(package de classification par modèles de mélanges) en cas de chevauchement de classes

F. Langrognet

Rmixmod

- Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- Conclusion

- 1 Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

- Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

Fiche d'identité

Objectif : diffuser auprès d'un large public un ensemble logiciel de classification par modèles de mélanges

- Projet débuté en 2001, soutenu par 5 organismes
- 4 composants logiciels
 Licence GNU GPL www.mixmod.org
 - mixmodLib (C++) : bibliothèque de calcul
 - mixmodGUI : interface graphique (QT)
 - mixmodForMatlab
 - RMixmod

- 1 Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

Juin 2015

6 / 54

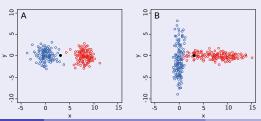
Fonctionnalités (1)

Problématiques traitées

- Classification non supervisée
- Classification supervisée

Modèles de mélange

- Outils souples pour modéliser un large spectre de situations
- Calcul des paramètres du modèle sous-jacent Caractérisation des classes (proportion, moyenne, dispersion)
- Classification des individus avec des métriques adaptées



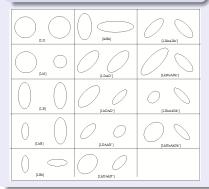
Fonctionnalités (2)

Modèles et métriques

Données quantitatives

14 modèles gaussiens

basés sur la décomposition en valeur sigulière de la matrice de variance



Données quantitatives en grande dimension

8 modèles spécifiques pour la grande dimension

Données qualitatives

5 modèles multinomiaux

basés sur une reparamétrisation de la distribution Multinomiale

Données mixtes

20 modèles hétérogènes

pour les données quantitatives/qualitatives

Fonctionnalités (3)

Algorithmes

Maximisation de la vraisemblance (ou vraisemblance complétée)

- EM (Expectation Maximisation)
- SEM (Stochatitic EM)
- CEM (Classification EM)

Critères

- BIC (Bayesian Information Criterion)
- ICL (Integrated Completed Likelihood)
- NEC (Normalized Entropy Criterion)
- CV (Cross Validation)

Initialisations et Stratégies

- 6 initialisations
 Ex: 'random', 'short runs of EM',...
- Algorithmes chaînés

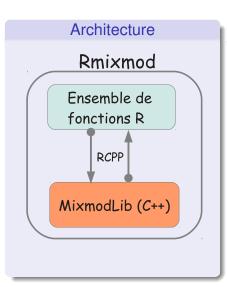
Ex: 100 iterations de SEM puis 50 iterations de EM

Et aussi...

- Connaissance partielle des labels des individus (semi-supervisé)
- Individus pondérés

- Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

Rmixmod: le package R de Mixmod



Avantages

- Atouts de R
 - Environnement "familier" de l'utilisateur
 - Interface avec d'autres packages
 - Outils de visualisation
- Atouts de mixmodLib (C++)
 - Développée depuis 2001
 - Largement diffusée, et utilisée
 - Eprouvée, robuste, rapide

Classes - Fonctions

Classes Rmixmod

Classes (S4)

Mixmod

MixmodCluster [<-Mixmod]

MixmodLearn [<-Mixmod]

MixmodPredict

MixmodResults

MixmodDAResults [<-MixmodResults]

Model

MultinomialModel [<-Model]

GaussianModel [<-Model]

Parameter

GaussianParameter [<-Parameter]

MultinomialParameter [<-Parameter]

Strategy

Fonctions Rmixmod

Fonctions

mixmodCluster mixmodLearn mixmodPredict

mixmodStrategy mixmodGaussianModel mixmodMultinomialModel sortByCriterion nbFactorFromData

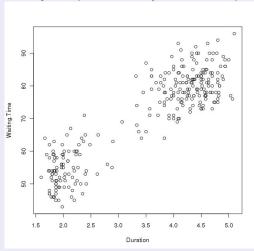
summary
print
hist
histCluster
plot
PlotCluster
barplot
barplotCluster

Illustration Classification non supervisée

Classification non supervisée

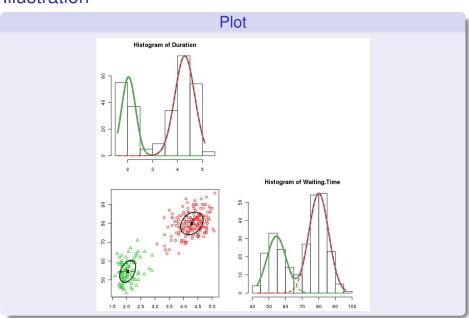
Illustration

Geyser (données quantitatives)



