Etude de la robustesse de RMixmod

(package de classification par modèles de mélanges) en cas de chevauchement de classes

F. Langrognet
(Lm ${ }^{\text {B }}$)
laboratoire demathématiques debesançon
université de franche-comté - cnrs • umr 6623

Rmixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod

Etude de la robustesse de RMixmod

- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod

Etude de la robustesse de RMixmod

- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

MIXMOD

Fiche d'identité

Objectif : diffuser auprès d'un large public un ensemble logiciel de classification par modèles de mélanges

- Projet débuté en 2001, soutenu par 5 organismes
- 4 composants logiciels Licence GNU GPL - www.mixmod.org
- mixmodLib (C++) : bibliothèque de calcul
mixmodGUI : interface graphique (QT)
mixmodForMatlab
RMixmod

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod

Etude de la robustesse de RMixmod

- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Fonctionnalités (1)

Problématiques traitées

- Classification non supervisée
- Classification supervisée

Modèles de mélange

- Outils souples pour modéliser un large spectre de situations
- Calcul des paramètres du modèle sous-jacent - Caractérisation des classes (proportion, moyenne, dispersion)
- Classification des individus avec des métriques adaptées

Fonctionnalités (2)

Modèles et métriques

Données quantitatives

14 modèles gaussiens basés sur la décomposition en valeur sigulière de la matrice de variance

Données quantitatives en grande dimension

8 modèles spécifiques pour la grande dimension

Données qualitatives

5 modèles multinomiaux basés sur une reparamétrisation de la distribution Multinomiale

Données mixtes

20 modèles hétérogènes
pour les données quantitatives/qualitatives

Fonctionnalités (3)

Algorithmes

Maximisation de la vraisemblance (ou vraisemblance complétée)

- EM (Expectation Maximisation)
- SEM (Stochatitic EM)
- CEM (Classification EM)

Critères

- BIC (Bayesian Information Criterion)
- ICL (Integrated Completed Likelihood)
- NEC (Normalized Entropy Criterion)
- CV (Cross Validation)

Initialisations et Stratégies

- 6 initialisations

Ex : 'random', 'short runs of EM',...

- Algorithmes chaînés

Ex : 100 iterations de SEM puis 50 iterations de EM

Et aussi...

- Connaissance partielle des labels des individus (semi-supervisé)
- Individus pondérés

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Rmixmod : le package R de Mixmod

Architecture

Rmixmod

Ensemble de fonctions R

MixmodLib (C++)

Avantages

- Atouts de R

Environnement "familier" de l'utilisateur

Interface avec d'autres packages

- Outils de visualisation
- Atouts de mixmodLib (C++)

Développée depuis 2001
Largement diffusée, et utilisée
Eprouvée, robuste, rapide

Classes - Fonctions

Classes Rmixmod

Classes (S4)

```
Mixmod
MixmodCluster [<-Mixmod]
MixmodLearn [<-Mixmod]
MixmodPredict
MixmodResults
MixmodD AResults [<-MixmodResults]
Model
MultinomialModel [<-Model]
GaussianModel [<-Model]
Parameter
GaussianParameter [<-Parameter]
MultinomialParameter [<-Parameter]
Strategy
```


Fonctions Rmixmod

```
    Fonctions
mixmodCluster
mixmodLearn
mixmodPredict
mixmodStrategy
mixmodGaussianModel
mixmodMultinomialModel
sortByCriterion
nbFactorFromData
summary
print
hist
histCluster
plot
PlotCluster
barplot
barplotCluster
```


Illustration

Classification non supervisée

Classification non supervisée

Illustration
Geyser (données quantitatives)

Illustration

Commandes Rmixmod

```
> data(geyser)
> out<-mixmodCluster(geyser, nbCluster=2)
> summary(out)
**************************************************************
* Number of samples =}27
* Problem dimension = 2
****************************************************************
    Number of cluster = 2
            Model Type = Gaussian_pk_Lk_C
            Criterion = BIC(2322.9719)
            Parameters = list by cluster
                Cluster 1 :
                    Proportion = 0.6429
                    Means = 4.2922 79.9964
                    Variances = | | 0.1453 %.8301 |
                Cluster 2 :
                            Proportion = 0.3571
                            Means = 2.0397 54.5171
                            Variances = | 0.0984 0. 0.5618 |
        Log-likelihood = -1136.2599
**************************************************************
```


