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CRB analysis of planar antenna arrays for

optimizing near-field source localization
Jean Pierre Delmas, Mohammed Nabil El Korso, Houcem Gazzah, and Marc Castella

Abstract

This paper focuses on the Cramér Rao bound (CRB) of the azimuth, elevation and range with planar

arrays for narrowband near-field source localization, using the exact expression of the time delay parameter.

Specifically, the aim of this paper is twofold. First, we derive explicit non-matrix closed-form expressions of

approximations of these three CRBs. Second, we use these expressions to optimize near-field source localization.

For deriving these expressions, we introduce conditions on the array geometry that allow us to decouple the

azimuth, elevation and range parameters to a certain order in λ/r (in which λ and r denote the wavelength and

the range, respectively). The proposed conditions complement those found for a far-field source that ensure the

azimuth and elevation estimations are both exactly decoupled and isotropic. A particular attention is given to

the popular array configurations which are the concentric uniform circular-based arrays, cross-based and square-

based centro-symmetric arrays which satisfy these conditions. In order to control directions of arrivals (DOA)

ambiguity, we propose a new criterion, which allows us to design non-uniform square [resp., cross]-based centro-

symmetric array configurations with improved near-field range estimation capabilities without deteriorating the

DOA precisions w.r.t. uniform square [resp., cross]-based arrays. Finally, we specify the accuracy of our proposed

approximated CRBs’expressions and isotropy’s conditions w.r.t. the range and the number of sensors.

Index Terms

Cramér Rao bound (CRB), near-field source localization, azimuth, elevation, range, planar antenna array,

sensor’s position optimization.
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I. INTRODUCTION

Sensor placement is known to have a significant impact on the source localization capabilities of the antenna

array, and the topic starts to attract an increasing research effort [1]-[5]. Performance analysis based on the
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CRB is generally preferred because the latter is, at the same time, algorithm-independent and achievable by

a number of popular algorithms. Dependence of the CRB on the array configuration has, first, been studied

in relation to DOA estimation of far-field sources [7], [8], assuming a planar wavefront is impinging on each

sensor. The more challenging near-field case implies a curvature of the waves and a more complicated time

delay model parameterized by the source DOA and range too. In the litterature, one can find a plethora of near-

field performance analysis based on an approximate propagation model applicable to the so-called Fresnel zone

[9],[10],[11]. Only lately has the exact time delay formula been used for deriving more accurate closed-form

expressions of the CRB. This approach, applied to uniform linear arrays (ULA) [12], arbitrary linear arrays

[13] and uniform circular arrays (UCA) [14], is extended for the first time, here, to planar antenna arrays.

The aim of this paper is twofold: First, we tackle the problem of the derivation of explicit non-matrix closed-

form expressions of approximate CRB of the azimuth, elevation and range with for narrowband near-field source

localization by means of planar arrays. Those derivations are based on the exact expression of the time delay

parameter which is very challenging due to the non-linearity of the exact propagation model. Concentrated on the

azimuth, elevation and range parameters (θ, ϕ, r), the stochastic and deterministic CRBs, that are proportional

(one to the other), are given by the inverse of a Fisher-like information matrix, whose terms are nonlinear

expressions of θ, ϕ, r, and the coordinates of the sensors. To obtain simple and interpretable expressions of the

CRBs on θ, ϕ and r, we first specify conditions on the coordinates of the sensors that allow us to decouple θ,

ϕ and r to a certain order in 1/r for near-field sources. Using Taylor expansions, we explicit the expressions

of the CRBs for three classes of planar arrays that satisfy these conditions: the concentric uniform circular

based-arrays, the square-based and cross-based centro-symmetric arrays. In particular, we study decoupling in

relationship with isotropy which is the array ability to exhibit the same accuracy in all azimuth look directions.

In the far-field, estimation is decoupled if and only if it is isotropic. In contrast, we prove that, in the array

near-field, the condition that ensures decoupling does not assure exact isotropy.

Second, we focus on the class of square and cross-based centro-symmetric arrays and highlight some of

their attractive features. In particular, we identify key geometric parameters that control the near-field array

performance. Opportunistically, these geometric parameters are used to design non-uniform square and cross-

based centro-symmetric arrays that achieve better near-field localization accuracy. More precisely, this design

reduces (by as much as 60%) the CRB of the range parameter, with identical azumuth’s and elevation’s CRB

as their corresponding uniform square and cross-based arrays. Finally, it should be noted that the proposed

CRB-minimizing criterion incorporates some geometric constrains to account for the array ambiguity problem.

The paper is organized as follows. Section II specifies the data model, formulates the problem and gives the

general expression of the CRB. In Section III, we use Taylor expansions to derive the CRB for planar arrays. We

focus on the following three classes which happen to exhibit decoupled estimation of the source parameters:

the concentric uniform circular based-arrays, the square-based and cross-based centro-symmetric arrays. An
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analysis of these CRBs is presented in Section IV while paying attention to isotropy and its dependency on

the source range and the number of sensors. We also design original non-uniform square and cross-based

centro-symmetric arrays with improved near-field angle and range estimation capabilities w.r.t. their uniform

counter-parts. The paper is concluded in Section V. Note that the part dedicated to the UCA with a single

circle has been partially presented in [14].

II. DATA MODEL AND GENERAL EXPRESSION OF THE CRB

A. Data Model

A planar antenna array is made of P omni-directional sensors (Cp)p=1,...,P placed in the [O, x, y) plane, at

coordinates (xp, yp)p=1,...,P . Without loss of generality, we assume the array centroid to be at the origin O of

this plane. A source S located in the antenna array near-field has its position characterized by an azimuth angle

θ ∈ [0, 2π], an elevation angle ϕ ∈ [0, π/2] and a range r (grouped in the vector α = [θ, ϕ, r]T ), as illustrated

in Fig.1 for the concentric uniform circular based-arrays. The source is radiating a narrow-band signal, with

wavelength λ, in the presence of an additive noise with complex envelope nk. The complex envelope xk of

the signal collected by this array of sensors is modeled as

xk = ska(α) + nk, k = 1, ...,K,

where sk is the source signal measured at the origin and a(α) = [eiτ1(α), ..., eiτp(α), ..., eiτP (α)]T is the so-

called steering vector, where τp(α) is defined as τp(α) = 2π(SO − SCp)/λ with SO = r and [SCp]
2 =

(xp− r sinϕ cos θ)2+(yp− r sinϕ sin θ)2+ r2 cos2 ϕ (see Fig.1 dedicated to the concentric uniform array) can

be rewritten as

τp(α) = 2π
r

λ

(
1−

√
βp

)
(1)

with

βp
def
= 1− 2 sinϕ

(xp
r

cos θ +
yp
r
sin θ

)
+

x2p + y2p
r2

. (2)

Based on K snapshots (xk)k=1,...,K , estimates of (θ, ϕ, r) are obtained using a variety of algorithms, among

which a few are capable of achieving asymptotically the stochastic CRB [15] that we adopt as our performance

measure of the array accuracy.

