k = 1, · · · ,K re-
peat the following stages:

(a) Add minor Gaussian noise to the input EEG,
to obtain dithered randomized ensembles of the
EEG d

(k)
n = yn + ν

(k)
n ; where ν

(k)
n ∼ N (0, ε2n).

The dither variance ε2n should be chosen at the
order of the background EEG power, which can
be estimated from the neighborhood spectral
bands (Fig. 6), or left as a fine-tuning param-
eter.

(b) Bandpass filter d
(k)
n using filters with infinitesi-

mal deviations in their parameter set p(k) (band-
width, center frequency, ripples, etc.)

x(k)
n = BP(d(k)

n ; p(k)) (19)

As shown in the results, the filter parameter de-
viations can simply be confined to the center fre-
quency and bandwidth and as low as 0.001 Hz
to 0.01 Hz, which are expected to be irrelevant
for any EEG phase analysis application.

(c) Calculate the analytical form of each ensemble

x̃
(k)
n = x

(k)
n + jH{x(k)

n }.

2. Parameter Estimation:

(a) Calculate the IE, IP, and IF of each ensemble

X(k)
n = |x̃(k)

n | (20)

θ(k)
n = atan2[Im(x̃(k)

n ),Re(x̃(k)
n )] (21)

f (k)
n =

fs
2π

[θ(k)
n − θ

(k)
n−1] mod 2π (22)

(b) Find the ensemble averages and variances of the
parameters

x̄n = E{x̃(k)
n }, λxn = E{(x̃(k)

n − x̄n)2} (23)

X̄n = E{X(k)
n }, λXn = E{(X(k)

n − X̄n)2} (24)

θ̄n = E{θ(k)
n }, λθn = E{(θ(k)

n − θ̄n)2} (25)

f̄n = E{f (k)
n }, λfn = E{(f (k)

n − f̄n)2} (26)

where E{·} represents expectation over the K
ensembles. The calculated variances are used to
find σXn =

√

λXn , σθn =
√

λθn, and σfn =
√

λfn
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as confidence intervals (percentiles) for the esti-
mated parameters. For asymmetric densities (as
the IF can be), the right and left µ-percentiles,
denoted by σµ+

n and σµ−

n , respectively, can be
calculated and monitored 2.

For illustration, Fig. 7 shows 30 s of a typical EEG,
recorded in a brain computer interface (BCI) experiment;
together with its IE, IF and unwrapped IP minus 2πf0t (to
permit the monitoring of θn in the data model (8)), calcu-
lated according to the above detailed procedure forK = 50
iterations. The sampling frequency of the signal was fs =
160 Hz. The BP filter was a zero-phase forward-backward
filter obtained from an order six moving average lowpass
filter prototype. The center frequency of the filter was f0

= 10 Hz and the effective bandwidth was 1 Hz. In each of
the K trials, this filter was perturbed with random devi-
ations of the bandwidth ranging from zero to 0.5 Hz, the
center frequency f0 was perturbed with a uniform random

value in the range of f0 ± 10−6 Hz, and the dither ν
(k)
n in

each iteration was a zero mean Gaussian random variable
with a standard deviation εn = 10−4. The gray shades
show the results of K trials overlaid. The average instan-
taneous frequency f̄n and the confidence intervals bounded
by f̄n ± σfn are also shown.

Accordingly to Fig. 7, the deviations of the IP and IF
significantly increase in low analytical signal envelopes. In
fact, in low IE, the confidence interval is wide, which means
that the IP can take any value in the range of [−π, π]
(and the IF in the range of [−fs/2, fs/2]), without any
physiological significance and merely due to a low IE.

4.1. Parameter Selection

The proposed framework is generic and its parameters
should be selected for each application. Specifically, the
BP filter specifications such as the center frequency, band-
width, and design method are all subjective and may be
selected according to physiological ground truth (as con-
sidered in all previous studies). For each application, the
parameter deviations considered during the Monte Carlo
simulation are selected such that the deviated filter speci-
fications would be physiologically irrelevant for the appli-
cation of interest. For example, consider an EEG with a
dominant 10-12 Hz (alpha-band) spectral density. Physio-
logically, 0.1 Hz of filter bandwidth deviation is considered
irrelevant for such experiments (at least according to the
current literature). Therefore, randomization of the BP
filter bandwidth at this level will help the identification of
reliable and unreliable EEG parameters.