Illustration

Plot

Plusieurs modèles et plusieurs critères

Commandes Rmixmod

```
> out<-mixmodCluster(geyser, nbCluster=2:3, criterion=c("BIC","ICL"),
+ models=mixmodGaussianModel())
> summary(out)
*****************************************************************
* Number of samples = 272
* Problem dimension = 2
*****************************************************************
    Number of cluster = 3
        Model Type = Gaussian_p_L_C
    Criterion = BIC(2312.60}0\overline{6}) ICL(2377.6923
    Parameters = list by cluster
        Cluster 1 :
                        Proportion = 0.3333
                            Means = 3.9765 78.7195
                            Variances = | 0.0798 
* Cluster 2 :
                    Proportion = 0.3333
                            Means = 4.5545 81.0528
                            Variances = | 0.0798 
* Cluster 3 :
            Proportion = 0.3333
                            Means = 2.0390 54.5083
            Variances = | 0.0798 
* Log-likelihood = -1131.0742
*****************************************************************
```


Illustration

plot (3 classes)

Histogram of Duration

Histogram of Waiting.Time

Illustration

Tri selon ICL

```
> out_icl<-sortByCriterion(out, "ICL")
> summary(out_icl)
**************************************************************
* Number of samples =}27
* Problem dimension = 2
**************************************************************
* Number of cluster = 2
* Model Type = Gaussian_pk_Lk_D_Ak_D
    Criterion = BIC(2320.28333) I CL (2}320.5794
    Parameters = list by cluster
    Cluster 1 :
    Proportion = 0.6432
                            Means = 4.291579.9893
                            Variances = | 0.1588 0.6810
        Cluster 2 :
    Proportion = 0.3568
                        Means = 2.0387 54.5041
                            Variances = | 0.0783 % 0.6467 |
* Log-likelihood = -1132.1126
*******************水水水水水水水水水水水水水水水水水水水水水水水水水水
```


Illustration

plot (2 classes)

2 classes

Histogram of Duration

Histogram of Waiting.Time

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)

Conclusion

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Problématique

Jeu de données sans chevauchement

La classification ne pose pas de problème

Problématique

Et avec plus de chevauchement?

Chevauchement par paire de classes

Définition (Maitra et Melnykov en 2010)

Le chevauchement $\omega_{k_{1} k_{2}}$ entre les classes k_{1} et k_{2} est défini par

$$
\omega_{k_{1} k_{2}}=\omega_{k_{1} \mid k_{2}}+\omega_{k_{2} \mid k_{1}}
$$

où $\omega_{k_{1} \mid k_{2}}$ est la probabilité que la variable aléatoire X appartenant à la classe k_{2} soit classée par erreur dans la classe k_{1}.

Utilisation dans le cadre des modèles de mélange

On peut simuler des données

- distribuées selon un mélange gaussien
- et respectant un chevauchement (choisi) entre les différentes classes

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)

Protocole

Pour 2 classes

- On fixe $\bar{\omega}$ (chevauchement moyen) entre les 2 classes (donc ω_{12})
- On calcule les paramètres d'un mélange gaussien dont le degré de chevauchement est $\bar{\omega}$ (fonction MixSim du package MixSim)
- On simule des données suivant ces paramètres (fonction simdataset du package MixSim)
- Sur ce jeu de données (sans connaître ni les labels, ni les paramètres du modèle gaussien), on cherche une classification avec la fonction mixmodCluster du package RMixmod
- On compare les résultats obtenus avec RMixmod avec les vraies valeurs (labels et paramètres)

$1^{r e}$ situation

Modèle sphérique et même proportion [Gaussian_p_I]

Les matrices de variance sont identiques et sphériques


```
parameters <- MixSim(BarOmega=0.15, K=2, p=2, sph=TRUE,hom=TRUE)
data <- simdataset(n=500, Pi=parameters$Pi, Mu=parameters$Mu, S=parameters$S)
model <- mixmodGaussianModel(listModels="Gaussian_p_L_I")
res_mixmod <- mixmodCluster(data.frame(data$X), model=model, nbCluster=2)
```

$$
\bar{\omega}=0.15
$$

Jeu de données (simulés)

Paramètres (vrais et calculés)

Pourcentage d'individus
mal classés = 7,4\%

Probabilité d'appartenance

La class. par modèles de mélanges donne une information complémentaire :
la probabilité d'appartenance de l'individu i à la classe k : $p_{i k}$

```
> probas <- res_mixmod@bestResult@proba
>
> probas
```