B. General expression of the CRB

Expressions of the CRB are available under the usual statistical properties about sk and nk: (i) sk and nk

are independent, (ii) (nk)k=1,...,K are independent, zero-mean circular Gaussian distributed with covariance

σ2
nIP , (iii) (sk)k=1,...,K are assumed to be either deterministic unknown parameters (the so-called conditional

or deterministic model), or independent zero-mean circular Gaussian distributed with variance σ2
s (the so-called
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unconditional or stochastic model). The associated deterministic and stochastic CRBs (denoted by CRBdet(α)

and CRBsto(α)) are, in fact, proportional one to the other [13] following

CRBsto(α) =

(
1 +

σ2
n

∥a(α)∥2σ2
s

)
CRBdet(α) (3)

where σ2
s is to be redefined as 1

K

∑k
k=1 |sk|2 in the deterministic model. We define F(α)

def
= [CRBsto(α)]−1

proved to be equal to

F(α) = cσRe
[
∥a(α)∥2DH(α)D(α)−DH(α)a(α)aH(α)D(α)

]
, (4)

with1 D(α)
def
=
[
∂a(α)
∂θ , ∂a(α)

∂ϕ , ∂a(α)
∂r

]
and cσ

def
= 2Kσ4

s

σ2
n(σ

2
n+Pσ2

s)
, which is independent of the source and sensors

positions. Throughout this paper, we only consider the stochastic source model, thanks to (3). After some

algebraic manipulations, F(α) is more compactly given (element-wise) by the following expression [13]:

[F(α)]i,j
cσ

= P

P∑
p=1

τ ′p,iτ
′
p,j −

 P∑
p=1

τ ′p,i

 P∑
p=1

τ ′p,j

 , (5)

where τ ′p,1
def
= ∂τp(α)

∂θ , τ ′p,2
def
= ∂τp(α)

∂ϕ and τ ′p,3
def
= ∂τp(α)

∂r .

III. CRB DERIVATION FOR PLANAR ARRAYS

A. Arbitrary planar arrays

We perform Taylor expansions of (5) and prove in Appendix VI-A that ([F]1,1, [F]1,2, [F]2,2), ([F]1,3, [F]2,3)

and [F]3,3 are structured as sums of terms of the form r2

λ2

[∑k
ℓ=0 gℓ,k(θ,ϕ)Sℓ,k−ℓ

rk

]
, r

λ2

[∑k
ℓ=0 gℓ,k(θ,ϕ)Sℓ,k−ℓ

rk

]
and

1
λ2

[∑k
ℓ=0 gℓ,k(θ,ϕ)Sℓ,k−ℓ

rk

]
, respectively, where

Si,j
def
=

P∑
p=1

xipy
j
p

are purely geometric parameters and gℓ,k(θ, ϕ) are trigonometric polynomials in θ and ϕ. Consequently, the

matrix F(α) depends on the array geometry through the terms Si,j only (among which S1,0 = S0,1 = 0). This

contrasts with the far-field case in which [F]1,1, [F]1,2 and [F]2,2 depend only on S1,1, S1,2 and S2,2 (see e.g.,

[8]).

Derivation of the CRB on the azimuth, elevation and range alone by inversion of F(α) results into very

intricate closed-form expressions, in general. Consequently, we are led to focus on cases where CRB expressions

are simple and interpretable. In particular, decoupled estimation, of θ, ϕ and r in F(α), is of primary importance.

Unlike the far-field case where θ and ϕ can be decoupled, strict decoupling is not possible in the near-field, and

1Note this matrix F(α) is not a Fisher information matrix concentrated on (θ, ϕ, r) because the geometric parameter (θ, ϕ, r) is not
totally decoupled from the other parameters of the Gaussian parametrization in the deterministic and stochastic modeling.
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is achieved only to a certain order of ϵ = λ
r . We need, first, to express F(α) as a function of ϵ by conducting

a Taylor expansion with respect to ϵ by expanding each term of F(α) as a weighted sum of unit-less terms

Sl,k−l

rk
=

Sl,k−l

λk

(
λ

r

)k

=

(∑P
p=1 x

l
py

k−l
p

λk

)
ϵk,

in which (xp, yp)p=1,...,P and λ are fixed, but r can vary. For example, the unit-less term [F]1,1 is structured as(∑2
ℓ=0 gℓ,2(θ, ϕ)Sℓ,2−ℓ

λ2

)
+

(∑3
ℓ=0 gℓ,3(θ, ϕ)Sℓ,3−ℓ

λ3

)
ϵ+

(∑4
ℓ=0 gℓ,4(θ, ϕ)Sℓ,4−ℓ

λ4

)
ϵ2 + o(ϵ2),

where o(ϵ2) gathers all the remaining term of [F]1,1 with limϵ→0 o(ϵ)/ϵ = 0. Focusing on the r dependence,

[F]1,1 is thus structured as b1,10 + b1,11 ϵ+ b1,12 ϵ2 + o(ϵ2). Applying this same expansion methodology to all the

terms of F(α) ultimately, leads to the expression

F(α)=


b1,10 + b1,11 ϵ+ b1,12 ϵ2 + o(ϵ2) b1,20 + b1,21 ϵ+ b1,22 ϵ2 + o(ϵ2) b1,32 ϵ2 + b1,33 ϵ3 + o(ϵ3)

b1,20 + b1,21 ϵ+ b1,22 ϵ2 + o(ϵ2) b2,20 + b2,21 ϵ+ b2,22 ϵ2 + o(ϵ2) b2,32 ϵ2 + b2,33 ϵ3 + o(ϵ3)

b1,32 ϵ2 + b1,33 ϵ3 + o(ϵ3) b2,32 ϵ2 + b2,33 ϵ3 + o(ϵ3) ϵ4(b3,34 + b3,35 ϵ+ b3,36 ϵ2 + o(ϵ2))

 .

(6)

We first calculate off-diagonal terms in order to identify decoupling conditions. After tedious algebraic

manipulations, they are found to be given by

c

r2 sinϕ cosϕ
[F]1,2 = P

(
S0,2 − S2,0

r2
sin θ cos θ +

S1,1

r2
cos 2θ

)
+ o(ϵ2) (7)

2c

r sinϕ
[F]1,3 = P

(
S0,3

r3
cos θ(1− sin2 ϕ sin2 θ)− S3,0

r3
sin θ(1− sin2 ϕ cos2 θ) +

S2,1

r3
cos θ

(1− sin2 ϕ cos2 θ + 2 sin2 ϕ sin2 θ)− S1,2

r3
sin θ(1− sin2 ϕ sin2 θ + 2 sin2 ϕ cos2 θ)

)
+ o(ϵ3) (8)

2c

r cosϕ
[F]2,3 = P

(
S0,3

r3
sin θ(1− sin2 ϕ sin2 θ) +

S3,0

r3
cos θ(1− sin2 ϕ cos2 θ)

+
S2,1

r3
sin θ(1− 3 sin2 ϕ cos2 θ) +

S1,2

r3
cos θ(1− 3 sin2 ϕ sin2 θ)

)
+ o(ϵ3), (9)

where c
def
= λ2

4π2cσ
.

Second, we seek to decouple θ and ϕ to the zero order in ϵ (i.e., by imposing b1,20 = 0) and to decouple

(θ, ϕ) and r to the second order in ϵ (i.e., by imposing b1,32 = b2,32 = 0). Equalizing b1,20 to zero, i.e., the term(
S0,2−S2,0

r2 sin θ cos θ + S1,1

r2 cos 2θ
)

of (7) implies

S1,1 = 0 and S2,0 = S0,2, (10)

which concurs with far-field conditions given in [8] and [17] for which θ and ϕ estimation are both decoupled

and isotropic (w.r.t. the azimuth θ).

In the same way, both b1,32 of (8) and b2,32 of (9) are zero if S0,3 = S1,2 = S2,1 = S3,0 = 0. Careful
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examination of F(α) terms shows that these latter conditions also imply b1,11 = b2,21 = b1,21 = 0. Ultimately,

to ease the inversion of F(α), we need b3,35 = 0. The latter is satisfied under the additional conditions S0,5 =

S1,4 = S2,3 = S3,2 = S4,1 = 0. All these conditions are simultaneously expressed by the following:

S1,1 = 0, S0,2 = S2,0 and Si,j = 0 for i+ j = 3, 5. (11)

We note that these conditions (11) which include the far-field conditions (10), are much more severe. For

example the V-shaped antenna array highlighted in [8] satisfies (10) but no longer satisfies (11).