2In our notation, the right and left percentiles represent Pr{X ≤
σµ−} = (1 − µ)/2 and Pr{X ≥ σµ+} = (1 − µ)/2. For symmetric
distributions σµ− = σµ+.
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Figure 7: (a) A sample EEG segment; (b) the bandpass filtered
signals using three BP filters with f0 = 9.99, 10, 10.01 Hz and the
corresponding analytical signal envelopes; (c) the unwrapped IP of
fifty perturbed ensembles with their highlighted mean; (d) the IF of
fifty perturbed ensembles with f̄n, and f̄n ± σf

n confidence intervals;
(e)-(g) a zoom-in of three IE segments where the black, red and green
traces correspond with the output of BP filters centered at f0, f0−δf
and f0 +δf , respectively, and envelopes shown in thick black, dashed
red and dashed green; (h)-(j) zoom-in of three IF segments.
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5. Interpretation of Instantaneous Envelope,

Phase and Frequency Estimates

The results of previous sections has some major impli-
cations for a systematic interpretation of the EEG phase,
including:

1. The confidence in signal detection, IP and IF esti-
mations is directly related to the instantaneous SNR
and envelope (Xn). In fact, considering a stationary
background EEG variance (σn = cte.), in low fore-
ground EEG envelopes (Xn), the accuracy of signal
detection drops, the probability of phase slipping in-
creases, and the IP and IF estimation qualities de-
grade. This suggests that the IP and IF are only
reliable in high SNR, and it is not possible to validate
any phase or frequency activity without considering
the instantaneous envelope of the analytical form of
the EEG simultaneously.

2. The EEG IP, and IF are stochastic parameters with
SNR-dependent pdfs. As random variables, they can
fluctuate within the range of their pdf. The confi-
dence intervals of these parameters imply that as far
as the estimated IP and IF are within the θ̄n ± σθn
and f̄n ± σfn ranges, the event is considered normal.
An odd event— having perhaps a physiological origin,
such as phase resetting, etc.— may only be reported
when the IP or IF exceed the normal range. This
shows that any phase or frequency jumps that occur
in low analytical signal envelopes are statistically ir-
relevant and may not necessarily be associated to any
biological origin. More generally, using the pdfs de-
rived in Section 3.1, percentiles can be estimated for
each of the estimated parameters to find the proba-
bility of a given IP or IF.

3. The randomized ensembles generated from the above
procedure can be considered as samples driven from
the density functions derived in Section 3.1. Consid-
ering the symmetry of the IP distribution, θ̄n yields
the maximum a posteriori (MAP) estimate of the IP.
For the IE (due to the right skew of its distribution)
and IF (due to its possible pdf asymmetry, which de-
pends on the temporal dynamics of the EEG phase),
instead of taking the expectation of the randomized
ensembles, the sample mode can be used to obtain the
MAP estimate (which are no longer equal to X̄n or
f̄n).

4. Considering the fundamental role of the IE in phase
analysis, a hypothesis that requires future studies is
that many of the phase inferred parameters of the
EEG, may in fact be associated to the analytical sig-
nal envelope, rather than the EEG phase. In other
words, phase-related parameters such as phase reset-
ting may be side effects of the signal’s envelope drop,
rather than being an independent measure.

Figure 8: The short-time frequency transform (STFT) of a sample
EEG. The left highlighted segment shows a vanishing component at
a fixed IF; the right highlighted segment shows a component with
varying IF, corresponding to scenarios (A) and (B) in Section 5.1,
respectively.

5.1. Simultaneous Envelope, Phase and Frequency Varia-
tions

The implication of the previous study is that the instan-
taneous analytical signal envelope is highly fundamental
for phase or frequency variations and phase and frequency
measures become unreliable in low IE. However, further
considerations are required for reliable interpretation of
the IE. Consider the following scenarios, which both lead
to a low analytical signal envelope:

A) Stationary IF (fixed phase shift) with a dropping IE

B) Stationary envelope with a varying IF (variable phase
shift)

The two scenarios are shown in the short-time frequency
transforms of a sample EEG segment in Fig. 8. In the first
scenario, the IE is explicitly dropping; while in the second
scenario, due to the variation of the IF, the signal is moving
out of the narrow BP filter’s pass-band, which indirectly
results in an IE drop. In both cases, the estimated IP and
IF become unreliable. However, only the first scenario can
be considered as a statistical burden (without any physi-
ological source); while the second scenario can frequently
happen for an EEG to have minor fluctuations in the IF
mode (considering the narrow-band of the BP filter). In
order to discriminate these scenarios, the analytical sig-
nal envelope can be tracked at the output of a filter bank
with three filters: a BP filter centered at f0 and two BP
filters with minor center frequency deviations, centered at
f0 − δf and f0 + δf . In the first scenario the envelope at
all three filter outputs will drop; while in the second sce-
nario the envelope of the main BP filter (centered at f0)
will drop and the envelope of either the right or left vicin-
ity frequency bands will increase. This simple frequency
tracking scheme is a computationally efficient alternative
for time-frequency analysis of the EEG.

