
HAL Id: hal-01355439
https://hal.science/hal-01355439v1

Submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mobile Transaction Supports for DBMS
Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba

To cite this version:
Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba. Mobile Transaction Supports for
DBMS. 17e Journées Bases de données avancées (BD@’ 2001), Oct 2001, Agadir, Morocco. �hal-
01355439�

https://hal.science/hal-01355439v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Mobile Transaction Supports for DBMS
Patricia Serrano-Alvarado1, Claudia L. Roncancio, Michel E. Adiba

LSR-IMAG Laboratory, BP 72, 38402 St-Martin d’Hères, France

E-mail: Firstname.Lastname@imag.fr

Abstract
In recent years data management in mobile environments has
generated a great interest. Several proposals concerning mo-
bile transactions have been done. However, it is very difficult
to have an overview of all these approaches. In this paper we
analyze and compare several contributions on mobile trans-
actions and introduce our ongoing research: the design and
implementation of a Mobile Transaction Service. The focus
of our study is on execution models, the manner ACID prop-
erties are provided and the way geographical movements of
hosts (during transaction executions) is supported.

Keywords: Mobile transactions, databases, mobility, atom-
icity, consistency, isolation, durability, commit processing

1 Introduction
Distributed information systems are evolving in several di-
rections which generate new challenges. Advances in com-
puter and network technologies have made mobile comput-
ing a reality but generate new kinds of problems [11], due,
for instance, to the nature of mobile clients and to frequent
disconnections.
Data management in mobile environments is gaining a great
attention today with the emergence of mobile computing. To
that extent, database system architecture should be revisited
[24]. Concerning arising data management problems, solu-
tions in distinct areas have been proposed [44] [25] [36]. The
notion of transaction has also been revisited and several mod-
els have been introduced [35][21][42][5][6][30][12][43][27].
These works propose different extensions which are difficult
to compare.
In this paper we propose a deep analysis and comparison of
previous mobile transaction proposals2. The literature on the
subject is important and some attempts to analyze proposed
models have been made [12][29]. However, we think that it
is necessary to make an extensive analytical comparison of
these models. Additionally, we identify relevant issues that
influence the construction of a Mobile Transaction Service
(MTS). Thus, the last part of the paper concerns our ongoing
research which is the definition, design and implementation
of an MTS.
We are considering a mobile computing environment with a
network consisting of stationary and mobile hosts (SH, MH).
Shared data are distributed over several database servers run-
ning on SHs. MHs could be of different nature ranging from
PDAs to personal computers. Here, we make no specific hy-
pothesis about the database model (relational, object) or the

1Supported by the CONACyT scholarship program of the Mexican Gov-
ernment

2This work is an extended version of [39]

centralized or distributed nature of the database management
system (DBMS). We only consider that DBMS deals with a
collection of shared data upon which transactions operate.
While in motion, an MH may retain its network connections
through a wireless interface supported by some SHs which
act as Base Stations (BS) [36]. The geographical area cov-
ered by a BS is called a cell. Each MH communicates with
the BS covering the current cell. The process during which
an MH enters a new cell is called hand-off. Compared to tra-
ditional networks, wireless networks present particular char-
acteristics like low bandwidth and more bandwidth variabil-
ity. These characteristics and the cost parameter (transmis-
sion is generally expensive) make bandwidth consumption an
important concern. Moreover, communication capabilities
between MHs and BSs differ: BSs do not have power con-
straints and can take advantage of the high bandwidth broad-
cast channels that may exist from BSs to mobile clients in a
cell. Another important fact is that in mobile environments
disconnections are more frequent than in fixed ones. Also,
different levels of connections appear as they may be related
to bandwidth availability. Some variations in the connection
quality and disconnections may be predictable. In any case,
disconnections must be handled as “normal” situations and
not as failures.
Informally, a transaction is a set of operations that trans-
late a database from a consistent state into another consis-
tent state. Transaction managers offer ACID properties by
implementing commit protocols, obtaining serializable exe-
cutions, controlling visibility of non-committed transactions,
supporting recovery, etc. Although, very often ACID prop-
erties are not appropriate and several models relaxing these
properties have been proposed [17].
In the context of mobile computing, there exist several in-
terpretations of mobile transactions (MT). For us, a mobile
transaction is a transaction where at least one mobile host
takes part in its execution. In any case, the participation of
an MH introduces dimensions inherent to mobility such as:
movement, disconnections and variations on the quality of
communication. As we will see in the following, transaction
managers supporting mobile transactions have to adapt their
functionalities to deal with these dimensions.
In the scope of this paper we will focus on systems with
a client-server architecture where clients are MHs having
storage/processing capacities and where the server is on the
wired network. The server provides resources and trans-
action management. We consider the system in connected
mode if communication between MHs and the server can be
established; otherwise it is in disconnected mode. Whenever
we use the term “local”, as in local transactions and local
processing, we refer to MHs.



Section 2 presents a survey of analyzed proposals and their
execution models. In Section 3, their solutions to provide
ACID properties in mobile transactions are analyzed and
compared. Proposals that deal particularly with mobility dur-
ing transaction execution are analyzed in Section 4. Section
5, discusses issues on the definition of a Mobile Transaction
Service, our ongoing research. Finally, Section 6 concludes
the paper.

2 Mobile transaction survey
In this section we begin our analysis by introducing each
model with a brief overview analyzing and comparing their
respective execution model; we also identify their transaction
types and their principal characteristics.

Clustering proposal [34] [35] assumes a fully distributed
system and is designed to maintain database consistency.
The database is dynamically divided into clusters, each one
groups together semantically related or closely located data.
A cluster may be distributed over several strongly connected
hosts. When an MH is disconnected it becomes a cluster
by itself. For every object two copies are maintained, one
of them (strict version) must be globally consistent, and the
other (weak version) can tolerate some degree of inconsis-
tency but must be locally consistent. MTs are either strict or
weak. Weak transactions access only weak versions whereas
strict ones access strict versions. Strict transactions are exe-
cuted when hosts are strongly connected and weak transac-
tions when MHs are disconnected. Two kinds of operations
are introduced weak reads and weak writes. Strict transac-
tions contain standard reads and writes (strict operations),
whereas weak transactions contain weak operations. When
reconnection is possible (or when application consistency re-
quires it) a synchronization process, executed on the database
server, allows the database to be globally consistent.