Under the conditions (11), (6) simplifies to

F(α) =


b1,10 + b1,12 ϵ2 + o(ϵ2) b1,22 ϵ2 + o(ϵ2) b1,33 ϵ3 + o(ϵ3)

b1,22 ϵ2 + o(ϵ2) b2,20 + b2,22 ϵ2 + o(ϵ2) b2,33 ϵ3 + o(ϵ3)

b1,33 ϵ3 + o(ϵ3) b2,33 ϵ3 + o(ϵ3) ϵ4(b3,34 + b3,36 ϵ2 + o(ϵ2))

 , (12)

making it possible to obtain, after straightforward algebraic manipulations, the following expressions of the

CRBs

CRB(θ) =
1

b1,10

(
1− ϵ2

(
b1,12

b1,10

− (b1,33 )2

b1,10 b3,34

))
+ o(ϵ2) (13)

CRB(ϕ) =
1

b2,20

(
1− ϵ2

(
b2,22

b2,20

− (b2,33 )2

b2,20 b3,34

))
+ o(ϵ2) (14)

CRB(r) =
1

b3,34 ϵ4

(
1− ϵ2

(
b3,36

b3,34

− (b1,33 )2

b1,10 b3,34

− (b2,33 )2

b2,20 b3,34

)
+ o(ϵ2)

)
. (15)

The fact that

lim
r→∞

CRB(θ) = CRBFF(θ) =
1

b1,10

and lim
r→∞

CRB(ϕ) = CRBFF(ϕ) =
1

b2,20

, (16)

where CRBFF(θ) and CRBFF(ϕ) denote the far-field CRBs, means that arrays satisfying conditions (11) do

achieve the far-field CRBs when the source-to-array distance r tends to infinity. In contrast, arrays that do not

satisfy conditions (11) do not necessary satisfy (16) (see an example for linear arrays in [13]), an unexpected

behavior due to a possible coupling (b1,32 ̸= 0, b2,32 ̸= 0) between (θ, ϕ) and r in F(α) to the second-order in

ϵ. Finally, for a source in the plane (x, y), (15) reduces to

CRB(r) =
1

b3,34 ϵ4

(
1− ϵ2

(
b3,36

b3,34

− (b1,33 )2

b1,10 b3,34

)
+ o(ϵ2)

)
ϕ=π/2

. (17)

B. Special classes of arrays : Expressions of F(α)

Conditions (11) are satisfied by many structured planar arrays. We study in details the following three classes

of planar arrays for which the expression of F(α) are derived, as well as expressions (13), (14) and (15) of

the CRBs.
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1) Concentric uniform circular-based arrays: The P sensors are divided into I groups of respective sizes

P1, · · · , PI where
∑I

i=1 Pi = P . The i-th group of sensors is placed uniformly along a circle of radius ri

so that sensor pi, pi = 1, ..., Pi forms an angle θpi,i
def
= θi + θ − 2π(pi−1)

Pi
with [O, x), θi being an arbitrarily

selected offset angle 2. Parameter βp of the phase τp given in (1) can be expressed as

βp = 1− 2ri
r

cos θpi,i sinϕ+
r2i
r2

(18)

associated with a sensor on a circle of radius ri. Using the identity

Pi∑
pi=1

eikθpi,i =

 Pie
ikθ if k/Pi ∈ N

0 k otherwise
, (19)

we easily prove that conditions (11) are satisfied if each circle include more than 5 (Pi > 5, for all i) sensors.

x

y

z

Fig.1 Concentric uniform circular-based array and source parameters.

By using the sensors polar coordinates (ri, θpi,i), the following Taylor expansions of the terms of the matrix

2These arrays are centro-symmetric, only if (Pi)i=1,..,I are all even. They include as particular case, the so-called uniform concentric
circular arrays [16] where θi = 0 and the number Pi of sensors on each circle Ci is constant.
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F(α) are proved in the Appendix VI-B1 for Pi ≥ 6:

2c

r2 sin2 ϕ
[F]1,1 = P

I∑
i=1

Pi

(
r2i
r2

− r4i
r4

cos2 ϕ

)
+ o(ϵ4) (20)

2c

r2 cos2 ϕ
[F]2,2 = P

I∑
i=1

Pi

(
r2i
r2

− r4i
r4

(1− 3 sin2 ϕ)

)
−

I∑
i=1

P 2
i

2

r4i
r4

sin2 ϕ−
∑
i̸=j

PiPj

r2i r
2
j

r4
sin2 ϕ

+ o(ϵ4) (21)

c

r2 sin3 ϕ cosϕ
[F]1,2 = o(ϵ4) (22)

c

r sin4 ϕ
[F]1,3 = o(ϵ4) (23)

c

r cosϕ
[F]2,3 = P

I∑
i=1

Pi

4

r4i
r4

(
3− 9

4
sin2 ϕ

)
sinϕ−

I∑
i=1

P 2
i

4

r4i
r4

(
1 +

1

2
sin2 ϕ

)
sinϕ

− 1

4

∑
i̸=j

Pj

r2i r
2
j

r4

(
Pj −

Pi

2
sin2 ϕ

)
+ o(ϵ4) (24)

c[F]3,3 = P

I∑
i=1

Pi
r4i
r4

g1(sin
2 ϕ)−

I∑
i=1

P 2
i

r4i
r4

g2(sin
2 ϕ)

+P

I∑
i=1

Pi
r6i
r6

g3(sin
2 ϕ)−

I∑
i=1

P 2
i

r6i
r6

g4(sin
2 ϕ)−

∑
i̸=j

PiPj

r2i r
4
j

r6
g4(sin

2 ϕ)+o(ϵ4), (25)

where ϵ
def
= maxi(ri)

r . Exact expressions of polynomials g1, g2, g3 and g4 are given in Appendix VI-B2.

2) Cross-based and square-based centro-symmetric arrays: For cross-based centro-symmetric arrays, as

shown in Fig.2, sensors are placed along the x-axis and the y-axis, symmetrically around the origin i.e., at

coordinates (±aq, 0) and (0,±aq), resulting in a total number of sensors P = 2Q − 1 or P = 2Q depending

on whether a sensor is placed at the origin or not, where Q is the number of sensors on each axis. We have

Si,j = 0 for arbitrary i ̸= 0 and j ̸= 0, hence satisfying conditions (11). Non-zero geometric parameters Si,j

are
∑Q

q=1 a
2
q = S2,0 = S0,2

def
= Σ2,

∑Q
q=1 a

4
q = S4,0 = S0,4

def
= Σ4 and

∑Q
q=1 a

6
q = S6,0 = S0,6

def
= Σ6.
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x

y

Fig.2 Cross-based centro-symmetric array.

Square-based centro-symmetric arrays shown in Fig.3 are made of P = Q2 sensors at positions

(aq, aq′)q=1,...,Q,q′=1,...,Q such that if a sensor is placed at some position (xp, yp), another one is placed in the

coordinate (−xp,−yp). Si,j are found to satisfy conditions (11). Non-zero ones reduce to S2,0 = S0,2
def
= QΣ2,

S4,0 = S0,4
def
= QΣ4, S6,0 = S0,6

def
= QΣ6, S2,2 = Σ2

2, and S4,2 = S2,4 = Σ2Σ4, where Σ2, Σ4 and Σ6 have

the same definition as for the cross-based arrays.

y

x

Fig.3 Square-based centro-symmetric array.

