
HAL Id: hal-01355352
https://hal.science/hal-01355352

Submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new protocol for securing wireless sensor networks
against nodes replication attacks

Chakib Bekara, Maryline Laurent

To cite this version:
Chakib Bekara, Maryline Laurent. A new protocol for securing wireless sensor networks against
nodes replication attacks. 3rd IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2007), Oct 2007, White Plains, Ny, United States. pp.59 -
�10.1109/WIMOB.2007.4390853�. �hal-01355352�

https://hal.science/hal-01355352
https://hal.archives-ouvertes.fr

A New Protocol for Securing Wireless Sensor
Networks Against Nodes Replication Attacks

Chakib Bekara and Maryline Laurent-Maknavicius

Institut National des Télécommunications d’Evry
Département Logiciel-Réseaux

9 rue Charles Fourier, 91000 Evry Cedex, France
Email: {Chakib.Bekara, Maryline.Maknavicius}@int-evry.fr

Abstract—The low-cost, unattended nature and the capability
of self-organizing of sensors, yield the use of Wireless Sensor
Networks (WSN) very popular to day. Unfortunately, the un-
shielded nature of sensors, their deployment in remote open
(hostile) areas, and the use of wireless transmission medium,
make them subject to several kind of threats and attacks, like
eavesdropping, intrusion, Deny of Services (DoS) attacks and
nodes compromising. While most of threats and attacks can
be prevented using cryptographic materials (i.e. shared pair-
wise secret keys, certificates, etc.) provided by key management
protocols, some other threats, like nodes replication attacks,
can still go undetectable. Nodes replication attacks are harmful
attacks, where an attacker compromising a node, uses its secret
cryptographic key materials to successfully populate the network
with several clones of it, in-order to gain the control over the
network or disturb the normal operation of the network. Several
nodes replication detection protocols were proposed in the liter-
ature, but unfortunately, they require either a high computation,
transmission and energy overheads, or that nodes know their
exact locations coordinates, which limits their usability in most
WSN scenarios. In this paper, we present a new protocol for
securing and preventing against nodes replication attacks in
static WSN, which requires no knowledge of nodes deployment
locations, and introduces no significant overhead on the resource-
constrained sensors.

Index Terms—WSN security, Nodes replication attacks, Key
management protocols, Pubic key cryptography

I. INTRODUCTION

The spread deployment of WSN during the few last
years, introduces several security considerations. Sensors are
resource-constrained tiny devices, with small memory stor-
age capacities (10 KB of RAM and 48 KB of ROM), low
computation capacities (16-bit and 8 MHZ CPU), and ex-
tremely limited energy supply (3.6 V) [1], which is in general
neither rechargeable nor replaceable [2]. In addition, sensors
are unshielded devices [3], work unattended [3], and are
generally deployed in remote locations assimilated as hostile
areas [3] [4]. All these facts, yield WSN target to different
attacks like eavesdropping, compromising, intrusion, deny of
service (DoS), and nodes replication attacks. In replication
attacks, an attacker first compromises a sensor from the
network, and then populate the network with clones of it,
using the secret materials (secret cryptographic keys, etc.) it
retrieves from the compromised node. The aim of such attack

is to have the control over the network, by compromising only
few legitimate nodes.

Different protocols for nodes replication detection were
proposed in the literature [5] [6], but unfortunately, most
of them are not suitable for WSN, because of their heavy
computation and transmission overheads due to the use of
public key cryptography, and due to their dependency on nodes
location coordinates, which means that sensors are either GPS-
enabled, or that they must trust some beacon nodes placed on
the perimeter of the network to compute their exact locations.

In this article, we present a new protocol for securing and
preventing against nodes replication attacks on static WSN,
where any deployed cloned node can be detected once it
attempts to establish pair-wise keys with legitimate neighbor
nodes of the network, thus protecting legitimate nodes from
communicating with it or relaying its packets, and protecting
our network from being penetrated. Our protocol doesn’t
rely on nodes locations for achieving detection of replication
attacks, it uses only symmetric cryptography, and so keeps
computation and transmission overheads as low as possible.

The remainder of the paper is organized as follows. In
section 2, we overview some works on detection of nodes
replication attacks. In section 3 we describe our assumptions,
network deployment model, adversary model and the adopted
notations. In section 4 and section 5 we describe our proposed
protocol, and we give a detailed security analysis of it in
section 6. In section 7 we give the memory and computation
overheads of our protocol, and we conclude our work in
section 8.