Two-tier replication [21] considers both transaction and
replication approaches for mobile environments where MHs
are occasionally connected. A master version for each data
and several replicated versions (copies) exist. Two types of
transactions are supported: base and tentative transactions.
Base transactions are executed accessing master versions
(lazy-master replication scheme) whereas tentative transac-
tions are executed accessing tentative versions (local copies).
Tentative transactions may perform updates on the MH in a
disconnected mode. When the connection is established, ten-
tative transactions are re-executed as base transactions (coor-
dinated by the current BS) to reach global consistency. Re-
execution is the way to make local updates persistent.
Both, Clustering and Two-tier replication require a transac-
tion manager on MH to provide local transaction execution,
concurrency control, log management and recovery.

Pro-motion [42][41] is a mobile transaction processing
system that supports disconnected mode. Compacts are in-
troduced to allow local executions on MHs. They are the ba-
sic unit of caching and control. To improve autonomy and to
increase concurrency, object semantics are used in the con-
struction of compacts whenever possible. Necessary infor-
mation to manage the compact is encapsulated in it. Pro-

motion uses nested-split transactions [5] [38] as its infras-
tructure. It considers the entire mobile system as one ex-
tremely large long-lived transaction executed on the server.
Resources needed to create compacts are obtained by this
transaction through usual database operations. Compacts
construction is responsibility for the compact manager at
the database server. The management of compacts is per-
formed by a compact manager, a compact agent at the MH
and a mobility manager at the BS. The compact manager
will act as a front-end for the database server and appears
to be an ordinary database client executing a single, large
long-lived transaction. On each MH, the compact agent is
responsible for cache management as well as for transac-
tion processing, concurrency control, logging and recovery.
The mobility manager is in charge of transmissions between
agents. MH transactions are executed locally even in con-
nected mode. A synchronization process is executed by the
compact agent and the compact manager at reconnection.
This process checks compacts modified by locally committed
transactions. If compacts preserve global consistency, then a
global commit is performed.

Reporting [5] analyzes nested transactions [33] and
open-nested transactions (such as sagas [31], split transac-
tions [37] and multitransactions [38]) showing their limi-
tations for mobile environments. [5] considers a mobile
database environment as a special multidatabase system
(MDBS) with specific requirements, where transactions on
MHs are considered as a set of subtransactions. They pro-
pose an open-nested transaction model that supports atomic,
non-compensatable transactions and two additional types:
reporting and co-transactions [4][7]. While in execution,
transactions can share their partial results and partially main-
tain the state of a mobile subtransaction (executed on the
MH) on a BS. A mobile transaction is structured as a set
of transactions, some of which are executed on the MH.
They consider that limitations on MHs make necessary the
use of SH, e.g., to store part of the state of the computation
or to perform part of the computation. Open-nested trans-
actions with subtransactions of the following four types are
proposed: atomic transactions have standard abort and com-
mit properties. Non-compensatable transactions at commit
time delegate to their parent all operations they have invoked.
Reporting transactions report to another transaction some
of their results at any point during execution. A report can
be considered as a delegation of state between transactions.
Co-transactions are reporting transactions where control is
passed from the reporting transaction to the one that receives
the report. Co-transactions are suspended at the time of del-
egation and they resume their execution when they receive a
report.

Semantics-based [6] focuses on the use of object se-
mantics information to improve the MH autonomy in dis-
connected mode. This contribution concentrates on object
fragmentation as a solution to concurrent operations and to
limitations of MH storage capacity. This approach uses ob-
jects organization and application semantics to split large and
complex data into smaller manageable fragments of the same
type. Each fragment can be cached independently and ma-



nipulated asynchronously. Fragmentable objects can be ag-
gregate items, sets, stacks and queues. Mobile transactions
are invoked at the MH, and from the database server point of
view they are long-lived because of communication delays.
No assumptions are made about the transaction structure.
MH fragment request includes two parameters: selection cri-
teria and consistency conditions. The selection criteria indi-
cates data to be cached on the MH and the required frag-
ment size. The consistency conditions specify constraints to
preserve consistency on the entire data. Data fragmentation
executed on the sever allows fine-grain concurrency control.
Exclusive master copies of fragments are given to the MH
and transactions can be entirely executed on it. A reconcil-
iation process is executed by the server when reconnection
occurs. This model may be used with different transaction
types.

Prewrite [30] tries to increase data availability on MHs
by introducing a prewrite operation in addition to standard
writes. A prewrite makes data value visible at precommit
before the commit of the mobile transaction. Permanent up-
dates on the database are performed later by the write oper-
ation at commitment. Two variants of data are maintained:
prewrite and write. A prewrite variant reflects future data
state but may be structurally slightly different from the cor-
responding write value e.g., in an object of type document
the prewrite is an abstract and the write is the complete doc-
ument. Prewrite values are also a tiny version of write values,
therefore they need less storage capacity from MHs. Thus for
working in disconnected mode prewrite versions may be ap-
propriated. In Prewrite, the transaction execution is divided
between the MH and the database server. The transaction
manager on the MH executes the transaction, but permanent
updates are made at the database server by a data manager.
Prewrite ensures that, by delegating the responsibility for
write at the database server, transaction processing is reduced
on the MH. Three operations (prereads, prewrites and pre-
commit) to be executed by the transaction manager are pro-
posed. Ordinary reads and permanent writes are made by the
data manager. The BS has logging capacities and maintains
close relationship with the data manager. The transaction ex-
ecution evolves as follows: first, the transaction manager re-
quests to the BS necessary locks. The BS acquires locks from
the data manager. When the transaction manager finishes the
transaction by a local commit (precommit), prewrites are sent
to the BS. The data manager makes prewrites permanent and
commits the mobile transaction. Prewrite considers mobile
transactions as long-lived and implementations can be made
with nested and split transactions.