Commandes Rmixmod

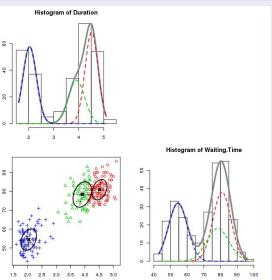
```
> data(geyser)
> out<-mixmodCluster(gevser, nbCluster=2)
> summary(out)
* Number of samples
                     = 272
* Problem dimension
       Number of cluster = 2
              Model Type = Gaussian pk Lk C
               Criterion = BIC(2322.9719)
              Parameters = list by cluster
                 Cluster 1:
                       Proportion = 0.6429
                            Means = 4.292279.9964
                        Variances = 1
                                         0.1453 0.8301
                                         0.8301 40.9022
                 Cluster 2:
                       Proportion = 0.3571
                            Means = 2.039754.5171
                                         0.0984 0.5618
                        Variances = 1
                                         0.5618 27.6831
          Log-likelihood = -1136.2599
```



Plusieurs modèles et plusieurs critères

Commandes Rmixmod

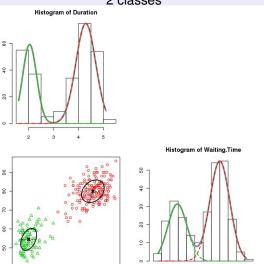
```
> out<-mixmodCluster(geyser, nbCluster=2:3, criterion=c("BIC","ICL"),
+ models=mixmodGaussianModel())
> summary(out)
* Number of samples
                      = 272
* Problem dimension
       Number of cluster = 3
              Model Type = Gaussian p L C
               Criterion = BIC(2312.6006) ICL(2377.6923)
              Parameters = list by cluster
                  Cluster 1:
                        Proportion = 0.3333
                             Means = 3.976578.7195
                         Variances =
                                          0.0798
                                                   0 5341
                                          0.5341
                                                    34.2108
                  Cluster 2 :
                        Proportion = 0.3333
                             Means = 4.5545 81.0528
                                          0.0798 0.5341
                         Variances =
                                          0.5341 34.2108
                  Cluster 3:
                        Proportion = 0.3333
                             Means = 2.0390.54.5083
                         Variances = |
                                          0.0798
                                                    0.5341
                                          0.5341
                                                   34.2108
          Loa-likelihood = -1131.0742
```

Tri selon ICL

```
> out icl<-sortBvCriterion(out, "ICL")
> summary(out icl)
*************
                     = 272
* Number of samples
* Problem dimension
       Number of cluster = 2
             Model Type = Gaussian pk Lk D Ak D
              Criterion = BIC(2320.2833) ICL(2320.5794)
             Parameters = list by cluster
                 Cluster 1:
                       Proportion = 0.6432
                           Means = 4.291579.9893
                        Variances = |
                                        0.1588 0.6810 I
                                        0.6810 35.7667
                 Cluster 2 :
                       Proportion = 0.3568
                           Means = 2.038754.5041
                                        0.0783 0.6467
                        Variances = |
                                        0.6467 33.8930
          Log-likelihood = -1132.1126
```


2 classes



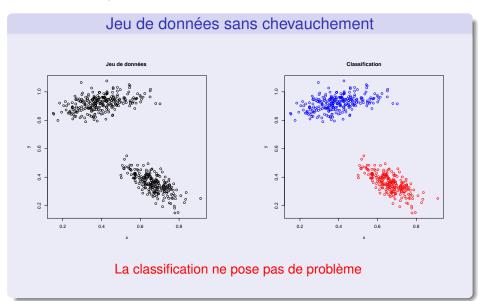
- 1 Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

- Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

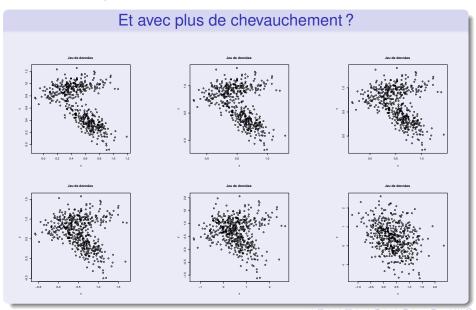
Juin 2015

22 / 54

Problématique



Problématique



Chevauchement par paire de classes

Définition (Maitra et Melnykov en 2010)

Le chevauchement $\omega_{k_1k_2}$ entre les classes k_1 et k_2 est défini par

$$\omega_{k_1 k_2} = \omega_{k_1 | k_2} + \omega_{k_2 | k_1}$$

où $\omega_{k_1|k_2}$ est la probabilité que la variable aléatoire X appartenant à la classe k_2 soit classée par erreur dans la classe k_1 .