II. RELATED WORK

In what follows, we describe two main protocols of the
literature, which deal with the problem of nodes replication
attacks. The first protocol we describe, achieves a localized
detection of nodes replication attacks, where the second proto-
col achieves a totally distributed detection of nodes replication
attacks. Unfortunately, the two protocols are based on the
knowledge of sensors locations, and the use of public key
cryptography.

A. A Location-based mechanism to detect nodes replication
attacks

In [6], Zhang et al. propose the use of location-based
keys to thwart and defend against several attacks, including
nodes replication attacks. Their protocol is based on the use
of a bilinear map [7] along with the use of Identity-Based
Cryptography [8], in addition to the capability of sensors
to retrieve their exact location coordinates once they are
deployed.

Initially, the BS which is a widely trusted entity in the
network, defines a bilinear map e over two cyclic groups G1,
G2 of the same prime order Q. We define over G1 an additive
operation, while we define over G2 an multiplicative operation.
e: G1 × G1 → G2,∀R,S,∈ G1 and a, b ∈ Z, we have

e(aR, bS) = e(R, abS) = e(abR, S) = e(R,S)ab (1)

In general G1 represents the set of points of an elliptic curve
defined over GF(Q), where G2 represents a set of integer of
a prime order Q.

Then, the BS chooses a master secret key k ∈ {1, ..., Q−1}
and two public hash functions, H1 : {0, 1}∗ → G1, and a
second hash function H2 like SHA-1.

During the initialization phase before nodes deployment, the
BS loads each sensor u with a unique identity-based private
key IKu = kH1(Idu), where Idu is both the identity and the
public key of u. Like any other public key cryptography, it’s
mathematically infeasible to retrieve the identity-based private
key IKu from the public key Idu.

Once nodes are deployed, some trusted mobile robots, either
ground or flying, are dispatched over the deployment area of
sensors. The mobile robots are trusted by all nodes of the
network, are able to compute the private identity-based key
of any node on the network, they have GPS capabilities, as
well as more computation and communication capacities than
regular sensors. Mobile robots are capable of collectively or
independently determining the exact geographic location of
each individual sensor. Each sensors u in the network, receives
from the nearest trusted mobile robot an encrypted message
containing its unique geographic position Posu =< xu, yu >
and its unique location-based key LKu = kH1(Posu). The
message is encrypted using node u’s identity-based key IKu.
Henceforward, each sensor u of the network will use its
position Posu as its unique identifier (instead of Idu) and its
public key, and use its location-based key LKu as its private
key, where it’s mathematically infeasible to deduce LKu from
Posu.

Before establishing a pair-wise key, a pair of neighboring
nodes u and v must first pass through a phase of location-
based node-to-node authentication. Node u sends to node v
its identifier and a nonce value, Posu =< xuyu > and Nu

respectively. Node v checks that u in its transmission range,
by verifying that

(xv − xu)2 + (yv − yu)2 ≤ R2 (2)

where Posv =< xv, yv >, and R is the communication range
of any node in the network. If (2) is satisfied, v sends to u its

position Posv, a nonce value Nv and an authenticator Vv to
authenticate itself to u, calculated as

Vv = H2(e(LKv,H1(Posu)||Nu||Nv||0) (3)

Upon receiving v’s replay, u checks first that v is within
its communication range (a neighbor), and then authenticates
v using the characteristic of the bilinear map (see (1)), by
verifying that

Vv = H2(e(H1(Posv), LKu)||Nu||Nv||0) (4)

If equality (4) is verified, node u authenticates itself to v, by
sending its authenticator Vu calculated as

Vu = H2(e(H1(Posv), LKu)||Nu||Nv||1) (5)

Upon receiving u’s reply, node v can easily verify that u is
an authenticated neighbor by verifying the following equality

Vu = H2(e(LKv,H1(Posu))||Nu||Nv||1) (6)

If both equalities (5) and (6) are verified, nodes u and v
will locally compute a symmetric secret pair-wise key

Kuv = e(H1(Posu), LKv) = e(LKu,H1(Posv)) (7)