KT [12] (Kangaroo Transactions) proposes a mobile trans-
action model that focuses on the MH movement during the
execution of transactions. Mobile transactions are gener-
ated at MHs and are entirely executed at an MDBS on the
wired network. KT proposes to implement a Data Access
Agent (DAA) on top of existing Global Transaction Man-
agers (GTM). This agent will be placed at all BSs and will
manage mobile transactions and the movement of MHs. In
this model, preserving the ACID properties is the responsi-
bility for each DBMS. The transaction model is built using

concepts of open-nested [17] and split transactions [37]. The
mobile transaction execution (actually a global transaction)
is coordinated by the BS to which the MH is currently as-
signed. When one MH hops from a cell to another (conse-
quently from BS to BS) the coordination of the mobile trans-
action also moves. This mobility is captured by splitting the
original transaction into two transactions (called Joeys trans-
actions, there exist one Joey transaction per BS). The split
only concerns the coordination of the transaction. Thus, if
the MH hops from BS-1 to BS-2, BS-1 will just coordinate
the operations that were executed during the stay of the MH
in the BS-1 cell.

MDSTPM [43] (Multidatabase Transaction Processing
Manager architecture) proposes a framework to support
transaction submissions from MHs in a multidatabase envi-
ronment. The contribution concerning MH disconnections
is the implementation of the Message and Queuing Facil-
ity (MQF) that manages the message interchange between
MHs and the wired multidatabase system. An MDSTPM
is assumed at each host (MH/SH) on top of existing local
DBMS. Local processing is the responsibility for the local
DBMS. The MDSTPM coordinates the execution of global
transactions, it generates scheduling and coordinates com-
mitments. For MHs, because of disconnections, a SH co-
ordinator is designated in advance. Therefore, once an MH
submits a global transaction, it may disconnect and perform
some other tasks without having to wait for the mobile trans-
action to commit. The coordinator host will manage the mo-
bile transaction on behalf of the MH. In MDSTPM, as in
KT, the manner ACID properties are enforced depends on
each DBMS at each site.

Moflex [27] is a transaction model able to support mobil-
ity management and flexibility in the definition and execution
of MTs. It is an extension of the Flexible Transaction Model
[16] designed for heterogeneous MDBS where a transaction
is a collection of subtransactions related by a set of execution
dependencies among them. Dependencies may include suc-
cess, failure and external dependencies (time, cost or loca-
tion). Besides flexible transactions, Moflex allows the defini-
tion of location dependent subtransactions [14] and the sup-
port for adaptability in the execution of subtransactions when
hand-off occurs. Authors assume that the system is built on
heterogeneous, autonomous, MDBS. The mobile heteroge-
neous MDBS (HMDBS) is defined in three layers: MH-BS-
MDBS. In the MH layer, users define the Moflex transac-
tions that are submitted to the mobile transaction manager of
the current wireless cell in the BS layer. The mobile trans-
action manager coordinates the execution of the submitted
transactions. A global transaction manager at the HMDBS
layer executes the transactions having the responsibility for
enforcing ACID properties.
All proposals but Reporting assume that mobile transactions
are requested from MHs. In Reporting, transactions can be
requested by any host. Table 1 summarizes the execution
models and their principal characteristics. An empty cell in
the table means that we have not enough information to fill
it. We recall that local transactions are executed at MHs.



Proposal Transaction type MT
request

Execution at MH Execution at wired
network

Supported
connection

Clustering Strict and weak
transactions

MH Weak transactions
and local commit
in disconnected
mode. Participation
in the execution of
strict transactions in
connected mode

Strict transactions
and commit of weak
transactions (synchro-
nization, permanents
updates)

Connected,
disconnected
modes

Two-tier
replication

Base and tentative
transactions

MH Tentative transac-
tions in disconnected
mode. Participation
in the execution of
base transactions in
connected mode

Base transactions Connected,
disconnected
modes

Promotion Long-lived nested-
split transactions

MH The compact agent
executes entirely the
MT and makes local
commit

The compact manager
is in charge of compact
construction, commit
of locally committed
transactions (synchro-
nization, permanents
updates)

Connected,
disconnected
modes

Reporting Open-nested
transactions with
atomic, non-
compensatable,
reporting and
co-transactions

MH/SH Subtransactions and
even global transac-
tions

Global transactions and
subtransactions

Connected
mode

Semantics-
based

Long-lived trans-
actions

MH MT and local commit In answer to MH
requests, objects frag-
mentation (split) is
made by the database
server and also updates
reintegration (merge)

Connected,
disconnected
modes

Prewrite Long-lived
(nested, split)
transactions

MH MT and local commit Lock management
and commit of locally
committed transactions
(write operations)

Connected,
disconnected
modes

KT Open-nested and
split transactions

MH Coordinationand trans-
action execution

Movement
in connected
mode

MDSTPM Multitransactions
and local transac-
tions

MH Local transactions Coordination and exe-
cution of multitransac-
tions

Movement in
connected,
disconnected
mode

Moflex Multitransactions
and location
dependent transac-
tions

MH MT definition Coordinationand trans-
action execution

Movement
in connected
mode

Table 1: Summary of execution models



3 Analysis of ACID properties
We consider that it is essential to know how MTs deal with
the ACID properties. In Sections 3.1 - 3.4 we compare the
models and identify common points regarding ACID proper-
ties. In this part of the analysis KT, MDSTPM and Moflex
are not included because they do not propose new solutions
with respect to ACID properties. These proposals (analyzed
in section 4) are oriented towards managing movement and
disconnection properties. They assume that transactions will
be executed by MDBSs on the wired network.

3.1 Atomicity
Except for Reporting and Semantics-based, transaction
validation is done in two steps. The first one is realized
on MHs (local commit) and the second one (commit) at the
BS/Database server. Clustering, Two-tier replication, Pro-
motion and Prewrite execute local commit, each one with
specific characteristics:

� Clustering and Two-tier replication make local com-
mit only in disconnected mode using special transaction
types. In connected mode an atomic commit protocol is
used (e.g., two phase commit) and it includes participa-
tion of several clusters/hosts.

� Pro-motion and Prewrite do not differentiate con-
nected and disconnected mode. Local commit is per-
formed using an atomic commit protocol.

At the second step of the validation process, locally commit-
ted transactions execute commit to make updates permanent
on the database server. Transaction commitment can involve
reconciliation mechanisms or transaction re-execution.

� Reconciliation in Clustering is made syntactically
where weak transactions are aborted or rolled back if
their weak writes conflict with strict transactions.