	$[, 1]$	$[, 2]$
$[1]$,	$8.398762 \mathrm{e}-01$	$1.601238 \mathrm{e}-01$
$[2]$,	$7.551083 \mathrm{e}-01$	$2.448917 \mathrm{e}-01$
$[3]$,	$9.999366 \mathrm{e}-01$	$6.339925 \mathrm{e}-05$
$[4]$,	$2.692252 \mathrm{e}-01$	$7.307748 \mathrm{e}-01$
$[5]$,	$9.990483 \mathrm{e}-01$	$9.517056 \mathrm{e}-04$
$[6]$,	$9.999801 \mathrm{e}-01$	$1.987949 \mathrm{e}-05$
$[7]$,	$9.992282 \mathrm{e}-01$	$7.717543 \mathrm{e}-04$
$[8]$,	$9.992276 \mathrm{e}-01$	$7.724087 \mathrm{e}-04$
$[9]$,	$9.902374 \mathrm{e}-01$	$9.762624 \mathrm{e}-03$
$[10]$,	$3.779903 \mathrm{e}-01$	$6.220097 \mathrm{e}-01$
$[11]$,	$9.987837 \mathrm{e}-01$	$1.216312 \mathrm{e}-03$
$[12]$,	$9.936269 \mathrm{e}-01$	$6.373078 \mathrm{e}-03$
$[13]$,	$9.556769 \mathrm{e}-01$	$4.432311 \mathrm{e}-02$
$[14]$,	$9.679888 \mathrm{e}-01$	$3.201120 \mathrm{e}-02$
$[15]$,	$9.988387 \mathrm{e}-01$	$1.161303 \mathrm{e}-03$
$[16]$,	$6.010903 \mathrm{e}-02$	$9.398910 \mathrm{e}-01$

Probabilité d'appartenance

$$
\bar{\omega}=0.15
$$

Individus mal classés

Taux d'individus mal classés

Obtenu en comparant les labels calculés (\hat{z}_{i}) aux vrais labels $\left(z_{i}\right)$ Rappel : $\hat{z}_{i}=\arg \max _{k} p_{i k}$

Pour $\bar{\omega}=0.15$, on obtient 37 individus mal classés (sur 500) -> 7, 4\% 9 individus classés à tord dans la classe 1, et 28 à tord dans la classe 2

Note : $\bar{\omega}=\omega_{12}=\omega_{1 \mid 2}+\omega_{2 \mid 1}$
$\bar{\omega}$ correspond bien au double du taux d'individus mal classés

Chevauchement

Estimation du degré de chevauchement a posteriori

En utilisant les probabilités d'appartenance

- On peut calculer (a posteriori) $\hat{\omega}_{k_{1} \mid k_{2}}$
$\hat{\omega}_{k_{1} \mid k_{2}}=\frac{\sum_{i t q z_{i}=k_{2}} p_{i k_{1}}}{n_{k_{2}}}$ où $n_{k_{2}}$ est l'effectif de la classe k_{2}
- On peut donc calculer (a posteriori) $\hat{\omega}$
$\hat{\omega}=\hat{\omega}_{k_{1} \mid k_{2}}+\hat{\omega}_{k_{2} \mid k_{1}}$

Pour $\bar{\omega}=0.15$, on obtient :

- $\hat{\omega}_{1 \mid 2}=0.1$ et $\hat{\omega}_{2 \mid 1}=0.09$
- $\hat{\omega}=0.19$
$>p$
$>$
> probas

Avec d'autres valeurs de chevauchement

$$
\bar{\omega}=0.3
$$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés $=17,2 \%$

$\bar{\omega}=0.65$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés $=31,8 \%$

$$
\bar{\omega}=0.9
$$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés $=45,6 \%$

2^{e} situation

Modèle général et proportions libres [Gaussian_ $p_{k} \quad L_{k} C_{k}$]

$$
\bar{\omega}=0.15
$$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés = 8,2\%

$$
\bar{\omega}=0.3
$$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés = 15\%

$$
\bar{\omega}=0.6
$$

Jeu de données (simulés)

Classification Mixmod

Pourcentage d'individus mal classés $=31,4 \%$

$$
\bar{\omega}=0.9
$$

Pourcentage d'individus mal classés $=47,2 \%$

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)

Nombre de classes?

6 classes avec chevauchement (omega=0.3)

Nombre de classes?