As we can see, Zhang et al. protocol achieves a strong
security, by preventing an attacker from injecting any node
in the network, either a cloned node, or a node with a
false identity. To prove its identity, which is also its unique
location coordinates, a node must have possession of the
corresponding location-based key, otherwise it can never pass
the location-based node-to-node authentication phase, as seen
in (3), (4), (5) and (6). However, the protocol rely highly
on the trust of the mobile robots that provide sensors with
their position and location-based keys, and rely also on the
properties of bilinear map and identity based cryptography,
which are mathematically based on elliptic-curves cryptog-
raphy (ECC) [9]. Deploying mobile robots is not evident
especially if the covered area is large, and their compromising
is possible resulting in the broken of the entire network
security. In addition, implementing a bilinear map protocol and
identity-based cryptography protocol based on elliptic curve
cryptography is memory and energy consuming, even if ECC
is less energy consuming then traditional public key. Indeed,
according to Malan et al. work [10], implementing an ECC-
163 bits protocol, requires approximately 34 MB of ROM, and
1,1 MB of RAM.

B. Distributed detection of nodes replication attacks

In [5], Parno et al. presented two protocols for distributed
detection of nodes replication attacks in WSN, called respec-
tively Randomized Multicast, and Line-Selected Multicast.
The two protocols rely on the assumptions that each node
of the network knows it geographic coordinates location, and
that sensors are able to perform public key cryptographic
operations (generate signatures). Each node in the network
possesses a pair of private/public keys generated by a trusted
entity in the network (BS), where each node’s public key is
certified by the public key of the trusted entity.

In Randomized Multicast protocol, each node N in the
network generates a signed message, using its private key,
called location claim containing its identity and its loca-
tion coordinates, and locally broadcasts it to its d one-hop
neighbors. Each neighbor, with probability p, checks the
authenticity of the message, and then verifies that N is within
its communication range, and finally forwards the location
claim to g randomly selected nodes in the network, called
the witness nodes. Upon receiving node N’s signed location
claim message, the witness nodes verify the authenticity of the
message, and store it if verified. A replication attack is detected
whenever a collision (two distinct position claims for the same
node identity) happens at a witness node, which will flood the
entire network with the two conflicting location claims in-
order to revoke the compromised node and all its clones. The
authors showed that if d=20, g= 100, the probability p= 0.05,
and a compromised node is replicated twice, the replication
attack will be detected with a probability greater than 95%.

The Line-Selected Multicast protocol, uses the fact that
sensors act as routers to reduce the communication overhead
of the previous protocol. In this protocol, nodes in the path
from each neighbor forwarding the location claim of a node N,
to the randomly chosen witnesses (as described above), stores
the location claim of N. As consequence, each path from a
neighbor of N to a witness node (for N) constitutes a line.
If a conflicting location claim for a node N crosses a line,
the node of intersection, which belongs to two paths towards
two whiteness nodes for N, will detect it, and consequently
floods the network with the two conflicting claims. In this
scheme, conflicting location claims can be detected on road
(the point of intersection of two lines), and not only at the
witness nodes as in the randomized multicast protocol, thus
reducing transmission overhead.

As we can see, Parno et al. protocols are based on the
assumptions that nodes are able to know their geographic lo-
cation coordinates, and are able to generate digital signatures.
To know their geographic locations, nodes (or some of them)
must have either GPS receivers, or must rely on trusted base
stations placed on the perimeter of the network [11] in order to
compute their geographic coordinates. The first solution is not
too realistic and is highly energy consuming, and the second
solution requires trust on at least three BSs (triangulation
process), and the resulting localization is prone to errors. The
capability of sensors to handle public key cryptography is
severely critiqued [4] [3]. First, signature generation is energy
consuming [4], and the transmission of a signature over the
network is highly energy consuming [4]. Second each node
must send its certificate along with its location claim, in
order to allow its related whiteness nodes and the nodes in
the paths to verify the authenticity of the location claim. As
described in [12], an X.509 RSA-1024 bits certificate is at
least 262 bytes, and an ECC-160 bits certificate is at least 86
bytes. Consequently, transmitting a certificate is highly energy
consuming, and is memory consuming too, especially that each
node can be chosen to be a witness for several nodes in the
network.

III. BACKGROUND

In what follows, we describe our assumptions, our network
model, the used notations, and the supported adversary model.

A. Assumptions

First, we suppose that the Base Station (BS) is a trusted and
a powerful entity in the network, that cannot be compromised.

Second, we suppose that sensors are static, so once they are
deployed they do not leave their locations. In many scenarios
(i.e. perimeter monitoring), WSN are considered as static,
either because sensors are fixed or because sensors are not
asked to be mobile for achieving their tasks.