� In Two-tier replication, if base transactions (re-
execution of tentative transactions) fail, even by taking
into account the acceptance criteria (attached to each
tentative transaction), then the tentative transactions are
aborted.

� In Pro-motion, compacts involved in locally commit-
ted transactions are checked. If some compacts are no
more valid, then mobile transactions are aborted and a
contingency procedure (attached to each local commit)
is executed to obtain semantic atomicity.

� In Prewrite, neither reconciliation nor re-execution are
made. By means of the transaction processing algorithm
and the locking protocol, Prewrite ensures that locally
committed transactions will commit at the database
server.

The approach is different in Reporting where each subtrans-
action is atomic but this does not prove the atomicity of the
global mobile transaction. Except for non-compensatable
subtransactions, compensatable transactions can be associ-
ated to subtransactions so (semantic) atomicity is guaran-
teed. In Non-compensatable transactions, reporting and co-
transaction delegation does not affect atomicity because it
does not require the invoking transaction of an operation to

be the one who either commits or aborts this operation. A
transaction is quasi atomic if all operations that it is responsi-
ble for are committed or none of them. Subtransactions may
commit or abort unilaterally without waiting for any other
subtransaction and even for their parent transaction.
In Semantics-based, transactions are considered long-
lived. As MHs are responsible of local transaction commit
it would be possible to support atomic or not atomic transac-
tions.
Conceptually, Semantics-based, Pro-motion, Prewrite
and Reporting consider transactions as long-lived ones. If
these transactions are executed on MDBS, global atomicity
depends on the autonomy of each database system [3]. If
some DBMS cannot participate in a global atomic commit
protocol, then atomicity is hard to be guaranteed.
Cascading aborts may occur in Clustering, Two-tier repli-
cation and Pro-motion. Nevertheless, local committed
transactions modify local data, consequently, only aborts of
local transactions are generated. In addition, these aborts
concern only weak and tentative transactions because local
results are exclusively available for these transaction types.
Table 2 shows the comparison of validation processes. We
recall that generally mobile transaction validation is made in
two steps, local commit is done at MHs and commit is done at
the BS/Database server. Because of the high rate of message
exchange, traditional 2PC protocol [20] is not suitable, thus,
interesting proposals like [2][28][13] have been proposed.

3.2 Consistency
Clustering and Two-tier replication maintain consistency
of replicated data with two versions. Both versions are lo-
cated on the MH, one of them (weak/tentative) is used to
support data evolution in disconnected mode. The second
one (strict/master) must always be consistent but sometimes
it will contain old versions (in disconnected mode). Consis-
tency in strict/master versions is preserved using one-copy
serializability methods e.g., quorum consensus, master copy.
Some particularities are:

� In Clustering, semantic information is used to specify
the degree of inconsistency for weak versions. This de-
gree may be limited by the number of local commits,
the number of transactions that can operate on inconsis-
tent copies, the number of copies that can diverge, etc.
There exist also a function h that controls this degree by
projecting strict operations on weak versions. Full con-
sistency is achieved by merging (reconciliation) differ-
ent copies of the same data located at different clusters.

� In Two-tier replication, tentative data versions are dis-
carded at reconnection since they are completely re-
freshed from master versions.

It seems to us that weak/tentative transactions have draw-
backs with respect to strict/base transactions, in the resyn-
chronization process (reconciliation in Clustering and re-
execution in Two-tier replication).
Pro-motion and Semantics-based exploit semantic infor-
mation to construct compacts and fragments:



Validation process
Proposal

First step at MH Second step at BS/DB server
Clustering Disconnected mode: local commit of weak

transactions. Connected mode: 2PC for
strict transactions

Commit involves syntactic reconciliation
with abortion and rollback in the resolution
of conflicts

Two-tier replication Disconnected mode: local commit of tenta-
tive transactions. Connected mode: atomic
commit protocol for base transactions

Tentative transactions are re-executed tak-
ing into account their acceptance criterion

Promotion local commit of all local transactions A synchronization process checks com-
pacts involved in local transactions. In case
of conflicts, local transactions are aborted
and contingency procedures are executed

Prewrite local commit of all local transactions Local updates are made permanent by the
write operations

Semantics-based local commit Updates reintegration (merge). As frag-
ments are exclusive copies and they have
attached consistency conditions there are
no conflicts in reintegration.

Reporting All subtransactions are atomic and they are able to commit independently of
the parent transaction. In case of abortion compensating transactions can be
associated to subtransactions (except for non-compensatable subtransactions)

Table 2: Summary of validation process

Proposal Underlying concepts Use of semantic information
Clustering 2 versions of data: strict (one-copy serial-

izability), weak (degrees of inconsistency,
data evolution in disconnected mode)

Definition of the function h and degrees of
inconsistency

Two-tier replication 2 versions of data: master (one-copy seri-
alizability), tentative (local data evolution
in disconnected mode)

Acceptance criteria

Promotion Compacts including type specific methods,
consistency rules and obligations

Compacts construction and contingency
procedures

Reporting Multitransaction approach Delegation, compensating transactions
Semantics-based Objects fragmentation (consistency condi-

tions and split/merge operations)
Fragmentation

Prewrite Serializability is based on the local commit
order of mobile transactions

Definition of data variants (prewrite/write)

Table 3: Summary of consistency properties



� For Pro-motion the compact represents an agreement
between the database server and the MH. The compact
manager and the database server encapsulate in com-
pacts: data, type specific methods, state information,
consistency rules, and obligations. If the compact agent
and compact manager respect all these conditions, the
use of compacts will not affect database consistency.
The compact designer can determine correctness crite-
ria and concurrency control methods per compact.

� In Semantics-based, to preserve consistency, objects
must carefully support split (to make fragments) and
merge (to reconciliate fragments) operations. Another
restriction to preserve consistency is to provide consis-
tency conditions (supplied by applications) on the entire
object. These conditions include allowable operations,
constraints of their input values and conditions on the
object state.