Combien de classes? 3 ou 6

- En thérorie : 6 classes
- Mais l'utilisateur peut souhaiter une solution avec des classes bien séparées: 3 classes

Que peut faire RMixmod dans cette situation?

Nombre de classes

RMixmod : de 2 à 6 classes

La meilleure solution proposée par RMixmod est avec 6 classes

```
> res_mixmod <- mixmodCluster(data6, model=mod, nbCluster=2:6)
> summary(res_mixmod)
********************************
* Problem dimension = 2
*************************************************************
* Number of cluster = 6
    Model Type = Gaussian_p_L_I
        Criterion = BIC(1206.5190)
    Parameters = list by cluster
        Cluster 1 :
                            Proportion = 0.1667
                            Means = 0.9621 0.4730
                            Variances = | lll
        Cluster 2 :
            Proportion = 0.1667
                Means = 2.8463 1.2216
                    Variances = | lll
            Cluster 3 :
                    Proportion = 0.1667
                    Means = 1.9756 0.7203
                    Variances = | lll
            Cluster 4 :
                            Proportion = 0.1667
```


6 classes

Qualité des résultats obtenus par RMixmod Résultats avec 6 classes (BIC)

Classification Mixmod (6 classes)

Choix du nombre de classes dans RMimxod

BIC - ICL

critère	pénalité	interprétation	objectif
BIC	$0.5 \nu \ln (n)$	complexité modèle	convergence
ICL	$0.5 \nu \ln (n)$	complexité modèle	classes
	$-\sum_{i, k} \hat{z}_{i k} \ln t_{i k}(\hat{\theta})$	+ entropie partition	bien séparées

ν : nombre de paramètres libres du modèle

Options dans RMixmod

- Par défaut : BIC
- Options : ICL, NEC (class. non supervisée) et CV (class. supervisée) Ex : on peut utiliser BIC et ICL et trier selon l'un ou l'autre des critères

Nombre de classes

RMixmod : de 2 à 6 classes et tri selon ICL

La meilleure solution proposée par RMixmod avec ICL est avec 3 classes

```
> res_mixmod <- mixmodCluster(data6, model=mod, nbCluster=2:6, criterion=c("BIC","ICL"))
>
> res_icl<-sortByCriterion(res_mixmod."ICL")
>
> summary(res_icl)
**************************************************************
* Number of samples = 1500
* Problem dimension = 2
**************************************************************
* Number of cluster = 3
* Model Type = Gaussian_p_L_I
* Criterion = BIC(1375.5983)
* Cluster 1 :
                            Proportion = 0.3333
                    Means = 0.8998 0.6007
                            Variances = | |lll
            Cluster 2 :
                        Proportion = 0.3333
                    Means = 2.9113 1.0999
                    Variances = | }\begin{array}{lll}{|.0304}&{0.0000 |}\\{}&{0.0000}&{0.0304 |}
            Cluster 3 :
                Proportion = 0.3333
                    Means = 1.9053 0.8483
                        Variances = | lll}
*
            Log-likelihood = -662.2029
**************************************************************
```


3 classes

Qualité des résultats obtenus par RMixmod Résultats avec 3 classes (ICL)

Classification Mixmod (3 classes)

Critères de sélection

Valeurs de BIC et ICL en fonction du nombre de classes

Etude de la robustesse de RMixmod

(1) Le composant RMixmod du projet MIXMOD

- Projet Mixmod
- Principales fonctionnalités
- RMixmod
(2) Etude de la robustesse de RMixmod
- Problématique
- Capacité de RMixmod à trouver les bons paramètres et la bonne classification
- Capacité de RMixmod à trouver le bon nombre de classes (et la classification)
(3) Conclusion

Conclusion

RMimxod et le chevauchement de classes

- RMixmod permet de retrouver la classification et les paramètres du modèle sous-jacent quelque soit la valeur de chevauchement avec une erreur (taux d'individus mal classés) conforme à la valeur de chevauchement
- Les probabilités d'appartenance aux classes donnent une information pertinente pour connaître les individus 'difficilement classables'
- Lors de la recherche du bon nombre de classes, les criteres de sélection disponibles dans RMimxod permettent de tenir compte de l'objectif de l'utilisateur

Etude de la robustesse de RMixmod en cas de chevauchement de classes

FIN

Merci de votre attention

- Site web : http ://www.mixmod.org
- contact :
contact@mixmod.org
florent.langrognet@univ-fcomte.fr