For these two (cross and square based) classes of centro-symmetric arrays, we reach the following unified

August 23, 2016 DRAFT
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expression 3 of the Taylor expansion of the matrix F(α), proved in the Appendix VI-C:

c

r2 sin2 ϕ
[F]1,1 =

a1,12 Σ2

r2
+

a1,14 (θ, ϕ)QΣ4 + a1,122 (θ, ϕ)Σ2
2

r4
+ o(ϵ4) (26)

c

r2 cos2 ϕ
[F]2,2 =

a2,22 Σ2

r2
+

a2,24 (θ, ϕ)QΣ4 + a2,222 (θ, ϕ)Σ2
2

r4
+ o(ϵ4) (27)

c

r2 sin3 ϕ cosϕ
[F]1,2 =

a1,24 (θ, ϕ)QΣ4 + a1,222 (θ, ϕ)Σ2
2

r4
+ o(ϵ4) (28)

c

r sin4 ϕ
[F]1,3 =

a1,34 (θ, ϕ)QΣ4 + a1,322 (θ, ϕ)Σ2
2

r4
+ o(ϵ4) (29)

c

r sinϕ cosϕ
[F]2,3 =

a2,34 (θ, ϕ)QΣ4 + a2,322 (θ, ϕ)Σ2
2

r4
+ o(ϵ4) (30)

c[F]3,3 =
a3,34 (θ, ϕ)QΣ4 + a3,322 (θ, ϕ)Σ2

2

r4

+
a3,36 (θ, ϕ)Q2Σ6 + a3,32,4(θ, ϕ)QΣ2Σ4 + a3,323 (θ, ϕ)Σ3

2

r6
+ o(ϵ6). (31)

where a1,12 = a2,22 = P [resp., PQ] for the cross-based [resp., square-based] centro-symmetric arrays.

Expressions of ai,jk (θ, ϕ), given in Appendix VI-C, are functions of the number of sensors and (θ, ϕ). Also,

a1,122 (θ, ϕ) = a1,222 (θ, ϕ) = a1,322 (θ, ϕ) = a3,323 (θ, ϕ) = 0 for the cross-based centro-symmetric arrays.

C. Special classes of arrays : Expressions of the CRBs

1) Concentric uniform circular-based arrays: Using (13) and the values of the parameters bi,jk of the matrix

F(α) of (12) derived by identification with the expansion (20)-(25), we deduce the following closed-form

expression of the CRB on the azimuth:

CRB(θ) = CRBFF(θ)

(
1 +

∑I
i=1 Pir

4
i cos

2 ϕ

r2
∑I

i=1 Pir2i
+ o(ϵ2)

)
, (32)

where we obtain the following original expression of the CRB on the azimuth under the far-field conditions,

CRBFF(θ) =
2c

sin2 ϕ

1

P
∑I

i=1 Pir2i
. (33)

For a single-ring UCA of radius r1, Eq. (32) simplifies to

CRB(θ) = CRBFF(θ)

(
1 +

r21
r2

cos2 ϕ+ o

(
r21
r2

))
(34)

with CRBFF(θ) =
2c

sin2 ϕ
1

P 2r21
.

Expressions of the CRB on the elevation and range deduced from (14) and (15) are much more intricate.

Consequently, we concentrate on the single-ring UCA for which we obtain the following closed-form

3Note that the number Q introduced in some terms will allow us to obtain the common expressions of the CRB (42), (43) and (44).
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expressions:

CRB(ϕ) = CRBFF(ϕ)

[
1 +

r21
r2

h2(sin
2 ϕ) + o

(
r21
r2

)]
(35)

CRB(r) =
32c

sin4 ϕ

r4

r41

[
1 +

r21
r2

h3(sin
2 ϕ) + o

(
r21
r2

)]
, (36)

with CRBFF(ϕ) =
2c

cos2 ϕ
1

P 2r21
and

h2(sin
2 ϕ)

def
=

16

sin2 ϕ
+

39

4
sin2 ϕ− 27 and h3(sin

2 ϕ)
def
= 5− 21

4
sin2 ϕ.

Further simplification are obtained for a single-ring UCA made of P > 8 sensors, for which (20), (22) and

(23) become:

2c

r2 sin2 ϕ
[F]1,1 = P 2

(
r21
r2

− r41
r4

cos2 ϕ+
r41
r4

g5(sin
2 ϕ) +

r61
r6

g6(sin
2 ϕ)

)
+ o

(
r71
r7

)
(37)

c

r2 sinϕ cosϕ
[F]1,2 = o

(
r71
r7

)
(38)

c

r sinϕ
[F]1,3 = o

(
r71
r7

)
, (39)

with

g5(sin
2 ϕ)

def
= 1− 3 sin2 ϕ+ 2 sin4 ϕ and g6(sin

2 ϕ)
def
= −1 + 6 sin2 ϕ− 10 sin4 ϕ+ 5 sin6 ϕ.

This allows us to further develop the Taylor expansion in (34) to obtain the following more accurate closed-form

expression:

CRB(θ) = CRBFF(θ)

[
1 +

r21
r2

cos2 ϕ+
r41
r4

sin2 ϕ cos2 ϕ+
r61
r6

h1(sin
2 ϕ) + o

(
r71
r7

)]
, (40)

with h1(sin
2 ϕ)

def
= − sin2 ϕ+ 3 sin4 ϕ− 2 sin6 ϕ. Interestingly, for a source in the (x, y) plane (i.e., ϕ = π/2),

we deduce from the matrix F(α) that (40) and (17) give

CRB(θ) = CRBFF(θ)

[
1 + o

(
r71
r7

)]
CRB(r) =

32c

sin4 ϕ

r4

r41

[
1− r21

2r2
+ o

(
r21
r2

)]
.

The validity of some approximate closed-form expressions of the CRB is illustrated for a source located with

an azimuth θ = 70◦ and elevation ϕ = 70◦. Figs.4 and 5 compare the approximate ratios CRB(θ)/CRBFF(θ)

and CRB(ϕ)/CRBFF(ϕ) given by (40) and (35) to the exact ones (i.e., derived from the numerical inversion

of the matrix F(α) built on the exact model of the time delay (1)). These figures naturally show that CRB(θ)

and CRB(ϕ) tend to CRBFF(θ) and CRBFF(ϕ), respectively, when the range increases. In addition, we can

notice that the far-field state is reached from the ratio r/r1 = 10. We also see that the near-field CRB on the
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azimuth and elevation are smaller that the associated far-field CRB. We also consider Fig.6 that compares the

approximate CRB(r) (36) to the exact one as a function of r/r1. Figs.4 and 6 show that the approximate values

of CRB on the azimuth and range are very close to the exact ones for 10 sensors from r/r1 = 2. This contrasts

with elevation for which the approximate values of the CRB are close to the exact one only from r/r1 = 4.

For 7 sensors, we note that our proposed approximations of all CRBs are still accurate from r/r1 = 4.

2 3 4 5 6 7 8 9 10
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

r/r
1

P=7. Exact CRB

P=7. Approx. CRB

P=10. Exact CRB

P=10. Approx. CRB

Fig.4 Approximate and exact ratios CRB(θ)/CRBFF(θ) for the UCA.
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0.9

0.95

1

1.05

1.1

1.15

r/r
1

P=7. Exact CRB

P=7. Approx. CRB

P=10. Exact CRB

P=10. Approx. CRB

Fig.5 Approximate and exact ratios CRB(ϕ)/CRBFF(ϕ) for the UCA.

2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

1.05

r/r
1

P=7

P=10

Fig.6 Ratio of the approximate CRB(r) to the exact one for the UCA.

2) Cross-based and square-based centro-symmetric arrays: For such arrays, (13), (14) and (15) give very

intricate expressions. But hopefully, we can identify two geometric parameters κ and η that determine the

near-field accuracy of the antenna array. They are defined by the following two unit-less array geometric
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expressions:

κ
def
=

Σ2
2

QΣ4
and η

def
=

Σ3
2

Q2Σ6
. (41)

We note that they verify 0 < η ≤ κ ≤ 1 [12], and remain unchanged if a sensor is added/removed at/from the

origin and if sensor coordinates are scaled by some arbitrary constant. The interest of these two parameters

is that they complement the geometric parameter Σ2 to characterize the behavior of the three CRBs in the

near-field condition, allowing us to derive some optimizations. This contrasts with the far-field conditions for

which Σ2 characterizes the behavior of the the CRB on the azimuth and elevation in the near-field condition,

(see (41)).