In Reporting, new ways to achieve consistency are not
proposed, but subtransactions can be related to compensat-
ing transactions (except for non-compensatable) in order to
maintain semantic consistency in case of abortions.
Prewrite assures that the transaction processing algorithm
along with the lock-based protocol, produce only serializable
histories. This serializability is based on the local commit
order of mobile transactions.
It is important to notice that semantic information on objects
is essential to guarantee consistency in mobile applications.
All analyzed models exploit objects semantics in different
ways. Clustering defines degrees of inconsistency based
on the application semantics. Two-tier replication manages
an acceptance criteria between tentative and base transac-
tions. Pro-motion uses semantic information to construct
compacts and Semantics-based to split objects. Reporting
delegation is based on semantic requirements, and Prewrite
defines semantically identical data variants (prewrite/write
objects).
Table 3 summarizes the main concepts used to preserve con-
sistency. The importance of semantic information to offer
more flexibility in consistency support is also emphasized.

3.3 Isolation

Isolation is not strictly enforced by all proposals, some of
them allow visibility of intermediate transaction results.
Clustering, Two-tier replication, Pro-motion and
Semantics-based give visibility of local committed
results to local transactions on the same MH. On the other
hand, Prewrite at local commit makes the results public to
all hosts. In Reporting, visibility is permitted in atomic,
reporting and co-transactions but not in non-compensatable
transactions. An atomic transaction can commit its execution
even before the commit of its parent, and its modifications
to the database become visible for others transactions. In
reporting and co-transactions the objective is precisely to
allow visibility of partial results while in execution.
Taking Pro-motion and Reporting as open-nested transac-
tions, global isolation is not enforced since subtransactions

are not executed isolately. After the synchronization pro-
cess, Pro-motion splits its long-lived transaction. All oper-
ations that have been successfully synchronized form a sep-
arate transaction that is committed on the database server.
Results of this split (committed) transaction will be visible
for all the database environment.
To manage isolation (restraint visibility) Clustering and
Prewrite propose new conflict solution tables.

� Clustering uses strict two phase locking and proposes
four lock types that correspond to weak and strict op-
erations (WR, WW, SR, SW). Four conflict tables for
lock compatibility are proposed. The projecting func-
tion h utilizes conflict tables to reflect strict operations
on weak versions depending on the application consis-
tency requirements. For example, strict consistency re-
quires translating a strict write on an object into strict
writes on all its copies (strict and weak ones). Con-
sequently, a SW lock is non compatible with any other
lock. Weak transactions release their locks at local com-
mit and strict transactions at commit.

� As Clustering, Prewrite uses a two phase locking pro-
tocol and the conflict operation table includes preread
and prewrite operations (PR, PW, R, W). As prewrite
and preread locks are managed at TM level and read
and write locks at DM level, there exist no conflict be-
tween prewrite/preread and write/read locks. To make
prewrites permanent the prewrite lock must be con-
verted into a write lock so that the DM can write and
commit the mobile transaction. Preread locks are re-
leased at local commit time whereas prewrite/write/read
locks at commit time.

In our opinion, Prewrite approach is interesting in applica-
tions using objects that can have two variants (write/prewrite
value) as design objects (the prewrite represents a model
of the design) or document objects. In these object types,
prewrites are different from writes and availability is im-
proved with two variations of the “same object”. Otherwise,
using simple objects prewrites are identical to writes and the
algorithm behaves as using relaxed two phase locking.
Since in Pro-motion the compact designer can determine
correctness criteria and concurrency control methods per
compact, they propose to use a ten level scale. Levels are
characterized based upon the degrees of isolation defined in
the ANSI SQL standard as extended in [1]. Level 9 repre-
sents a serial execution of transactions and level 8 a serial-
izable execution. Each succeeding level represents a weaker
degree of isolation. At level 0 there is no guarantee about
isolation. Because the arbitrary use of isolation levels can
lead to inconsistencies, Pro-motion proposes simple rules:

1. Transactions impose a minimal level for write and read
operations.

2. Each operation is associated to a level.
3. None of the write operation level is lower than the write

level of the transaction.
4. None of the read operation level is lower than the read

level of the transaction.
5. The lowest level of any read operation is greater than or

equal to the highest level required by any write opera-
tion.



Proposal Visibility Concurrency control pro-
tocol

Clustering local committed transaction results are visible to local
weak transactions on the same MH

2PL, 4 conflict tables and
new lock types are proposed

Two-tier replication local committed transaction results are visible to local
tentative transactions on the same MH

Locking mechanisms

Promotion local committed transaction results are visible to local
transactions on the same MH

2PL

Reporting with subtransactions atomic, reporting and co-
transactions visibility is allowed before the commit
of the global transaction

Semantics-based local committed transactions results are visible to local
transactions on the same MH

2PL to control access to lo-
cally cached fragments

Prewrite local committed transactions results are visible to all
hosts

2PL extended, one conflict
table and new lock types are
proposed

Table 4: Summary of isolation aspects

Proposal Durability guarantees Drawbacks
Clustering Yes, after commit (resynchroniza-

tion)
Locally committed transactions can be rolled back
due to resynchronization conflicts

Two-tier replication Yes, after commit (re-execution) Locally committed transactions can be rolled
back due to resynchronization conflicts during re-
execution

Promotion Yes, after commit (resynchroniza-
tion)

Locally committed transactions can be rolled back
due to resynchronization conflicts

Reporting Yes, if the parent transaction com-
mits, subtransactions are durable

Semantics-based Yes, after local commit Reduction of fragments availability at database
server

Prewrite Yes, after local commit Many message exchanges between MHs and BSs

Table 5: Summary of durability property



In Semantics-based, to ensure serializability, local transac-
tions have access to cached fragments by conventional con-
currency control protocols e.g. two phase locking.
In table 4, we remark the importance of visibility at local
commit. Having local data availability conduces to some
kind of autonomy. Consequently, local process at MHs will
not be blocked when disconnection occurs. Moreover, the
table shows that two phase locking (2PL) [18] is the most
utilized concurrency control protocol in the analyzed works.
Strict 2PL protocol is not appropriated to mobile environ-
ments because of undefined locking time of data, due to non
predictable disconnections. Variations have proposed as in
[32] and [23].