Fig. 7(b) illustrates the idea. A sample EEG has been
passed through three zero-phase BP filters with the same
bandwidth (1 Hz) and center frequencies 9.99 Hz, 10 Hz,
and 10.01 Hz (δf = 0.01 Hz). The resulting signals have
been overlaid for comparison, with three highlighted seg-
ments shown in Figs. 7(e), 7(f) and 7(g). Due to the
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zero-phase (zero group delay) property, the input and out-
put of these filters are phase synchronous. Accordingly,
Fig. 7(e) shows a significant IE drops in all three BP filter
outputs. Considering the IF in the same segment in Fig.
7(h) we notice the totally random behavior of the IF (pos-
itive and negative fluctuations around f0), due to the very
low IE of this segment. Fig. 7(f) shows a minor IE drops
in all three BP filter outputs. Considering the IF in the
same segment in Fig. 7(i) we notice that although the IF
has a high variance in this segment, but all the random-
ized ensembles report an instantaneous frequency drop in
this segment. The same phenomenon has occurred in Fig.
7(g) and Fig. 7(j); but this time with IF tendency towards
frequencies above f0.

6. Post-Processing: Temporal Filtering of Instan-

taneous EEG Parameters

The ensemble averaging technique proposed in Section
4 does not use the temporal correlations of the IE, IP,
or IF. By assuming a temporal dynamic model for these
parameters, the estimation quality may be improved by
conventional filtering and smoothing schemes such as the
Kalman filter or Particle filter (also known as Sequential
Monte Carlo). Herein, for proof of concept, we assume a
first order auto-regressive dynamic model for the IP and
apply a classical Kalman filter to improve the IP and IF
estimates.

θn = θn−1 + wn
φn = θn + ψn

(27)

where wn ∼ N (0, γ2
n) is considered as process noise, and

ψn ∼ N (0, σ2
n) is the observation noise. For this model, it

can be shown that the Kalman filter equations have a sin-
gle tunable parameter σ2

n/γ
2
n, which can be adjusted pro-

portional to the phase and frequency variances obtained in
(25) and (26). In Fig. 9, the IF of the sample EEG segment
from Fig. 7 is shown after applying the Kalman smoother
for σ2

n = λfn (as defined in (26), and two values γn = 10−3

and γn = 10−5. Apparently, the results are smoother for
smaller values of γn (the filter relies on the assumed dy-
namics) and become closer to the observed noisy IF for
larger values of γn. This example is only shown as proof
of concept and the rich literature on Kalman filtering and
its extensions can be used in future studies for robust IP
and IF estimation.

7. Applications

The current study has significant implications in various
EEG phase analysis applications. In this section, some
of the major applications are studied with examples. In
order to make the results reproducible, all source codes
related to this study are online available in the open-source
electrophysiological toolbox (OSET) [31]3.

3All source codes related to this paper shall be provided online
after the publication of the current study.
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Figure 9: The estimated IF of 50 ensembles overlaid (gray shades);
the average IF (black); the KF-smoothed IF with γn = 10−3 (blue)
and γn = 10−5 (red).

7.1. Time Domain Synchrony and PLV

The synchronous firing of neurons within different brain
regions has been considered as a potential source of EEG-
level brain responses. Synchrony estimation consists of
first calculating the phase sequences using electric or mag-
netic brain records and then quantifying the local stability
of phase lock through computing the difference between
these sequences [32]. In this context, phase-locking value
(PLV) is one of the most common indexes used for calcu-
lating the coherency and synchrony between phase signals
[32, 33]. The index is based on the phase difference (PD)
between two EEG signals.

To show the importance of the proposed statistical ap-
proach in phase synchrony studies, the IP, IF and IE of five
20 s segments of simultaneous EEG channels are shown in
Fig.10.