After tedious algebraic manipulations, CRBs (13), (14) and (15) can be rewritten in terms of these parameters,

to obtain the following expressions:

CRB(θ) = CRBFF(θ)

(
1 +

a(θ, ϕ, κ)Σ2

r2
+ o(ϵ2)

)
(42)

CRB(ϕ) = CRBFF(ϕ)

(
1 +

b(θ, ϕ, κ)Σ2

r2
+ o(ϵ2)

)
(43)

CRB(r) =
r4

d(θ, ϕ, κ)Σ2
2

(
1 +

e(θ, ϕ, κ, η)Σ2

r2
+ o(ϵ2)

)
, (44)

where the far-field CRB on θ and ϕ are given, respectively, by

CRBFF(θ) =
c

a1,12 Σ2 sin
2 ϕ

and CRBFF(ϕ) =
c

a2,22 Σ2 cos2 ϕ
, (45)

in which a1,12 = a2,22 = P [resp., PQ] for the cross-based centro-symmetric arrays [resp., square-based centro-

symmetric arrays] and

a(θ, ϕ, κ) =

(
a1,34 (θ, ϕ) + κa1,322 (θ, ϕ)

)2
sin6 ϕ−

(
a1,14 (θ, ϕ) + κa1,122 (θ, ϕ)

)(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

)
κa1,12

(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

)
b(θ, ϕ, κ) =

(
a2,34 (θ, ϕ) + κa2,322 (θ, ϕ)

)2
sin2 ϕ−

(
a2,24 (θ, ϕ) + κa2,222 (θ, ϕ)

)(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

)
κa2,22

(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

)
d(θ, ϕ, κ) =

1

c

(
1

κ
a3,34 (θ, ϕ) + a3,322 (θ, ϕ)

)
(46)

e(θ, ϕ, κ, ν) =

(
a1,34 (θ, ϕ) + κa1,322 (θ, ϕ)

)2
sin6 ϕ

κa1,12

(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

) +

(
a2,34 (θ, ϕ) + κa2,322 (θ, ϕ)

)2
sin2 ϕ

κa2,22

(
a3,34 (θ, ϕ) + κa3,322 (θ, ϕ)

)
−

η−1a3,36 (θ, ϕ) + κ−1a3,32,4(θ, ϕ) + a3,323 (θ, ϕ)

κ−1a3,34 (θ, ϕ) + a3,322 (θ, ϕ)
,

where the terms ai,jk (θ, ϕ) come from (26)-(31).

The validity of some approximate closed-form expressions of the CRB for the square-based centro-symmetric
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arrays4 is illustrated for a source located with an azimuth θ = 60◦ and elevation ϕ = 40◦ for the specific case of

uniform square-based arrays with half-wavelength inter-sensors spacing. As in the UCA case, Fig.7 and Fig.8

compare the approximate ratios CRB(θ)/CRBFF(θ) and CRB(ϕ)/CRBFF(ϕ) given by (42) and (43) to the

exact ones. Fig.9 compares the approximate CRB(r), given by (44), to the exact one as a function of r/r0

where r0 is the half aperture Q−1
2

λ
2 (similarly as r/r1 for the UCA). The above figures confirm the validity of

the proposed approximations for a large enough Q and/or a large enough ratio r/r0.

2 4 6 8 10 12 14 16 18 20
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

r/r
0

Q=4 Exact CRB

Q=2 Exact CRB

Q=2 Approx. CRB

Q=4 Approx. CRB

Fig.7 Approximate and exact ratios CRB(θ)/CRBFF(θ) for uniform square-based arrays.

4The same behavior is noticed for the cross-based centro-symmetric arrays.
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1
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Q=2 Exact CRB
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Q=2 Approx. CRB
Q=4 Exact CRB
Q=2 Approx. CRBQ=2 Approx. CRB

r/r
0

Fig.8 Approximate and exact ratios CRB(ϕ)/CRBFF(ϕ) for uniform square-based arrays.
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0.4

0.6
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1
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r/r
0

 

 

Q=6
Q=4

Fig.9 Ratio of the approximate CRB(r) to the exact one for uniform square-based arrays.

IV. ANALYSIS OF THE DERIVED CRBS

A. Isotropy under the near-field

An antenna array appears to be isotropic to a source located in its far-field when sensors placed such that

S1,1 = 0 and S0,2 = S2,0.
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This condition is weaker than conditions (11). Consequently, the isotropy property deteriorates if the source

tends to be in the antenna near-field. For example, for cross-based and square-based centro-symmetric arrays,

the CRBs on azimuth (42) and elevation (43) depend on the azimuth angle to the second-order in ϵ, whereas

for the CRB on the range (44), the dominant term is dependent on the azimuth. Furthermore, from expressions

of ai,jk (θ, ϕ) in Sec. VI-C, azimuth, elevation and range CRBs appear to be periodic in θ of period π/2, as one

may expect. Due to the intricate expressions of these CRBs, it is difficult to learn more about the deterioration

of isotropy when the source range r decreases or when the number of sensors P decreases.

However, more can be learnt about single-ring UCA. First, thanks to (19), CRBs are periodic in θ of period

2π/P , as one may predict. Also if we denote the radius by r1 and θp,1 by θp, Taylor expansion of the elements

of F(α) w.r.t. ϵ (5), where only the θ dependence is retained, yields to

[F]i,j =

∞∑
k=0

 P∑
p=1

g
(i,j)
k (cos θp, sin θp)

 ϵk, (47)

where g
(i,j)
k is a polynomial expression of cos θp and sin θp of degree k + 2, k + 1 or k for (i, j = 1, 2),

(i = 1, 2, j = 3) or (i = j = 3), respectively. By linearizing this polynomial, we have for example for

i, j = 1, 2:

g
(1,2)
k (cos θp, sin θp) =

k+2∑
ℓ=0

c
(1,2)
ℓ,k cos(ℓθp) +

k+2∑
ℓ=1

s
(1,2)
ℓ,k sin(ℓθp)

where c
(1,2)
0,k = 0 for odd degrees of g

(1,2)
k . Then, using (19), focusing on θ and carefully studying the first

terms of the Taylor expansion (47) in ϵ, we obtain

[F]i,j =

⌊(P−3)/2⌋∑
k=0

bi,j2kϵ
2k +

∞∑
k=P−2

bi,jk (θ)ϵk (48)

[F]i,j =

∞∑
k=P−2

bi,jk (θ)ϵk (49)

[F]2,3 =

P−1∑
k=3

bi,jk ϵk +

∞∑
k=P

bi,jk (θ)ϵk (50)

[F]3,3 =

⌊(P−1)/2⌋∑
k=2

bi,j2kϵ
2k +

∞∑
k=P

bi,jk (θ)ϵk, (51)

for P ≥ 4 and i = j = 1 or i = j = 2 (48), i = 1, j = 2, 3 (49), where bi,jk and bi,j2k do not depend on θ. For

example, 2c[F]1,1
r20 sin

2 ϕ
is given in Table 1 for P = 3, 4, 5, 6:

P
3 1− ϵ2 sinϕ cos 3θ + o(ϵ2)

4 1− ϵ2(cos2 ϕ− sin2 ϕ sin 4θ) + o(ϵ2)

5 1− ϵ2 cos2 ϕ− ϵ3 sin3 ϕ cos 5θ + o(ϵ3)

6 1− ϵ2 cos2 ϕ− ϵ4(1− 3 sin2 ϕ+ 2 sin4 ϕ− sin4 ϕ cos 6θ) + o(ϵ4)
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Table 1 Second-order expansion of 2c[F]1,1
r20 sin2 ϕ

for for P = 3, 4, 5, 6.

The following can be concluded about a single ring UCA of a fixed number P of sensors: From (48)-(51),

matrix F(α) does not depend on the azimuth up to the order P − 3 in r1/r, and, from (49), θ and (ϕ, r) are

decoupled up to the order P − 1 in r1/r. Consequently, the azimuth’s CRB does not depend on the azimuth

up to the order P − 1 in r1/r, in contrast to the elevation’s and range’s CRB for which this order is smaller

or equal to P − 3. Consequently, for fixed r (resp. P ), isotropy increases when P (resp. r) increases. Also,

azimuth’s CRB is much less sensitive to the azimuth angle than elevation and range CRBs.