3.4 Durability
In this section we consider durability as the opportunity for a
local committed transactions to successfully commit also at
the database server.
Clustering, Two-tier replication and Pro-motion cannot
guarantee durability before commit (on the wired network).
Pro-motion with compacts can give some guarantees of
durability, but there may exist conditions that could not be
respected because of disconnections; e.g., there is a deadline
(in the compact) that could not be reached. Consequently,
durability is hard to obtain in the synchronization process. In
Reporting, subtransactions are durable if the parent trans-
action commits. Semantics-based and Prewrite models
guarantee durability since local commit. Nevertheless, the
first one reduces fragments availability because an MH can
hold fragments for an undefined period of time. The second
one exchanges many message to get locks from the BS. In
the Prewrite algorithm, if a mobile transaction makes a lo-
cal commit, it is sure to commit; Prewrite does not permit a
local committed transaction to abort.
Note that logging issues are not discussed here because
in the proposals we have analyzed these issues were not
clearly studied. However, we are still investigating this topic.
File management systems supporting disconnections propose
strategies to reduce log size as in [26] and [22].
Table 5 shows when durability is insured and some draw-
backs.

4 Analysis of movement and discon-

nection management
In this section we are concerned by movement and discon-
nection issues. Previous analyzed proposals do not give de-
tails about management of MH mobility. Only Pro-motion
includes in its architecture a mobility manager that is in
charge of communication between the MH and the database
server; but there are no details about the way it works. There-
fore, here we propose a complementary analysis for Section
3.
As we mentioned before, in KT, MDSTPM and Moflex,
ACID properties are not affected by mobility because trans-
action execution is the responsibility for DBMSs located at

SHs. Although, as transactions are requested from MHs, mo-
bility and disconnection must be managed.

In KT, to support MH mobility and disconnection, the
Data Access Agent (DAA) tracks MH movement by main-
taining a linked list of all the BSs that have been coordinators
of the mobile transaction. This list will be used in case of cas-
cading aborts. There are also structures (transaction status
table and local log) that store information of mobile transac-
tions such as: global transaction ID, status (active, commit,
abort), Joey transaction ID, subtransactions that are included
in the Joey transaction, compensating transactions (if any),
etc.

In MDSTPM the main idea is a Message and Queuing Fa-
cility (MQF) which is an asynchronous message interchange,
where messages are of types: Request, Acknowledgment,
and Information. With MQF the MH can submit global trans-
actions and switch to disconnected mode. In MHs and coor-
dinator hosts there are tables and logs that record the overall
state of the MH as well as information on global transactions
(Message Queue, Transactions Queue, Global Log, Global
Transaction Table, Site Status Table). At any moment, the
MH can request information about its global transactions.
Both approaches are very similar. They propose to add a
layer in existing multidatabase architectures to manage trans-
actions requested by MHs. The main difference is that in
MDSTPM the coordination of the mobile transaction exe-
cution is centralized, that means that the SH coordinator is
fixed in advance and will not change during the whole ex-
ecution. In KT, unlike MDSTPM, the coordination is dis-
tributed among all the BSs that the MH visited. Hence, we
note that KT deals with the mobile nature of MHs, not only
with disconnections. Distributed coordination reduces com-
munication cost during execution, however, in case of cas-
cading aborts communication is highly incremented. In con-
trast, with a centralized coordination as in MDSTPM, cas-
cading aborts will be easer and cheaper, however, in case of
high mobility, communication will be expensive.
To manage global transactions MDSTPM implements strict
2PL for concurrency control and 2PC for atomic commit-
ment. We consider that if MDSTPM will consider transac-
tion execution at MHs, these two mechanisms are not suit-
able because they lead to many message exchanges (between
MHs and coordinator) and to undefined locking time of data
(because of disconnections).
It can be found, in [15], a good analysis about the impact of
mobility on transactions requested from MHs and executed at
DBMS on the wired network. Three possible approaches for
transaction coordination are analyzed: (1) fixed at the MH,
(2) fixed at a centralized site, and (3) moving from BS to BS.
In other respects, [13] proposes a mobile transaction defini-
tion dedicated to Location Dependent Data (LDD). In this
work the impact of mobility on LDD and their effect on the
ACID properties is analyzed.

In Moflex two characteristics concerning mobility are
highlighted: the execution of location dependent transactions
[14] and hand-off influence on transaction execution. In the
transaction definition, users can specify whether a subtrans-



action is location dependent or not. For location dependent
subtransactions, hand-off control rules have to be specified.
Choices are:

� continue, to continue the transaction execution at the
new cell;

� restart, to abort the transaction at the previous cell and
to restart it at the new cell;

� split-resume, operations executed at the old cell will
commit and remaining operations will be executed at
the new cell;

� split-restart, operations executed at the old cell will
commit and the transaction will be executed entirely at
the new cell.

The split operation used here is similar to the one used in
KT. When MHs hop from BS to BS, transactions are split
and the coordination is relocated at the new BS. Transaction
definitions may also include goal states indicating acceptable
final states. The 2PC protocol is used, the mobile transaction
manager of the cell where one of the subtransactions reached
an acceptable goal state becomes the coordinator of the 2PC
protocol for the global transaction commitment.
As far as we know, Moflex is the only model that offers exe-
cution adaptability in hand-off. In mobile computing, adapt-
ability to environment variations is an important issue. The
problem is that in Moflex to reach this adaptability users
have to make a complicated transaction definition. Besides
hand-off adaptability, among analyzed models, only Moflex
is interested in location dependent transactions. They do not
go deeply in specific problems related to location dependent
data, although in [14] a good analysis is proposed.

5 Towards a Mobile Transaction Ser-

vice
The NODS project (Network Open Database Services) aims
at defining an open, adaptable architecture that can be ex-
tended and customized on a per-application basis [8]. Our
approach is characterized by a service oriented view of
database functionality [10]. All DBMS and related tasks are
unbundled into services (e.g. a persistence service) and ap-
plications use services as needed. In the design of services,
particular attention is payed on their adaptability.
The Mobile Transaction Service (MTS), we are working on,
provides support to mobile transactions and will cooperate
with other services such as the replication, persistence [19]
and event services [9] [40]. This section discusses some im-
portant issues about the MTS definition.