Third, we suppose a group-based deployment of nodes,
where sensors are deployed progressively in successive gener-
ations (groups). This assumption is adopted in several previous
works like [13] and [14], that used a group-based deployment
model. However, unlike [13] and [14], we do not require that
nodes of the same generation to be deployed in the same neigh-
borhood. In our protocol, nodes of the same generation might
be deployed anywhere in the network (randomly scratched).
Therefore, our protocol is not based on any prior knowledge
on deployment location of nodes. Note here that unlike [5], in
our protocol, nodes don’t need to have any knowledge about
their geographic location coordinates.

Fourth, we suppose that once a node is deployed in the
network, it needs at most a time Test to establish pair-wise
keys with its one-hop neighbors. Moreover, an attacker needs
at least a time Tcomp in order to compromise a node after it is
deployed in the network, with Tcomp > Test. This assumption
is present in several key management protocols for WSN
like [15], [16] and [17], and is likely to be true, because an
attacker must first have a physical access to a sensor, connect
to it, and then use some programming tools in order to extract
sensor’s secret key materials.

Finally, we suppose that sensors are synchronized with
the BS. This could be done through an authenticated beacon
periodically broadcasted by the BS, to keep sensor’s clocks
synchronized with the BS’s one. Authentication can be guar-
anteed using the µTesla protocol [4].

B. Network deployment model

The BS deploys nodes in multiple generations numbered
successively from 1 to n, where n is the maximum number of
deployed generations. We take n < 216−1, so each generation
number is exactly two bytes length. The order of deployment
must be respected G1, . . . , Gi, Gi+1, . . . , Gn, where Gi is
the ith deployed generation. Each node belongs to a unique
generation. A generation j + 1 is deployed after that the
nodes of the previous deployed generation j have finished the
establishment of their pair-wise keys.

Because nodes are not mobile in our network, it is logical
that only nodes of the newly deployed generation ask for key
establishment with their neighbors, which may belong either
to the same generation, or to former deployed generations.
Nodes of former generations can not request for key estab-
lishment, and even if they do request, their requests must be

TABLE I
THE USED NOTATIONS

Notation Significance

u, v Two nodes of the WSN
Idu 4 bytes unique identifier of node u in the network
Nu An increasing nonce value generated by node u
fu The secret polynomial share of node u
Kuv = Kvu The secret pair-wise key established between u and v
MACK(M) The message authentication code of M using the

secret key K
H A one way hash function, with an output length

of 4 bytes
a||b a concatenated to b
| x | The length on bytes of argument x

rejected. Based on this assumption, we can state that any key
establishment request originates from:

- either a node from the newly deployed generation,
- or a node deployed by an attacker, which is a cloned node

having the Id and the cryptographic secret key materials
of a compromised node.

For security reasons, we suppose that any newly deployed
node u sets a timer to the value Test straight after deployment.
Once the timer expires, node u stops key establishment process
with any deployed node of an older generation, and rejects any
key establishment request originating from a node of the same
newly deployed generation.

C. Adversary model

We consider that an adversary has the capability of capturing
and compromising a limited number of legitimate nodes of the
network. After compromising a legitimate node, the adversary
clone the node by loading the node’s cryptographic secret key
materials on multiple generic sensor nodes, and deploy the
cloned nodes in some strategic locations in the network. Once
cloned nodes are deployed by the adversary, they first try to
establish secure links with their neighbors, in-order to sent
packets, and participate in the network operations as any other
legitimate node in the network. Once the cloned nodes are
integrated in the network, the adversary and the cloned nodes
can collaborate to lunch different attacks against the network.
We consider also, that any cloned node has at least one or
more legitimate nodes in his neighborhood.

D. Notations

For clarity, we list the symbols and notation used throughout
in Table 1.

IV. OUR PROPOSED PROTOCOL

Now we describe our protocol for detection of nodes
replication attacks. The basis of our protocol, is the use of
symmetric polynomial for pair-wise key establishment [18]
and our defined group-based deployment model. The main idea
of our protocol, is to tie each deployed node to the unique
generation (or group) to which it belongs, through the use
of symmetric polynomial, so that even if cloned nodes are
created, the cloned nodes also belong to the same generation as

the compromised node. In our protocol, only newly deployed
nodes (which belong to the newly deployed generation) are
able to establish pair-wise keys with their neighbors, and all
nodes in the network know the number of the highest deployed
generation. As consequence, an attacker compromising an old
deployed node (which belongs to an old deployed generation),
cannot succeed to populate the network with cloned nodes of
it, because the cloned nodes will fail to establish pair-wise
keys with their neighbors.