We introduce the following non-isotropy measurement, in which CRB(θ) denotes the mean of CRB(θ) w.r.t.

θ,

ρ = sup
θ

|CRB(θ)− CRB(θ)|
CRB(θ)

illustrated in Fig.10 and Fig.11 for single-ring UCAs and uniform square based arrays with half-wavelength

inter-sensors spacing, respectively. Fig.10 shows that the isotropy is much more sensitive to P than to r,

which increases very rapidly with r and P in contrast to Fig.11 where the isotropy is less sensitive to Q and

increases much less rapidly with r and Q. In other words, the UCAs are much more isotropic than the uniform

square-based arrays for given half aperture and range, under the near-field conditions.

2 3 4 5 6 7 8 9 10
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�
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�
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0
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P=4

P=6

P=8

P=10

Fig.10 Non-isotropy criterion ρ w.r.t. r/r1 and P for UCAs.
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Fig.11 Non-isotropy criterion ρ w.r.t. r/r0 and Q for uniform square-based arrays.

B. Optimization of cross-based and square-based centro-symmetric arrays

1) Optimization Criterion: Far-field (azimuth and elevation) performance is fully determined by the geometric

parameter Σ2 and the number P of sensors as expressed in (45), while near-field performance depends on

geometric parameters κ and η for DOA and range estimation. In particular, the most significant term of the

range CRB, as expressed in (44) and (46), is controlled by κ through the term5

r4

d(θ, ϕ, κ)Σ2
2

=
cr4

Σ2
2

[
1

κ
a3,34 (θ, ϕ) + a3,322 (θ, ϕ)

]−1

,

which is an increasing function of κ as a3,34 (θ, ϕ) > 0 for arbitrary θ and ϕ.

Our array geometry optimization approach is inspired by the following rationale. For those arrays with

predetermined values of Σ2 and P (and so, ones with similar far-field performance), near-field range estimation

depends mainly on Σ2 and κ. For comparison purposes, we refer to uniform cross (UCrA) and square-based

(USA) arrays, for which κ is denoted κu. We seek array geometries of nonuniform cross and square-based

arrays, for which the κ-dependent criterion below is lower than one6.

RP (κ) = lim
r→∞

CRB(r)|nu
CRB(r)|u

=
1
κu
a3,34 (θ, ϕ) + a3,322 (θ, ϕ)

1
κa

3,3
4 (θ, ϕ) + a3,322 (θ, ϕ)

. (52)

While spanning [ 2Q , 1], extreme values of κ are to be avoided in order to preserve the DOA non-ambiguity

of the cross-based and square-based centro-symmetric arrays. More specifically, on the one hand, κ ≈ 2
Q

5where a3,3
4 (θ, ϕ) and a3,3

22
(θ, ϕ) are defined in (31).

6where CRB(r)|u and CRB(r)|nu denote the CRB on r for respectively uniform and nonuniform cross and square-based arrays.
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corresponds to co-located sensors at the centroid O, (except 4 sensors at (xp, yp) = (±a, 0), (0,±a) for cross-

based centro-symmetric arrays [resp., (xp, yp) = (±a,±a) for square-based centro-symmetric arrays]). On

the other hand, κ ≈ 1 corresponds to aq ≈ ±a (all sensors concentrated to the previous four positions).

Consequently, we only seek values of κ in [0.3-0.7].

The ratio (52) illustrated in Fig.12, shows that there exist non-uniform square or cross-based centro-

symmetric arrays with RP (κ) significantly lower than 1, suggesting that there is an opportunity to achieve

a great deal of improvement. This is, actually true regardless of the source DOA as confirmed by Fig.13.

This figure shows that RP (κ) depends very loosely on θ and ϕ. More precisely, it is not sensitive to

θ due to the isotropy property, but little sensitive to ϕ. Furthermore the performance advantage increases

for weak values of ϕ. The same behavior has been observed for cross-based centro-symmetric arrays.
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P=36
P=25
P=16
USA P=36
USA P=25
USA P=16

Fig.12 RP (κ) as a function of κ for different square-based centro-symmetric arrays for θ = 60◦ and ϕ = 30◦.
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Fig.13 RP (κnu) as a function of κnu for square-based centro-symmetric arrays with P = 36 for different (θ, ϕ).

2) Sensors placement: Having fixed Σ2, P and κ ∈ ( 2
Q , κu), based on desired near-field and far-field

performance, there are (Q/2) − 2 for Q even, [resp., ((Q − 1)/2) − 2 for Q odd] degrees of freedom for

arbitrary cross or square-based centro-symmetric arrays to set positions a1, ...aQ of the sensors7. They are used

to tackle the array ambiguity problem, a crucial one for the nonuniform array configurations.

Ambiguities occur when two steering vectors happen to be (very) close, despite referring to well separated

look directions [18]. One way to minimize ambiguities is to minimize the so-called relative peak sidelobe level

(PSL) ratio [5] derived from the conventional array beampattern [19]; If

[aFF(θ, ϕ)]p
def
= lim

r→∞
[a(α)]p = e

i2π

λ
(sinϕ(xp cos θ+yp sin θ)),

then

rPSL
def
= max

(u,v) outside the mainlobe region
|aHFF(u, v)aFF(θ, ϕ)|2/P 2.

Since

min
a1,...aQ

rPSL, (53)

under the constraints
∑Q

q=1 a
2
q = Σ2,

∑Q
q=1 a

4
q = Σ4 [with Σ4 = Σ2

2/Qκ from (41)] and symmetric aq is a

nonconvex minimization problem8, we propose the following ad hoc criterion that ought to avoid concentrations

7except for Q = 4 and 5, for which there remains no degree of freedom.
8including for Q = 6 and 7, for which there is a single degree of freedom, but with several local minimum.
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of sensors in the neighborhood of the origin for weak values of κ:

max
a1,...aQ

[
min

1≤q ̸=q′≤Q
|aq − aq′ |

]
, (54)

under the same constraints. Results of the exhaustive search, reported in Tables 2 and 3, for Q = 6 and 7, show

that the proposed criterion (54) delivers very close values to those of the minimization (53).

To handle the max-min problem defined by (54) under the previous constraints, we introduce a new decision

variable, denoted by z, in order to transform the aforementioned constrained optimization into a global

polynomial maximization under, both, polynomial equalities and inequalities. This can be expressed as follows:

max z under the following constraints (55)

z ≤ 2a1, z ≤ aq+1 − aq, q = 1, .., Q/2,

Q/2∑
q=1

a2q =
Σ2

2
,

Q/2∑
q=1

a4q =
Σ4

2
and centro-symmetric aq for Q even

z ≤ a1, z ≤ aq+1 − aq, q = 1, .., ⌊Q/2⌋,
⌊Q/2⌋∑
q=1

a2q =
Σ2

2
,

⌊Q/2⌋∑
q=1

a4q =
Σ4

2
and centro-symmetric aq for Q odd.

This is a constrained non-convex but polynomial optimization problem. Following [20], it can be solved by

a sequence of semidefinite positive (SDP) relaxations. The result comes with global convergence guarantees

and often at finite relaxation order. This method can be implemented using the matlab GloptiPoly utility [21].

By judiciously choosing the relaxation orders, we have solved our optimization problem with small relaxation

order for Q = 6, 7, 8 and 9 sensors.

Tables 2-5 assume a normalized Σ2 = 1 and report for different values of κ the associated RP (κ), optimal

sensors positions and the relative PSL for both cross-based (CrCS) and square-based (SCS) centro-symmetric

arrays (denoted by rCrCS
PSL and rSCS

PSL, respectively), for different values of the number Q of sensors, θ = 60◦

and ϕ = 30◦.