Overall functionalities As we have seen in previous sec-
tions, mobile transaction support includes standard transac-
tion manager functions, extra functions and particular imple-
mentations.
The most important and new feature the MTS must support
is mobility management. This includes MH movements and
disconnections.
Concerning function implementation, we have already iden-
tified two important points that have to be modified because

of mobility: transaction validation process and consistency
management. We consider that it is crucial to perform trans-
action validation in two steps corresponding to local commit
and commit introduced in 3.1. Disconnections make con-
sistency management more complicated. It is necessary to
adopt particular concurrency control protocols and synchro-
nization process to offer some kind of serializability.

Transaction Execution Scenarios Considering the con-
text introduced in Section 1, the execution of mobile trans-
actions may be performed in accordance with one of the fol-
lowing scenarios:

1. Mobile transaction initiated by an MH and entirely exe-
cuted on the wired network.

2. Mobile transaction is executed on the MH.

3. Mobile transaction processing is distributed between an
MH and the wired network.

4. Mobile transaction processing is distributed among sev-
eral MHs.

Each one of these execution strategies has special character-
istics and demands particular capabilities. (1) requires the
MTS to provide mobility management (utilizing some tech-
niques like in KT or MDSTPM). The transaction execution
can be “as usual” but the MTS should be aware of MH posi-
tion and connectivity state to deliver results.
In (2), MTS should ensure global consistency comprising
MH updates. The MH has some freedom to manage data
locally but updates have to be incorporated in the database
server. Further, concurrency control and synchronization
methods must be adapted.
In (3), besides mobility management, MTS must be able to
perform distributed executions where participants could not
communicate during executions. In this scenario, a two steps
validation process would be appropriated. Further, consis-
tency must be guaranteed with special concurrency control
protocols and synchronization methods.
(4) is an extension of (3), here, additional features are
required to allow MHs to perceive each others to inter-
communicate. We consider that BSs could play an important
role by maintaining some database catalogs allowing MHs
to know which data are available in the “area” thanks to the
presence of certain MHs. These catalogs should be updated
and forwarded across BSs according to MHs movements.

Consistency and Durability We emphasize the impor-
tance of avoiding application blocking at MH in discon-
nected mode. To achieve this goal, local availability of con-
sistent objects is necessary. As we have noticed in 3.2, se-
mantic approaches are well adapted to manage consistency
in mobile contexts. Moreover, local commit is necessary to
obtain visibility of transaction results that are not already
committed at the database server (in disconnected mode).
Another important property to consider is durability of mo-
bile transactions. Frequently, at resynchronization time, lo-
cal committed mobile transactions have lower priority than
non-mobile transactions; for mobile applications this is a



great disadvantage. It is important to remark, that due to
all changes introduced by mobility, also logging has to be
adapted. Logging increases in importance because in addi-
tion to recovery purposes it may be used to perform synchro-
nization processes.

Transaction model In our opinion, the support of one sin-
gle transaction type is not enough for mobile environments.
Different transaction types are needed depending on the ex-
ecution strategy. For example, considering the transaction
execution scenarios introduced before, we could use for (1)
flat transactions, for (3) long-lived transactions, and for (3)
and (4) open-nested transactions. Open-nested transactions
by their structure can support some kind of local commit (al-
lowing data evolution, application blocking is reduced) and
parallel processing. Long-lived transactions are appropriated
for the third execution strategy because of undefined discon-
nection time. The long-live transaction could be a simple
transaction or an open-nested one.

Architecture The analyzed models showed that BSs can
be a significant support for the MTS. Besides establishing
connection with MHs, the BS can have server capabilities
as logging, data caching, resynchronization process, concur-
rency control mechanisms, etc. Delegating functionalities to
the BS allows the MTS to save communication costs and to
improve response time because the MH is closer to the BS
than to the server. Consequently, for the MTS we will con-
sider a three-tier architecture as client/agent/server, where
the client is on the MH, the agent is on the BS and the server
on the wired network. This architecture and the specification
of a prototype environment are part of our future work.

6 Conclusions
In this paper we analyzed different proposals that deal with
mobile transactions. We organized our analysis in three parts,
in the first one, we examined and compared the execution
models. In the second part, we discussed the way ACID
properties are preserved, pointing out common features and
proposing summary tables. In the last part, we considered
proposals oriented to MH movement and disconnection is-
sues. In these proposals the ACID properties are not compro-
mised because the transaction execution is made at MDBS
on the wired network. In addition, we discussed the design
of a Mobile Transaction Service which is the subject of our
ongoing research.

References
[1] H. Berenson, P. Bernstein, and J. Gray et al. A Critique

of ANSI SQL Isolation Levels. SIGMOD (ACM Special
Interest Group on Management of Data), 2(24):1–10,
May 1995.

[2] C. Bobineau, P. Pucheral, and M. Abdallah. A Uni-
lateral Commit Protocol for Mobile and Disconnected
Computing. In 12th Conference on Parallel and Dis-
tributed ComputingSystems (PDCS’00), Las Vegas US,
August 2000.

[3] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of Multidatabase Transaction Management.
In VLDB, October 1992.

[4] P. K. Chrysanthis. ACTA, A Framework for Model-
ing and Reasoning about Extended Transactions. PhD
thesis, Departament of Computer and Information Sci-
ence, University of Massachusetts, Amherst, Septem-
ber 1991.

[5] P. K. Chrysanthis. Transaction Processing in a Mobile
Computing Environment. In Workshop on Advances in
Parallel and Distributed Systems, pages 77–82. IEEE,
October 1993.

[6] P. K. Chrysanthis. Supporting Semantics Based Trans-
action Processing in Mobile Database Applications.
14th IEEE posium on Reliable Distributed Systems,
September 1995.

[7] P. K. Chrysanthis and K. Ramamritham. Synthesis of
Extended Transaction Models Using ACTA. Technical
Report 93-05, University of Pittisburg, 1993.

[8] C. Collet. The NODS project : Networked Open
Database Services. ECOOP, June 2000.

[9] C. Collet, G. Vargas-Solar, and H. Grazziotin-Ribeiro.
Open Active Services for Data-Intensive Distributed
Applications. In IDEAS, Yokahama-Japan, September
2000.

[10] K. R. Ditrich and A. Geppert. Component Database
Systems. Morgan Kaufmann Publishers, 2001.

[11] M. H. Dunham and Abdelsalam Helal. Mobile Com-
puting and Databases: Anything New? ACM SIGMOD
Record, 4(4), December 1995.