A. Initialization

Initially (before nodes deployment) the BS generates a
random symmetric bivariate polynomial [18]

f(x, y) =
∑

i,j=0,...,t

aij × xiyj (mod Q′) (8)

where Q′ is a large prime number, 1 ≤ aij ≤ Q′ − 1, and t
is the degree of the polynomial and a security parameter. We
suppose that | x |=| y |= 4 bytes.

For any newly deployed generation Gi, the BS loads each
node u ∈ Gi with its unique secret polynomial share:

fu(y) = f(H(i||Idu), y) (9)

Note that it is impossible that two different nodes can
have the same secret polynomial share, so a node can never
lie on its real identifier or the real generation number to
which it belongs. Indeed, suppose that u ∈ Gi and v ∈ Gj ,
with i �= j. fu(y) = fv(y) is possible, only and only if
H(i||Idu) = (j||Idv), which means i||Idu = j||Idv . Each
generation’s number is exactly 2 bytes length, and each node
identifier is exactly 4 bytes length, so | i||Idu |=| j||Idv |
= exactly 6 bytes. With our well formatted extended node
identifier (2 bytes generation number, 4 bytes node ID),
starting from an extended node identifier i||Idu, it’s impossible
to find another distinct node identifier j||Idv where i �= j or
Idu �= Idv .

B. Protocol description

Suppose that the BS deployed some previous generations,
say the i first generations (1, 2, . . . , i), and just deployed
generation i + 1. In our protocol, nodes know the highest
deployed generation’s number i + 1 through a mechanism we
describe in section V.

Let u ∈ Gj a newly deployed node. It is obvious that as a
legitimate node, u ∈ Gi+1. Node u tries to establish secure
links with its direct neighbors by locally broadcasting a Hello
message:

u → ∗ : Hello, j, Idu, Nu

where Nu is used to guarantee response freshness. Let v ∈ Gz ,
where z ≤ i + 1, a neighbor node of u receiving its message.
For node v to decide serving node u, node v follows two steps:

1) v checks if j=i + 1, to verify whether u belongs to
the newly deployed generation. If the verification fails,
it simply rejects the request of node u, because u is
normally already deployed.

2) If v verifies that j=i + 1 then:

- If v belongs to generation z ≤ i, then v computes
Kvu = fv(H(i + 1||Idu)) and sends back to node
u the following message:

v → u : z, Idv, Nv,MACKvu
(z, Idv, Nv, Nu)

- If j=z=i+1 (u, v ∈ Gi+1), then:

– If the timer set by node v (to the value Test,
see section III-B), did not expire, do the same
treatment as the previous case.

– If the timer expired, reject the request, because
node u is suspected to be malicious.

Upon receiving node v′s message, node u computes Kuv =
fu(H(z||Idv)), and checks the message authenticity. If the
message is not authenticated, node v simply rejects the
message. If the message is authenticated, node u sets Kuv

as the shared pair-wise key with v, and sends to v the
following message to conclude and mutually authenticate the
key establishment process:

u → v : ok,MACKuv
(ok,Nv)

Upon receiving node u′s response, node v checks the
message authenticity using Kvu, and, if successfully done,
node v sets Kvu as the shared pair-wise key with u, otherwise
(failed authentication, or non received response), it erases Kvu.

At the end of this phase, either a pair-wise key is established
between two valid nodes, or the pair-wise key establishment
fails in case one of the two nodes is suspected of being a
cloned node or a false node with non-existing identifier. The
described protocol guarantees that any served key establish-
ment request, originates from a node belonging to the newly
deployed generation i + 1. However, the current version of
the protocol fails to detect two particular attempts of false key
establishment. The first attempt is when an attacker compro-
mises a newly deployed node of generation i + 1 and deploys
clones in the neighborhood of nodes of older generations, and
the second attempt is when an attacker compromises an older
deployed node, and tries to respond to the Hello messages of
the newly deployed nodes. Solutions to these two particular
attempts are presented in section VI.

V. DETERMINING THE HIGHEST DEPLOYED GENERATION

Now let describe how nodes know the number of the highest
deployed generation, as seen in section IV-B.

The BS initially defines a static scheduling for generations
deployment. The BS considers deploying the first generation
G1 at instant T1 = 0, which serves also as a reference within
deployed nodes for synchronization and time counting. If a
period T is defined between each generation deployment,
each node of generation i needs only to be loaded with its
generation’s deployment time Ti, and the period time T .