Utilisation dans le cadre des modèles de mélange

On peut simuler des données

- o distribuées selon un mélange gaussien
- et respectant un chevauchement (choisi) entre les différentes classes

F. Langrognet Rmixmod Juin 2015 25 / 54

- - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la

26 / 54

Protocole

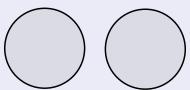
Pour 2 classes

- On fixe $\overline{\omega}$ (chevauchement moyen) entre les 2 classes (donc $\omega_{1 2}$)
- On calcule les paramètres d'un mélange gaussien dont le degré de chevauchement est ω̄ (fonction MixSim du package MixSim)
- On simule des données suivant ces paramètres (fonction simdataset du package MixSim)
- Sur ce jeu de données (sans connaître ni les labels, ni les paramètres du modèle gaussien), on cherche une classification avec la fonction mixmodCluster du package RMixmod
- On compare les résultats obtenus avec RMixmod avec les vraies valeurs (labels et paramètres)

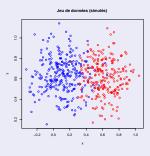
1^{re} situation

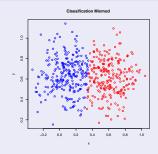
Modèle sphérique et même proportion [Gaussian_p_l]

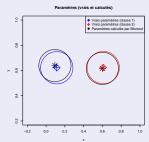
Les matrices de variance sont identiques et sphériques



```
parameters <- MixSim(BarOmega=0.15, K=2, p=2, sph=TRUE,hom=TRUE)
data <- simdataset(n=500, Pi=parameters$Pi, Mu=parameters$Mu, S=parameters$S)
model <- mixmodGaussianModel(listModels="Gaussian_p_L_I")
res_mixmod <- mixmodCluster(data.frame(data$X), model=model, nbCluster=2)</pre>
```







Pourcentage d'individus mal classés = 7,4%

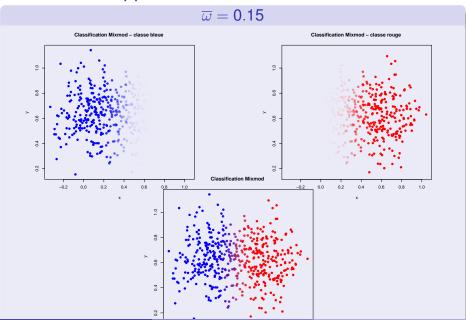
Probabilité d'appartenance

La class. par modèles de mélanges donne une information complémentaire :

la probabilité d'appartenance de l'individu i à la classe $k : p_{ik}$

```
> probas <- res mixmod@bestResult@proba</p>
 probas
               [,1]
                             [,2]
  [1.] 8.398762e-01 1.601238e-01
       7.551083e-01 2.448917e-01
       9.999366e-01 6.339925e-05
  [4.1 2.692252e-01 7.307748e-01
       9.990483e-01 9.517056e-04
       9.999801e-01 1.987949e-05
       9.992282e-01 7.717543e-04
       9.992276e-01 7.724087e-04
  [9.1 9.902374e-01 9.762624e-03
 [10.] 3.779903e-01 6.220097e-01
       9.987837e-01 1.216312e-03
       9.936269e-01 6.373078e-03
       9.556769e-01 4.432311e-02
       9.679888e-01 3.201120e-02
 [15,] 9.988387e-01 1.161303e-03
 [16.] 6.010903e-02 9.398910e-01
```

Probabilité d'appartenance



Individus mal classés

Taux d'individus mal classés

Obtenu en comparant les labels calculés $(\hat{z_i})$ aux vrais labels (z_i)