As illustrated in Fig.10, the initial observation shows a
great synchrony between the IP of O1, P3, C3 and partially
F3 (middle panel). Moreover, considering the FP1 as a ref-
erence signal, the inter-channel phase differences (PLVs),
are showing a sort of phase lock or significant phase shift in
the highlighted time epochs (indicated by boxes in Fig.10).
Nevertheless, when comparing these plots with their cor-
responding IE (in the left panel of Fig.10), it is noticed
that the spikes in the phase indexes are concurrent with
low IE. Therefore, the phase effects are side-effects of a low
analytical signal envelope during the same epochs. More
specifically, the boxes indicated as (a) and (b) in the left
panel have been selected such that the IE captured from
electrode FP1 (the reference lead) includes two notches.
During the same period, two big spikes can be observed in
its corresponding phase derivatives in the middle panel of
FP1, which result in notable displacement (shifts) in the
calculated phase differences (PLVs). On the other hand,
box (c) is selected such that a low-value analytic envelope
in four other electrodes is concurrent with a high envelope
in FP1. Again, the phase differences are significantly af-
fected by unreliable spikes in phase sequences due to low
IE in these channels. Apparently, as discussed before, mea-
surements of instantaneous phase in time instants with low
IE is unreliable and any phase-related quantities such as
phase lock, phase difference, or PLV are affected by this is-
sue and any physiological and pathological interpretations
based on these quantities require further consideration.
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Figure 11: Illustration of Phase Resetting (PR), Phase Lock (PL)
and Phase Shift (PS) events using the IF and IP of an EEG seg-
ment. The dashed green lines indicate the tunable threshold used
for measuring PS [34].

7.2. Phase Resetting

Phase resetting has been defined as a phase shift (PS)
followed by a phase difference stability, i.e., phase lock
(PL) [14]. Each pair of PS and PL, starting from the be-
ginning of a PS and finishing by the end of a PL (beginning
of the next PS), is called a phase reset (PR). Fig. 11 shows
the PR, PL and PS events calculated for a typical EEG.

Using the concepts presented in Fig. 11, in Fig. 12 phase
shifts are estimated for segments of two EEG channels
(FP1 and O1) together with their IE, IF, PD and the first
order time difference of the PD. Accordingly, among all
the detected phase shift events (curves crossing the green
dashed threshold in second panel), only two of them have
occurred in significantly high IE (may be considered rel-
evant). Furthermore, according to the third and fourth
panels, the phase shifts calculated between two channels
are only relevant only during the epochs where the IE of
both channels have been above the threshold (blue boxes)
and the rest of the detected phase shift events (red boxes)
are unreliable, due to the low-envelope analytic signal.

Phase resetting in various frequency bands of cere-
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Figure 12: Phase resetting (phase shift) measurements affected by
the low values in analytic envelope.

bral signals have been previously correlated to different
cognitive responses such as working memory [35, 36],
brain development [37], intelligence [38, 39], consciousness
[40, 41, 42, 43], sensory-motor interactions [44] and many
more [45, 46]. While many of the phase shifts and re-
settings have been during unreliable IE magnitudes. This
raises some reservations regarding physiological and patho-
logical interpretations which have been based on phase
resetting of brain signals and highlights the necessity of
simultaneous IE analysis for such applications, either as a
complement or replacement for phase analysis.
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7.3. Phase-Amplitude Coupling (PAC)

Phase amplitude coupling (PAC) is a means of investi-
gating the coupling between the phase of lower frequency
oscillations and the power of higher frequency oscillations,
i.e., synchronization of IE of faster rhythms with IP of
slower rhythms [47]. Due to the algorithmic details of the
PAC, its study is beyond the scope of the current study.
However, many aspects of PAC, including the calculation
of the IP and IE in different frequency bands can be stud-
ied within the hereby proposed scheme. Specifically, the
current study emphasizes the necessity of a Monte Carlo
estimation of the IE, IP and IF for PAC studies to assure
the statistical relevance of the calculated index.

8. Discussion and Conclusion

In this study the classical procedure of instantaneous
EEG phase and frequency analysis was studied in a
stochastic framework, using the most widely accepted data
model representing foreground and background EEG ac-
tivity. The probability density functions of the instan-
taneous phase and envelope and their dependence on the
instantaneous SNR of the EEG were derived. By using mi-
nor perturbations in the BP filtering scheme, it was shown
that the EEG phase parameters are highly dependent on
the IE and are statistically unreliable in low analytical sig-
nal envelopes. The impact of this framework was shown for
EEG IP and IF calculation, and well-known phase based
parameters such as phase synchrony, PLV and phase re-
setting. The study raises some major reservations on the
interpretation of previously reported physiological factors,
which have been derived from the EEG phase alone (ne-
glecting the envelope information). Considering the high
impact of the IE on IP and IF, a fundamental question
is whether phase related indexes can be considered as in-
dependent cerebral factors, or they are merely side effects
of the IE variations. The answer to this question requires
a statistical setup on a large dataset recorded under well-
defined brain experiments.

In future studies, the hereby proposed randomization
procedure and post-processing proposed in Section 6 can
also be unified using a particle filtering or sequential Monte
Carlo filtering scheme, which performs randomization and
smoothing at the same time and provides a sample-based
MAP estimate for EEG phase and frequency estimates.
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