After nodes deployment, when a node u ∈ Gi asks for
key establishment, a neighbor node v of an older generation
j verifies that u is a node of the newly deployed generation
Gi, by verifying that 0 < tcurrent − (i − 1) ∗ T < T , where

TABLE II
IDENTIFIED SCENARIOS FOR KEY ESTABLISHMENT ACCORDING TO THE

GENERATION OF CONCERNED NODES

Requesting node Responding node

New New
New Old
Old New
Old Old

tcurrent is the current time in node v. If this inequality is not
verified, v rejects the request of u, because u is not a node
from the highest deployed generation.

VI. SECURITY ANALYSIS OF OUR PROTOCOL

In our protocol, and under our assumptions of section III,
an attacker is highly unlikely to deploy cloned nodes, and
convince their neighbors of their validity.

Table 2 summarizes the different scenarios for attempts of
deployment of a cloned node. As a cloned node must first
establish pair-wise keys with its neighbors in-order to integrate
the network, four possible cases of attacks can be defined
depending on the generation to which belongs the cloned node,
and if the cloned node is a requesting node or a responding
node in the pair-wise key establishment process.

First, let see how our protocol handles the two last cases
Old − New, and Old − Old, where a cloned node u of an
old deployed generation asks for key establishment with a
node of a newer generation then it, or an older generation.
Remember that only nodes of the newly deployed generation
are able to ask for key establishment with their neighbors.
As a consequence, a cloned node u of an old deployed
generation (u ∈ Gi), can not initiate key establishment with
another deployed node v ∈ Gj where j > i. In addition, the
mechanism described in section V guarantee that all nodes of
the network have the same view of the number of the highest
deployed generation, so the cloned node u ∈ Gi can not ask
for key establishment with a node v ∈ Gj where j ≤ i.

Second, let see how our protocol handles the first case
New − New, where an attacker compromises a newly de-
ployed node and asks for key establishment with another newly
deployed node of the same generation. By limiting the duration
of key establishment phase for newly deployed nodes to Test,
even if an attacker compromises a newly deployed node in a
period of time Tcomp, where Tcomp > Test, the attacker cannot
establish secure links with other nodes of the same generation,
simply because the responding nodes will reject the request,
as described in section IV-B.

Now let see how our protocol handles the second case,
where a node of the newly deployed generation asks for key
establishment with a node of an older deployed generation.
Again, two cases are distinguished:

- First, the newly deployed node (requesting node) is a
cloned node of a compromised node that belongs to the
newly deployed generation.

- Second, the responding node is a cloned node of a
compromised node that belongs to an older generation.

For the first case, unfortunately the algorithm in sec-
tion IV-B does not handle this situation. This case is difficult to
detect, because the cloned node looks like a legitimate node
belonging to the highest deployed generation. One solution
could be that an older deployed node accepts establishing
secure links with nodes of any newly deployed generation
only during a period of time Tmax after the deployment of
any new generation, where Test < Tmax < Tcomp. According
to section V, nodes know at any moment, the number of the
highest deployed generation, and when a new generation will
be deployed. Consequently, each already deployed node sets a
timer to the value Tmax < Tcomp when the time of deployment
of a new generation is reached. Because an attacker needs at
least a time Tcomp in order to compromise a newly deployed
node, we are practically ensured that an attacker compromising
a newly deployed node, can not establish secure links with
nodes of older generations, because these nodes will reject his
request.

The second case is also difficult to detect, because the newly
deployed node is asked for key establishment, and it has no
way to check whether the responding node is a cloned node or
not. The problem is even more difficult if the cloned node stays
inactive or silent until a newly node is deployed. At this time,
the cloned node might become active and establish a secure
link with the newly deployed node by simply responding to its
request. In this scenario, because the cloned node does not ask
its neighbors for key establishment, it cannot be detected, so
the newly deployed node cannot be prevented. One solution
to this problem is that deployed nodes which are neighbors
of both the newly deployed node and the cloned node, detect
that a neighbor node exists but they have no secure links with
it, so they conclude that the node is a malicious node (cloned
node). As a consequence, an informative message is sent by
them to the newly deployed node which erases any established
key with the cloned node.