Rappel : $\hat{z}_i = \arg \max_k p_{ik}$

Pour $\overline{\omega}=0.15$, on obtient 37 individus mal classés (sur 500) -> 7,4% 9 individus classés à tord dans la classe 1, et 28 à tord dans la classe 2

Note : $\overline{\omega} = \omega_{1|2} + \omega_{2|1}$

 $\overline{\omega}$ correspond bien au double du taux d'individus mal classés

Chevauchement

Estimation du degré de chevauchement a posteriori

En utilisant les probabilités d'appartenance

• On peut calculer (a posteriori) $\hat{\omega}_{k_1|k_2}$

$$\hat{\omega}_{k_1|k_2} = \frac{\sum\limits_{i \text{ tq } z_i=k_2} p_{ik_1}}{n_{k_2}} \text{ où } n_{k_2} \text{ est l'effectif de la classe } k_2$$

• On peut donc calculer (a posteriori) $\hat{\omega}$

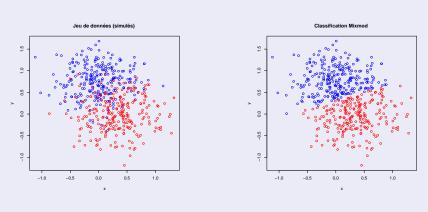
$$\hat{\omega} = \hat{\omega}_{k_1|k_2} + \hat{\omega}_{k_2|k_1}$$

Pour $\overline{\omega} = 0.15$, on obtient :

- $\hat{\omega}_{1|2} = 0.1$ et $\hat{\omega}_{2|1} = 0.09$
- $\hat{\omega} = 0.19$

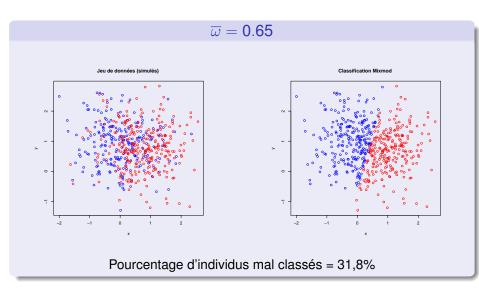
```
> probas <- res mixmod@bestResult@proba
> probas
  [1,] 8.398762e-01 1.601238e-01
  [2,] 7.551083e-01 2.448917e-01
      9.999366e-01 6.339925e-05
  [4.1 2.692252e-01 7.307748e-01
       9.990483e-01 9.517056e-04
  [6.1 9.999801e-01 1.987949e-05
  [8.] 9.992276e-01 7.724087e-04
  [9.1 9.902374e-01 9.762624e-03
 [10.1 3.779903e-01 6.220097e-01
 [11.] 9.987837e-01 1.216312e-03
 [12.1 9.936269e-01 6.373078e-03
 [13.1 9.556769e-01 4.432311e-02
 [14.1 9.679888e-01 3.201120e-02
 [15,] 9.988387e-01 1.161303e-03
 [16.] 6.010903e-02 9.398910e-01
 [17.] 9.293650e-01 7.063498e-02
 [18.] 9.515216e-01 4.847841e-02
 [19.1 9.999441e-01 5.593217e-05
[20.1 9.924275e-01 7.572538e-03
 [21,] 9.994153e-01 5.846561e-04
 [22.1 9.919695e-01 8.030512e-03
 [23,] 9.949279e-01 5.072075e-03
 [24.1 9.960419e-01 3.958129e-03
 [25.1 6.364523e-01 3.635477e-01
 [26.1 7.884666e-01 2.115334e-01
 [27,] 9.899079e-01 1.009209e-02
 [28,1 9.500445e-01 4.995546e-02
 [29.1 7.889285e-01 2.110715e-01
[30.] 9.638811e-01 3.611885e-02
 [31.1 9.985369e-01 1.463103e-03
```