κ RP (κ) sensors positions rCrCS
PSL rSCS

PSL criterion
0.5776 1 ±0.1195,±0.3586,±0.5976 2.9087 17.3310 (54)
0.5000 0.7392 ±0.1012,±0.3036,±0.6305 2.8441 6.6667 (54)
0.4500 0.6080 ±0.0866,±0.2599,±0.6519 2.3719 4.1762 (54)
0.4000 0.4978 ±0.0674,±0.2022,±0.6742 1.7310 3.7037 (54)
0.4000 0.4978 ±0.1335,±0.1640,±0.6748 1.8115 (53)
0.4000 0.4978 ±0.0823,±0.1961,±0.6744 3.8124 (53)
0.3500 0.4036 ±0.0349,±0.1047,±0.6984 1.1689 1.3889 (54)
0.3500 0.4036 ±0.0332,±0.1052,±0.6984 1.1698 (53)
0.3500 0.4036 ±0.0701,±0.0849,±0.6984 1.3952 (53)

Table 2 Values of κ, RP (κ), sensors positions, rCrCS
PSL and rSCS

PSL for Q = 6.
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κ RP (κ) sensors positions rCrCS
PSL rSCS

PSL criterion
0.5714 1 0,±0.1890,±0.3780,±0.5669 3.3400 16.6945 (54)
0.5000 0.7571 0,±0.1674,±0.3348,±0.5999 2.6274 10.7527 (54)
0.4500 0.6228 0,±0.1500,±0.3001,±0.6225 2.3674 6.7340 (54)
0.4000 0.5098 0,±0.1288,±0.2577,±0.6458 2.5001 4.6751 (54)
0.4000 0.5098 0,±0.1876,±0.2150,±0.6469 2.7278 (53)
0.4000 0.5098 0,±0.1036,±0.2705,±0.6450 8.1699 (53)
0.3500 0.4133 0,±0.1001,±0.2003,±0.6707 1.7784 3.4868 (54)
0.3500 0.4133 0,±0.1278,±0.1828,±0.6709 1.8255 (53)
0.3500 0.4133 0,±0.1376,±0.1753,±0.6710 3.7298 (53)

Table 3 Values of κ, RP (κ), sensors positions, rCrCS
PSL and rSCS

PSL for Q = 7.

κ RP (κ) sensors positions rCrCS
PSL rSCS

PSL

0.5676 1 ±0.0772,±0.2315,±0.3858,±0.5401 3.0202 18.1818
0.5000 0.7685 ±0.0699,±0.2098,±0.3497,±0.5734 2.3964 12.5000
0.4500 0.6325 ±0.0641,±0.1922,±0.3203,±0.5969 2.1739 7.1429
0.4000 0.5176 ±0.0572,±0.1715,±0.2858,±0.6210 2.2727 6.2893
0.3500 0.4197 ±0.0484,±0.1452,±0.2421,±0.6465 2.1186 5.8824
0.3000 0.3352 ±0.0358,±0.1074,±0.1790,±0.6747 1.5362 2.5707

Table 4 Values of κ, RP (κ), sensors positions, rCrCS
PSL and rSCS

PSL for Q = 8.

κ RP (κ) sensors positions rCrCS
PSL rSCS

PSL

0.5650 1 0,±0.1291,±0.2582,±0.3873,±0.5164 3.3344 19.4553
0.5000 0.7767 0,±0.1187,±0.2374,±0.3561,±0.5502 2.8571 10.9649
0.4500 0.6387 0,±0.1101,±0.2202,±0.3304,±0.5747 2.4190 9.4787
0.4000 0.5228 0,±0.1003,±0.2006,±0.3009,±0.5993 2.3759 8.5911
0.3500 0.4240 0,±0.0883,±0.1766,±0.2649,±0.6252 2.6247 6.2112
0.3000 0.3386 0,±0.0721,±0.1442,±0.2163,±0.6536 1.9231 4.4248

Table 5 Values of κ, RP (κ), sensors positions, rCrCS
PSL and rSCS

PSL for Q = 9.

As seen in these tables, our objective of reducing the near-field range’s CRB is achieved (to up to 60%),

while maintaining no-ambiguity of the cross-based and square-based centro-symmetric arrays. The reduction of

the CRB increases with the number of sensors and robustness to ambiguity is much more better for square than

for cross-based centro-symmetric arrays due to a larger number of sensors for a given Q. A tradeoff should be

sought between performance improvement and the robustness to ambiguity.

We need to make sure that sensor positions that reduce the near-field range’s CRB do not deteriorate the near-

field DOA’s CRBs, comparatively to the UCrA or a USA. This is the case, as verified by extended numerical

experiments, and illustrated in Fig. 14 exhibiting the three ratios CRB(θ)|nu/CRB(θ)|u, CRB(ϕ)|nu/CRB(ϕ)|u
and CRB(r)|nu/CRB(r)|u for the square-based centro-symmetric array with sensors of P = Q2 = 36 sensors

placed at ±0.0674, ±0.2022 and ±0.6742 with Σ2 = 1, associated with κ = 0.4000 for θ = 60◦ and ϕ = 30◦.

This figure shows that the near-field range’s CRB is reduced by a much as 50% without deteriorating the

near-field DOA’s CRB w.r.t. those of the USA.
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Fig.14 Azimuth, elevation and range CRBs of a square-based centro-symmetric arrays with κnu = 0.4000 normalized to

that of the equivalent USA (κu = 0.5776). Both arrays are made of P = Q2 = 36 sensors

V. CONCLUSION

This paper has been dedicated to derivations and analysis of the azimuth, elevation and range CRBs for

narrowband near-field source localization by means of planar arrays, where we have assumed the exact

expression of the time delay parameter. Conditions on the array geometry that allow us to decouple the azimuth,

elevation and range to a certain order in 1/r have been highlighted, using Taylor expansions w.r.t. 1/r. These

conditions complement those found for a near-field source that ensure the azimuth and elevation estimations are

both exactly decoupled and isotropic. Explicit non-matrix closed-form expressions of these CRBs are derived

for concentric uniform circular-based arrays, cross-based and square-based centro-symmetric arrays that satisfy

these conditions. Using a new criterion that controls the direction of arrival (DOA) ambiguity, non-uniform

square or cross-based centro-symmetric arrays are characterized with significantly lower range’s CRB (by as

much as 60%) without deteriorating the DOA precisions w.r.t. uniform square or cross-based arrays.
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VI. APPENDIX

A. Taylor expressions of the terms of F(α)

From (5) with τ ′p,1 = 2π r
λ

sinϕ(− xp

r
sin θ+

yp

r
cos θ)√

βp

, τ ′p,2 = 2π r
λ

cosϕ( xp

r
cos θ+

yp

r
sin θ)√

βp

and τ ′p,3 =

2π 1
λ

(
1 +

−1+sinϕ( xp

r
cos θ+

yp

r
sin θ)√

βp

)
, we obtain

[F]1,1 =
r2

λ2
4π2cσ sin

2 ϕ

P P∑
p=1

(
−xp

r sin θ + yp

r cos θ
)2

βp
−

 P∑
p=1

(−xp

r sin θ + yp

r cos θ)√
βp

2 , (56)

[F]1,3 =
r

λ2
4π2cσ sinϕ

P P∑
p=1

(
−xp

r sin θ + yp

r cos θ
)√

βp

(
1 +

−1 + sinϕ
(xp

r cos θ + yp

r sin θ
)√

βp

)

−
P∑

p=1

(
−xp

r sin θ + yp

r cos θ√
βp

) P∑
p=1

1 +
−1 + sinϕ

(xp

r cos θ + yp

r sin θ
)√

βp

 , (57)

[F]3,3 =
1

λ2
4π2cσ

P P∑
p=1

(
1 +

−1 + sinϕ
(xp

r cos θ + yp

r sin θ
)√

βp

)2

−

 P∑
p=1

1 +
−1 + sinϕ

(xp

r cos θ + yp

r sin θ
)√

βp

2 . (58)

Then we use the Taylor series expansions:

1/βp =

+∞∑
k=0

(−1)kγkp and 1/
√

βp = 1 +

+∞∑
k=1

(−1)k1× 3× ...(2k − 1)γkp
2kk!

where γp = −2 sinϕ
(xp

r cos θ + yp

r sin θ
)
+

x2
p+y2

p

r2 from the value of βp (2) in the expressions (56)-(57). This

allows us to obtain Taylor series expansions of [F]1,1, [F]1,3 and [F]3,3 w.r.t. xp/r and yp/r. And thus, we

can deduce the following structured Taylor series expansions: [F]1,1 = r2

λ2

∑∞
k=1

[∑k
ℓ=0 g

1,1
ℓ,k(θ,ϕ)Si,k−i

rk

]
, [F]1,3 =

r
λ2

∑∞
k=1

[∑k
ℓ=0 g

1,3
ℓ,k(θ,ϕ)Si,k−i

rk

]
and [F]3,3 =

1
λ2

∑∞
k=1

[∑k
ℓ=0 g

3,3
ℓ,k(θ,ϕ)Si,k−i

rk

]
, where Si,j

def
=
∑P

p=1 x
i
py

j
p are purely

geometric parameters and gi,jℓ,k(θ, ϕ) are trigonometric polynomial in θ and ϕ. [F]1,2 and [F]2,2 are structured

as [F]1,1 and [F]2,3 as [F]1,3.

B. Concentric uniform circular-based arrays

1) Proof of (20): From (5) and τ ′p,1 = −2π ri
λ

sin θp,i sinϕ√
βp

for a sensor Ci on the circle of radius ri, we obtain

1

cσ
[F]1,1 = P

I∑
i=1

(2πri
λ

)2
sin2 ϕ

∑
p∈Ci

sin2 θp,i
βp

−

 I∑
i=1

2π
ri
λ
sinϕ

∑
p∈Ci

sin θp,i√
βp

2

. (59)

Taylor series expansion of 1/βp and 1/
√

βp w.r.t. ri/r, where βp is given by (18), followed by elementary

trigonometric relations, show that [F]1,1 depend on the azimuth θ only through the sums
∑Pi

pi=1 cos kθp,i and∑Pi

pi=1 sin kθp,i for k integer which can be easily simplified thanks to (19). This allows us to deduce (20)
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from (59) for Pi > 5 after cumbersome but simple algebraic manipulations. The relations (21)-(25) are proved

similarly.

2) Expressions of gi(sin2 ϕ) polynomials: The polynomials gi(sin
2 ϕ), i=1,2,3 and 4 are deduced from the

Taylor expansion of [F]3,3 after simple but cumbersome derivations.

g1(sin
2 ϕ) =

1

4
− 1

4
sin2 ϕ+

3

32
sin4 ϕ

g2(sin
2 ϕ) =

(
1

2
− 1

4
sin2 ϕ

)2

g3,i(sin
2 ϕ) = −3

8
+

29

16
sin2 ϕ− 147

64
sin4 ϕ+

115

128
sin6 ϕ

(
1 +

1

10
1Pi=6 cos 6θ

)
g4(sin

2 ϕ) =

(
1− 1

2
sin2 ϕ

)(
−3

8
+

9

8
sin2 ϕ− 45

64
sin4 ϕ

)
,

where 1Pi=6
def
= 1 if Pi = 6 and 0 otherwise.

C. Cross-based and square-based centro-symmetric arrays

Consider the term [F]1,1 given by (56). Using the expansions

1/βp = 1− γp + γ2p − γ3p + γ4p + o(γ4p) and 1/
√

βp = 1− 1

2
γp +

3

8
γ2p + o(γ2p)

with γp = −2 sinϕ
(xp

r cos θ + yp

r sin θ
)
+

x2
p+y2

p

r2 w.r.t. xp

r and yp

r in

P∑
p=1

(
−xp

r sin θ + yp

r cos θ
)2

βp
=

P∑
p=1

x2p
r2

sin2 θ

βp
+

P∑
p=1

y2p
r2

cos2 θ

βp
−

P∑
p=1

xpyp
r2

sin 2θ

βp

and −
P∑

p=1

xp
r

sin θ√
βp

+

P∑
p=1

yp
r

cos θ√
βp

2

,

we obtain after simple algebraic manipulations:

c

r2 sin2 ϕ
[F]1,1 =

PS2

r2
+

P
(
S4(2 sin

2 ϕ sin2 2θ − 1) + S2,2(4 sin
2 ϕ
(
sin4 θ + cos4 θ − sin2 2θ

)
− 1)

)
r4

+ o(ϵ4),

where Si
def
= Si,0 = S0,i for i = 2, 4 and c

def
= λ2

4π2cσ
. Consequently, we derive the common expression for the

cross and square-based centro-symmetric arrays:

c

r2 sin2 ϕ
[F]1,1 =

a1,12 Σ2

r2
+

a1,14 (θ, ϕ)QΣ4 + a1,122 (θ, ϕ)Σ2
2

r4
+ o(ϵ4),

where a1,12 = P , a1,14 (θ, ϕ) = P
Q(2 sin2 ϕ sin2 2θ − 1) and a1,122 (θ, ϕ) = 0 for the cross-based

centro-symmetric arrays, and a1,12 = PQ, a1,14 (θ, ϕ) = P (2 sin2 ϕ sin2 2θ − 1) and a1,122 (θ, ϕ) =

P
(
4 sin2 ϕ

(
sin4 θ + cos4 θ − sin2 2θ

)
− 1
)

for the square-based centro-symmetric arrays.

The other terms of the matrix F(α) are derived similarly. We obtain:

c

r2 cos2 ϕ
[F]2,2 =

PS2

r2
+

S4(4 sin
2 ϕ(sin4 θ + cos4 θ)− 1) + S2,2(6 sin

2 ϕ sin2 2θ − 1)− S2
2 sin

2 ϕ

r4
+ o(ϵ4)
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c

r2 sin3 ϕ cosϕ
[F]1,2 = P

(3S2,2 − S4)

r4
sin 4θ + o(ϵ4)

c

r sin4 ϕ
[F]1,3 = −P

3(3S2,2 − S4)

8r4
sin 4θ + o(ϵ4)

c

r sinϕ cosϕ
[F]2,3 =

P
(
3S2,2(2−3 sin2 ϕ sin2 2θ) + 8S4

(
1−sin2 ϕ(sin4 θ+cos4 θ)

))
−2S2

2(1+cos2 ϕ)

4r4

+ o(ϵ4)

c[F]3,3 =
P
(
S4(2+sin2 2θ cos 2ϕ+cos4 ϕ(2−sin2 2θ))+S2,2(3 sin

2 2θ(1+cos4 ϕ)+2 cos2 ϕ(3 cos2 2θ−1))
)

8r4

− 2S2
2(1 + cos4 ϕ+ cos 2ϕ)

8r4

+
PS6

(
−3+ 29

4 sin2 2θ + cos2 ϕ(50+cos2 ϕ(2 cos2 ϕ−55)) + 1
4 cos

2 ϕ sin2 2θ(−139+2 cos2 ϕ(58−3 cos2 ϕ))
)

8r6

+
PS4,2

(
20 + cos2 ϕ(11− 49 cos2 ϕ)− 5

4 sin
2 2θ(29 + 11 cos2 ϕ− 109 cos4 ϕ+ 69 cos6 ϕ)

)
8r6

−
3S2S4

(
1 + cos2 ϕ(−3 + cos2 ϕ+ 5 cos4 ϕ) + 10

4 sin2 2θ sin2 ϕ(cos4 ϕ− 1)
)

8r6

−
6S2S2,2

(
−2 + 15

4 sin2 2θ(1 + cos6 ϕ− cos2 ϕ(1 + cos2 ϕ)) + cos2 ϕ(1 + 3 cos2 ϕ)
)

8r6
+ o(ϵ6).

These expressions allow us to prove the structured expressions (26)-(31).
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