A. Node revocation and Intrusion detection.

As described above, in the four possible cases of key
establishment, an active attack is always detected. Moreover,
a silent attacker (intruder) is also detected when he tries to
respond to key establishment requests from newly deployed
nodes, and the newly nodes are then notified. As a conse-
quence, the identity of the compromised node is known, so
the neighboring nodes of the cloned node can either launch
a distributed revocation against it, or notify the BS which
broadcasts a revocation message in the network for revoking
both the compromised node and its clones.

VII. COMPUTATION AND MEMORY COSTS

Now, let consider the computation and memory costs of our
protocol. For the memory cost, each node stores its extended
identifier (generation number, node ID), its polynomial share
and the established pair-wise keys. An extended identifier is
6 bytes length (see section IV-A). A polynomial share is
represented by t+1 coefficients, plus the modulo Q’. If we
choose a modulo Q’ of 8 bytes, as in [19], and t=100, each

node needs 816 bytes memory to store its polynomial share.
In addition, each established pair-wise key needs 8 bytes of
memory.

For the computation cost, each node needs to evaluate its
polynomial share for each pair-wise key establishment. As
described in [19], evaluating a polynomial share requires t
modular multiplications and t modular additions in a finite field
FQ′ . However, because a sensor’s CPU does not manipulate
words of 64 bits (8 bytes), and the more powerful of them,
like MOTEIV [1], handles 16-bit words only (2 bytes), more
modular multiplications and modular additions are needed.
Consequently, in a 16-bit CPU processor, evaluating a t-degree
polynomial share fu(y) over a finite field FQ′ , where Q’ is
a 64-bit prime number of , and y is 48-bit (6 bytes) length
(see section IV-A), requires 4 × t modular additions, and
8 + 24 × (t − 1) modular multiplications.

Due to the use of symmetric key cryptography only, our
protocol has less computation overhead when performing
encryption or authentication operations then Parno et al. pro-
tocols [5], which based on the use of public-key cryptography,
and even less then Zhang et al. [6] protocol which is based
on elliptic curves cryptography. Even when generating a pair-
wise key, the polynomial-based key generation protocol has
less computation overhead, because we have no modular
exponentiation as in traditional public key cryptography, and
we have no scalar point multiplication as in elliptic curve
cryptography.

For the memory cost due to the initially stored key materials,
our protocol may have some additional cost then the other
protocols. Indeed, as described above, each node needs to
store a key materials (polynomial share) of 800 hundred bytes.
In Parno et al. protocols, and in the case we use public
key elliptic curves cryptography, each node needs to store
at least 163-bit (21 bytes) private key, the prime modulo Q
which is at least 163-bit length too, its certificate of 86 bytes
length, and the BS’s certificate which is 86 bytes length too.
However, Parno et al. protocols consume heavy energy during
transmission, because each node must broadcast in the network
its certificate of 86 bytes along with its location claim to
allow the verification of its signature, and the signature is
approximately 42-byte length. In Zhang et al. protocol, each
node stores a prime modulo Q of 163 bits (over which the
elliptic curves are defined), its 42-byte identity-based private
key, its location-based private key of 42 bytes, and its position,
which the length depends on the type of the used coordinates.

VIII. CONCLUSION

We proposed in this paper, a new protocol for detection of
nodes replication attacks, which do not assume that sensors
know their geographic location coordinates, which do not
consider trusted entities other then the BS, and which do not
assume that the tiny constrained-resource devices are able to
perform public-key cryptographic operations.

Our protocol uses t-degree polynomial-based key generation
protocol for pair-wise keys establishment, and the proposed
group-based deployment scheme for protection against nodes

replication attacks, where only nodes of the newly deployed
generation ask for key establishment. In addition, the proposed
mechanism for determining the highest deployed generation,
guarantees that nodes will respond only to the newly deployed
nodes’ requests, and limiting the duration of key establishment
makes it practically impossible for an attacker to succeed in
establishing keys in the network, as consequence, an attacker
is unable to deploy cloned nodes in the network. Moreover,
our protocol supports detection of silent attackers (intruders)
and can be enhanced to achieve a distributed revocation. In
a future work, we’ll implement our protocol to evaluate its
real performances, and extend it with a distributed revocation
mechanism.

ACKNOWLEDGEMENTS

Authors are thankful to French ANR (Agence Nationale de
la Recherche) agency which funded RNRT project CAPTEUR
(2005-2008).