Avec d'autres valeurs de chevauchement

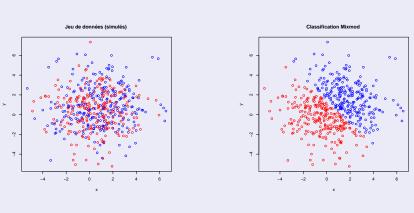


Pourcentage d'individus mal classés = 17,2%

F. Langrognet Rmixmod Juin 2015 35 / 54



F. Langrognet Rmixmod Juin 2015 36 / 54

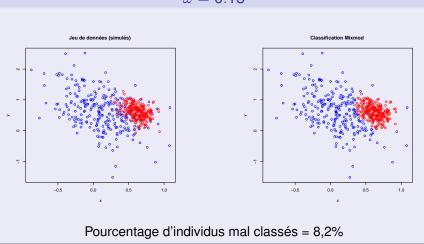


Pourcentage d'individus mal classés = 45,6%

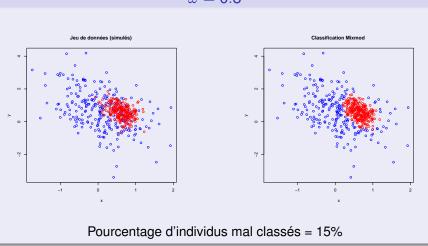
F. Langrognet Rmixmod Juin 2015 37 / 54

2^e situation

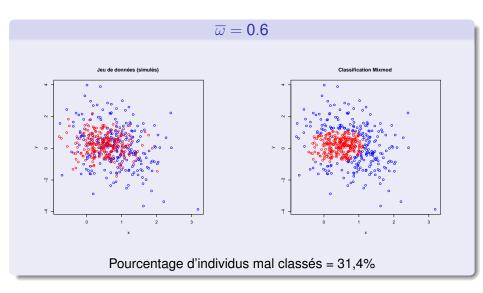
Modèle général et proportions libres [Gaussian_p_k_L_k_C_k]



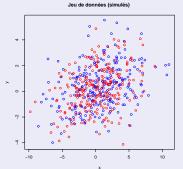
F. Langrognet Rmixmod Juin 2015 39 / 54

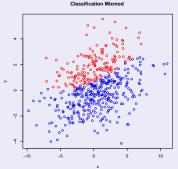


F. Langrognet Rmixmod Juin 2015 40 / 54



F. Langrognet Rmixmod Juin 2015 41 / 54





Pourcentage d'individus mal classés = 47,2%

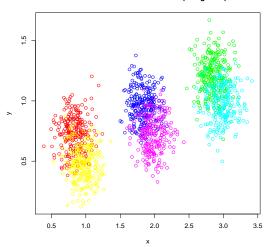
F. Langrognet Rmixmod Juin 2015 42 / 54

Etude de la robustesse de RMixmod

- 1 Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

Nombre de classes?

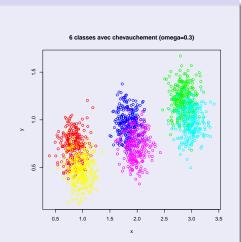
6 classes avec chevauchement (omega=0.3)



Nombre de classes?

Combien de classes ? 3 ou 6

- En thérorie : 6 classes
- Mais l'utilisateur peut souhaiter une solution avec des classes bien séparées : 3 classes



Que peut faire RMixmod dans cette situation?

45 / 54

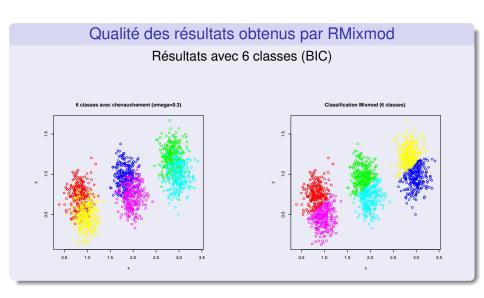
Nombre de classes

RMixmod: de 2 à 6 classes

La meilleure solution proposée par RMixmod est avec 6 classes

```
> res mixmod <- mixmodCluster(data6, model=mod, nbCluster=2:6)</pre>
> summary(res mixmod)
* Number of samples
                         1500
* Problem dimension
        Number of cluster =
               Model Type = Gaussian p L I
                Criterion = BIC(1206.5190)
               Parameters = list by cluster
                   Cluster 1:
                         Proportion = 0.1667
                              Means = 0.9621 \ 0.4730
                          Variances = 1
                                            0.0201
                                                       0.0000
                                            0.0000
                                                       0.0201
                   Cluster 2:
                         Proportion = 0.1667
                              Means =
                                      2.8463 1.2216
                          Variances =
                                            0.0201
                                                       0.0000
                                            0.0000
                                                       0.0201
                   Cluster 3:
                         Proportion = 0.1667
                              Means =
                                      1.9756 0.7203
                          Variances =
                                            0.0201
                                                       0.0000
                                            0.0000
                                                       0.0201
                   Cluster 4:
                         Proportion =
                                       0.1667
```