[12] M. H. Dunham and Abdelsalam Helal. A Mobile
Transaction Model that Captures Both the Data and the
Movement Behavior. ACM/Baltzer Journal on special
topics in mobile networks and applications, 2:149–162,
1997.

[13] M. H. Dunham and V. Kumar. Defining Location Data
Dependency, Transaction Mobility and Commitment.
Technical Report 98-CSE-01, Southern Methodist Uni-
versity, Dallas, February 1998.

[14] M. H. Dunham and V. Kumar. Location Dependent
Data and its Management in Mobile Databases. In In-
ternational Workshop on DEXA, August 1998.

[15] M. H. Dunham and V. Kumar. Impact of Mobility on
Transaction Management. In Proceedings of the in-
ternational workshop on data engineering for wireless
and mobile access, pages 14–21. SIGMOBILE, August
1999.

[16] A. Elmagarmid, Y. Leu, and M. Rusinkiewics. A Mul-
tidatabase Transaction Model for INTERBASE. In In-
ternational Conference on VLDB, August 1990.



[17] A. K. Elmagarmid. Database Transaction Models for
Advanced Applications. Morgan Kaufmann Publishers,
1992.

[18] K.P. Eswarn, J. Gray, R.A. Lorie, and I.L. Triger.
The Notions of Consistency and Predicate Locks in
a Database System. Communications of the ACM,
19(11), November 1976.

[19] L. Garcı́a-Bañuelos and C. Collet. Towards an
Adaptable Persistence Service: The NODS Approach.
TOOLS 2001 Workshop on Object-Oriented Databases,
March 2001.

[20] J. Gray. Notes on Database Operating Systems. Oper-
ating Systems: An Advanced Course, LNCS, Springer
Verlag, 60, 1978.

[21] J. N. Gray, P. Helland, P.O’Neil, and D. Shasha. The
Dangers of Replication and a Solution. In Conference
on Management of Data, pages 173–182, Canada, June
1996.

[22] L.B. Huston and P. Honeyman. Peephole log Optimiza-
tion. Technical Report CITI-95-3, Center for Informa-
tion Technology Integration, University of Michigan,
Ann Arbor, 1995.

[23] J. Jing, O. Bukhres, and A. Elmagarmid. Distributed
Lock Management for Mobile Transactions. In Interna-
tional Conference on Distributed Computing Systems,
1995.

[24] J. Jing, A.S. Helal, and A. Elmagarmid. Client-Server
Computing in Mobile Environments. ACM Computing
Surveys, 31(2), June 1999.

[25] G. Jomier and A. Doucet, editors. Chapter ”Bases de
Données et Mobilité” in Bases de Données. Hermes
Science Publications, To be published on June 2001.

[26] J.J Kistler and M. Satyanarayanan. Disconnected Op-
eration in the Coda File System. ACM Transactions on
Computer Systems, 10(1), February 1992.

[27] K. Ku and Y. Kim. Moflex Transaction Model for Mo-
bile Heterogeneous Multidatabase Systems. In 10th In-
ternational Workshop on Research Issues in Data En-
gineering. IEEE, 1998.

[28] V. Kumar. A Timeout-based Mobile Transaction Com-
mitment Protocol. In Symposium on Advances in
Databases and Information Systems, ADBIS-DASFAA,
Prague, Czech Republic, September 2000.

[29] S. K. Madria. Transaction Models for Mobile Com-
puting. 15th IEEE International Conference on Dis-
tributed Computing Systems, June 1995.

[30] S. K. Madria and B. Bhargava. A Transaction Model
for Improving Data Availability in Mobile Computing.
To appear in Distributed and Parallel Databases, 2001.

[31] H. Garcia Molina and K. Salem. SAGAS. ACM
SIGMOD International Conference on Management of
Data, pages 249–259, May 1987.

[32] K. A. Momin and K. Vidyasankar. Flexible Integra-
tion of Optimistic and Pessimistic Concurrency Con-
trol in Mobile Environments. In J. Stuller et al., editor,
ADBIS-DASFAA, LNCS 1884, pages 346–353, 2000.

[33] J. E. B. Moss. Nested Transactions: An approach to
Reliable Computing. PhD thesis, MIT, April 1981.

[34] E. Pitoura and B. Bhargava. Maintaining Consistency
of Data in Mobile Distributed Environment. In 15th Int.
Conference on Distributed Computer Systems, Vancou-
ver Canada, May 1995.

[35] E. Pitoura and B. Bhargava. Data Consistency in Inter-
mittently Connected Distributed Systems. In Transac-
tions on Knowledge and Data Engineering, November
1999.

[36] E. Pitoura and G. Samaras. Data Management for Mo-
bile Computing. Kluwer Academic Publishers, 1998.

[37] C. Pu, G. Kaiser, and N.Hutchinson. Split Transac-
tions for Open-Ended Activities. In Proceedings of
the Fourteenth International Conference on Very Large
Databases, pages 26–37, September 1988.

[38] K. Ramamritham and P. K. Chrysanthis. Advances
in Concurrency Control and Transaction Processing.
IEEE Computer Society Press, 1996.

[39] P. Serrano, C. L. Roncancio, and M. Adiba. Analyz-
ing Mobile Transactions Support for DBMS. In Inter-
national Workshop on Mobility in Databases and Dis-
tributed Systems in DEXA, September 2001.

[40] G Vargas-Solar. Service d’Evénements Flexible Pour
l’Intégration d’Applications Bases de Données Répar-
ties. PhD thesis, Université Joseph Fourier, December
2000.

[41] G. D. Walborn and P. K. Chrysanthis. PRO-MOTION:
Management of Mobile Transactions. In 11th ACM
Annual posium on Applied Computing, San Jose Ca,
March 1997.

[42] G. D. Walborn and P. K. Chrysanthis. Transaction Pro-
cessing in PRO-MOTION. In 14th ACM Annual po-
sium on Applied Computing, San Antonio Tx, February
1999.

[43] L. H. Yeo and A. Zaslavsky. Submission of transac-
tions from mobile workstations in a cooperative mul-
tidatabase processing environment. In Conference on
Distributed Computing Systems, June 1994.

[44] T. Özsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, Englewood Cliffs,
New Jersey, 2nd edition, 1999.