REFERENCES

[1] TmoteSky wireless sensor module. http://www.moteiv.com/products/docs/tmote-
sky-datasheet.pdf

[2] I. F. Akyildiz, W. Su and Y. Sankarasubramaniam, ”Wireless sensor
networks: a survey”, Computer Networks (38), pp. 393-422, 2002

[3] C. Karlof, and D. Wagner, ”Secure routing in wireless sensors networks:
attacks and countermeasures”, Elsevier’s AdHoc Networks Journal, Special
Issue on Sensor Network Applications and Protocols, 2003

[4] A. Perrig, R. Szewczyk, V. Wen, D. Cullar and J. D. Tygar, ”Spins: Secu-
rity protocols for sensor networks”, In Proc. of the 7th Annual ACM/IEEE
International Conference on Mobile Computing and Networking, Rome,
Italy, pp. 189-199, 2001

[5] B. Parno, A. Perrig and V. Gligor, ”Distributed Detection of Node Repli-
cation Attacks in Sensor Networks”, Proceedings of the IEEE Symposium
on Security and Privacy, Berkley, California, USA, pp. 49-63, 2005

[6] W. Zhang, W. Liu, W. Lou and Y. Fang, ”Securing sensor networks
with location-based keys”, IEEE Wireless Communication and Networking
Conference, New Orleans, USA, pp. 1909-1914, March 2005

[7] J. Baek, J. Newmarch, R. Safavi-Naini and W. Susino, ”A Sur-
vey of Identity-Based Cryptography”. http://www.math.uiuc.edu/ du-
ursma/Math595CR/KimJ.pdf

[8] D. Boneh and M. Franklin, ”Identity-based encryption from Weil pairing”,
SIAM Journal of Computing, vol.32, no.3, pp. 586-615, 2003.

[9] D. Hankerson, A. J. Menzes and S. A. Vanstone, ”Guide to ellipric
curve cryptography”, Springer professional computing, Springer, New
york, ISBN: 0-387-95273-X.

[10] D. J. Malan, M. Welsh and M. D. Smith, ”A Public-Key Infrastructure
for Key Distribution in TinyOS Based on Elliptic Curve Cryptography”,
IEEE SECON, Santa Clara, CA, USA, October 2004

[11] N. Bulusu, J. Heidemann and D. Estrin, ”GPS-less low-cost outdoor
localization for very small devices”, IEEE Personal Communication Mag-
azine, 2000

[12] A. S. Wander, N. Gura, H. Eberle, V. Gupta and S. C. Shantz, ”Energy
Analysis of Public-Key Cryptography for Wireless Sensor Networks”,
Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications, Kauai Island, Hawai, pp. 324-328,
March 2005

[13] D. Liu, P. Ning and W. Du, ”Group-Based Key Pre-Distribution in
Wireless Sensor Networks”, In Proc. of the 4th ACM workshop on Wireless
security, Cologne, Germany, pp. 11-20, Septembre 2005

[14] Z. Yu and Y. Guan, ”A Robust Group-based Key Management Scheme
for Wireless Sensor Networks”, IEEE Wireless Communications and
Networking Conference, New Orleans, USA, pp. 1915-1920, March 2005

[15] B. Dutertre, S. Cheung and J. Levy, ”Lightweight Key Management in
Wireless Sensor Networks by Leveraging Initial Trust”, SDL Technical
Report SRI-SDL-04-02, SRI International, 2004

[16] S. Zhu, S. Setia, S. Jajodia, ”LEAP: Efficient Security Mechanisms for
Large Scale Distributed Sensor Networks”, In Proc. of the 10th ACM
Conf. on Computer and Communications Security, Washington DC, USA,
pp. 62-72, October 2003

[17] T. Dimitriou and I. Krontiris, ”A Localized, Distributed Protocol for
Secure Information Exchange in Sensor Networks”, In Proc. of the
19th IEEE International Parallel and Distributed Processing Symposium,
Denver, Colorado, USA, April 2005

[18] R. Blundo, A. D. Suntis, A. Herzbeg, S. Kutten, U. Vaccaro and M.
Yung, ”Perfectly secure key distribution for dynamic conferences”, In Proc.
of the 12th Annual International Cryptology Conference on Advances in
Cryptology, Lecture Notes in Computer Science, vol. 17, Springer-verlag,
pp. 471-486, 1992

[19] D. Liu and P. Ning, ”Establishing Pairwise Keys in Distributed Sensor
Networks”, In the Proc. of the 10th ACM Conference on Computer and
Communication Security, Washington DC, USA, pp. 52-61, October 2003