6 classes



Choix du nombre de classes dans RMimxod

BIC - ICL

critère	pénalité	interprétation	objectif
BIC	0.5 <i>ν</i> ln(<i>n</i>)	complexité modèle	convergence
ICL	$0.5\nu \ln(n)$	complexité modèle	classes
	$-\sum_{i,k}\hat{z}_{ik}\ln t_{ik}(\hat{ heta})$	+ entropie partition	bien séparées

 ν : nombre de paramètres libres du modèle

Options dans RMixmod

- Par défaut : BIC
- Options : ICL, NEC (class. non supervisée) et CV (class. supervisée)
 Ex : on peut utiliser BIC et ICL et trier selon l'un ou l'autre des critères

4 D > 4 B > 4 B > 4 B >

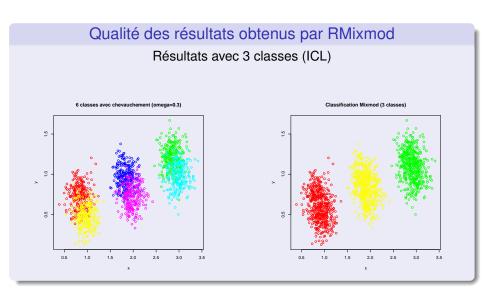
Nombre de classes

RMixmod: de 2 à 6 classes et tri selon ICL

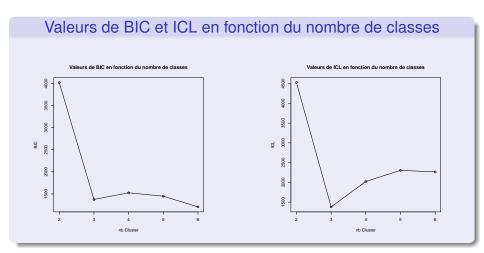
La meilleure solution proposée par RMixmod avec ICL est avec 3 classes

```
> res mixmod <- mixmodCluster(data6, model=mod, nbCluster=2:6, criterion=c("BIC","ICL"))
> res_icl<-sortByCriterion(res_mixmod,"ICL")
> summarv(res icl)
* Number of samples
                      = 1500
* Problem dimension
       Number of cluster = 3
              Model Type = Gaussian p L I
               Criterion = BIC(1375.5983) ICL(1379.2134)
              Parameters = list by cluster
                  Cluster 1:
                        Proportion = 0.3333
                             Means = 0.8998 \ 0.6007
                         Variances =
                                           0.0304
                                                      0.0000
                                           0.000
                                                      0.0304 I
                  Cluster 2:
                        Proportion = 0.3333
                             Means = 2.9113 1.0999
                         Variances = |
                                           0.0304
                                                      0.0000
                                           0.0000
                                                      0.0304 I
                  Cluster 3:
                        Proportion = 0.3333
                             Means = 1.9053 0.8483
                         Variances = I
                                           0.0304
                                                      0.0000
                                           0.0000
                                                      0.0304
          Log-likelihood = -662.2029
```

3 classes



Critères de sélection



Etude de la robustesse de RMixmod

- Le composant RMixmod du projet MIXMOD
 - Projet Mixmod
 - Principales fonctionnalités
 - RMixmod
- Etude de la robustesse de RMixmod
 - Problématique
 - Capacité de RMixmod à trouver les bons paramètres et la bonne classification
 - Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
- 3 Conclusion

Conclusion

RMimxod et le chevauchement de classes

- RMixmod permet de retrouver la classification et les paramètres du modèle sous-jacent quelque soit la valeur de chevauchement avec une erreur (taux d'individus mal classés) conforme à la valeur de chevauchement
- Les probabilités d'appartenance aux classes donnent une information pertinente pour connaître les individus 'difficilement classables'
- Lors de la recherche du bon nombre de classes, les criteres de sélection disponibles dans RMimxod permettent de tenir compte de l'objectif de l'utilisateur

Etude de la robustesse de RMixmod en cas de chevauchement de classes

FIN

Merci de votre attention

- Site web : http ://www.mixmod.org
- contact :
 - contact@mixmod.org
 - florent.langrognet@univ-fcomte.fr